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Nonparametric species richness estimation
under convexity constraint

Cécile Durota, Sylvie Huetb∗, François Koladjobc and Stéphane

Robinde

Summary: We consider the estimation of the number N of present species in a given area at a given time,

based on the abundances of species that have been observed. We adopt a nonparametric approach where the

true abundance distribution p is only supposed to be convex. A definition for convex abundance distributions

is proposed. A least-squares estimate of the truncated version of p under the convexity constraint is used.

Two estimators of N are deduced, the asymptotic distribution of which are derived. We propose three

different procedures, including a bootstrap one, to obtain a confidence interval for N and a standard error

for its estimator. The performances of the estimators are assessed in a simulation study and compared with

competitors. The proposed method is illustrated on several examples.

Keywords: Abundance distribution; Convex abundance distribution; Least squares estimator;

Nonparametric estimation; Species richness estimation.

1. INTRODUCTION

Species richness is one of the oldest ways to evaluate the diversity of species in a given area.

We refer to species richness as the number of species present in a given area at a given time.

In that sense, it provides a simple measure of biodiversity. This measure has been used in a

wide range of domains such as conservation biology (Margules et al., 2002), metagenomics
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(Allen et al., 2013) or entomology (Longino et al., 2002). Classically, the inference on species

richness aims at estimating the number of present species based on the abundances observed

for a series of species. The problem is then to estimate the number of unobserved species

that are present. The problem traces back to Fisher et al. (1943), who first proposed to

estimate the distribution of abundance in a Gamma-Poisson framework. Various sampling

theoretic frameworks have been considered for modelling observations of species abundance

in a population, see for example the review given by Bunge and Fitzpatrick (1993) or more

recently by Bunge et al. (2014) in the context of microbial diversity estimation. The generic

problem can be stated as follows. Suppose that the population is composed of N species and

for i = 1 . . .N , denote by Ai the abundance (that is the number of observed individuals) of

species i and by Sj the number of species with abundance j in a sample. The total number of

observed species is D =
∑

j>1 Sj whereas S0 is the number of unobserved species. The total

number of species is N = S0 +D and, because D is observed, the estimation of N amounts

to the estimation of S0. We will denote by n the sample size: n =
∑

i Ai =
∑

j jSj .

A first approach consists of considering that the n individuals are sampled from an infinite

population composed of N species in proportions w1, . . . , wN . In this setting, Harris (1959)

considered the problem of estimating the sample coverage
∑

iwiI(Ai > 1) and provided

an approximation for the expected number of unobserved species E(S0). Inspired by this

approximation, Chao (1984) proposed an estimator of a lower bound for N and illustrated

that her estimator can be considered as an estimator for N if n is large and most of the

information is concentrated on the triplet (D,S1, S2). Chao and Lee (1992) introduced an

estimator based on the estimation of both the expected sample coverage and the variation

coefficient of the wi’s. Chao and Lin (2012) also considered lower bound estimators in

nonparametric models under very general sampling models.

A second approach is to assume that the Ai’s are independent variates with the

same distribution p = (p0, p1, . . . , pn), called the abundance distribution. In this setting,
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Sanathanan (1972) pointed out that if p were known, then the maximum likelihood estimator

of N would be

N̂p = ⌊D/(1− p0)⌋, (1)

where ⌊x⌋ denotes the integer part of x. Postulating a parametric assumption on p in order to

make p0 identifiable, Sanathanan (1972) computed the asymptotic distribution of both the

maximum likelihood estimator (MLE) and the so-called conditional MLE of N as N → ∞.

Most authors adopting the point of view of independent Ai’s with common distribution p

assumed that Ai is distributed as a Poisson with expectation λi, the λi’s being independent

variables from some distribution ω over (0,∞) that is called a mixing distribution. Therefore,

P (Ai = j) = pj(ω) =

∫
∞

0

λj exp(−λ)

j!
dω(λ) (2)

and such a setting is called the Poisson mixture setting. It is generally referred to as

parametric if a parametric assumption is formulated on ω, and nonparametric otherwise.

In the parametric Poisson mixture setting, Chao and Bunge (2002) provided a consistent

estimator when ω is a Gamma distribution. An extension was proposed by Lanumteang and

Böhning (2011). Such mixtures are implemented in the CatchAll program (Bunge et al.,

2012).

General results about the MLE in the nonparametric Poisson mixture setting can be

found in Laird (1978) and Lindsay (1995). For Poisson mixture truncated at zero, Mao

and Lindsay (2007) proved that the model is identifiable only if ω has no mass at zero.

Norris and Pollock (1998) developed the MLE of both N and ω, using an Expectation-

Maximization (EM) algorithm similar to the one of Norris and Pollock (1996). Böhning and

Schön (2005) considered an alternative approach using a nested EM algorithm to compute

the MLE of N and ω. Both authors proposed bootstrap approaches to obtain confidence
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intervals. Wang and Lindsay (2005) pointed out the numerical instability of earlier estimation

methods and proposed to use a penalized log-likelihood function to stabilize the estimation

procedure. More recently, Wang (2010) considered a continuous estimator for ω – a ‘smooth

nonparametric MLE’ – to better capture the information of species abundance near zero.

