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From the highly compressible Navier-Stokes equations to the

Porous Medium equation – rate of convergence

Boris Haspot ∗, Ewelina Zatorska †‡

April 16, 2015

Abstract

We consider the one-dimensional Cauchy problem for the Navier-Stokes equations with degen-
erate viscosity coefficient in highly compressible regime. It corresponds to the compressible
Navier-Stokes system with large Mach number equal to 1√

ε
for ε going to 0. When the initial

velocity is related to the gradient of the initial density, a solution to the continuity equation–
ρε converges to the unique solution to the porous medium equation [13, 14]. For viscosity
coefficient µ(ρε) = ραε with α > 1, we obtain a rate of convergence of ρε in L∞(0, T ;H−1(R));
for 1 < α ≤ 3

2 the solution ρε converges in L∞(0, T ;L2(R)). For compactly supported initial
data, we prove that most of the mass corresponding to solution ρε is located in the support
of the solution to the porous medium equation. The mass outside this support is small in
terms of ε.

1 Introduction

The compressible Navier-Stokes equations in the multidimensional case with the Mach num-
ber equal to ε−1/2 read:

∂t%ε + div(%εuε) = 0,

∂t(%εuε) + div(%εuε ⊗ uε)− div(2µ(%ε)D(uε))−∇(λ(%ε)divuε) + ε∇P (%ε) = 0,

%ε(0, x) = %0(x), %εuε(0, x) = m0(x),

(1)

where %ε = %ε(t, x) and uε = uε(t, x) denote the unknown density and the velocity vector

field, respectively, P (%ε) = %γε , γ > 1, denotes the pressure, D(uε) = ∇uε+∇tuε
2 denotes

the symmetric part of the gradient of uε, µ(%ε) and λ(%ε) denote the two Lamé viscosity
coefficients satisfying

µ(%ε) > 0, 2µ(%ε) +Nλ(%ε) ≥ 0,

where N is the space dimension.

Our purpose in this paper is to study the asymptotic behaviour of the global weak solutions
to the one-dimensional Cauchy problem for (1), when ε goes to 0, which corresponds to the
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highly compressible limit. It is the opposite to the low Mach number limit leading to the
incompressible Navier-Stokes equations. The later has been intensively studied, especially in
the case of constant viscosity coefficients. The first works in the framework of global weak
solutions are due to B. Desjardins and E. Grenier [9] and P.-L. Lions and N. Masmoudi [24]
(see also [10]). The case of global strong solution with small initial data in critical spaces for
scaling of equations was considered by R. Danchin in [8].

Up to our knowledge the highly compressible regime has not been so well studied. The
only results we are aware of concern Euler equations, see for example [7], [12]. The main
difficulty to pass to the limit ε → 0 in (1) with constant viscosity coefficients is due to lack
of uniform estimates on {%ε}ε>0 (only the L1 norm is conserved). In this case, it is not
clear whether the sequence of weak solutions to (1) converges to solution to the pressureless
system. However, in the case of viscosities satisfying particular algebraic relation

λ(%ε) = 2%µ′(%ε)− 2µ(%ε), (2)

additional compactness information is available. The first author proved in [13, 14] that
there exists a limit of the sequence (ρε, uε), called a quasi-solution, satisfying the pressureless
system when N ≥ 2. Moreover, the density of this system corresponds to the solution to
the fast diffusion, the heat or the porous medium equation, depending on the choice of the
viscosity coefficients. Relation (2) introduced by D. Bresch and B. Desjardins in [1,2] provides
a new entropy structure which ensures estimate on the gradient of the density. In particular,
it gives enough compactness information to pass to the limit when ε goes to 0.
Let us also mention that relation (2) is verified by the viscosity coefficients of the so-called
shallow water system, for which the proof of existence of global weak solutions has been
recently delivered by A. Vasseur and C. Yu [29], the extension to the case (2) can be found
in [30], see also [11, 17]. Some ideas using the cold pressure which is singular at the vacuum
can be found in [3,28,37] and in [4] using the notion of κ-entropy solutions. Stability of global
weak solutions to (1) with (2) for ε fixed was proved by A. Mellet and A. Vasseur [25] using
new energy estimate improving the integrability of the velocity.

In the following paper, we extend [13,14] by proving rate of convergence of %ε to a solution
to the porous medium equation in a suitable functional framework. We restrict to the one-
dimensional Euclidean space R, for which system (1) may be rewritten with a single general
viscosity coefficient µ(%) > 0 in the following form{

∂t%ε + ∂x(%εuε) = 0

∂t (%εuε) + ∂x(%εu
2
ε)− ∂x(µ(%ε)∂xuε) + ε∂xP (%ε) = 0.

(3)

Following the formulation used in [15] (see also [16] and [4]), we rewrite (3) in terms of the

effective velocity vε = uε + ∂xϕ(%ε) where ϕ′(%ε) = µ(%ε)
%2ε

, it gives ∂t%ε − ∂x
(
µ(%ε)

%ε
∂x%ε

)
+ ∂x(%εvε) = 0,

∂t (%εvε) + ∂x(%εuεvε) + ε∂xP (%ε) = 0.

(4)

New regularizing parabolic effects on the density were observed in [16] in the framework of
strong solution for initial density far away from the vacuum. The same concept was recently
used in [4, 5] to construct regular solutions approximating global weak solutions to the full
low Mach number limit system and the compressible system.

2



Our starting observation is that when vε(0, ·) = 0, the sequence {ρεvε}ε>0 converges to 0
in a suitable functional framework. It heuristically implies that the limit ρ̃ = limε→0 ρε solves
the fast diffusion, the heat or the porous medium equation ∂tρ̃− ∂x

(
µ(ρ̃)

ρ̃
∂xρ̃

)
= 0,

ρ̃(0, x) = ρ0(x),

(5)

where
µ(ρ̃) = ρ̃α for α > 0. (6)

The rate of convergence of (ρε− ρ̃) can be obtained by employing a duality method from [32],
used by J. L. Vázquez to prove uniqueness of the very weak solutions to the porous medium
equation.

