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Abstract

We consider two large polaron systems that are described by a Frohlich type of Hamiltonian, namely
the Bose—Einstein condensate (BEC) polaron in the continuum and the acoustic polaron in a solid.
We present ground-state energies of these two systems calculated with the Diagrammatic Monte Carlo
(DiagMC) method and with a Feynman all-coupling approach. The DiagMC method evaluates up to
very high order a diagrammatic series for the polaron’s self-energy. The Feynman all-coupling
approach is a variational method that has been used for a wide range of polaronic problems. For the
acoustic and BEC polaron both methods provide remarkably similar non-renormalized ground-state
energies that are obtained after introducing a finite momentum cutoff. For the renormalized ground-
state energies of the BEC polaron, there are relatively large discrepancies between the DiagMC and the
Feynman predictions. These differences can be attributed to the renormalization procedure for the
contact interaction.

1. Introduction

By virtue of the Coulomb interaction the presence of a charge carrier in a charged lattice induces a polarization.
This effect is well-known from the description of an electron or a hole in a polar or ionic semiconductor. The
term polaron was coined by Landau in 1933 [1] to denote the quasiparticle comprised of a charged particle
coupled to a surrounding polarized lattice. For lattice-deformation sizes of the order of the lattice parameter,
one refers to the system as a small or Holstein polaron [2, 3]. For lattice-deformation sizes that are large
compared to the lattice parameter, the lattice can be treated as a continuum. This system is known as a large
polaron for which Frohlich proposed the model Hamiltonian [4]

A 717Kk?
Hpol = Z m

k

A At N AT
e+ oK) b b+ DV (Q)éiqbib_g + hec. (1)
k k.q

Here, the Elj (¢x) are the creation (annihilation) operators of the charge carriers with band mass m and

momentum k. The second term in the above Hamiltonian gives the energy of the phonons which carry the
N At [ .

polarization. Thereby, the operator by (b, ) creates (annihilates) a phonon with wave vector k and energy

/w (k). The last term in equation (1) denotes the interaction between the charge carrier and the phonons. A
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Figure 1. Ground-state energies for the Frohlich polaron are shown as a function of the coupling strength a; o of equation (3). The

MC _ gF .
inset shows the relative difference AE = £ EM_CE , with EF (EM©) the computed energy from the Feynman (DiagMC) approach.

plethora of physical phenomena can be described by the above Frohlich type of Hamiltonian by varying the
dispersion @ (k) and the interaction strength V (q). Frohlich considered the special situation of longitudinal
optical (LO) phonons which are dispersionless @ (k) = w1 o. In the LO limit, the interaction amplitude V (q) in
equation (1) adopts the form

Ji 4 172 1/4
Vio () = —i7222( 20 ( ! ) . @
q A% zmeo
Here, V is the volume of the crystal and a1 o the dimensionless coupling parameter:
e [ m 1 1
aLo = — ——-— (3)
7 Zﬁa)Lo Exo 0]

with &4, (g9) the electronic (static) dielectric constants of the crystal and e the charge of the electron. The Frohlich
polaron which is defined by the equations (1)—(2) and the dispersion @ (k) = @0, has no analytical solution.

More generally, solutions to the equation (1) describe a quasiparticle interacting with a bath of non-
interacting bosons with energies %w (k) through the mediation of the interaction V (q). One example is the
acoustic polaron which corresponds to the interaction of a charge carrier with acoustic phonons [5]. Another
example is the BEC polaron consisting of an impurity atom interacting with the Bogoliubov excitations of an
atomic Bose—Einstein condensate (BEC) [6—8]. Other examples are an electron on a helium film
(‘ripplopolaron’) [9—11] and a charge carrier in a piezoelectric semiconductor (‘piezopolaron’) [12].