Unfortunately, there are no asymptotic results on the aforementioned estimators in the

nonparametric Poisson mixture setting. In some sense, Mao and Lindsay (2007) proved

that no limiting distribution theory could be achievable in this setting. To be more specific,

as a consequence of (1), estimating N amounts to estimating the odds p0/(1− p0). Mao

and Lindsay (2007) proved the discontinuity of the odds as a function of ω, from which they

derived that the odds has no locally unbiased and locally informative estimator. They proved

that asymptotically valid (as D → ∞) confidence intervals for the odds are necessarily one-

sided, which means that only lower bounds (for the odds as well as for N) can be calculated.

In this paper, we propose a new nonparametric approach for estimating N . We assume

that the abundances Ai are independent with common distribution p but in contrast to the

Poisson mixture setting, we do not assume any parametric or semi-parametric form for p.

Our approach is built upon two basic facts.

(i) Most real observed abundance distributions appear to be convex.

(ii) The convexity assumption is sufficient to solve the identifiability issue raised by the

estimation of S0.

Observation (i) results from empirical evidence, which we illustrate in Figure 1. This figure

presents four typical abundance distributions which all display a convex shape, together

with several estimators discussed below. This general observation was also acknowledged in

Bunge et al. (2014) (Section 3.2), whose general description of abundance distributions is

fully consistent with a convex shape. Furthermore the mixture representation suggested in

this reference is consistent with the one we propose hereafter.
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Observation (ii) is less intuitive and results from the characterization of any convex

distribution as a mixture of triangular distributions (see Subsection 2.2). The first component

of the mixture corresponds to a Dirac mass at 0, which corresponds to absent species. Hence,

we define a convex abundance distribution as a convex distribution from which this first

component is absent. The weights of all other components of the mixture can be inferred

resulting in estimators for S0 and N .

[Figure 1 about here.]

2. MODEL

2.1. The observations

As only species that are present in the sample can be counted, species for which Ai = 0

are not observed. Thus, we only observe the zero-truncated counts X1, . . . , XD, where Xi

is the abundance of the i-th observed species in the sample. Here, D ∼ Bin(N, 1− p0), and

conditionally on D, X1, . . . , XD are i.i.d. random variables with distribution p+ defined by

p+j =
pj

1− p0
, for all integers j > 1, (3)

(see Supporting Information). We aim at estimating N , the total number of species.

2.2. The assumption of a convex abundance distribution

To make N identifiable, we propose a nonparametric modelling of p, assuming that p is a

discrete convex abundance distribution, as defined below.

A discrete distribution p on N is convex if pj − pj−1 6 pj+1 − pj for all j > 1. Consequently

p is non-increasing, otherwise
∑

j∈N pj would be infinite. Moreover, it follows from Theorem

7 in Durot et al. (2013) that p can be decomposed into a mixture of triangular distributions,
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and that this mixture is unique. More precisely, we have

pj =
∑

ℓ>1

πℓTℓ(j), (4)

for all integers j > 0, where

πℓ =
ℓ(ℓ+ 1)

2
(pℓ+1 − 2pℓ + pℓ−1) for all integers ℓ > 1 (5)

and where Tℓ is the triangular distribution defined by

Tℓ(j) =
2(ℓ− j)+
ℓ(ℓ+ 1)

for all j ∈ N

where x+ = max{x, 0}. Our interpretation of the mixture (4) is that the set of species is

separated into groups, each species having probability πℓ to belong to the group ℓ of species,

and the abundance distribution of all species in the group ℓ is the triangular distribution

Tℓ. As the first component T1 is a Dirac mass at 0, it refers to species for which the

only abundance that could be observed is 0. This group simply defines absent species, and

therefore π1 has to be zero in an abundance distribution. This leads to the following definition:

Definition of a convex abundance distribution: The distribution p on N is a convex

abundance distribution if there exist positive weights πℓ, ℓ > 2 such that pj =
∑

ℓ>2 πℓTℓ(j)

for all integers j > 0.

In the following, we assume that the abundance distribution p is a convex abundance

distribution. It then follows from (5) that p2 + p0 − 2p1 = 0, or equivalently, that

1

1− p0
= 2p+1 − p+2 + 1, (6)

where p+ is the zero-truncated distribution defined by (3). The distribution p+ is identifiable

since we observe X1, . . . , XD which are i.i.d. with distribution p+ conditional onD. Therefore,
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it follows from (6) that 1− p0 is identifiable and because D ∼ Bin(N, 1− p0), we conclude

that N also is identifiable. This shows that our assumption is sufficient to avoid identifiability

problems. The precise construction of the estimates is the aim of the following section.