In the present paper we restrict to the case α > 1
2 because we are particularly interested

in dealing with compactly supported initial data. When 0 < α < 1
2 the entropy discovered by

D. Bresch and B. Desjardins (see [2]) allows to bound the density from below. Indeed, in [26]
A. Mellet and A. Vasseur proved the existence of global strong solution to (3) for initial
density far away from the vacuum. The main ingredient of the proof was to use entropy
from [2] to estimate ∂x(ρα−

1
2 ) in L∞(0, T ;L2(R)) for all T > 0. This implies boundedness

of 1
ρ in L∞(0, T ;L∞(R)) which allows to show sufficient regularity of solution in order to

prove the uniqueness. This result has been recently extended by the first author to the case
of the shallow water system (α = 1) [15]. The main idea was to prove L∞ bound of vε
appearing in (4) by using the structure of the transport equation for vε. It allows to bound
1
ρ by application of the maximum principle to the continuity equation.

Finally, let us mention several important results concerning existence of global weak and
strong solutions to system (3) with initial density close to vacuum. Presenting the exhaustive
overview of the theory in this field is beyond of the scope of this article.

The existence of global weak solutions to system (3) was proven by Q. Jiu and Z. Xin
in [20]. The main difficulty was to construct approximate regular solutions to (3) which
verify all the entropies used in [25]. To construct such an approximation, Q. Jiu and Z. Xin
employed the result on existence of global strong solution on bounded domain [−M,M ] with
Dirichlet boundary conditions. The latter result was proven by H-L. Li., J. Li and Z. Xin [23]
who used energy estimate to control the Lipschitz norm of the velocity.

There are also several interesting papers on system (3) with free boundary corresponding
to the interface with the vacuum. The first result in this direction is due to D. Hoff and D.
Serre in [18] who proved the existence of global strong solution with discontinuous density
at the interface for constant viscosity coefficients. An interesting extension of this result to
the Neumann boundary conditions is due to P. B. Mucha [27] and for the reactive system
see [22]. S. Jiang, Z. Xin and P. Zhang in [19] obtained similar results in the case of degenerate
viscosity coefficients. Note that the initial density considered in [19] is discontinuous at the
interface and therefore is not compatible with the entropy introduced in [2]. We shall discuss
this problem with more details later, in Section 5.

The free boundary problem with initial density continuously connecting to the vacuum
was analyzed by T. Yang and H. Zhao in [35]. They proved the existence of weak solution
in a finite time interval in Lagrangian coordinates by showing that for sufficiently small
T the L∞(0, T ;L∞(Ω)) norm of ρα+1∂xu is bounded. Unfortunately, this is not sufficient
to come back to the Eulerian description since it is not clear how to solve the ordinary
differential equation describing the evolution of the free boundary. In other words, the change
of coordinates may not be rigorously justified, see also [33,34,36].
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The article is structured in the following way. In Section 2 we formulate the notion of
the weak solution to problem (3) for ε fixed and we state our main results. Next, in Section
3 we recall the result from [20] on existence of global in time weak solutions and derive the
estimates independent of ε. In the second part of this section we recall basic properties of
the solution to the one-dimensional porous medium equation taken over from the monograph
of J.-L. Vazquez [32]. In Section 4 we prove the main results of the paper and in the end,
in Section 5 we explain difficulties arising in the study of the free boundary problems and
discuss possible extensions of our results.

Notation: The letter C denotes generic constant, whose value may change from line to
line.

2 Main result

Below we give the definition of a global weak solution to problem (3) which we denote by
(ρε, uε) or by (ρ, u) when no confusion can arise. The existence of such solution was proven
by Q. Jiu and Z. Xin in [20]. We then formulate our main theorems in which we compare ρε
with ρ̃ the solution to the porous medium equation.

Let us start with introducing the hypothesis on the initial data, we assume that

ρ0 ≥ 0, m0 = 0 a.e. on {x ∈ R; ρ0(x) = 0},

ρ0 ∈ L1(R) ∩ L∞(R), ∂xρ
α− 1

2
0 ∈ L2(R)

m2
0

ρ0
∈ L1(R),

|m0|2+ν

ρ1+ν
0

∈ L1(R),

(7)

where α > 1
2 and ν > 0 arbitrary small.

Definition 1 Let ε be fixed. We say that a pair of functions (ρ, u) is a weak solution to
system (3) provided that:

• The density ρ ≥ 0 a.e., and the following regularity properties hold

ρ ∈ L∞(0, T ;L1(R) ∩ Lγ(R)) ∩ C([0,+∞), (W 1,∞(R))′),

∂xρ
α− 1

2 ∈ L∞(0, T ;L2(R)),
√
ρu ∈ L∞(0, T ;L2(R)),

where (W 1,∞(R))′ is the dual space of W 1,∞(R).

• For any t2 ≥ t1 ≥ 0 and any ψ ∈ C1([t1, t2]×R), the continuity equation is satisfied in
the following sense:∫

R
ρψ(t2) dx−

∫
R
ρψ(t1) dx =

∫ t2

t1

∫
R

(ρ∂tψ + ρu∂xψ) dx dt. (8)

Moreover, for ρv = ρu− ρ∂xϕ(ρ), where ϕ′(ρ) = µ(ρ)
ρ2

, the following equality is satisfied∫
R
ρψ(t2) dx−

∫
R
ρψ(t1) dx =

∫ t2

t1

∫
R

(ρ∂tψ + ρv∂xψ − ρ∂xϕ(ρ)∂xψ) dx dt. (9)
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• For any ψ ∈ C∞0 ([0, T )×R) the momentum equation is satisfied in the following sense:∫
R
m0ψ(0) dx+

∫ T

0

∫
R

(√
ρ(
√
ρu)∂tψ + ((

√
ρu)2 + εργ)∂xψ

)
dx dt+ 〈ρα∂xu, ∂xψ〉 = 0,

(10)
where the diffusion term is defined as follows:

〈ρα∂xu, ∂xψ〉 = −
∫ T

0

∫
R
ρα−

1
2
√
ρu∂xψ dx dt− 2α

2α− 1

∫ T

0

∫
R
∂x(ρα−

1
2 )
√
ρuψ dx dt.

