
HAL Id: hal-01249890
https://hal.science/hal-01249890v2

Preprint submitted on 5 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Traffic Distributions and Independence II: Universal
Constructions for Traffic Spaces

Guillaume Cébron, Antoine Dahlqvist, Camille Male

To cite this version:
Guillaume Cébron, Antoine Dahlqvist, Camille Male. Traffic Distributions and Independence II:
Universal Constructions for Traffic Spaces. 2016. �hal-01249890v2�

https://hal.science/hal-01249890v2
https://hal.archives-ouvertes.fr


Traffic Distributions and Independence II: Universal
Constructions for Traffic Spaces

Guillaume Cébron∗, Antoine Dahlqvist†, Camille Male‡

abstract:

We investigate questions related to the notion of traffics introduced by the third author
as a non-commutative probability space with additional operations and equipped with the
notion of traffic independence. We prove that any sequence of unitarily invariant random
matrices that converges in non-commutative distribution converges as well in traffic distri-
bution whenever it fulfils some factorisation property. We provide an explicit description of
the limit which allows to recover and extend some applications (a result by Mingo and Popa
on the asymptotic freeness from the transposed ensembles, and of Accardi, Lenczewski and
Salapata on the freeness of infinite transitive graphs). We also improve the theory of traffic
spaces by considering a positivity axiom related to the notion of state in non-commutative
probability. We construct the free product of traffic spaces and prove that it preserves
the positivity condition. This analysis leads to our main result stating that every non-
commutative probability space endowed with a tracial state can be enlarged and equipped
with a structure of traffic space.
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1 Introduction
1.1 Presentation of the results
1.1.1 Motivations for traffics

Thanks to the fundamental work of Voiculescu [31], it is now understood that free
probability is a good framework for the study of large random matrices. Here are two
important considerations which sum up the role of non-commutative probability in
the description of the macroscopic behavior of large random matrices:

1. A large class of families of random matrices AN P MN pCq converge in non-
commutative distribution as N tends to 8 (in the sense that the normalized
trace of any polynomial in the matrices converges).

2. If two independent families of random matrices AN and BN converge separately
in non-commutative distribution and are invariant in law when conjugating by
a unitary matrix, then the joint non-commutative distribution of the family
AN YBN converges as well. The joint limit can be described from the separate
limits thanks to the relation of free independence introduced by Voiculescu.

In [16, 17, 18], it was pointed out that there are cases where other important
macroscopic convergences occur in the study of large random matrices and graphs.
One example is the adjacency matrix of the so-called sparse Erdös-Reńyi graph: it is
the symmetric real random matrix XN whose sub-diagonal entries are independent
and distributed according to Bernoulli random variable with parameter p

N , where p is
fixed. Let YN be a deterministic matrix bounded in operator norm. Then the possible
limiting ˚-distributions of pXN , YN q depend on more than the limiting ˚-distribution
of YN [17].

The notion of non-commutative probability is too restrictive and should be gen-
eralized to get more information about the limit in large dimension. This is precisely
the motivation to introduce the concept of traffic space, which comes together with its
own notions of distribution and independence: a traffic space is a non-commutative
probability space where one can consider not only the usual operations of algebras,
but also more general n-ary operations called graph operations. We will introduce
those concept in detail, but let us first describe the role of traffics enlightened in [16]
for the description of large N asymptotics of random matrices:

1. A large class of families of random matrices AN P MN pCq converge in traffic
distribution as N tends to 8 (in the sense that the normalized trace of any
graph operation in the matrices converges).

2. If two independent families of random matrices AN and BN converge separately
in traffic distribution, satisfy a factorization property and are invariant in law
when conjugating by a permutation matrix, then the joint traffic distribution
of the family AN Y BN converges as well. Moreover, the joint limit can be
described from the separate limits thanks to the relation of traffic independence
introduced in [16].
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As a sequel of [16], the purpose of this monograph is to develop the theory of
traffics and provide more examples.

1.1.2 Limiting traffic distribution of large unitarily invariant random ma-
trices

For concreteness, we first describe how we encode new operations on matrix spaces
and state one example of matrices that are considered in this monograph.

For all K ě 0, a K-graph operation is a connected graph g with K oriented
and ordered edges, and two distinguished vertices (one input and one output, not
necessarily distinct). The set G of graph operations is the set of allK-graph operations
for all K ě 0. A K-graph operation g has to be thought as an operation that accepts
K objects and produces a new one.

For example, it acts on the space MN pCq of N by N complex matrices as follows.
For eachK-graph operation g P G, we define a linear map Zg : MN pCqb¨ ¨ ¨bMN pCq Ñ
MN pCq in the following way. Denoting by

• V the vertex set of g,

• pv1, w1q, . . . , pvK , wKq the ordered edges of g,

• in and out the distinguished vertices of g,

• Ek,l the matrix unit pδikδjlqNi,j“1 P MN pCq,

we set, for all A1, . . . , AK P MN pCq,

ZgpA1 b ¨ ¨ ¨ bAKq “
ÿ

φ:VÑt1,...,Nu

˜

K
ź

k“1
Ak

`

φpwkq, φpvkq
˘

¸

¨ Eφpoutq,φpinq.

Those operations appear quite naturally in investigations of random matrices, see
for instance [3, Appendix A.4] and [21]. Following [21], we can think of the linear
map CN Ñ CN associated to ZgpAp1q b ¨ ¨ ¨ bApKqq as an algorithm, where we feed a
vector into the input vertex and then operate it through the graph, each edge doing
some calculation thanks to the corresponding matrix Apiq, and each vertex acting like
a logic gate, doing some compatibility checks. This description relies only on the
so-called commutative special :-Frobenius comonoid structure of matrix spaces [6].

The linear maps Zg encode naturally the product of matrices, but also other
natural operations, like the Hadamard (entry-wise) product pA,Bq ÞÑ A ˝B, the real
transpose A ÞÑ At or the degree matrix degpAq “ diagp

řN
j“1Ai,jqi“1,...,N .

Starting from a family A “ pAjqjPJ of random matrices of size N ˆ N , the
smallest algebra close by adjunction and by the action of the K-graph operations is
the traffic space generated by AN . The traffic distribution of AN is the data of the
non-commutative distribution of the matrices which are in the traffic space generated
by AN . More concretely, it is the collection of the quantities

1
N

E
”

Tr
`

ZgpA
ε1
j1
b ¨ ¨ ¨ bAεKjK q

˘

ı

for all K-graph operations g P G, indices j1, . . . , jK P J and labels ε1, ¨ ¨ ¨ , εK P t1, ˚u.
In this monograph, we prove the following theorem. It shows that for a general

class of unitarily invariant matrices, the convergence of the ˚-distribution is sufficient
to deduce the convergence in traffic distribution.
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Theorem 1.1. For all N ě 1, let AN “ pAjqjPJ be a family of random matrices in
MN pCq. We assume

1. The unitary invariance: for all N ě 1 and all U P MN pCq which is unitary,
UANU

˚ :“ pUAjU˚qjPJ and AN have the same law.