3. ESTIMATING THE NUMBER OF SPECIES

In order to estimate N , we first build an estimator for 1/(1− p0). Because of (6), we consider

estimators of the form 2p̂+1 − p̂+2 + 1, where p̂+ is an estimator for p+ and we estimate N by

N̂ = D
(
2p̂+1 − p̂+2 + 1

)
. (7)

We present two different estimators for N based on two different estimators of p+.

3.1. Estimators based on the empirical estimator of p+

For all j > 1, the empirical estimator (which is the more commonly used estimator for a

discrete distribution) of p+j is fj = Sj/D. Using this estimator in (7) leads to the estimator

N̂f = 2S1 − S2 +D. (8)

One can derive from the central limit theorem (see Supporting Information) that

N̂f −N√
6S1

converges in law to N (0, 1) (9)

as N → ∞. Note that this calculation is feasible only if S1 is strictly positive, which happens

with probability that tends to one if the underlying distribution is non-increasing (which is

the case under the convexity assumption) and not concentrated at zero.
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3.2. Estimators based on the constrained least-squares estimator of p+

The estimator (8) exploits the convexity assumption only through the identity (6). But

it follows from (3) that p+ is convex if p is convex. We might obtain better estimates by

incorporating this information into our estimation procedure, so instead of the empirical

estimator, we consider here a convex estimator of p+: we consider the constrained least-

squares estimator p̂+ defined as the unique solution to the following optimisation problem:

Q(p̂+) = inf
q∈C

Q(q), where Q(q) =
∑

j>1

(qj − fj)
2 (10)

and where C denotes the set of all convex sequences q on N satisfying
∑

j>1 q
2
j < ∞. Durot

et al. (2013) proved that p̂+ exists, has a finite support, and is a probability mass function.

They provided an algorithm, based on the support reduction algorithm of Groeneboom et al.

(2008), for computing p̂+ in a finite number of steps.

3.3. Asymptotic distribution of the number of species’ estimator

Let N̂ be defined by (7) where p̂+ is taken from (10). To compute the limiting distribution

of N̂ we need the following definitions and notation. A knot of p+ is an integer j > 2 such

that p+j − p+j−1 < p+j+1 − p+j ; a double-knot of p+ is an integer j > 2 such that both j and

j + 1 are knots of p+. Notice that p+ has at least one knot since it is a convex probability

mass function on N. However, double-knots of p+ may not exist.

• Let τ be the maximum of the support of p+ if it is finite, and τ = ∞ otherwise.

• Let κ be the smallest double-knot of p+ if it exists, and κ = ∞ otherwise.

• Let k > min {τ + 1, κ}, let J be the set of all knots of p+ that are smaller than k and

set I = {1, k} ∪ J . We assume that either p+ has a finite support, or p+ has at least

one double knot. This amounts to assume that min{τ, κ} < ∞.
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• Let W be a centered Gaussian vector in R
k with covariance matrix Γ defined as

Γjj = p+j (1− p+j ) and Γjj′ = −p+j p
+
j′ for all 1 6 j, j′ 6 k and j 6= j′.

• Denoting by 1 = i1 < i2 < . . . < iI = k the points in I, let

CI =
{
q ∈ R

k such that q is convex on {ij−1, . . . , ij} for all j = 2, . . . , I
}
.

Let W I = (W I
1 , . . . ,W

I
k ) be the minimizer of

∑k
j=1 (qj −Wj)

2 over q = (q1, . . . , qk) in CI .

One can show that

N̂ −N√
D

converges in law to 2W I

1 −W I

2 +

√
p0

1− p0
Z

as N → ∞, where Z ∼ N(0, 1) is independent of W I (see Supporting Information).

4. CONFIDENCE INTERVALS

4.1. Estimation based on the empirical frequencies

If N is large and if the quantities Np0 and N(1 − p0) are not too small, then it follows from

(9) that the distribution of (N̂f −N)/
√
6S1 can be approximated by that of a standard

Gaussian variable. This leads to the following confidence interval

CIf =
[
N̂f − z1−α/2

√
6S1 , N̂

f + z1−α/2

√
6S1

]
, (11)

where α ∈ (0, 1) is fixed and z1−α/2 is the (1− α/2)-quantile of a standard Gaussian

distribution. According to (9), the asymptotic level of the interval is 1− α.

4.2. The plug-in procedure on N̂

The limiting distribution of N̂ given in Section 3.3 depends on p+ through k, I, the covariance
matrix Γ of the Gaussian vector W , and the variance p0/(1− p0)

2 of the additional Gaussian
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variable. We estimate p0 by 1− 1/(2p̂+1 − p̂+2 + 1) with p̂+ being the constrained least-

squares estimator of p+, and we estimate all unknown quantities depending on p+ by similar

quantities with p+ replaced by p̂+. For simplicity, we consider k = min{τ + 1, κ} and we

estimate k and I as follows. Let ŝ be the first double knot of p̂+ if it exists. In the case where

such a double knot does not exist we use the convention that ŝ = ∞. Let τ̂ be the maximum of

the support of p̂+. From Theorem 1 in Durot et al. (2013) we know that τ̂ is finite. Therefore,

k̂ = min {ŝ, τ̂ + 1} is finite and I is estimated by Î, the set consisting of 1 and the knots of p̂+

before k̂. Then, the estimated quantiles of the random variable 2W Î
1 −W Î

2 +
√
p̂0/(1− p̂0)Z,

say λ̂1−α/2 and λ̂α/2, are obtained by simulation. The calculation of W I is done using the

algorithm proposed by Dykstra (1983) for restricted least squares regression; see Balabdaoui

et al. (2014) for more details. Then we consider the confidence interval for N given by