(11)

Below we give our first main result on the convergence of (ρε, uε) to a solution to the associated
porous medium equation.

Theorem 1 Let γ > 1, α > 1. Moreover, assume that the initial data (ρ0,m0) satisfy (7)
and that

m0√
ρ0

= −√ρ0∂xϕ(ρ0). (12)

1. System (3) admits a global weak solution (ρε, uε) in the sense of Definition 1. In addition,
ρε converges strongly to ρ̃ – the strong solution to the porous medium equation ∂tρ̃−

1

α
∂xxρ̃

α = 0,

ρ̃(0, x) = ρ0(x),
(13)

in the following sense, there exists a constant C > 0 depending on ρ0 such that

‖(ρ− ρε)(t)‖H−1(R) ≤ Cε
1
2 t

1
2 . (14)

2. For 1 < α ≤ 3
2 there exists a constant C > 0 depending on ρ0 such that

‖(ρε − ρ̃)(t)‖L2(R) ≤ Cε
1
4 (1 + t

1
4 1t≥1), (15)

for all t ≥ 0.
If in addition ∂xρ

α−1
0 ∈ L∞(R) we have

‖(ρε − ρ̃)(t)‖L2(R) ≤ Cε
1
4 t

1
4 . (16)

for all t ≥ 0.

The next main result is the following.

Theorem 2 Let γ > 1, 1 < α ≤ 3
2 . Assume that the initial conditions satisfy (7) and that

there exist two constants −∞ < a < b < +∞ such that

supp[ρ0] ⊂ [a, b].

Then, there exist constants C > 0 and −∞ < a1 < b1 <∞ such that

Ωt := supp[ρ̃(t, ·)] ⊂ [a1 − Ct
1

α+1 , b1 + Ct
1

α+1 ]. (17)
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Moreover, there exists a constant C > 0 depending only on ρ0 such that

‖ρε(t)1Ωct
‖L1(R) ≤ Cε

1
4 (t

1
4 1t≥1 + 1)(1 + t

1
2(α+1) ), (18)

where Ωc
t denotes the complement of Ωt.

If in addition ∂xρ
α−1
0 ∈ L∞(R) then

‖ρε(t)1Ωct
‖L1(R) ≤ Cε

1
4 t

1
4 (1 + t

1
2(α+1) ). (19)

Remark 1 The previous result is restricted to the case 1 < α ≤ 3
2 for technical reasons. This

assumption allows to bound ∂xρ̃ and ∂xρε in L∞(0, T ;L2(R)).

Remark 2 Theorem 1 provides a rate of convergence of (ρε− ρ̃) and so it extends the results
of the first author proven in [13,14] when N ≥ 2. Theorem 2 implies that the mass distributed

outside Ωt–the support of solution to the porous medium equation, is small of order ε
1
4 . The

evolution of the support of Ωt is known since the interfaces are described by the Darcy law (see
Theorem 6). However, ρε may not be a solution to the free boundary problem. In other words,
there is no reason for suppρε(t, ·) to remain compact for all times t > 0. However, the mass
that may be spread outside of Ωt remains small. In this sense ρ̃(t, ·) is a good approximation

of ρε(t, ·) (for any t ≤ max(1, c(ε)
− 1

1+ 2
1+α ) for c small) and we can think about the ”quasi

finite propagation” of the mass.

3 Overview of known results

This section is devoted to the overview and summary of results that will be used to prove
our main theorems.

3.1 Weak solutions to system (3)

We first recall the result on global in time existence of weak solutions to system (3) with ε
being fixed, whose proof can be found in the paper of Q. Jiu, Z. Xin ( [20], Theorem 2.1.)

Theorem 3 (Existence of weak solutions) Let γ > 1, α > 1/2 and let ε > 0 be fixed.
Assume that the initial conditions satisfy (7). Then, system (3) possesses a global in time
weak solution (ρ, u) in the sense of Definition 1. Moreover, this solution satisfies the following
inequalities uniformly with respect to ε

ρ ∈ C((0, T )× R), (20)

sup
t∈[0,T ]

∫
R
ρ dx+ max

(t,x)∈[0,T ]×R
ρ ≤ c, (21)

sup
t∈[0,T ]

∫
R

(
|√ρu|2 + ∂x(ρα−

1
2 ) +

ε

γ − 1
ργ
)

dx+

∫ T

0

∫
R

(
ε[∂x(ρ

γ+α−1
2 )]2 + Λ2

)
dx dt ≤ c,

(22)
where c depends only on the initial data and Λ ∈ L2((0, T )× R) is a function satisfying:∫ T

0

∫
R

Λϕdx dt = −
∫ T

0

∫
R
ρα−

1
2
√
ρu∂xϕdx dt− 2α

2α− 1

∫ T

0

∫
R
∂x(ρα−

1
2 )
√
ρuϕdx dt. (23)
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Proof. The only element that we have to check is verification of the artificial formulation
of the continuity equation (9). The rest was already proven by Q. Jiu, Z. Xin in [20] (see
Theorem 2.1). Their proof combines the existence of global solutions on bounded domain
[−M,M ], proven in [23] with the diagonal procedure allowing to let M →∞. Therefore, we
omit the details of construction of this approximate solution and focus only on justfication
that the formula (9) is valid.

Let {ρδ, uδ}δ>0, ρδ ≥ C(δ) be a sequence smooth approximate solutions to (3) constructed
in [20] on the bounden interval Ω = [−M,M ] for M large, with the initial conditions

ρδ(0) = ρδ,0, ρδ(0)uδ(0) = mδ,0

and the boundary condition
uδ|∂Ω = 0.