2. The convergence in ˚-distribution of AN : for all indices j1, . . . , jK P J and
labels ε1, ¨ ¨ ¨ , εK P t1, ˚u, the quantity p1{NqErTrpAε1j1 ¨ ¨ ¨A

εK
jK
qs converges.

3. The factorization property: for all ˚-monomials m1, . . . ,mk, we have the fol-
lowing convergence

lim
NÑ8

E
„

1
N

Tr pm1pAN qq ¨ ¨ ¨
1
N

Tr pmkpAN qq



“ lim
NÑ8

E
„

1
N

Tr pm1pAN qq



¨ ¨ ¨ lim
NÑ8

E
„

1
N

Tr pmkpAN qq



.

Then, AN converges in traffic distribution: for all K-graph operation g P G, indices
j1, . . . , jK P J and labels ε1, ¨ ¨ ¨ , εK P t1, ˚u, the following quantity converges

1
N

E
”

Tr
`

ZgpA
ε1
j1
b . . .bAεKjK q

˘

ı

.

The limit of the traffic distribution of AN is unitarily invariant and depends explicitly
on the limit of the non-commutative ˚-distribution of AN .

Note that the convergence is about macroscopic quantities build from the matrices.
However, it contains more information than the convergence in ˚-moments.

For example, a recent result of Mingo and Popa [20] tells that for all sequence
of unitarily invariant random matrices AN the family At

N of the transposes of AN

has the same non-commutative ˚-distribution as AN and is asymptotically freeness
with AN (under assumptions stronger than those of Theorem 1.1 that also imply
the asymptotic free independence of second order). Thanks to the description of
the limiting traffic distribution of unitarily invariant matrices, we will get that for a
family AN “ pAjqjPJ as in Theorem 1.1, AN , At

N and degpAN q are asymptotically
free independent.

It has to be noticed that a result similar to Theorem 1.1, about the convergence
of the permutation invariant observables on random matrices, is also proved inde-
pendently by Gabriel in [11]. More generally, up to some conventions the framework
developed in [10, 11, 9] is equivalent to the framework of traffics. Interestingly, it
develops aspects that are not yet considered for traffics, such as the central notion of
cumulants.

1.1.3 Non-commutative probability spaces and traffic spaces

We now leave the example of random matrices and introduce the abstract notion
of traffic spaces. The purpose is to define a structure for the limit of large ma-
trices that captures the limiting traffic distribution, in a similar way the model of
non-commutative random variables captures the limiting joint distribution of large
matrices in the theory of free probability.

Let us start by recalling the setting of non-commutative probability. A non-
commutative probability space is a pair pA,Φq, where A is an algebra and Φ is linear
form. One often assumes that A is unital and Φp1Aq “ 1, and that Φ is a trace,
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that is Φpabq “ Φpbaq for any a, b P A. A ˚-probability space is a unital non-
commutative probability space equipped with an anti-linear involution ¨˚ satisfying
pabq˚ “ b˚a˚ and such that Φ is positive, that is Φpa˚aq ě 0 for any a P A. The
distribution of a family a of elements of a non-commutative probability space is the
linear form Φa : P ÞÑ Φ

`

P paq
˘

defined for non-commutative polynomials in elements
of a. On ˚-probability spaces, the ˚-distribution is defined by the same formula for
non-commutative polynomials in the elements and their adjoints. The convergence in
(˚-)distribution of a sequence aN is the pointwise convergence of ΦaN .

An algebraic traffic space is equivalent to the data of a non-commutative proba-
bility space pA,Φq and of a collection of K-linear maps from AK to A indexed by the
K-graph operations satisfying mild assumptions. More precisely, to each K-graph
operation g P G there is a linear map

Zg : Ab ¨ ¨ ¨ bA
loooooomoooooon

K times

Ñ A

subject to some requirements of compatibility. Namely, it should be a so-called operad
algebra over the set of graph operations (Definition 1.7). The traffic distribution of a
family a “ pajqjPJ P AJ is equivalent to the collection of the quantities Φ

“

Zgpaγp1q b

¨ ¨ ¨ b aγpKqq
‰

for any K graph operation g and for any map γ : t1, . . . ,Ku Ñ J .
Actually, the definition of the traffic spaces will be given as pairs pA, τq, where τ
is a combinatorial function that is equivalent to the data of Φ, although it is more
intrinsic.

Finally, a traffic (an element of A) is a non-commutative random variable, albeit
coming with more information, as the action of graph operations permits to consider
additional operations: the Hadamard product, the transpose, the degree... natural
operations on matrices. As an example, let us highlight that if a matrix AN converges
in traffic distribution to a P A, the joint non-commutative distribution of AN , AN ˝
AN , A

t
N , degpAN q, . . . converges to the distribution of a, a˝a, at, degpaq, . . . in pA,Φq.

1.1.4 Independence and positivity

In non-commutative probability theory, it is possible to consider three different prod-
ucts of noncommutative probability spaces, each one corresponding to a particular
notion of independence: the tensor independence, the free independence and the
Boolean independence. Moreover, these products are the only existing ones in a cer-
tain sense (see [26, 12]). Interestingly, all three products preserve the positivity of the
linear form.

One important contribution of the present paper is the definition of the free prod-
uct of traffic spaces which yields to the appropriate notion of independence for traffics
defined in [16]. More precisely, in Section 3.1, for any collection Aj , j P J of algebraic
traffic spaces (with traces Φj), we define their free product ˚jPJAj , in such a way
that the algebras Aj seen as traffic subspaces of ˚jPJAj are traffic independent with
respect to the canonical trace.

It has to be noted that the positivity of the traces Φj on the spaces Aj is not
sufficient to ensure the positivity of the resulting trace on ˚jPJAj . One has to require
more positivity conditions on Φj to get positivity at the end. This is one motivation
to define the good notion of positivity for traffic spaces. In Definition 1.11 of Section
1.2, we define a traffic space as an algebraic traffic space A with trace Φ with two
additional properties: the compatibility of the involution ¨˚ with graph operations,
and a positivity condition on Φ which is stronger than assuming that Φ is a state. The
main point is to prove the compatibly between traffic independence and the notion
of positivity, stated in the following theorem.
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Theorem 1.2. The free product of traffic spaces preserves the positivity of traffic
spaces, so that the free product of traffic spaces is well-defined as a traffic space.

In particular, for any traffic a, there exists a traffic space that contains a sequence
of traffic independent variables distributed as a. Moreover, a traffic space can always
be enlarged in order to introduce traffic independent random variables.

Interestingly, the proof of Theorem 1.2 requires a new characterization of traffic
independence (contained in Theorem 2.8) which is much more similar to the usual
definition of free independence (the trace of an alternated product of centered elements
is centered) than the original one. We deduce from it a simple criterion to characterize
the free independence of variables assuming their traffic independence. An example
of application is a new proof of the free independence of the spectral distributions of
the free product of infinite deterministic graphs [1]. Part I of the monograph starts
by presenting this aspect.