Due to the relative simplicity of the model Hamiltonian of equation (1) it is an ideal testing ground for
conducting comparative studies with various many-body techniques (see for example [13, 14] for an overview).
The weak coupling regime (small ;o) was described by Frohlich with second-order perturbation theory [4]
which is equivalent to the Lee-Low-Pines scheme using a canonical transformation [ 15]. For the strong coupling
regime (large a1 o) Landau and Pekar developed a variational technique which predicts the formation of abound
state of the charge carrier in his self-induced potential [16, 17]. Feynman developed an approximation scheme
[18, 19] which should capture all the coupling regimes.

A numerical solution of the Frohlich Hamiltonian of equation (1) with the interaction of equation (2) has
been proposed in [20, 21]. Thereby, a series expansion for the polaron Green’s function was evaluated with the
aid of a diagrammatic Monte Carlo (DiagMC) method. The method is ‘exact’ in the sense that the series
expansion is convergent and sign-definite and therefore it can be stochastically evaluated with a controllable
error. The polaron’s energy is extracted from the asymptotic behavior of its Green’s function.

Polaron systems are ideal for comparative studies of many-body techniques. Examples of such studies for the
Fermi polaron are reported in [22—24]. For the Fermi polaron, a comparison has been made between the
DiagMC method and the variational technique which includes a limited number of particle-hole excitations. It
was demonstrated that a variational one particle—hole calculation is already a good approximation, even for
strong interactions between the impurity and the particles in the Fermi sea [23, 24]. Recently a comparative
study of the neutron polaron has been conducted with quantum Monte Carlo and effective field theories [25].
For the ground-state energy of the Frohlich polaron of equations (1) and (2) it has been shown in [20] that
Feynman’s approach reproduces the DiagMC results to a remarkable accuracy. We have reproduced those
numerical results. As can be appreciated from figure 1 the deviations between the variational Feynman and
DiagMC predictions for the ground-state energies of the Frohlich polaron, are of the order of a few percent, even
for the large coupling strengths. It is not clear, however, how accurate the Feynman technique is for polaron
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systems described by a Hamiltonian of the type of equation (1) with alternate dispersions @ (k) and interaction
amplitudes V (q). Indeed, Feynman’s approach is based on a variational action functional that models the
coupling to the phonons by a single phononic degree of freedom with a variationally determined mass and
harmonic coupling to the electron. This is a rather natural choice for LO phonons, which are dispersionless.
However, it seems intuitively less suitable in situations that the phonons’ energies cover a finite range of values.
Thornber [26] has argued that in those situations, Feynman’s model is unlikely to yield accurate results for the
system’s dynamical properties, but that the system’s ground-state energy can still be captured accurately. To our
knowledge, this assertion has not yet been sufficiently confirmed. In order to remedy this situation, in this work
we compare polaron ground-state energies calculated with the Feynman variational approach against DiagMC
results. This will allow us to test the robustness of the Feynman approach. The two prototypical polaron
problems considered in this work are the BEC polaron and the acoustic polaron. These problems have been
selected because they highlight complementary aspects. The effect of broadening the range of phonon energies is
captured by the acoustic polaron. The BEC polaron problem allows one to additionally cover the issues related to
renormalizing V (q).

The structure of this manuscript is as follows. In section 2 the Hamiltonians for the BEC and acoustic
polaron are introduced. In sections 3.1 and 3.2 the adopted many-body methods for obtaining the ground-state
energies of those Hamiltonians are sketched. Results of the two techniques for the ground-state energies of the
BEC and acoustic polaron are contained in section 4.