Assume that ρδ,0, mδ,0 converge to ρ0, m0 in the following sense

ρδ,0 → ρ0, strongly in L1(Ω),

∂x(ρ
α− 1

2
δ,0 )→ ∂x(ρ

α− 1
2

0 ) strongly in L2(Ω)

m2
δ,0

ρδ,0
→ m2

0

ρ0
strongly in L1(Ω),

|mδ,0|2+ν

ρ1+ν
δ,0

→ |m0|2+ν

ρ1+ν
0

∈ L1(R) strongly in L1(Ω).

(24)

We show that (9) is weakly sequentially stable when δ → 0. To this purpose let us recall
the a-priori estimates derived in [23] following the strategy developed by A. Mellet and A.
Vasseur in [25] for the multidimensional case.

First recall that the classical energy balance gives for every T > 0 the following inequality∫
Ω

(
ρδ
u2
δ

2
+

ε

γ − 1
ργδ

)
(T ) dx+

∫ T

0

∫
Ω
ραδ |∂xuδ|2 dx dt

≤
∫

Ω

(
ρδ
u2
δ

2
+

ε

γ − 1
ργδ

)
(0) dx.

(25)

In addition, the BD entropy gives rise to the estimates∫
Ω

(
ρδ

(uδ + ∂xϕ(ρδ))
2

2
+

ε

γ − 1
ργδ

)
(T ) dx+

α

α− 1
ε

∫ T

0

∫
Ω
∂xρ

γ
δ∂xρ

α−1
δ dx dt

≤
∫

Ω

(
ρδ

(uδ + ∂xϕ(ρδ))
2

2
+

ε

γ − 1
ργδ

)
(0) dx.

(26)

Therefore, we obtain the following bounds

‖√ρδuδ‖L∞(0,T ;L2(Ω)) + ‖∂x(ρ
α− 1

2
δ )‖L∞(0,T ;L2(Ω)) + ε‖ρδ‖γL∞(0,T ;Lγ(Ω))

+ ε‖∂x(ρ
γ+α−1

2
δ )‖2L2(0,T ;L2(Ω)) + ‖ρ

α
2
δ ∂xuδ‖L2(0,T ;L2(Ω)) ≤ C,

(27)

where the constant is independent of δ.
Following [23] we obtain

‖ρδ‖L∞(0,T ;L∞(Ω)) ≤ C. (28)
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This estimate can be then used to derive the improved estimate for the velocity, exactly as
in [25]. By testing the momentum equation by uδ|uδ|ν for ν > 0 sufficiently small, we obtain

sup
t∈[0,T ]

‖ρδ|uδ|2+ν‖L1(Ω) ≤ C. (29)

Having these estimates, we can follow the compactness arguments from [25] and from [23] to
prove the convergence of the approximate solution (ρδ, uδ) to some weak solution (ρε, uε) as
δ → 0. Namely

ρδ → ρε in C([0, T ]× Ω),

∂x

(
ρ
α− 1

2
δ

)
→ ∂x

(
ρ
α− 1

2
ε

)
weakly in L2(0, T ;L2(Ω)),

√
ρδuδ →

√
ρεuε, ραδ uδ → ραε uε strongly in L2+ ν

2 (0, T ;L2+ ν
2 (Ω)),

ραδ ∂xuδ → Λ weakly in L2(0, T ;L2(Ω)),

(30)

where Λ satisfies (23).
At this point, sequential stability of equations (8) and (10) is verified. To justify the limit

passage in (9), one has to prove the convergence of the term ρδvδ. Observe that we have

ρδvδ = ρδuδ + ρδ∂xϕ(ρδ) = ρδuδ +
2

2α− 1
ρ

1
2
δ ∂x

(
ρ
α− 1

2
δ

)
. (31)

Due to (30) the first term converges to ρεuε strongly in L2(0, T ;L2(Ω)), while the second

term converges to 2
2α−1ρ

1
2
ε ∂x

(
ρ
α− 1

2
ε

)
weakly in L2(0, T ;L2(Ω)). In consequence

ρδvδ → ρεvε weakly in L2(0, T ;L2(Ω)), (32)

and so one can pass to the limit in (9).
This is the final argument to prove the sequential stability of weak solutions to (4) on the

bounded domain Ω = [−M,M ] and with the Dirichlet boundary condition for uδ. In order
to let M → ∞, we combine the diagonal procedure with the convergence of the initial data
(24) as it was done in [20].

3.2 The porous medium equation

In order to understand the qualitative properties of the limit solution to (3), we recall several
important features of the porous medium equations. The majority of them is taken from the
excellent books of J. L. Vázquez [32], [31]. The porous medium equation can be written as
follows: {

∂tρ̃− ∂xxρ̃α = 0,

ρ̃(0, x) = ρ̃0(x),
(33)

with α > 1.
In the sequel we shall set Q = (0,+∞) × R. Let us recall the notion of global strong

solution for the porous medium equation (33) (see [32] Chapter 9 for more details).

Definition 2 We say that a function ρ̃ ∈ C([0,+∞), L1(R)) positive is a strong L1 solution
to problem (33) if:

8



• ρ̃α ∈ L1
loc(0,+∞;L1(R)) and ρ̃t, ∂xxρ

α ∈ L1
loc((0,+∞)× R)

• ρ̃t = µ∂xxρ̃
α in distribution sense.

• ρ̃(t)→ ρ̃0 as t→ 0 in L1(R).

The existence of global strong solution to (33) is guaranteed by the following theorem (see [32]
page 197).