1.1.5 Three canonical models of traffics

We turn now to our last result, which was the first motivation of this monograph
and whose demonstration uses both Theorem 1.1 and Theorem 1.2. It states that
there exist three different ways of enlarging a ˚-probability space into a traffic space,
each one related to respectively the tensor, the free and the Boolean independence.
Let us be more explicit, starting with the model related to freeness. As explained,
Theorem 1.1 in its full form gives a formula for the limiting traffic distribution of large
unitary invariant random matrices which involves only the limiting non-commutative
distribution. Replacing in this formula the limiting non-commutative distribution of
matrices by an arbitrary distribution, we obtain a traffic distribution which is related
to free independence as the following result highlights.

Theorem 1.3. Let pA,Φq be a tracial ˚-probability space. There exists a traffic space
B such that :

1. A Ă B as ˚-algebras and the trace induced by B on A is Φ;

2. two families a and b P A Ă B are freely independent in A if and only if they
are traffic independent in B.

The formula for the traffic distribution given, the difficulty consists in proving
that this distribution satisfies the positivity condition.

Remark that, as described in [16] and recalled in Section 9, an Abelian non-
commutative probability space can be endowed with a structure of traffic space.

Theorem 1.4. Let pA,Φq be a Abelian ˚-probability space. There exists a traffic
space B such that :

1. A Ă B as ˚-algebras and the trace induced by B on A is Φ;

2. two families a and b P A Ă B are tensor independent in A if and only if they
are traffic independent in B.

Finally, thanks to Section 9.1, one can produce an analogue construction for
Boolean independence. We recall that any traffic space is endowed with two linear
forms: a trace and a second linear form called the anti-trace.

Theorem 1.5. Let pA,Ψq be a ˚-probability space. There exists a traffic space B such
that :
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1. A Ă B as ˚-algebras and the anti-trace induced by B on A is Ψ;

2. two families a and b P A Ă B are Boolean independent in A if and only if they
are traffic independent in B.

This construction comes together with a large model for asymptotically Boolean
independent random matrices.

In other words, the free product of traffic space leads to the tensor product,
Boolean product or the free product of the probability spaces, depending on the
way the ˚-distribution and the traffic distribution of our random variables are linked.
It corresponds to three different types of traffic that we will define in Section 9 : the
traffics of free, tensor, or Boolean types. Interestingly, we also see that the last no-
tions of monotone and anti-monotone independence (see [22, 23]) appear to describe
the relations between traffics of different types when they are traffic independent. We
sum up the non-commutative independences which follows from traffic independence
in Figure 1.

Free Indep.

Boolean Indep.

Tensor
Tensor Indep.

Monotone Indep.

Type

Type
Boolean

Free
Type

Free Indep.

Figure 1: The non-commutative independences of traffics of free, tensor, and Boolean
types which are traffic independent

Organization of the monograph: In the rest of this introduction, we first recall
the definitions of algebraic traffic spaces and traffic independence. Part I is dedicated
to general facts on traffics. In Section 2 we introduce an equivalent definition of
traffic independence. In Section 3 we define the free product of traffic spaces and
prove Theorem 1.2. Part II is devoted to particular types of traffics, starting with the
so-called unitarily invariant traffics that are introduced and described in Section 5 and
6. Theorem 1.1 on unitarily invariant matrices is proved in Section 7. In Section 8,
we prove Theorem 1.3 on the canonical extension of ˚-probability spaces via traffics of
free type. In Section 9, we investigate the canonical extensions of tensor and Boolean
type, and prove Theorems 1.4 and 1.5.

1.2 Definitions
This section provides basic definitions from [16, Chapter 4] in the theory of traffic
spaces.

1.2.1 Algebras over an operad

We first make more precise the definition of graph operations given in the introduction.
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Definition 1.6. For all K ě 0, a K-graph operation is a finite, connected and ori-
ented graph with K ordered edges, and two particular vertices (one input and one out-
put). The set of K-graph operations is denoted by GK , and we define G “

Ť

Kě0 GK .

A K-graph operation can produce a new graph operation from K different graph
operations thanks to the following composition maps

GK ˆ GL1 ˆ ¨ ¨ ¨ ˆ GLK Ñ GL1`¨¨¨`LK

pg, g1, . . . , gKq ÞÑ gpg1, . . . , gKq,

for K ě 1 and Li ě 0, i “ 1, . . . ,K which consist in replacing the i-th edge of g P GK
by the Li-graph operation gi (leading at the end to a pL1`¨ ¨ ¨`LKq-graph operation).
Let also consider the action of the symmetric group

SK ˆ GK Ñ GK
pσ, gq ÞÑ gpσq,

for K ě 2 which consists in reordering the edges of g according to σ: if e1, . . . , eK are
the ordered edges of g, eσ´1p1q, . . . , eσ´1pKq are the ordered edges in gpσq. Finally, let
us denote by id the graph operation which consists in two vertices and one edge from
the input to the output. Endowed with those composition maps and the action of the
symmetric groups, the set G is a symmetric operad, in the sense that it satisfies

1. the identity property gpid, . . . , idq “ g “ idpgq,

2. the associativity property

g
`

g1 pg1,1, . . . , g1,k1q, . . . , gKpgK,1, . . . , gK,kK q
˘

“
`

g pg1, . . . , gKq
˘

pg1,1, . . . , g1,k1 , . . . , gK,1, . . . , gK,kK q,

3. the equivariance properties pgpσqq pgσ´1p1q, . . . , gσ´1pKqq “ g pg1, . . . , gKq; and
g p g

pσ1q
1 , . . . , g

pσKq
K q “

`

g pg1, . . . , gKq
˘pσ1ˆ...ˆσKq

.

The element id P G1 is called the identity of the operad.
Let us now define how a K-graph operation can produce a new element from K

elements of a vector space in a linear way.

Definition 1.7. An action of an operad G “
Ť

Kě0 GK on a vector space A is the
data, for all K ě 0 and g P GK , of a linear map Zg : AbK Ñ A such that: @g P
GK , gi P G, ai P A, σ P SK ,

1. Zid is the identity on A, where id P G1 is the identity of the operad,

2. Zg pZg1 b . . .b ZgK q “ Zg pg1,...,gKq,

3. Zgpa1 b . . .b aKq “ Zgσ paσ´1p1q b . . .b aσ´1pKqq.

A vector space on which acts G is called a G-algebra. A G-subalgebra is a vector sub-
space of a G-algebra stable by the action of G. A G-morphism between two G-algebras A
and B is a linear map f : AÑ B such that f

`

Zgpa1, . . . , aKq
˘

“ Zg
`

fpa1q, . . . , fpaKq
˘

for any K-graph operation g and a1, . . . , aK P A.

In the following, G always denotes the operad of graph operations. We now review
some linear maps Zg of particular interest by describing the underlying graphs g. At
each time, we shall represent g graphically, forgetting the mention of the ordering of
edges when it is not relevant, and assuming the input is the rightmost vertex of the
graph and the output the leftmost one when they are not equal.
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• The only element of G0 is the graph p¨q with a single vertex and no edge. By
convention, the map Zp¨q is a linear map CÑ A. It is then characterized by the
image of 1 P C that is denoted by I :“ Zp¨qp1q and is called the unit of A.