2. Large polaron models

2.1.BEC polaron
The Hamiltonian of an impurity immersed in a bath of interacting bosons [8] is given by a sum of two terms
H = Hg + Hjwith

~ At A 1 . At A s
Hy= Y e afax+ — D Vbp(Q) d_qdisqdidic

k kk',q

A kL., 1 st A At s

Hi=3 &b+ > ) Vin(@) &iqlidl—qdr (4)
k 2m1 V Kk',q

The operators (ilz (dy ) create (annihilate) bosons with momentum k, mass m and energy €, = 7#k*/2m.
Further, V is the volume of the system. The operators & (¢ ) create (annihilate) the impurity with momentum
k and mass m;. The boson—boson and impurity—boson interactions in momentum space are Vg (q) and Vg (q).
These potentials are replaced by the pseudopotentials ggp and grg. These constants are chosen such that the two-
body scattering properties in vacuum are correctly reproduced. The sum of all vacuum ladder diagrams, given by
the T-matrix, represents all possible ways in which two particles can scatter in vacuum. For zero momentum and
frequency the T-matrix is given by T' (0):

2m;,
T(0) = g — gIBZﬁﬂox (5)
k
with m, = (1/my + 1/m)~! the reduced mass. For low-energy collisions the first-order Born approximation can
be applied to model the boson—boson and boson—impurity collisions. As a result, g, = 2o , with ajg the

4magp/i®

boson—impurity scattering length and g, = , with agp the boson—boson scattering length.

In the Bogoliubov approximation [27], the Hamiltonian Hy of equation 4 is written in the diagonal form
A AT oA
Hy~ Eq+ Y7o (K) by by (6)
k0
where the operators ka (by) create (annihilate) Bogoliubov quasi-particles. The quasi-particle vacuum energy is

Y 1
Eo= gy + EZ (710 () = ex = noggg); 7

k#0
with n = N/V the total density and 1y = Ny/V the density of the condensed bosons. The average total particle
number N = (N)is fixed, with

N =No+ ) ayaw (8)
k#0
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and N, the number of bosons in the condensate. The collective Bogoliubov excitations obey the dispersion
relation

7w (k) = \/(ek + HOgBB)Z - (n()gBB)z . 9

Atlong wavelengths, the spectrum becomes w (k) = |k|c, which is characteristic of a sound wave with velocity
¢ = [noggg/m - The excitation spectrum is conveniently written in the form

o) = ke |1 +%, (10)

with k = |k|and £ = 1 / |2mng gy, the healing length of the Bose condensate.
Application of the Bogoliubov transformation to the impurity part H; of equation (4) gives [6—8]

A kL, S
H ~ Z &lek + nog + Z \/lgp(q)cﬂ+qck<b_q+ bq), (11)
x 2m q#0.k

in which we have defined

1/4
Vip (q) = 8 Noeq _ 8V No (&9)° (12)
ARCICY Vo ()’ +2
with g, = 2””:13}72. A dimensionless coupling constant o can be defined [8]
2
ap = 418 . (13)
appé
The final expression for the Hamiltonian for the BEC polaron is given by
N I S AT A
Hyp = Eo + nogyy + ), e+ Y 7w (K) by by
x 2m k0
A A AT r
+ 2 Vin@algtu 6+ b ). (14)

q#0,k

Obviously, the Hgp has the format of a Frohlich-type of Hamiltonian defined in equation (1). When presenting
numerical results for the BEC polaron, lengths will be expressed in units of £, energies in units of ﬁ—zz and phonon

wave vectors in units of 1/£. In this way, all quoted variables are dimensionless. In the numerical calculations, we
consider an °Li impurity in a Na condensate for which m;/mp = 0.263158 [8].

The Frohlich Hamiltonian of equation (14) provides an effective low-energy description of an impurity
atom in a BEC. Its accurateness depends on the validity of the Bogoliubov approximation. In the limit of weak
polaronic coupling, this approximation is expected to be accurate.

At strong polaronic coupling a collapse of the impurity wave function is expected for an attractive impurity—
boson interaction [28], making the polaron picture inaccurate. For a repulsive impurity—boson interaction, the
local depletion of the boson density around the impurity can render the Bogoliubov approximation invalid. This
results in the formation of a bubble state, reminiscent of an electron in a condensed helium superfluid [29]. It
was shown in [29] that for a repulsive impurity—boson interaction the Fréhlich Hamiltonian remains valid in the

strong coupling regime as long as the mass scaled gas parameter %,/ noapg is sufficiently small. In the following
1

asystem with a repulsive impurity—boson interaction within the validity regime of the Frohlich Hamiltonian is
considered.