CI =
[
N̂ − λ̂1−α/2

√
D, N̂ − λ̂α/2

√
D
]
. (12)

The obvious advantage of the interval (11) as compared to (12) lies in its computational

simplicity, due to the fact that it is based on the empirical frequencies rather than on

the constrained estimator p̂+. Moreover its level tends to 1− α as N → ∞. In contrast, the

asymptotic level of the confidence interval (12) is not known, due to the unknown asymptotic

behaviour of Î. However, it is not clear in the general case which of those two intervals has

better length or coverage probability. Such a comparison can easily be performed only in

the special case where min{τ + 1, κ} = 2. In that case, N̂ and N̂f have the same limiting

distribution (see the comments just below Corollary 1 in Supporting Information), so the

difference between the two intervals relies on the way we estimate the unknown parameters

in the limiting distribution, and on the chosen center N̂f or N̂ for the interval. The two

intervals will be compared in the next section. An alternative to the plug-in method is to

use a bootstrap procedure for estimating the quantiles of the limiting distribution of N̂ .
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4.3. The bootstrap procedure on N̂

The bootstrap procedure consists of generating a bootstrap sample as follows: draw a

binomial random variable D∗ with parameters N̂ and 1− p̂0, then draw a D∗-sample

(X∗
1 , . . . , X

∗
D∗) from p̂+. We calculate the statistics f ∗

j =
∑D∗

i=1 I(X
∗
i = j)/D∗ for all j in the

support of p̂+ and the bootstrap estimator of p+ by minimizing
∑

j>1(qj − f ∗
j )

2 over q ∈ C.

Finally we get p̂∗0, the bootstrap estimator of p0, and N̂∗ = D∗/(1− p̂∗0). For a fixed β ∈ (0, 1),

the β-quantile ζβ of (N̂ −N)/
√
D is estimated by the β-quantile ζ∗β of the distribution of

(N̂∗ − N̂)/
√
D∗. Finally the bootstrap confidence interval for N is

CI∗ =
[
N̂ −

√
Dζ∗1−α/2 , N̂ −

√
Dζ∗α/2

]
. (13)

Note that in contrast to the confidence interval in (11), no asymptotic results are available

for the confidence interval in (13).

5. STANDARD ERROR

Following (9), the standard error of N̂f is estimated by SEf =
√
6S1. Applying the plug-

in procedure of Section 4.2, the standard error of N̂ is estimated as the standard error of

the random variable 2W Î
1 −W Î

2 +
√

p̂0/(1− p̂0)Z and is estimated by simulation. It will be

denoted SE. Finally applying the bootstrap procedure of Section 4.3, the bootstrap estimate

of the standard error of N̂ , denoted SE∗, is the standard error of N̂∗ estimated by simulation.

6. SIMULATION STUDY

We designed a simulation study to assess the performance of the estimators N̂ and N̂f , and

the confidence intervals CIf , CI and CI∗. We compare our procedure to other methods.
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6.1. Simulation design

Convex abundance distribution. We assumed a Poisson mixture setting with a Gamma

mixing distribution ω. We were motivated by the fact that all methods to which we will

compare (Norris and Pollock 1996; 1998; Wang and Lindsay, 2005; 2008; Wang, 2010;

Lanumteang and Boehning, 2011) are either based on this assumption, or are proved to

give consistent estimators of N under this assumption, or consider a statistical modeling

that covers this distribution. Precisely, p is a Gamma-Poisson distribution that takes the

form

pj =
Γ(j + ν)

Γ(ν)j!
µν(1− µ)j (14)

for some unknown ν > 0 and µ ∈ (0, 1). Note that for such distributions, p0 = µν and p+j =

pj/(1− µν) for j > 1. We focused on the case where p is a convex abundance distribution,

which is satisfied (see Supporting Information) when

ν > 1 and 1− µ =
2ν −

√
2ν(ν − 1)

ν(ν + 1)
.

Simulation parameters and evaluation criteria. To cover a wide range of possible

applications, we chose N in the set
{
50, 100, 200, 400, 800, 1500, 3000, 5000, 10000

}
. We

considered ν ∈ {1.01, 1.05, 1.1, 1.3, 1.5, 1.75} corresponding to the following values of p0:

{0.073, 0.160, 0.218, 0.330, 0.382, 0.420}. All confidence intervals were computed at level

α = 0.05.