• By definition, Z¨Ð¨ “ idA. The graph p¨ Ñ ¨q P G1, which consists in two
vertices and one edge from the output to the input, induces another involution
on A which will be denoted by a ÞÑ at :“ Z¨Ñ¨paq. We call at the transpose of
a.

• The graph operation p¨ 1
Ð ¨

2
Ð ¨q, which consists in three vertices and two

successive edges from the input to the output, induces a bilinear map pa, bq P
A2 ÞÑ ab :“ Z

¨
1
Ð¨

2
Ð¨
pabbq P A which gives to A a structure of associative algebra

over C, with unit I. Hence, every G-algebra is in particular a unital algebra.

• The Hadamard product is the bilinear map pa, bq P A2 ÞÑ a ˝ b :“ Z¨Ð¨pa b bq,
where the graph operation consists in two vertices and two edges from the input
to the output. Its defines an associative and commutative product.

• The diagonal of an element a P A is defined by ∆paq :“ Z öpaq, for the graph

öwith one vertex and one edge (which is a self loop). The space ∆pAq :“
 

∆paq, a P A
(

is a commutative G-subalgebra of A.

• The degree of an element a P A is defined by degpaq :“ ZÓpaq, for the graph
Ó with two vertices, where one is both the input and the output, and an edge
from the second vertex to the input/output. The map deg is a projection with
image ∆pAq.

Example 1.8. Denote MN pCq the algebra of N by N complex matrices. For anyK ě 1
and g P GK with vertex set V and ordered edges pv1, w1q, . . . , pvK , wKq, let us define
Zg by setting, for all A1, . . . , AK P MN pCq, the pi, jq-coefficient of ZgpA1b . . .bAKq
as

rZgpA1 b . . .bAKqs pi, jq :“
ÿ

φ:VÑrNs
φpinq“j, φpoutq“i

K
ź

k“1
Ak

`

φpwkq, φpvkq
˘

.

This defines an action of the operad G on MN pCq. The product AB “ Z
¨

1
Ð¨

2
Ð¨
pAbBq

induced by this action coincides with the classical product of matrices. The Hadamard
product A˝B “ Z¨Ð¨pAbBq is the entry-wise product of matrices

`

Api, jqBpi, jq
˘N

i,j“1.
The diagonal of a matrix ∆pAq :“ Z öpAq and the transpose At “ Z¨Ñ¨pAq are the
diagonal

`

δijApi, iq
˘N

i,j“1 and the transpose
`

Apj, iq
˘N

i,j“1 in the usual sense. The
degree degpAq :“ ZÓpAq is the row sum diagonal matrix

`

δij
ř

k Api, kq
˘N

i,j“1. For
more information about the traffic distribution of matrices, see [16, Section 1.2.].
Example 1.9. Let V be an infinite set and let MVpCq denotes the set of complex
matrices A “

`

Apv, wq
˘

v,wPV indexed by V (of possible infinite size) such that each row
and column have a finite number of nonzero entries. For any g P G and A1, . . . , AK P
MVpCq, we define ZgpA1 b . . . b AKq by the same formula as in Example 1.8 with
summation now over the maps φ : V Ñ V. This defines as well a structure of G-
algebra for MVpCq. When the entries of the matrices are non negative integers, they
encode the adjacency operator of a locally finite directed graph: the graph associated
to a matrix A has Apv, wq edges from a vertex v P V to a vertex w P V .
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The graph operations can be equivalently encoded in terms of analogues of poly-
nomials, turning the linearity on AbK into K-linearity on A, K ě 2. We also define
now a notion with no input and output for the purpose of the next section, and later
we will consider a generalization with arbitrary numbers of in/outputs.

Definition 1.10. Let J be a labelling set.

• A test graph labeled in J is a collection T “ pV,E, γq, where pV,Eq is a finite,
connected and oriented graph and γ : E Ñ J is a labeling of the edges by indices.

• A graph monomial labeled in J is a collection g “ pV,E, γ,vq, where T “

pV,E, γq is a test graph and v “ pin, outq is an ordered pair of vertices of T ,
considered respectively as the input and the output of T .

We denote by T xJy the set of test graphs labeled in J , and by GxJy the set of graph
monomials labeled in J . We denote by CT xJy and CGxJy the vector spaces generated
by elements of the respective sets.

The labelling map γ of a graph monomial is not a bijection in general, so that a
same variable can appear on several edges of the graph.

Let us consider a family a “ pajqjPJ P AJ of elements of a G-algebra, and consider
a graph monomial t “ pV,E, γq with labels in J . Let us list arbitrarily the edges
E “ te1, . . . , eKu and denote by g the K-graph operation pV,Eq with the ordered
edges e1, . . . , eK . We set tpaq “ Zg

`

aγpe1q b ¨ ¨ ¨ b aγpeKq
˘

, which does not depend
on the choice of the ordering of e1, . . . , eK , thanks to the equivariance property. For
more details about graph polynomials, see [16, Section 4.2.2.]

1.2.2 Algebraic traffic spaces

Definition 1.11. An algebraic traffic space is a couple pA, τq where A is a G-algebra
and τ : CT xAy Ñ C is a linear functional, called the combinatorial trace, defined on
the space of test graphs labeled in A, satisfying

• the unity property τ
“

p¨q
‰

“ 1 for p¨q the graph with a single vertex and no edge,

• the multi-linearity w.r.t. the edges τ rTa`λbs “ τ rTas`λτ rTbs, for any test graph
Ta`λb P T xAy having an edge e0 with label a ` λb, where a, b P A and λ P C,
and for Ta and Tb defined as T with label a and b respectively for the edge e0,

• the substitution property τ rT s “ τ rTgs for any test graph T P T xAy having an
edge e0 with label gpaq, where g is a graph monomial and a a family of elements
of A, and Tg obtained from T by replacing the edge e0 by the graph g whose
edges are labelled by the element of a.

An element of an algebraic traffic space is called a traffic. A homomorphism between
two algebraic traffic spaces pA, τq and pA1, τ 1q is a G-morphism f : AÑ A1 such that
τ 1
“

T pfpaqq
‰

“ τ
“

T paq
‰

, for any T P T xJy and a “ pajqjPJ P AJ , where fpaq :“
`

fpajq
˘

jPJ
.

The map τ takes as entry a test graph whose edges are labeled by elements of A
and produces a complex number from. There is no meaning in the expression τ ras
for an element a P A.

In particular, pA, τq is not an algebraic non-commutative probability spaces. It
can always be endowed with two different structures of algebraic non-commutative
probability spaces.
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Definition 1.12. Let pA, τq be an algebraic traffic space. The trace Φ : AÑ C and
the anti-trace Ψ : A Ñ C are the linear maps given by the application of τ on a self
loop and on a simple edge, namely

Φ : a ÞÑ τ
“ öa‰, Ψ : a ÞÑ τ

“

¨
a
Ð ¨

‰

.