Theorem 4 Let α > 1 For every non-negative function ρ̃0 ∈ L1(R) ∩ L∞(R) there exists a

unique global strong solution ρ̃ ≥ 0 of (33). Moreover, ∂tρ̃ ∈ Lploc(Q) for 1 ≤ p < (α+1)
α and:

∂tρ̃ ≥ −
ρ̃

(α− 1)t
in D′(Q),

‖∂tρ̃(t)‖L1(R) ≤
2‖ρ̃0‖L1(R)

(α− 1)t
.

Let ρ1 and ρ2 be two strong solutions of (33) in (0, T )× R then for every 0 ≤ τ < t

‖
(
ρ1 − ρ2

)
+

(t)‖L1(R) ≤ ‖
(
ρ1 − ρ2

)
+

(τ)‖L1(R). (34)

If ρ1 and ρ2 are two strongs solution with initial data (ρ1)0 and (ρ2)0, such that (ρ1)0(x) ≤
(ρ2)0(x) in R, then ρ1(t, x) ≤ ρ2(t, x) for all (t, x) ∈ (0,+∞)× R.

Likewise above, there exists a theory of global weak solutions with initial data being bounded
measures. It covers the case of very important case of self similar solutions, the so called
Barrenblatt solutions U(t, x,M), of the form

U(t, x,M) = t
1

m+1F (xt
−1
m+1 ), F (ξ) = (C − κξ2)

1
α−1
+ , (35)

where κ = α−1
2α(α+1) and C > 0 with C = cM

1
γ with γ = α+1

2(α−1) and c depends only on α > 1.

The Barenblatt solutions verify (33) for t > 0 in the sense of distributions and with initial
data ρ̃0 = Mδ0, where δ0 is the Dirac mass.
Analogue solutions exist also in the case of fast diffusion equations corresponding to (33)
with α < 1.

Remark 3 The comparison principle from Theorem 4 ensures a finite speed of propagation
of solutions to the porous medium equation with compactly supported initial data, see for
example [6, 32]. In other words, the solution to the porous medium equation with compactly
supported initial data remains compactly supported all along the time. Indeed, it suffices to
compare such solution with the Barrenblatt solutions.

Let us now recall the so called L1 − L∞ smoothing effect (see [31] page 202).

Theorem 5 Let ρ̃0 ∈ L1(R). For every t > 0 we have:

ρ̃(t, x) ≤ C‖ρ̃0‖σL1(0,T ;RN )t
−β,

with σ = 2
N(α−1)+2 , β = 1

(α−1)+2 and C > 0 depends only on α and N . The exponents are
sharp.
When ρ̃0 belongs also to L∞(R) the maximum principle holds.
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Let us now denote by ṽ the pressure in the sense of porous medium equation, i.e.

ṽ =
α

α− 1
ρ̃α−1, ṽ0 =

α

α− 1
ρ̃α−1

0 .

We finish this section by recalling several results on regularity of ρ̃ (see [32] pages 358, 359
and 361).

Proposition 1 Let ρ̃0 ∈ L1(R) ∩ L∞(R) with ρ̃0 ≥ 0. Then, ρ̃ and ∂xρ̃
α are continuous in

Q. In addition, for every t > 0, ṽ(t, ·) is Lipschitz continuous in R. More precisely we have

|∂xṽ(t, x)| ≤
√

2‖ρ0‖L∞
α+ 1

t
−1
2 , for (t, x) ∈ Q. (36)

If moreover ∂xṽ0 ∈ L∞(R), we have

|∂xṽ(t, x)| ≤ ‖∂xṽ0‖L∞ . (37)

3.2.1 Behavior of the interfaces for compactly supported solution

We recall an important theorem (see [32] page 376) which gives a precise behaviour of the
interfaces when ρ̃0 has compact support.

Theorem 6 Let x = s(t) denote the right interface of the solution ρ̃ to (33) emanating from
the compactly supported initial data ρ̃0 ∈ L1(R). For all t > 0 there exist the one side limits

D−x v1(t, s(t)) = lim
x→s(t)−

∂xv1(t, x), D+s(t) = lim
h→0+

1

h
[s(t+ h)− s(t)]. (38)

Moreover, the Darcy law holds in the form

D+
t s(t) = −D−x v1(t, s(t)). (39)

The same result is true for the left interface.

4 Proof of main results

Below we present the proofs of our main results stated in Theorem 1 and Theorem 2. We start
by proving the rate of convergence from (15), the convergence of the approximate solutions
(ρε, uε) to the solutions of the corresponding porous medium equation is a consequence of
this estimate, the details can be found in [14].

Proof of Theorem 1

First let us note that thanks to Theorem 3, the continuity equation of system (3) after the

change of variables vε = uε + ∂xϕ(ρε) with ∂xϕ(ρε) = µ(ρε)
ρ2ε

∂xρε reads

∂tρε −
1

α
∂xxρ

α
ε + ∂x(ρεvε) = 0, (40)

and it is satisfied in the sense of distributions.
From (12) and (26) it also follows that

sup
t∈[0,T ]

‖√ρεvε(t)‖L2(R) ≤
ε

1
2

(γ − 1)
1
2

‖ρ0‖
γ
2

Lγ(R) ≤ Cε
1
2 . (41)
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Next, we consider ρ̃ – the solution to the corresponding porous medium equation with the
same initial data ρ0 {

∂tρ̃−
1

α
∂xxρ̃

α = 0,

ρ̃(0, ·) = ρ0,
(42)

whose main properties were recalled in Section 3.2.
We now set

Rε = ρε − ρ̃.

It follows from (40) and (42) that Rε satisfies the equation{
∂tRε −

1

α
∂xx(ραε − ρ̃α) + ∂x(ρεvε) = 0,

Rε(0, x) = 0, x ∈ R,
(43)

at least in the sense of distributions.
Our goal is to estimate a relevant norm of Rε in terms of ε. To this purpose, we use

duality technic in the spirit of J. L. Vázquez (see [32] Section 6.2.1). Testing (43) by ψ ∈
C∞c ((0, T ]× R), we obtain∫ T

0

∫
R

(
Rε∂tψ +

1

α
(ραε − ρ̃α)∂xxψ

)
dx dt+

∫ T

0

∫
R

(ρεvε)∂xψ dx dt−
∫
R

(Rεψ)(T ) dx = 0.