All simulation results were based on 1000 samples including the computation of the

quantiles (ζ∗α/2, ζ
∗

1−α/2) used in the bootstrap procedure and the computation of the quantiles

(λ̂α/2, λ̂1−α/2) used in the plug-in procedure. The simulations were carried out with R (R Core

Team, 2014). The R functions are available in the Supporting Information.

The accuracy of an estimate N̂ was measured in terms of bias, standard error and root mean
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squared error of prediction. The bias of an estimator N̂ was estimated by bias = N̂• −N ,

where N̂• =
∑

s N̂s/1000 with N̂s being the estimate of N at simulation s. The standard

error of N̂ was estimated by se =
√∑

s(N̂s − N̂•)2/1000, and the root mean squared error

of prediction by RMSEP =
√
bias2 + se2. For the sake of comparison between the different

values of N , we will rather consider these quantities divided by N .

The quality of a confidence interval [Binf ,Bsup] was measured in terms of left and right non-

coverage probabilities, defined by P (N < Binf) and P (N > Bsup) respectively. They were

estimated by
∑

s I(N < Bs,inf)/1000 and
∑

s I(N > Bs,sup)/1000 respectively, where Bs,inf

and Bs,sup stand for the bounds obtained at simulation s. These quantities give information

on the assymetry of the confidence intervals.

6.2. Comparison of N̂ and N̂f

The relative bias bias/N , standard error se/N and root mean squared error of prediction

RMSEP/N for both estimators N̂ and N̂f are shown on Figure 2. For p0 = 0.218 (respectively

N = 200), we display these quantities versus N (respectively versus p0). The graphs for other

values of p0 and N , being similar to those two, are omitted.

While N̂f is nearly unbiased, N̂ tends to over estimate N for small values of N and

p0. However, N̂ has a smaller relative standard error and a smaller relative RMSEP. Both

estimators become more accurate as N increases and as p0 decreases. Indeed, as p0 is small,

almost all of the species have been observed, leading to a smaller relative standard error.

[Figure 2 about here.]

6.3. Comparison of confidence intervals

Figure 3 shows the estimated non-coverage probabilities of the confidence intervals and

are compared with 2.5%. Note however that the standard error of the estimated non-

coverage probabilities based on 1000 simulations equals
√

0.025(1− 0.025)/1000 ≈ 0.5%,
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so the estimated non-coverage probabilities are expected to lie typically within 1.5% and

3.5%.

[Figure 3 about here.]

• Lower bound of the confidence intervals. For the smallest values of p0, the estimated

values of P (N < Binf) are smaller than 2.5%, which means that the lower bounds of the

confidence intervals are too conservative. This tendancy vanishes as N increases. The

three methods are nearly equivalent.

• Upper bound of the confidence intervals. For the largest values of p0, the estimated

values of P (N > Bsup) are greater than 2.5%, and tend to decrease with N up to 2.5%.

This means that as N is small, the upper bounds of the confidence intervals are too

small. For the smallest values of p0, the interval CIf based on the empirical procedure

gives very high values of the non-coverage probability as N is small. As N increases,

the estimated P (N > Bsup) fluctuates around 4%. To verify if these values tend to

2.5% as N increases, we completed the simulation study by considering N = 105 and

N = 5× 105, with p0 = 0.218. The estimated values of the non-coverage probabilities

P (N > Bsup) were equal to 2.6% and 2.4% respectively, for the interval CI based on the

plug-in procedure.

6.4. Comparison of estimated standard errors

The estimated standard errors SEf , SE and SE∗ (Figure 4) are compared with the standard

error
√
6Np1 (see Supplementary Information) of the estimator N̂f and with the standard

error of N̂ . As expected the estimator of the standard error of N̂f is nearly unbiased. The

estimator SE over-estimates the standard error of N̂ even when N is large. However the

estimator SE∗ based on the bootstrap procedure is less biased than SE as soon as p0 is not

too small. In all cases the medians of the distributions of SE and SE∗ are not larger than

the median of the distribution of SEf , nor than the standard error of N̂f .
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[Figure 4 about here.]

6.5. Method Recommendations

The confidence interval based on the empirical procedure is very easy to calculate and gives

reasonable results provided that N is large and p0 not too small. But, the standard error of

N̂f is higher than that of N̂ .

In some cases, the confidence intervals based on the plug-in procedure are better (in terms

of non-coverage probabilities) than those based on the empirical procedure, especially when

p0 is small. The bootstrap procedure does not improve the coverage of the confidence intervals

in the simulation study. However the bootstrap estimators of the standard error of N̂ are

less biased than the estimators based on the plug-in method. Therefore we recommend using

the bootstrap procedure to obtain an estimator with small variability and a good estimate

of this variability.

The empirical procedure may be used when one needs results requiring quick calculation.

Obviously the computation time for the other methods is higher than for the empirical one,

and depends on both N and ν. In our simulation study, the worse case for the plug-in

procedure was for N = 800 and ν = 1.01, where the mean computation time was 70 s using

an algorithm written in R on a 64 bits processor with 48 GB of RAM; whereas the bootstrap

method needed 150 s.