Recall that the product of two elements a, b P A is defined by ab :“ Z
¨

1
Ð¨

2
Ð¨
pab bq,

and that endowed with this product A is an associative algebra. Then pA,Φq and
pA,Ψq are two algebraic non-commutative probability spaces. The map Φ is tracial
in the sense that Φpabq “ Φpbaq for any a, b P A, and it satisfies Φ

`

∆paq
˘

“ Φpaq for
any a P A. Properties relating the different functionals τ , Φ and Ψ are explained in
[16, Section 4.2.4.]

In the following definition, for a test graph T of T xJy and a family a P AJ of
elements of a set A, we denote T paq P T xAy the test graph obtained by replacing
labels j P J of the edges of T by aj . This definition is extended for T P CT xJy by
linearity.

Definition 1.13. Let pA, τq and pAN , τN q, N ě 1, be algebraic traffic spaces, and J
be an index set.

1. The traffic distribution of a family a “ pajqjPJ of elements in A is the linear
map τa : T P CT xJy ÞÑ τ

“

T paq
‰

P C.

2. A sequence of families aN P AJN converges in traffic distribution to a if the
traffic distribution of aN converges pointwise to the traffic distribution of a on
CT xJy.

Example 1.14. (Example 1.8 continued) Let pΩ,F ,Pq be a probability space in the
classical sense and let us consider the algebra MN

`

L8´pΩ,Cq
˘

of matrices whose
coefficients are random variables with finite moments of all orders. Endowed with the
action of the operad G described in Example 1.8, it is a G-algebra, and it becomes an
algebraic traffic space endowed with the combinatorial trace τN given by: for any test
graph T “ pV,E,Mq labeled in MN

`

L8´pΩ,Cq
˘

, where M : E Ñ MN

`

L8´pΩ,Cq
˘

,

τN
“

T
‰

“ E
” 1
N

ÿ

φ:VÑrNs

ź

e“pv,wqPE

`

Mpeq
˘`

φpwq, φpvq
˘

ı

. (1.1)

The trace associated to τN is the usual normalized trace ΦN : A ÞÑ E
“

TrAs
‰

{N and
the anti-trace is the map ΨN : A ÞÑ E

“
ř

i,j Api, jq{N
‰

.
Example 1.15. (Example 1.9 continued) Let V be an infinite set. A locally finite
rooted graph on V is a pair pG, ρq where G is a directed graph such that each vertex
has a finite number of neighbors (or equivalently an element of the space MVpCq of
Example 1.9 with integers entries) and ρ is an element of V. Recall briefly that the
so-called weak local topology is induced by the sets of pG, ρq such that the subgraph
induced by vertices at fixed distance of the root is given, see for instance [4]. The
notion of locally finite random rooted graphs refers to the Borel σ-algebra given by
this topology. Let pΩ,F ,Pq be a probability space, let V be a set and let ρ P V. Let
G be a family of locally finite random rooted graphs on Ω with vertex set V and
common root ρ. Consider the G-subalgebra A of MVpCq induced by the adjacency
matrices of G. For any test graph T “ pV,E,Mq labeled in A and any root r P V of
T , denote

τρ
“

pT, rq
‰

“ E
”

ÿ

φ:VÑV
φprq“ρ

ź

e“pv,wqPE

`

Mpeq
˘`

φpwq, φpvq
˘

ı

. (1.2)

12



We assume that all the above quantities exist, which is true for instance if the degree
of the vertices of the graphs G are bounded by a deterministic constant. If moreover
the random graph is unimodular [4, Section 2.2], then τ is independent of the root of
T , and pA, τq is an algebraic traffic space (by applying [4, Equation (2.3)] to graph op-
erations). This covers the case of random groups with given generator pΓ, γ1, . . . , γnq
which is identified with the Cayley graph of Γ generated by pγ1, . . . , γnq.

1.2.3 Möbius inversion and injective trace

In order to define traffic independence, we need first to define a transform of combina-
torial traffic traces. It is based on a general principle that is used several times in this
monograph. Recall that a poset is a set X with a partial order ď (see [24, Lecture
10] and [29, Section 3.7]). Moreover X is a lattice whenever every two elements have
a unique supremum and a unique infimum. If X is a finite lattice, then there exists
a map MobX : X ˆ X Ñ C, called the Möbius function on X , such that for two
functions F,G : X Ñ C the statement that

F pxq “
ÿ

x1ěx

Gpx1q, @x P X

is equivalent to
Gpxq “

ÿ

x1ěx

MobX px, x
1qF px1q, @x P X .

Hence the first formula implicitly defines the function G in terms of F .
For any set X, denote by PpXq the poset of partitions of X equipped with refine-

ment order, that is π ď π1 if the blocks of π are included in blocks of π1. Let pA,Φq
be a non-commutative probability space and denote by N.C.pKq Ă Ppt1, . . . ,Kuq
the poset of non-crossing partitions of t1, . . . ,Ku [24, Lecture 9]. We recall that in
an algebraic non-commutative probability space pA,Φq, the free cumulants are the
multi-linear maps pκqLě1 on AL given implicitly by

Φpa1 ˆ ¨ ¨ ¨ ˆ aKq “
ÿ

πPN.C.pKq

ź

ti1ă¨¨¨ăiLuPπ

κLpai1 , . . . , aiLq

looooooooooooooooomooooooooooooooooon

“:κpπq

. (1.3)

With Φpπq defined as κpπq using Φpai1 . . . aiLq instead of κLpai1 , . . . , aiLq, we can
express κpπq in terms of Φpπ1q for π1 ě π thanks to Möbius inversion in the poset on
non crossing partitions.

Let now T “ pV,E, γq be a test graph in T xAy, with vertex set V . For any
partition π P PpV q of V , we denote by Tπ “ pV π, Eπ, γπq the test graph obtained by
identifying vertices in a same block of π. More precisely:

• the vertex set of Tπ is the set of blocks of π,

• each edge e “ pv, wq of T generates an edge eπ “ pBv, Bwq, where Bv denotes
the block of π containing v,

• the label of eπ is the label of e, namely γπpeπq “ γpeq.

We say that Tπ is a quotient of T . Denote 0V the partition of V with singletons only
(it then satisfies T 0V “ T ).
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Definition 1.16. Let A be an ensemble and let τ : CT xAy Ñ C be a linear form. We
define the injective version of τ , and denote τ0, the linear form on CT xAy implicitly
given by the following formula: for any test graph T P T xAy

τ
“

T
‰

“
ÿ

πPPpV q

τ0“Tπ
‰

, (1.4)

in such a way for any test graph T one has

τ0“T
‰

“
ÿ

πPPpV q

MobPpV qp0V , πq ¨ τ
“

Tπ
‰

.

The injective version of a combinatorial trace (resp. a traffic distribution) is called
the injective trace (resp. the injective distribution).