2.2. Acoustic polaron

In a crystal with two or more atoms per primitive cell, the dispersion relation w (k) for the phonons develops
acoustic as well as optical branches. The acoustic polaron comprises a charge carrier interacting with the
longitudinal acoustic phonons and can be described by the Frohlich type of Hamiltonian of equation (1) with
the dispersion w (k) = sk, with s the sound velocity [5]. For the acoustic polaron, the interaction Vi (q) in the
Frohlich Hamilonian adopts the form [5]:

47[0!AC

1/2 22
) L (15)

with P the volume of the crystal and a ¢ a dimensionless coupling parameter. When discussing results
concerning the acoustic polaron, lengths will be expressed in units of //(ms), energies in units of ms*and

Vac(q) = (

4



10P Publishing

NewJ. Phys. 17 (2015) 033023 ] Vlietinck et al

phonon wave vectors in units of ms//%. The summations over the phonon momenta | k| have a natural cut-off at
the boundary ky of the first Brillouin zone. At strong coupling, the Feynman approach to the acoustic polaron
predicts the emergence of a self-induced binding potential for the impurity (‘self-trapped state’). For a system
with both Frohlich and acoustic phonons, the Feynman approach predicts that the dominant mechanism for
this transition is the interaction with the acoustic phonons [30]. Only considering the acoustic phonons results
in a transition of the first order for ky > 18 and a critical pointat ky & 18 and azc & 0.151 [5]. This transition
was also predicted by the path integral Monte Carlo method [31].

3. Numerical methods

3.1. Feynman variational path integral
The Feynman approach is based on the Jensen—Feynman inequality for the free energy 7 of a system with action
S [19]:

7—’<R)+};—ﬂ<5—50> (16)

So’

Here, F; is the free energy of a trial system with action Sy, (...)s, denotes the expectation value with respect to the

trial systemand f = ( kg T)_1 is the inverse temperature. Feynman proposed a variational trial system of a
charge carrier harmonically coupled with spring frequency W to a fictitious particle with mass M. For T=0 the
Jensen—Feynman inequality of equation (16) applied to this system produces an upper bound EIF, for the
polaronic ground-state energy [18, 19]:

(1+M/m) -1 ’ vl
o0 u

Py 1 + M/my ; /i

with Q = W1 + M/m . The function D (k, u)is the phonon Green’s function in momentum-imaginary-
time representation (k, 7)

f°° duD (k, ) M (k, u), (17)
0

D(k, 7) = —6(7) exp[-w (k) 7], (18)

where 6 (7) is the Heaviside function. The memory function M (k, u) is:

2 — —
MK, 1) = exp K (u n MM) _ (19)
2(mI + M) mi Q
The u-integral in equation (17) is of the following form:
/ " du exp[ —au + be] = ~(b)"I"(a, =b, 0), (20)
0

with I (a, zy, ;) = / ? ta-le=tdt the generalized incomplete gamma function. The parameters M and £2 are
Zp

used to minimize the upper bound for the ground state energy of equation (17). This approach captures the
different coupling regimes.