6.6. Comparison with other methods

We will denote by Emp the method that uses the estimator Nf and the confidence interval

CIf defined in (8) and (11) respectively, and we will denote by CvxPi the method that uses

the estimator N̂ based on the convex least-squares estimator, and the confidence interval

CI defined in (12). Because we consider a non-parametric point of view, we focused our

comparison on methods that do not involve a parametric distribution of the abundance.
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This includes the methods proposed by Chao (1984), Chao and Lee (1992), Chao and

Bunge (2002), and Lanumteang and Böhning (2011) denoted Chao84, ChaoLee, ChaoBunge,

LB respectively. We also consider the following methods based on the maximum likelihood

estimation of N and p+ under the assumption of a Poisson mixture model, or a Poisson-

compound Gamma model: unpmle (for unconditional nonparametric maximum likelihood

estimator) proposed by Norris and Pollock (1996, 1998), pnpmle (for penalized nonparametric

maximum likelihood estimator) proposed by Wang and Lindsay (2005, 2008) and pcg (for

Poisson-compound Gamma estimator) proposed by Wang (2010). The simulations were

carried out using the library SPECIES (Wang, 2011). The last three methods require the

choice of a cutoff value, denoted by t, since only the less abundant species are used in

these procedures. The behaviour of the procedures as well as the estimation of N may

strongly depend on the choice of t. We chose t according to the authors’ recommendations.

Nevertheless, it appeared that it was not possible to carry out a simulation study for these

methods because of numerical problems possibly coming from a bad choice of t: either

the algorithm failed to converge or the R function did not return to the main program.

Because these numerical problems occurred in a large number of runs, these methods are

not considered in our simulation study. But we will come back to the comparison with these

methods in Section 7.

The methods Emp and CvxPi outperformed the other methods in almost all situations in

terms of the RMSEP (Table 1). The non-coverage probabilities were not too far from 2.5%, and

typically much closer to 2.5% than the other methods. For the other methods, the behaviour

of the bias and standard error depended strongly on the considered case. The confidence

intervals were typically shifted to the left with boundaries smaller than N . This behaviour

was less marked for the LB method.

[Table 1 about here.]
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6.7. Robustness to convexity

The convexity assumption on p+ seems reasonable when looking at the observed zero-

truncated abundance distributions in several examples. Nevertheless, convexity of p+ does

not imply the convexity of p. To evaluate the robustness of our procedure to convexity of p,

we carried out a simulation study considering distributions p′ defined as follows:

p′0 = (p0 + p1)/2, and p′j = pj
1− p′0
1− p0

for j > 1

where the probabilities pj, for j > 0 are defined in (14). We chose p′0 = 0.0707 leading to

small deviation from convexity, and p′0 = 0.354 leading to a larger deviation from convexity.

Our procedures lead to positively biased estimators (E(N̂) > N) (Table 2), which was

expected because p′0 is smaller that 2p′1 − p′2 especially in the case where p′0 = 0.354. In

contrast, the standard errors of our estimators were not affected by the lack of convexity.

The confidence intervals were shifted to the right with boundaries larger than N in the case

N = 5000 and p′0 = 0.354. The behaviour of the other methods depended strongly on the

values of (N, p′0). Based on this simulation study, we conclude that our methods still apply

in case of small discrepancy of the true abundance distribution to convexity.

[Table 2 about here.]

7. ILLUSTRATION ON PUBLIC DATASETS

7.1. Testing convexity of p+

First, we want to check whether the convexity assumption of p+ is reasonable. Recall that p+

is convex if ∆j > 0 for all j > 2, where ∆j = p+j+1 − 2p+j + p+j−1. Hence, we propose to reject

the hypothesis that p+ is convex if one of the empirical estimators ∆f
j = fj+1 − 2fj + fj−1

is smaller than some negative threshold. The test procedure is defined as follows.
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Let τ f be the maximum of the support of the empirical distribution f , τ f = maxi=1,...D Xi

and let Γf be the matrix with components Γf
jj′ = −fjfj′ if j 6= j′ and Γf

jj = fj(1− fj)

for 1 6 j, j′ 6 τ f . Let us introduce the matrix A whose lines AT
j satisfy ∆f

j+1 = AT
j f for

j = 1, . . . , τ f − 1, and let the matrix Mf be defined as the square-root of the matrix

AΓfAT : MfMf = AΓfAT . Finally, for α > 0 let qfα be the α-quantile of the conditional

distribution of min16j6τf−1

∑τf−1

j′=1 Mf
jj′Zj′ given X1, . . . , XD, where the Zj′, j

′ = 1, . . . τ f − 1

are independent centered Gaussian variates. The threshold qfα is calculated by simulation, and

the rejection region for testing that p+ is convex is defined as
{√

Dmin16j6τf−1∆
f
j 6 qfα

}
.

It is proved that this test is approximatively of level α (see Supplementary Information).