Example 1.17. The injective version Tr0 of the trace of test graph in random ma-
trices of MN pCq defined in (1.1) is given, for T “ pV,E,Mq a test graph labeled in
MN

`

L8´pΩ,Cq
˘

, by

τ0
N

“

T
‰

“ E
” 1
N

ÿ

φ:VÑrNs
injective

ź

e“pw,vqPE

`

Mpeq
˘`

φpwq, φpvq
˘

ı

. (1.5)

Limiting injective combinatorial distributions of usual matrix models (unitary Haar
matrices, uniform permutation matrices, certain Wigner matrices) are proved to exist
[16, Chapter 3] and are shown to have simple and natural expressions.
Remark 1.18. The map τ0 satisfies the property of multi-linearity w.r.t. the edges of
Definition 1.11, but not the substitution property, see [16, Section 2.1.].

1.2.4 Traffic independence

Let J be a fixed index set and, for each j P J , let Aj be some sets. Given a family of
linear maps τj : CT xAjy Ñ C, j P J , sending the graph with no edge to one, we shall
define a linear map denoted ‹jPJτj : CT x

Ů

jPJ Ajy with the same property and called
the free product of the τj ’s. The terminology free product should be understood as
canonical product, and may not be confused with the terminology free independence.
Therein,

Ů

jPJ Aj denotes the disjoint union of copies of Aj , although the sets Aj can
originally intersect or be equal: it is formally defined as the set of all couples pj, aq
where j P J and a P Aj .

Let us consider a test graph T in T x
Ů

jPJ Ajy and introduce an undirected graph
as follow. We first call colored components of T with respect to the families pAjqjPJ
the maximal nontrivial connected subgraphs of T whose edges are labelled by elements
of Aj for some j P J (they are elements of T xAjy). There is no confusion about the
definition of colored components because of the convention for

Ů

jPJ Aj . When there
is no ambiguity about the collection pAjqjPJ , we denote by CCpT q the set of colored
components of T . We call connectors of T the vertices of T belonging to at least
two different colored components. The graph GCCpT q defined below is called graph
of colored components of T with respect to pAjqjPJ :

• the vertices of GCCpT q are the colored components of T and its connectors;

• there is an edge between a colored component in CCpT q and a connector if the
connector belongs to the component.
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The following definition is from [16, Section 2.2.].

Definition 1.19. 1. For each j P J , let Aj be a set and τj : CT xAjy Ñ C be a
linear map sending the test graph with no edges to one. The free product of the
maps τj is the linear map ‹jPJτj : CT x

Ů

j Ajy Ñ C whose injective version is
given by: for any test graph T ,

p‹jPJτjq
0rT s “ 1

`

GCCpT q is a tree
˘

ˆ
ź

SPCCpT q

τ0
jpSq

“

S
‰

, (1.6)

where jpSq is the index of the labels of S.

2. Let pA, τq be an algebraic traffic space and let J be a fixed index set. For each
j P J , let Aj Ă A be a G-subalgebra. The subalgebras pAjqjPJ are called traffic
independent whenever the restriction of τ on the test graphs labeled by elements
of Aj , j P J , coincides with ‹jPJτj.

3. Let Xj , j P J be subsets of A and let pajqjPJ be a family of elements of A. Then
pXjqjPJ (resp. pajqjPJ) are called traffic independent whenever the G-subalgebra
induced by the Xj’s (resp. by the aj’s) are traffic independent.

The motivation for introducing this definition is, in the context of large matrices,
Example 1.14, the asymptotic traffic independence for permutation invariant matrices,
see [16, Theorem 1.8].

We end this section by the following elementary property of traffic independence.

Lemma 1.20. Traffic independence is symmetric and associative, i.e. A1 and A2
are independent if and only if A2 and A1 are independent, and Aj , j “ 1, 2, 3 are
independent if an only if A1 and pA2,A3q are independent and A2 and A3 are inde-
pendent.
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Part I

General traffic spaces
Presentation
According to Section 1.2, traffic independence in an algebraic traffic space pA, τq is
defined in terms of the injective version τ0 of τ , thanks to the formula involving the
graph of colored components. Such a definition of independence is unusual in non-
commutative probability, where the injective trace has no analogue. As a comparison,
let us remind the two equivalent definitions of free independence in free probability.
It is usually defined by a relation of moments, namely the centering of alternated
products of centered elements. The second usual characterization of free independence
is the vanishing of mixed free cumulants.

We propose in Theorem 2.8 of Section 2 a characterization of traffic independence
in terms of moment functions as the centering of some generalized alternated products
of reduced elements, in an appropriate sense that we shall make precise. Note that
Gabriel proposes in [10] a definition of traffic cumulants, and traffic independence is
the vanishing of these mixed traffic cumulants.

In Section 3, we construct the product of traffic spaces: given for each j P J
an algebraic traffic space pAj , τjq, we construct a new algebraic traffic space pA, τq
that contains the Aj as independent G-subalgebras. The space A will be made with
equivalent classes of graph operations with an input and output whose edges are
labelled by the Aj . The combinatorial trace τ will be the extension to A of the free
product of the combinatorial traces τj , j P J .

Positivity of state is another important notion in noncommutative probability. We
propose a definition of positivity for combinatorial trace in Section 3.3. We prove that
the free product traffic spaces with positive traces also admits a positive trace.
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2 A natural characterization of traffic independence
2.1 Statement
In order to give the characterization of traffic independence which is the analogue of
the usual presentation of freeness, we need a generalization of test graphs and graph
polynomials with arbitrary numbers of marked vertices. To explain this fact, recall
that the definition of traffic independence involves the graph of colored components.
To define correctly the operation which consists in reconstructing a test graph from
its colored components and its graph of colored components, we need formal objects
that are specified in the two following definitions (see Figure 2).

z4

z1
x1

x1

x2

z2

z3y2 y1

z1

z4

z2
z3

y2

x2

y1

Figure 2: Left: a test graph T in three families of traffics px1, x2q, py1, y2q and
pz1, z2, z3, z4q. Note that τ rT s “ Φr∆px1q∆py2q pz4˝z

t
1qdegpz2 x2qdegpz3 y1q z2 ∆py1q

‰

.
Right: the graph of colored component GCCpT q.

Definition 2.1. A graph monomial of rank n ě 1 (in short a n-graph monomial)
labeled in J is the data g “ pV,E, γ,vq of a test graph T “ pV,E, γq and of a n-tuple
v “ pv1, . . . , vnq of vertices of T , called the outputs. We denote by GpnqxJy the set of
n-graph monomials and by CGpnqxJy the space of n-graph polynomials.

We have CGp2qxJy “ CGxJy where a graph monomial of rank 2 is identified with
the graph monomial whose input is the first output. A test graph is also called a
0-graph monomial and we set CGp0qxJy :“ CT xJy. To define generalized products of
graph polynomials of arbitrary rank, we use the following objects, drawn in Figure 3.