3.2. One-body propagator and DiagMC
The Green’s function of the polaron in the (k, 7) representation is defined as:
G (k, 7) = =0 (7) (vac|éi (7) & (0) |vac), (21)
with
& (7) = efee ™, (22)

the annihilation operator in the Heisenberg representation and |vac) the vacuum state. The BEC polaron
Hamiltonian Hgp of equation (14) contains a vacuum energy Ey + #1yg;; which we choose as the zero of the
energy scale. Accordingly, Hgp [vac) = 0. Wedefine {|v (k) )} as those eigenfunctions of Hyp with energy
eigenvalue E, (k) and with one impurity with momentum k. Inserting a complete set of eigenstates in
equation (21) gives

Gk, 7) = —0(2) Y () |eflvac) e Fo=, (23)

Under the conditions that the polaron is a stable quasi-particle in the ground state (in the sense that it appears as
a é-function peak in the spectral function), one can extract its energy E,, (k) and Z-factor Z, by studying the long
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Figure 2. Irreducible diagrams for the polaron’s self-energy X (k, 7, p). Imaginary time runs from left to right. A solid line represents
afree-impurity propagator and a dashed line stands for an elementary excitation. The interaction vertices are denoted by dots.

imaginary time behavior of the polaron’s Green’s function:

Gk, 7, 1) = Gk 7) e’ "X —Z (k) e~(B—n)z, (24)
where
Zo(k) = (¥ (k) |¢f | vac)P, (25)

with ¥ (k) the fully interacting ground state. The unphysical parameter u is introduced to control the
exponential tail of G in imaginary time, and to ensure that it is always descending. The particular choice of s has
no impact on the final results. The asymptotic behavior of equation (24) is associated with a pole singularity for
the Green’s function in imaginary-frequency representation. For (E, (k) — u) > 0 one has

Zo (k)

+o0
Gk o, =/ dre” G (k, 7, 4) = —22 | regular part. 26
(k, w, u) ; Te (k, 7, 1) P regular par (26)

The one-body self-energy X (k, o, u) is related to the Green’s function by means of the Dyson equation
1

1 >
o =k @, )

Gk, w, p) =

(27)

with G° (k, , p) the free impurity Green’s function (see equation (31)). Since the equations (26) and (27)
possess the same pole structure, the following expression for the polaronic ground-state energy E, = E, (k = 0)
can be obtained [20]:

E,=2(k=0,0=0,u=E,). (28)
The p dependence of the self-energy in the imaginary-time representation X (k, 7z, ) adopts a simple form
1 e 4
2o =5 [T doc sk 0,0 = £k 7 = 0)er, (29)
z Jo
With the above expressions one immediately sees that

E, = /:o dr Z(r, U= Ep) = fow dr X (z, ,u)e(EP_")T, (30)

with X (7, u) = 2 (0, 7, u). The r dependence of the quantity X (z, u) ata fixed value of 4 can be numerically
evaluated in DiagMC. Thereby, it is beneficial to perform the calculation at a value of i approaching the
magnitude of E,,. Indeed, from equation (30) itis clear that for 4 < E,, the statistical noise at large values of 7in
X (7, p) can be better kept under control. Although E;, is a priori unknown, its value can be estimated in an early
stage of the simulation. After performing the DiagMC simulation, equation (30) can be solved iteratively.

Calculating the Green’s function boils down to summing a series of Feynman diagrams over all topologies
and orders, thereby integrating over all internal variables (like momentum and imaginary time). It is shown in
[20] that DiagMC is very suitable to accurately compute the Green’s function through a series expansion.

In figure (2) some Feynman diagrams for X are shown. The algebraic expression for these diagrams is given
in terms of free propagators and interaction vertices:

(i) The free-impurity propagator in imaginary time is determined by
GOk, 7, p) = =0 (7) e~ (=17, (31)

(ii) The propagator for an elementary phonon excitation, either of the Bogoliubov type for the BEC polaron, or
acoustic phonons for the acoustic polaron is defined in equation (18).

(iii) A vertex factor V (q) whenever an elementary excitation carrying momentum q is created or annihilated.
We consider irreducible diagrams and evaluate a large number of diagrams D in order to numerically
compute the X (k, 7, u)
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0 4x10* 8x10*
T

Tt

Figure 3. The one-body self-energy X (z, u) for y = —790 for the BEC polaron plotted as a function of imaginary time 7. Results are
obtained for a;p = 5and g.=200 and exclude the first-order contribution to X (z, u) which can be easily computed analytically. The
inset shows X (z, u) for small imaginary times.