For all data sets presented in the introduction, the assumption of convexity of p+ is not

rejected, the smallest p-value being equal to 0.58.

7.2. Estimating the number of species

For each of the data sets, we implemented all of the methods of Subsection 6.6. For the

methods unpmle, pnpmle and pcg, we chose the cutoff value t according to the authors

recommendations under the condition that the algorithm did converge, and to the goodness-

of-fit of the empirical frequencies. For the ChaoBunge procedure we chose t = 10 according to

the authors recommendations. In cases where the estimation of N was negative, we decreased

t such that the resulting estimator was positive. The values of t are given in Figure 1.

In the Microbial and Tomato data, where the empirical distribution is convex, the unpmle

estimators and the pcg estimator (for the Tomato data) are almost equal to the empirical

distribution, as it is obviously the case for our estimator (Figure 1). However the estimated

values of N in the Tomato data, differ a lot from one method to another: from 4439 for our

estimator, to 7417 for the unpmle estimator, up to 13960 for the pcg estimator (Table 3). This

indicates that the assumptions underlying each of the methods have strong consequences on

the final estimates. We feel that the definition for convex abundance distribution we propose
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is both consistent with the shape of observed distributions and less restrictive in terms of

assumptions.

In the Malayan Butterfly datasets, all estimators are nearly convex for the less abundant

species. The estimated values of N are less variable than for the two preceding examples

(Table 3) and our method gives the highest value.

In the Bird example, the empirical distribution is non convex with f1 < f2. Nevertheless,

the estimator of p+ based on the pcg method is convex. The estimators based on the two

non-parametric Poisson mixture methods are non convex but p̂+1 and p̂+2 are far above f1

and f2. It is not easy to decide based on Figure 1 which estimate of p+ is preferred.

[Table 3 about here.]

SUPPLEMENTARY MATERIALS

Supporting Information referenced in Sections 1, 3, 6 and 7.1 is available with this paper at

the journal website on Wiley Online Library.
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Figure 1. Estimation of the zero-truncated distribution p+. The green curve is the projection of the empirical frequencies onto the

set of convex distributions, the red and the light blue curves are the estimated distribution under a nonparametric Poisson mixture,

and the dark blue curve is the estimation obtained under the Poisson-compound Gamma model. For the last three methods the cutoff

value t is given.
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Figure 2. Relative bias +, relative standard errors × and relative RMSEP ∗ versus N for p0 = 0.218 on the left side, versus p0 for

N = 200 on the right side. The red color is for N̂f and the blue one for N̂.
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Figure 3. Comparison of confidence intervals. On the left: estimated values of P (N < Binf ) × 100% versus N for three values of p0.

The legend is the following : ✸ is for CIf (Equation (11)), • is for CI (Equation (12)), and ∗ is for the bootstrap confidence interval

CI∗ (Equation (13)). The horizontal line represents the wanted probability 2.5%. Right: estimated values of P (N > Bsup) × 100%.
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Figure 4. Comparison of estimated standard errors (ESE) when p0 and N vary. For each graphic, from the left to the right : the

boxplots represent the distributions of SEf , SE and SE∗ respectively denoted Emp, CvxPi, CvxB. The distribution are estimated on the

basis of 1000 simulations. The red stars ∗ are the standard errors of N̂f and N̂ .
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Table 1. Comparison of methods Emp, CvxPi, ChaoBunge, Chao84, ChaoLee, LB defined
in Section 6.6, for estimating N : relative bias, relative standard error, relative RMSEP and
non-coverage probabilities (×100%) are reported, for N = 100 and N = 5000, considering

p0 = 0.073 and p0 = 0.42.

N = 100, p0 = 0.073
Emp CvxPi ChaoBunge Chao84 ChaoLee LB

bias/N 0.002 0.020 -0.041 -0.020 -0.042 0.310
se/N 0.061 0.041 0.033 0.057 0.031 2.240
RMSEP/N 0.061 0.046 0.052 0.061 0.052 2.260
P (Binf > N) 0.8 0.6 0.0 1.0 0.0 0.0
P (Bsup < N) 6.7 2.7 38.0 6.9 40.0 22.0

N = 100, p0 = 0.42
Emp CvxPi ChaoBunge Chao84 ChaoLee LB

bias/N 0.0007 0.0110 0.1230 -0.1240 -0.0600 0.2200
se/N 0.133 0.121 1.690 0.158 0.194 1.200
RMSEP/N 0.133 0.122 1.690 0.201 0.203 1.220
P (Binf > N) 1.6 1.6 0.0 0.4 1.0 0.0
P (Bsup < N) 3.9 4.4 6.5 13.6 8.0 20.0

N = 5000, p0 = 0.073
Emp CvxPi ChaoBunge Chao84 ChaoLee LB

bias/N 0.0001 0.0025 -0.0450 -0.0360 -0.0450 -0.0160
se/N 0.0091 0.0066 0.0044 0.0060 0.0045 0.0140
RMSEP/N 0.0091 0.0070 0.0450 0.0360 0.0450 0.0220
P (Binf > N) 2.5 2.2 0.0 0.0 0.0 0.0
P (Bsup < N) 2.8 2.8 100.0 100.0 100.0 33.0