Definition 2.2. A bigraph operation of rank n ě 1 (in short a n-bigraph operation)
in L ě 0 variables is the data of

• a finite, connected, undirected and bipartite graph g, endowed with a bipartition
of its vertices into two sets Vinpgq and Vcopgq, whose elements are called inputs
and connectors,

• with exactly L ordered inputs, given together with an ordering of its edges around
each input

• and the data of an ordered subset Voutpgq consisting in n elements of the con-
nectors Vcopgq that we call outputs,

and such that all connectors that are not an output have degree greater than or equal
to 2. We denote by Bpnq the set of n-bigraph operations. For any L, n ě 0 and any
tuple d “ pd1, . . . , dLq P pN˚qL, we denote by BpnqL,d if L ‰ 0 and by Bpnq0 otherwise the
set of n-bigraph operations with L inputs such that the `-th one has degree d`.
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Figure 3: A bigraph operation g of order 3 with 5 inputs and 3 outputs with degree
sequence p1, 3, 2, 2, 1q; the numbers in the figure describe the order of the edges around
each input. Five graph operations t1, . . . , t5 which satisfy that t1 b ¨ ¨ ¨ b t5 is g-
alternated. The graph operation Tgpt1 b ¨ ¨ ¨ b t5q

A n-bigraph operation in L variables with degrees d1, . . . , dL has to be thought as
an operation that accepts L objects with ranks d1, . . . , dL, and produces a new object
of rank n. The set of bi-graph operations is actually an operad, although we do not
use this fact (see Section 4 for comments).

In particular, a n-bigraph operation can produce a new n-graph monomial from L
different graph monomials in the following way, see Figure 3. Let us consider L graph
monomials t1, . . . , tL labeled on some set A, with respective number of outputs given
by d P pN˚qL (that is t` P Gpd`qxAy), and a bigraph operation g P BpnqL,d. Replacing
the `-th input of g and its adjacent ordered edges pe1, . . . , ed`q by the graph of t`,
identifying for each k P rLs the connector attached to ek with the k-th output of
t`, yields a connected graph. We denote by Tgpt1 b . . . b tLq P GpnqxAy the n-graph
monomial whose labelling is induced by those of t1, . . . , tL, and with outputs given
by the outputs of g. We then define by linear extension

Tg : CGpd1qxAy b ¨ ¨ ¨ b CGpdLqxAy ÝÑ CGpnqxAy
t1 b . . .b tL ÞÝÑ Tgpt1 b . . .b tLq.

Example 2.3. • Let AN “ pAjqjPJ be a family of matrices and t “ pV,E, γ,vq be
a n-graph monomial labeled in J . We define a random tensor matrix tpAN q P

pCN qbn as follows. Denoting by v “ pv1, . . . , vnq the sequence of outputs of t
and by pξiqi“1,...,N the canonical basis of CN , we set,

tpAN q “
ÿ

φ:VÑrNs

ź

e“pv,wqPE

Aγpeq
`

φpwq, φpvq
˘

ξφpv1q b ¨ ¨ ¨ b ξφpvnq. (2.1)

• More generally, let g be a n-bigraph operation with K inputs and A1, . . . , AK
be tensors matrices such that the rank nk of Ak (so that Ak P pCN qbnk) is the
degree of the k-th input of g. Denote by pv1, . . . , vnq the outputs of g and for
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Figure 4: The bi-graph operations ∆06 (left) and ∆tt1,3,6u,t2u,t4,5uu (right).

each k “ 1, . . . ,K denote by pwk1 , . . . , wknkq the ordered neighborhood connectors
of the k-th input. Then we define a element of pCN qn by

TgpAN q “
ÿ

φ:VcopgqÑrNs

K
ź

k“1
Ak

`

φpwk1 q, . . . , φpw
k
nk
q
˘

ξφpv1q b ¨ ¨ ¨ b ξφpvnq. (2.2)

Definition 2.4. Let J be an index set and pAjqjPJ be a family of ensembles, and let
g P BpnqL,d be a bigraph operation with d “ pd1, . . . , dLq. A tensor product pt1b¨ ¨ ¨btL1q
of graph polynomials labeled by

Ů

j Aj is alternated along g (in short g-alternated)
whenever

1. L1 “ L,

2. ti P CGpdiqxAjiy for each i “ 1, . . . , L, and

3. for all p, q P rLs such that the p-th and the q-th inputs are neighbors of a same
connector, then jp ‰ jq.

Let Tg be a bigraph operation and let m1b¨ ¨ ¨bmL be a tensor product of graph
monomials, labeled in a set

Ů

j Aj , j P J , alternated along g P Bp0qL,d. Assume that Tg
does not identify any pair of outputs of each m` and that the output vertices of each
m` are pairwise distinct. Then Tgpm1b . . .bmLq is a test graph with graph of colored
components g, and its colored components arem1, . . . ,mL, (considered as graphs with
no outputs). Reciprocally, the graph of colored component gives a decomposition of
any test graph as an element of the form Tgpm1 b . . . b mLq. This decomposition
is unique up to the symmetry of a certain automorphism group introduced later in
Section 3.3.

We shall now define a notion of reduced n-graph polynomials. For any n ě 2,
any partition π P Ppnq of t1, . . . , nu, and any n-graph monomial g with outputs
pv1, . . . , vnq, let us denote by gπ the quotient graph obtained by identifying vertices
v1, . . . , vn that belong to a same block of π, with outputs given by the images of
pv1, . . . , vnq by the quotient map, so that the edges of gπ can be identified with the
one of g. This defines a linear map ∆π : CGpnqxAy Ñ CGpnqxAy such that ∆πpgq “ gπ

for n-graph monomials g. The map ∆π can also be seen as the action of a bigraph
operation (see an example in Figure 4). Denote respectively by 0n and 1n the par-
titions of t1, . . . , nu made of n singletons and of one single block respectively. Note
that ∆0npgq “ g for any g P CGpnqxAy,

Definition 2.5. Let A be an ensemble and τ : CT xAy Ñ C be a linear form. We
extend τ in a linear map CT xAy ‘ CGp1qxAy Ñ C by forgetting the position of the
output in 1-graph monomials. A n-graph polynomial t P CGpnqxAy is called reduced
with respect to τ , if
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• n P t0, 1u and τptq “ 0, or

• n ě 2 and for any π P Ppnqzt0nu one has ∆πptq “ 0.

Note that the reduceness condition does not depend on τ when n ě 2.
Example 2.6. If n “ 2, then ∆12ptq “ ∆ptq, where we recall that the diagonal operator
∆ is the graph operation with one vertex and one edge. So t is reduced if and only if
∆ptq “ 0.
Example 2.7. Let AN be a family of matrices of size N by N and let t be a n-graph
polynomial, n ě 2. Then the tensor matrix tpAN q defined in Example 2.3 is reduced
if and only if, denoting by Bi, i P rN sn, its components in the canonical basis, one
has Bi “ 0 as soon as two indices of i are equal. In particular for n “ 2, a matrix is
reduced whenever its diagonal entries are equal to zero.

We can now state the main result of the section.