2k, t, ﬂ)ziz Z 0<<...<7;<...<Tpp2 < Tf[/dl’]...df,‘...d‘[zn_z

n=1 é:n 9Qi=1,..., n

X D(fn) k) Ts Us Tl ooos Tis ovos T2n—25 qu e qi)---r qn)> (32)

where &, represents the topology, n the diagram order, q, are the independent internal momentum and 7; is the
internal imaginary times. We define the diagram order by counting the number of elementary excitations (the
number of dashed propagators in figure 2). The DiagMC technique allows one to sample over all topologies, all
orders and all values of the internal variables, and thus to determine X.

4. Results and discussion

4.1. BEC polaron

For the Frohlich polaron for which the ground-state energies are displayed in figure 1, the one-body self-energy
X (r, p) can be computed by means of the procedure sketched in section 3.2. For the BEC polaron, on the other
hand, one encounters ultraviolet divergences when evaluating X (z, y) and its energy cannot be extracted.
Renormalization/regularization of the impurity—boson pseudopotential is required to obtain physically relevant
results for the energies. As a first step in the renormalization procedure, we introduce a momentum cutoff g,
upon replacing the momentum summations in equation (14) by integrals:

.
Y- o A » dk. (33)

k

This allows us to calculate X (z, u) and the accompanying ground-state energy Eg[c. From now on we will make
the distinction between the polaron energy calculated by DiagMC (Eglc) and calculated by the Feynman
approach (Ei). Obviously, E;\/IC’F depends on q.and in order to stress this dependence we use the notation
E;‘/IC’F (q,)-Infigure 3 we show an example of the time dependence of the one-body self-energy X (z, u) for the
BEC polaron for q.=200. As can be noticed, after introducing a momentum cutoft g, the z dependence is well
behaved and the asymptotic regime of X (7, u) can be identified. The Y>> ' in equation (32) implies a
summation over an infinite number of diagram orders. In practice, we set a cutoff Ny, for 7 in evaluating

2 (7, p). For each Ny, we can find a corresponding imaginary time 7,,,,, for which we observe that

ZnN:S‘ ST € Toags f) = pI 2" (7 < Tyay, #) within the numerical noise. Hereby, X (7, i) is the
contribution from the nth order diagrams to the self energy. Upon increasing Ny, the value of 7., increases
accordingly. An optimal Np,,, is reached when we can find a 7,5, in the asymtotic regime that allows us to fit the
tail of X (z, p). In this way we make an extrapolation for 7 — 0. Typical values of Ni,y are of the order 10* for
large values of . With the aid of the equation (30), E;AC (q,) can be extracted from the computed X (7, u). The

error on E;VIC (q,) contains a statistical error and a systematic error stemming from the fitting procedure. As can
be appreciated from figure 3, the grid in imaginary time has to be chosen carefully, since the short-time behavior
of X (z, u)is strongly peaked. The X (p, 7, u) for these short times delivers a large contribution to the energy.

In figure 4, results for the non-renormalized energies Elf (q,)and E;VIC (q,) are presented as a function of the
dimensionless coupling parameter o defined in equation (13). The a3 and g, dependence of the DiagMC

7
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Figure 4. The non-renormalized BEC-polaron energy E,, as a function of the coupling strength a; as computed with the DiagMC
(symbols) and with the Feynman (lines) approaches. Results are shown for four values of the cutoff momentum.

energies is remarkably similar to those of the Feynman energies. We observe that E;\AC (q,) lies a few percent
below E;: (g,) for all combinations of &g and g. considered.

In [8] arenormalization procedure to eliminate the g. dependence of the computed polaron energy is
outlined. When determinig the T-matrix of equation (5) up to second order, the following relation between the
scattering length a;p and the coupling strength g is obtained:

2ram/i? ; 2m,
map/” o - 8B / dq m ) (34)
m, (2r)® Jlal<a, " 7’g?