(44)
Let us now define

a(t, x) =

{
ραε−ρ̃α
ρε−ρ̃ if ρε 6= ρ̃

0 if ρε = ρ̃.

This definition implies in particular that ραε − ρ̃α = aRε. We can hence rewrite (44) as∫ T

0

∫
R

(
Rε(∂tψ +

1

α
a∂xxψ

)
dx dt+

∫ T

0

∫
R

(ρεvε)∂xψ dx dt−
∫
R

(Rεψ)(T ) dx = 0. (45)

The next step consists of solving the inverse problem in the interval [−M,M ] ⊂ R
∂tψ +

1

α
an∂xxψ = 0, (t, x) ∈ [0, T ] × (−M,M),

ψ(t,−M) = ψ(t,M) = 0, t ∈ [0, T ],

ψ(T, x) = θ(x), x ∈ (−M,M),

(46)

where θ ∈ C∞0 ((−M,M)). Above, an is a smooth approximation of a such that 0 < η ≤ an ≤
K < +∞ (it will be precisely defined later on). This assumption guarantees that system (46)
is parabolic in the reverse time t′ = T − t and it admits unique smooth solution ϕ on [0, T ].

Since ψ is a solution to (46), we can use (45) to obtain∫
R
Rε(T )θ dx =

1

α

∫ T

0

∫
R
Rε(a− an)∂xxψ dx dt+

∫ T

0

∫
R

(ρεvε)∂xψ dx dt, (47)

therefore∣∣∣∣∫
R
Rε(T )θ dx

∣∣∣∣ ≤ ∣∣∣∣∫ T

0

∫
R

(ρεvε)∂xψ dx dt

∣∣∣∣+

∫ T

0

∫
R
|Rε| |(a− an)| |∂xxψ| dx dt. (48)
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We now need to obtain the a priori estimate for ∂xxψ. To this purpose, we multiply equation
(46) by ζ∂xxψ, where ζ = ζ(t) is a smooth and positive function such that 1

2 ≤ ζ ≤ 1 and
∂tζ ≥ c > 0, we get∫ T

0

∫
R
∂tψζ∂xxψ dx dt+

1

α

∫ T

0

∫
R
ζan(∂xxψ)2 dx dt = 0. (49)

Integrating the first term by parts and using the fact that ψ(t, ·) ∈ C∞0 ([−M,M ]) (see the
general theory of [21], page 341), we obtain∫ T

0

∫
R
∂tψζ∂xxψ dx dt = −

∫ T

0

∫
R
ζ∂xψ∂x∂tψ dx dt

= −1

2

∫ T

0

∫
R
∂t(∂xψ)2ζ dx dt,

=
1

2

∫ T

0

∫
R

(∂xψ)2∂tζ dx dt− 1

2

∫
R

((∂xψ)2ζ)(T ) dx+
1

2

∫
R

((∂xψ)2ζ)(0) dx.

Hence, it follows that∫ T

0

∫
R
∂tψζ∂xxψ dx dt ≥ 1

2

∫ T

0

∫
R

(∂xψ)2∂tζ dx dt− 1

2

∫
R

((∂xψ)2ζ)(T ) dx. (50)

Plugging it into (49) we obtain

1

2

∫ T

0

∫
R

(∂xψ)2∂tζ dx dt− 1

2

∫
R

((∂xθ)
2ζ)(T ) dx+

1

α

∫ T

0

∫
R
ζan(∂xxψ)2dx dt ≤ 0. (51)

In particular, the assumptions on ζ imply that we have∫ T

0

∫
R

(∂xψ)2dx dt+
1

α

∫ T

0

∫
R
an(∂xxψ)2dx dt ≤ c‖∂xθ‖2L2(R). (52)

Coming back to (48) and recalling that suppψ and supp θ are included included in [0, T ] ×
[−M,M ] and [−M,M ], respectively, we obtain

∣∣∣∣∫
R
Rε(T )θ dx

∣∣∣∣ ≤ c‖∂xθ‖L2(R)

(∫ T

0

∫ M

−M

[a− an|2

an
|Rε|2 dx dt

) 1
2

+ ‖ρεvε‖L2(0,T ;L2(R))

 .

(53)
At this stage following ideas from [32] we construct the approximation an that is sufficiently
regular and verifies η ≤ an ≤ K for η > 0 small and for K > η large enough. This requires
two steps of approximation. The first consists of taking aK,η = min(K,max(η, a)) with
0 < η < K, in other words 

aK,η(t, x) = K on {a(t, x) > K},
aK,η = a on {η ≤ a ≤ K},
aK,η = η on {η < a}.

Since aK,η is L∞((0, T ) × R), we know that aK,η is also in Lp((0, T ) × (−M,M)) for 1 ≤
p ≤ +∞. Therefore, in the next step, we can consider a smooth approximation an =

12



aK,η ∗ ψn (with ψn a standard regularizing kernel) such that for n→∞ an → aK,η strongly
in Lp((0, T )× (−M,M)) for all 1 ≤ p < +∞.

It remains to estimate the r.h.s. of (53). Since aK,η ≥ η we deduce that also an ≥ η for
any n, therefore

∫ T

0

∫ M

−M

|a− an|2

an
|Rε|2 dx dt ≤ 1

η

∫ T

0

∫ M

−M
|a− an|2|Rε|2 dx dt

≤ 2

η

(∫ T

0

∫ M

−M
|aK,η − an|2|Rε|2 dx dt+

∫ T

0

∫ M

−M
((a−K)+ + η)2|Rε|2 dx dt

)
.