N = 5000, p0 = 0.42
Emp CvxPi ChaoBunge Chao84 ChaoLee LB

bias/N -0.0002 -0.0002 -0.0080 -0.1530 -0.0850 -0.0530
se/N 0.018 0.018 0.040 0.019 0.025 0.054
RMSEP/N 0.018 0.018 0.041 0.154 0.089 0.076
P (Binf > N) 2.3 2.3 0.9 0.0 0.0 0.2
P (Bsup < N) 2.6 2.6 4.3 100.0 89.0 23.0
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Table 2. Comparison of methods Emp, CvxPi, ChaoBunge, Chao84, ChaoLee, LB defined
in Section 6.6, for estimating N : relative bias, relative standard error, relative RMSEP and
non-coverage probabilities (×100%) are reported, for N = 100 and N = 5000, considering

p′0 = 0.0707 and p′0 = 0.354.

N = 100, p′0 = 0.0707
Emp CvxPi ChaoBunge Chao84 ChaoLee LB

bias/N 0.004 0.023 -0.039 -0.014 -0.086 0.520
se/N 0.063 0.048 0.034 0.067 0.026 3.120
RMSEP/N 0.063 0.049 0.051 0.069 0.090 3.160
P (Binf > N) 0.4 0.2 0.0 2.0 45.0 0.0
P (Bsup < N) 7.0 3.7 38.0 6.7 38.0 23.0

N = 100, p′0 = 0.354
Emp CvxPi ChaoBunge Chao84 ChaoLee LB

bias/N 0.110 0.130 0.074 -0.025 -0.188 0.288
se/N 0.130 0.120 4.440 0.160 0.102 0.770
RMSEP/N 0.18 0.17 4.44 0.16 0.21 0.82
P (Binf > N) 9.2 9.3 0.7 1.4 96.0 0.0
P (Bsup < N) 0.4 0.6 3.3 3.4 2.0 12.0

N = 5000, p′0 = 0.0707
Emp CvxPi ChaoBunge Chao84 ChaoLee LB

bias/N 0.003 0.005 -0.042 -0.033 -0.049 -0.013
se/N 0.0109 0.0070 0.0040 0.0060 0.0040 0.0150
RMSEP/N 0.010 0.009 0.043 0.034 0.049 0.019
P (Binf > N) 5.4 5.0 0.0 0.0 0.0 0.0
P (Bsup < N) 1.7 1.2 100.0 100.0 100.0 26.0

N = 5000, p′0 = 0.354
Emp CvxPi ChaoBunge Chao84 ChaoLee LB

bias/N 0.110 0.110 0.110 -0.055 -0.027 -0.055
se/N 0.019 0.019 0.040 0.019 0.023 0.055
RMSEP/N 0.120 0.120 0.110 0.058 0.035 0.078
P (Binf > N) 100 100 79 0 54 10
P (Bsup < N) 0.0 0.0 0.0 74.0 0.1 0.0
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Table 3. For each estimation methods, the first line gives the estimate of N , and its
estimated standard error (parenthesis). The second line gives the 95% estimated confidence
intervals. The values of the parameter t are given in Figure 1 for the three last methods.
For the ChaoBunge method, t = 10 for the Butterfly and Bird data sets, and t = 3 for the
two others (pointed out with ∗). The confidence interval could not be calculated for the pcg
method because of convergence difficulties. Methods LB to unpmle do not provide standard

errors.

Microbial Butterfly Bird Tomato
Emp 1211 (47.8) 782 (26.6) 82 (8.1) 4439 (92.7)

[1117, 1305] [730, 834] [66, 98] [4257, 4621]
CvxPi 1211 (47.8) 782 (26.6) 87 (6.5) 4439 (92.7)

[1117, 1305] [730, 834] [70, 95] [4257, 4621]
CvxB 1211 (49.2) 782 (24) 87 (6.5) 4439 (93.7)

[1117, 1306] [734, 825] [70, 96] [4250, 4617]
ChaoBunge 2269∗ (854) 757 (32.4) 80 (5) 7166∗ (1157)

[1213, 4821] [698, 826] [72, 92] [5330, 9947]
ChaoLee 2511 (391) 737 (24) 80 (4.7) 9554 (1034)

[1878, 3434] [693, 787] [72, 91] [7778, 11858]
Chao84 1631 (183) 714 (22.7) 77 (4) 5888 (340)

[1117, 1305] [730, 834] [71, 96] [4257, 4621]
LB 3987 754 78 11520

[915, 7060] [629, 878] [65, 93] [7047, 15993]
pcg 3000 744 86 13960

pnpmle 2035 724 79 7257
[1523, 2758] [686, 843] [73, 100] [5899, 9167]

unpmle 2169 722 76 7417
[1620, > 106] [687, 913] [74, 86] [6009, > 107]
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