Using this expression, the 1 g, term in equation (14) can be replaced by:

2maphg/i’
no&g = malLE + Eren(qc)a (35)
ny
whereby we have defined E..,, (q,):
2
nop&; 2m,
Eun(g) = —2 [ dg=2t. (36)
(2z)’ Jlal<a. " 717q

This renormalization procedure was developed in the context of the Feynman approach [8]. The same
procedure can also be applied in the DiagMC framework. In both frameworks, the renormalized polaron
ground-state energy can be found by evaluating the sum

EY'“F = E)'“F (g, = 00) + Eren(q, = ). (37)

This renormalization procedure preserves the absolute difference between the E;‘AC (q, = o)andthe
EIf (g, = oo)results.

In order to illustrate the convergence of the equation (37) in both approaches, in figure 5 the energies
[E;v{c (q,) + Eren(q,)]and [E;D (q.) + Eren(q,.)]areplotted as a function of g for a representative value g = 3
of the coupling strength. We notice that the DiagMC and the Feynman approach display an analogous g,
dependence. Convergence is reached for g, > 3000. As a matter of fact, the E;’IC’F (9.)and Ei, (q.) are of equal
magnitude. This imposes severe constraints on the required accuracy of the used many-body technique. Small
deviations in the computed Eé‘AC’F (g,) can result in large changes in the obtained values of the renormalized
polaron ground-state energy. This explains the relatively large differences (more than an order of magnitude for
the results of figure 5) between the unbiased DiagMC results [EI;VIC (q.) + Eien(q,.)]and the approximate

[E£(q,) + Ewn(q,)] ones.

Figure 6 shows that the Feynman path-integral predictions for the BEC-polaron ground-state energies
overshoot the DiagMC ones. The relative difference between the two predictions increases with growing values
of g.. The very good agreement between the two methods that was found in figure 4 for the non-renormalized
energies, is no longer observed for the renormalized energies. Indeed, the latter are obtained with equation (37),
which amounts to substracting two numbers of almost equal magnitude. Accordingly, the final result for the
renormalized BEC-polaron ground-state energy is highly sensitive to the adopted many-body technique and
renormalization procedure. Figure 7 illustrates that for small a3 both methods reproduce the result from
second-order perturbation theory.

The DiagMC method samples diagrams according to their weight and it can be recorded how many times a
specific diagram is sampled. In this way, one can identify those diagrams with the largest weight in the self-
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cutoff q.. Lines are the Feynman path-integral and symbols are the DiagMC results.
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Figure 7. The renormalized BEC-polaron energies [E;, (q,.) + Eren (q,.) ] at small values of ajp at g. = 2000. The dot-dashed line is the

Feynman path-integral result, symbols represent the DiagMC results, while the short dashed line is the prediction from second-order
perturbation theory (PT).

energy X (7, u). At fixed diagram order, we have observed that the number of first-order subdiagrams—the
definition of which is explained in the caption of figure 8—plays a crucial role in the weight of the diagram. Our
studies indicate that for g, > 50 the most important diagram is the one with the highest number of first-order
subdiagrams. We have considered many combinations of ajg and q.and could draw this conclusions in all those
situations. The dominance of this diagram becomes more explicit with increasing values of g..

4.2. Acoustic polaron
We now discuss the numerical results for the ground-state energy of the acoustic polaron introduced in
section 2.2. In figures 9 and 10 we show a selection of the predictions EE from the Feynman upper-bound
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Figure 8. A diagram of order five for the one-body self-energy. Line conventions as in figure 2. Imaginary time runs from left to right.
A first-order subdiagram occurs whenever a first-order diagram drops out from the full diagram by cutting the solid line at two
selected times. For example, the considered diagram contains four first-order subdiagrams.
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Figure 9. Non-renormalized ground-state energies Ej, and E' for the acoustic polaron as a function of aac for ko = 10. The inset

EMC—Ef
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Ep

as afunction of aac.