(54)

We call the two integrals on the r.h.s. I1 and I2, respectively. The integrand of I2 is pointwise
bounded by

a2|Rε|21a>K + η21a<η|Rε|2 = (ρ̃α − ραε )21a>K + η21a<η|Rε|2,

thus, since (ρ̃α − ραε )2 is in L1(0, T ;L1(R)) (which follows from (21) and (7)), using

the dominated convergence theorem we justify that
∫ T

0

∫M
−M (ρ̃α − ραε )21a>K dx dt → 0 for

K → +∞. It implies that for K large enough, we have∫ T

0

∫ M

−M
((a−K)+ + η)2 |Rε|2 dx dt ≤ 2η2, (55)

where we used the fact that Rε is uniformly bounded in L2((0, T )× R) for 0 < T < +∞.
To estimate I1, it suffices to observe that R2

ε is actually uniformly bounded in Lp
′
((0, T )×R)

for any 1 ≤ p′ ≤ +∞ due to (21) and due to L∞ bound on the solution to the porous medium
equation. We now use the fact that an → aK,η when n → +∞ strongly in Lp((0, T ) ×
(−M,M)) to obtain that

∫ T
0

∫M
−M |a − an|2|Rε|2dx dt → 0. Using this, (55) and (54) we

deduce that for n = n(η) large enough we have∫ T

0

∫ M

−M

|a− an|2

an
|Rε|2 dx dt ≤ 8η. (56)

Coming back to (53) and using the Hölder inequality we obtain∣∣∣∣∫
R
Rε(T )θ dx

∣∣∣∣ ≤ C‖∂xθ‖L2(R)

(
η + T

1
2 ‖√ρε‖L∞(0,T ;L∞(R))‖

√
ρεvε‖L∞(0,T ;L2(R))

)
. (57)

From (28) and (41) we thus deduce that∣∣∣∣∫
R
Rε(T )θ dx

∣∣∣∣ ≤ C‖∂xθ‖L2(R)

‖ρ0‖
γ
2
Lγ

γ − 1
ε

1
2T

1
2 ‖√ρε‖L∞(0,T ;L∞(R))

≤ C‖∂xθ‖L2(R)ε
1
2T

1
2 .

(58)

To conclude, let us observe that the above inequality holds for any θ from C∞0 ((−M,M))
with arbitrary M > 0 and that the constant C is independent of M . Thus, letting M to +∞
we obtain

‖Rε(T )‖H−1(R) ≤ Cε
1
2T

1
2 , (59)
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for any T > 0.

Concerning the second part of Theorem 1, for 1 < α ≤ 3
2 we have

‖∂xρ̃(T )‖L2(R) ≤ C‖ρ̃2−α(T )‖L2(R)‖∂xρ̃α−1(T )‖L∞(R) (60)

for all T > 0. Next, using Proposition 1, we obtain

‖∂xρ̃α−1(T )‖L∞(R) ≤

√
2‖ρα−1

0 ‖L∞
α+ 1

T−
1
2 . (61)

By interpolation and using the mass conservation, we deduce the L∞ bound on ρ̃ provided
that 2(2− α) ≥ 1 which is equivalent to restriction α ≤ 3

2 . In the end, we obtain

‖∂xρ̃(T )‖L2(R) ≤ CT−
1
2 . (62)

Similarly, since ∂xρ
α− 1

2
ε is uniformly bounded in L∞(0, T ;L2(R)) and ρε is uniformly bounded

in L∞(0, T ;L∞(Ω)) we deduce that ∂xρε is uniformly bounded in L∞(0, T ;L2(R)). By inter-
polation since ρε, ρ are also uniformly bounded in L∞(0, T ;L2(R)) and by (59), we conclude
that

‖Rε(T )‖L2(R) ≤ Cε
1
4 (1T≤1 + T

1
4 1T≥1). (63)

The rate of convergence in L∞(0, T ;Lp(R)) for 1 < p <∞ can be proven by interpolation.

Assuming in addition that ∂xρ
α−1
0 belongs to L∞(R) and proceeding as previously, we may

improve the rate of convergence, namely

‖Rε(T )‖L2(R) ≤ Cε
1
4T

1
4 . (64)

This finishes the proof of Theorem 1. 2

Proof of Theorem 2

Having proven the above rate of convergence, our next aim will be to provide some more
information about the behaviour of ρε on the support of the solution to the corresponding
porous medium equation.

Under assumptions of Theorem 2 and from the properties of the solutions to the one-
dimensional porous medium equation presented in Section 3.2, we deduce that the supp ρ̃(t, ·)
remains compact for all time t > 0 and it satisfies (17). Indeed, since suppρ0 is included in
[a, b], we can consider the Barrenblatt solution U(t1,M) at time t1 > 0 such that

‖ρ0‖L∞(R) ≤ ‖U(t1,M)‖L∞(R).

Last inequality is verified if M is large enough depending on ‖ρ0‖L∞ and 1
t1

(see formula
(35)). Using the maximum principle we deduce that:

‖ρ̃(t)‖L∞(R) ≤ ‖U(t1 + t,M)‖L∞(R).
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In particular suppρ̃(t, ·) is included in [a1−C(t+ t1)
1

α+1 , b1 +C(t+ t1)
1

α+1 ] for some constants
−∞ < a1 < b1 <∞ and C > 0.
Now, we may write the following sequence of equalities and inequalities

‖ρε(t)1Ωct
‖L1(R) ≤ ‖ρ0‖L1(R) − ‖ρε(t)1Ωt‖L1(R) (from the mass conservation)

≤ ‖ρ̃(t)1Ωt‖L1(R) − ‖ρε(t)1Ωt‖L1(R)

≤ ‖(ρ̃(t)− ρε(t))1Ωt‖L1(R)

≤ |Ωt|
1
2 ‖ρ̃(t)− ρε(t)‖L2(R) (from the Hölder inequality)

≤ Cε
1
4 (t

1
4 1t≥1 + 1)(1 + t

1
2(α+1) ) (from (17) and (64)).

(65)

In a similar way, when ∂xρ
α−1
0 ∈ L∞(R) we show

‖ρε(t)1Ωct
‖L1(R) ≤ |Ωt|

1
2 ‖ρ̃(t)− ρε(t)‖L2(R) (from the Hölder inequality)

≤ Cε
1
4 t

1
4 (1 + t

1
2(α+1) ) (from (17) and (64)).

(66)

This finishes the proof of Theorem 2. 2

5 Where are the interfaces?

A natural question arising in the analysis of one-dimensional problems with compactly sup-
ported initial data and free boundary conditions is propagation of the interface. From the
classical theory for porous medium equation (see Section 3.2) we know that the interface
moves with a finite speed. Moreover, according to (18) and (19) we can estimate the mass
corresponding to ρε inside the support of ρ̃. This could suggest that the interfaces of free-
boundary Navier-Stokes equations behave similarly to the interfaces of the porous medium
equation. However, the issue of existence of global weak solutions to the free-boundary
Navier-Stokes equations remains open.

Below, we present an overview of partial results in this topic and explain the main prob-
lems.

1. A case of compactly supported initial density with jump discontinuity at the interface
was studied in [19]. In this article S. Jiang, Z. Xin, and P. Zhang proved existence of
global strong solution to (3) written in Lagrangian coordinates. Extending their solution
outside the free-boundary domain by imposing the Rankine Hugoniot condition on the
velocity, allows to control ∂xuε in L1(0, T ;L∞(R)). It enables in particular to obtain
global strong solution on the whole R. It is also sufficient to define the free boundary
which verifies an ordinary differential equation. In this case one can pass from the
Eulerian to the Lagrangian coordinates and conversely.

It would be therefore interesting to compare the density ρε from [19] with solution to the
porous medium equation ρ̃ emanating from the same initial data ρ0. However, since
ρ0 is discontinuous, it is not compatible with assumptions

√
ρ0∂xϕ(ρ0) ∈ L2(R) and

ρ0 ∈ L1(R). As a consequence, we loose the a priori estimate on
√
ρεvε (26) which was

necessary to show damping of ∂x(ρεvε) in (4). In fact, the behaviour of ρε is completely
different than behaviour of %̃. The discontinuity at the interface of ρε exists all along
the time, while ρ̃ becomes continuous in arbitrary finite time (see Remark 3).
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2. The free-boundary problem with compact initial density, continuously connected to the
vacuum was studied in [35]. There, T. Yang, Z-a. Yao, and C. Zhu proved the local
in time existence of weak solutions to (3) in Lagrangian coordinates. Although this
setting seems to be more adequate for our considerations, the existence of interface
corresponding to this solution is not clear. Indeed, in order to determine the evolution
of the interface one needs to come back to the Eulerian coordinates. Unfortunately,
result obtained in [35] does not guarantee boundedness of the gradient of the velocity
in L1(0, T ;L∞(R)). This lack of control on ∂xuε appears at the boundary, where the
density vanishes.

For the porous medium equation, the behavior of the interface in the 1D case is well
understood since it verifies the Darcy law (see Theorem 6). It could be also appropriate
to replace the usual free boundary condition for compressible Navier-Stokes equations
by the Darcy law at the interfaces. Indeed in this case we could give a sense to uε(t, s1(t))
(where s1 denotes the right interface) by considering the limit limx→s(t)− uε(t, x) on the
left hand side of the free boundary s1. However with such condition the Lagrangian
change of coordinates is a priori not possible.
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Sci. École Norm. Sup. (4), 35(1):27–75, 2002.

[9] B. Desjardins and E. Grenier. Low Mach number limit of viscous compressible flows in the whole space.
R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455(1986):2271–2279, 1999.

[10] B. Desjardins, E. Grenier, P.-L. Lions, and N. Masmoudi. Incompressible limit for solutions of the isen-
tropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. (9), 78(5):461–
471, 1999.

[11] M. Gisclon, I. Lacroix-Violet, About the barotropic compressible quantum Navier-Stokes equations.
arXiv:1412.1332, 12 2014.

16



[12] T. Goudon and S. Junca. Vanishing pressure in gas dynamics equations. Z. angew. Math. Phys. 51:143–
148, 2000.

[13] B. Haspot. Porous media equations, fast diffusions equations and the existence of global weak solution
for the quasi-solutions of compressible Navier-Stokes equations. Hyperbolic problems: Theory, numerics,
applications. Proceedings of the 14th International Conference on Hyperbolic Problems held in Padova,
June 25-29, 2012, 667–674, 2014.

[14] B. Haspot. Porous media, Fast diffusion equations and the existence of global weak solution for the
quasi-solution of compressible Navier-Stokes equations HAL Id: hal-00770248, arXiv:1304.4502, 1 2013.

[15] B. Haspot. Existence of global strong solution for the compressible Navier-Stokes equations with degen-
erate viscosity coefficients in 1D. HAL Id: hal-01082319, arXiv:1411.5503, 11 2014.

[16] B. Haspot. New formulation of the compressible Navier-Stokes equations and parabolicity of the density.
HAL Id: hal-01081580, arXiv:1411.5501, 11 2014.

[17] B. Haspot. New entropy for Kortewegs system, existence of global weak solution and new blow-up
criterion. HAL . Id: hal-00778811, 2013.

[18] D. Hoff and D. Serre. The failure of continuous dependence on initial data for the Navier-Stokes equations
of compressible flow. SIAM J. Appl. Math., 51(4):887–898, 1991.

[19] S. Jiang, Z. Xin, and P. Zhang. Global weak solutions to 1D compressible isentropic Navier-Stokes
equations with density-dependent viscosity. Methods Appl. Anal., 12(3):239–251, 2005.

[20] Q. Jiu and Z. Xin. The Cauchy problem for 1D compressible flows with density-dependent viscosity
coefficients. Kinet. Relat. Models, 1(2):313–330, 2008.
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