0 T T T
DiagMC =—+—
-100 Feynman B
-200 -
300 L L i
Lun‘ 012 b -
-400 -9 008 ‘ - B
< 004 'l"- % ]
500 F [ n .
‘.'7.. i ..M
-600 |- 0.04 0.08 i
Oy
700 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1
Oyc

Figure 10. As in figure 9 but for ky = 50. The vertical dashed line denotes the coupling strength asc = 0.052 corresponding with the
transition as computed in [5].

method of equation (17) together with the DiagMC results Egdc which are computed with the aid of

equation (30). For kg = 10 and ko = 50 an excellent agreement between EE and EE/IC is found. From the relative
EMC _ EF
difference AE = ", avalue asc can be found where AE islargest in the considered region of ac. For
E

P

ko = 10 we find @ f7'° = 0.28 + 0.04 and for ko = 50, " = 0.52 + 0.01. For a < a., AE increases with

ascandfor @ > a. AE decreases with increasing aac. We remark that a0='% and o }=°
coupling strength for the transition [30] as computed with the Feynman approach.
From a detailed analysis of the DiagMC results for ko = 50 we find that the class of diagrams of the type

sketched in figure 8 plays a dominant role for aac < .. For asc > a, we observe a dramatic change in the

coincides with the

importance of those diagrams, and we can no longer identify a class of a diagrams that provides the major
contribution to the self-energy X (z, u).

The knowledge of a certain class of dominant diagrams can be exploited to develop approximate schemes.
Indeed, one can set up a self-consistent scheme thereby summing over an important class of diagrams, including
the observed dominant ones. In practice, the procedure can be realized by introducing bold (or dressed)
propagators

10



I0OP Publishing NewJ. Phys. 17 (2015) 033023 ] Vlietinck et al

=0D(p, w, p) = fdw’f(quPG("‘”(p - q 0 - o, u)D(q )

1
G (p, w, ) — ZED(p, , )

with @ and @' the imaginary frequencies. The self-energy X~! and the dressed Green’s function G (p, @, u)
are calculated for subsequent values of i, starting from i = 1, until G® (p, @, u) is converged. In this way
2@ (p, w, p)will contain all diagrams for which the lines of the phonon propagators do not cross.

x G (p, w, p) =

5. Conclusions

We have studied the ground-state energies of the BEC polaron and the acoustic polaron, two large polaron
systems that can be described by a Fréhlich type of Hamiltonian. When calculating energies for the BEC polaron
with the DiagMC and the Feynman variational technique, we encounter similar ultraviolet divergences. For the
acoustic polaron, the ultraviolet regularization is achieved by a hard momentum cutoff which is naturally set at
the edge of the first Brillouin zone. In this case, the DiagMC and Feynman predictions for the ground-state
energies agree within a few percent. The largest deviation between the predictions of both methods, was found at
acoupling strength that marks the transition between a quasifree and a self-trapped state. For the BEC polaron, a
more involving two-step renormalization procedure is required. The first step is the introduction of a hard
momentum cutoff. In line with the results for the acoustic polaron, the DiagMC and Feynman non-
renormalized ground-state energies of the BEC polaron which are produced in this step are remarkably similar.
Therefore, one can infer that the Feynman variational method reproduces the ‘exact’ DiagMC non-
renormalized polaron ground-state energies at a finite momentum cutoff.

In order to obtain the physical, or renormalized, BEC-polaron energies from the non-renormalized ones, an
additional procedure is required. Thereby, the ultraviolet behavior of the contact interaction is renormalized
with the aid of the lowest-order correction obtained from the Lippmann—Schwinger equation (36). In the
regime of strong coupling this results in significantly different Feynman and DiagMC BEC-polaron
renormalized energies.
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