Theorem 2.8. Let pA, τq be an algebraic traffic space with trace Φ and anti-trace Ψ.
For each j P J let Aj be a G-subalgebra. The following properties are equivalent:

1. The G-subalgebras Aj , j P J, are traffic independent (Definition 1.19),

2. One has τ rhs “ 0 for any h “ Tgpt1 b ¨ ¨ ¨ b tLq in CT x
Ů

j Ajy where g P Bp0q is
a bigraph operation and t1 b ¨ ¨ ¨ b tL is a g-alternated tensor product of reduced
elements with respect to τ .

3. One has Φrhs “ 0 for any h “ Tgpt1b¨ ¨ ¨b tLq in CGp2qx
Ů

j Ajy, where g P Bp2q
is a bigraph operation and t1b¨ ¨ ¨btL is a g-alternated tensor product of reduced
elements with respect to τ .

4. One has Ψrhs “ 0 for any h “ Tgpt1b¨ ¨ ¨b tLq in CGp2qx
Ů

j Ajy, where g P Bp2q
is a bigraph operation and t1b¨ ¨ ¨btL is a g-alternated tensor product of reduced
elements with respect to τ .

Hence traffic independence is the centering of alternated bigraph operations of
reduced elements with respect to τ,Φ or Ψ indifferently. The proof of the proposition
is given in the next section.

As a direct application, we get a useful criterion of free independence.

Corollary 2.9. Let pA, τq be an algebraic traffic space such that A is a ˚-algebra and
the associated trace Φ is a state. Denote for any a P A

ηpaq “ τ
“a œ

¨ ö

a˚
‰

´ |τ r ö

as|2 “ Φ
`

∆pa˚q∆paq
˘

´ |Φpaq|2 “ Φpa˚ ˝ aq ´ |Φpaq|2,

where we recall (see section 1.2.1) that ∆ “ Zö is the diagonal operator and pa ˝ bq “
Z¨Ð¨pa b bq is the Hadamard product. Let B Ă A be a unital ˚-subalgebra such that
ηpaq “ 0 for any a P B, and let Bj Ă B, j P J , be subalgebras. If pBjqjPJ are
traffic independent in pA, τq, then they are freely independent in the ˚-probability
space pB,Φ|Bq.

Example 2.10. 1. In [16, Proposition 2.16], it is proved that two independent traf-
fics a and b such that ηpaq ‰ 0 ‰ ηpbq are not free independent with respect to
the trace. If ηpaq ‰ 0 and ηpbq “ 0, both situations can happen as we can see
with the limits of Wigner matrices, uniform permutation matrices and diagonal
matrices [16]: the map η vanishes only for the two first models, a Wigner ma-
trices is asymptotically free from a diagonal matrix, but a uniform permutation
matrix is not asymptotically free from a diagonal matrix.
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2. In the context of the so-called asymptotically unitarily invariant random matri-
ces defined in Part II, the assumption of Corollary 2.9 is satisfied. Nevertheless
we will see that in this particular case the free independence is explained in a
more direct way and has stronger implications.

3. Yet, the above corollary covers a much larger situation than the example pre-
viously mentionned. The example of the large uniform permutation matrix can
be generalized for infinite rooted graphs. More precisely, recall Example 3.9 of
the G-algebra A of locally finite rooted graphs on a set of vertices V. It is a clas-
sical fact that an element A of A which is both deterministic and unimodular is
vertex-transitive (there exist automorphisms exchanging each pair of vertices).
This property implies that the diagonal ∆pAq “

`

Apv, vq1v“w
˘

v,wPV of A is
constant, and so one can apply the lemma. This gives a new proof of a result
of Accardi, Lenczewski and Salapata [1] stating that the spectral distribution
of the free product of infinite deterministic graphs is the free product of the
spectral distributions.

Proof of Corollary 2.9. Since the trace defined onA is a state, the assumption implies,
for every a P B, that ∆paq has the same ˚-distribution as ΦpaqI. Let pBjqjPJ traffic
independent ˚-subalgebras of B. Let a1, . . . , an P B, such that for any k P rns,
Φpakq “ 0 and ak P Bjk , with j1 ‰ j2 ‰ ¨ ¨ ¨ ‰ jn. Then,

Φ
´

`

a1´∆pa1q
˘

. . .
`

an´∆panq
˘

¯

“ Φ
´

`

a1´Φpa1q
˘

. . .
`

an´Φpanq
˘

¯

“ Φpa1 . . . anq.

Let g be the bigraph operation with two outputs in and out, n inputs and n connectors,
whose graph is a directed line from in to out, with input vertices (alternating with
the connectors) ordered consecutively from in to out. Then one has

Φ
´

`

a1 ´∆pa1q
˘

. . .
`

an ´∆panq
˘

¯

“ Φ
”

Tg

´

`

a1 ´∆pa1q
˘

b . . .b
`

an ´∆panq
˘

¯ı

,

and
`

a1 ´ ∆pa1q
˘

b . . . b
`

an ´ ∆panq
˘

is a g-alternated tensor product of reduced
elements, so that by Theorem 2.8 we get Φpa1 . . . anq “ 0.

2.2 Proof of Theorem 2.8
2.2.1 A decomposition of graph polynomials

We start by stating several preliminary lemmas. The first three statements are about
the space of n-graph polynomials CGx

Ů

j Ajy. Note that in these lemmas we only
assume that the sets A and Aj , j P J , are arbitrary ensembles, we do not use their
G-algebra structure. The first lemma gives an explicit characterization of reducedness.

Lemma 2.11. Let A be an ensemble and for n ě 0 let m a n-graph monomial labeled
in A. Denote by O the output set of m (empty if n “ 0). For each partition σ of
O, recall that ∆σpmq “ mσ denotes the graph monomial obtained by identifying the
outputs of m that belong to a same block of σ. Let us denote by Mob the Möbius
function for the poset of partitions of O (Section 1.2.3) and 0O the partition of O
made of singletons. Then, with p¨q denoting the graph with no edges,

ppmq :“
"

m´ τpmq ˆ p¨q if n “ 1, 0,
ř

σPPpOqMobp0O, σqm
σ if n ě 2,

is a reduced n-graph polynomial with respect to τ . Moreover, extending p by linearity
on n-graph polynomials, every reduced n-graph polynomial t satisfies t “ pptq.
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Proof. The proposition is clear if n “ 0, 1. Assume n ě 2 in the following. For any
ν P PpOq,

∆ν

`

ppmq
˘

“ ∆ν

¨

˝

ÿ

σPPpOq

Mobp0O, σqm
σ

˛

‚“
ÿ

µPPpOq

¨

˝

ÿ

σPPpOq:σ_ν“µ
Mobp0O, σq

˛

‚mµ,

where σ _ ν is the join of the partitions σ and ν, i.e. the smallest partition whose
blocks contain those of σ and ν. Now, for any µ P PpOq, by [29, Sections 3.6 and 3.7]
for the first and last equalities, one has

ÿ

σPPpOq:σ_ν“µ
Mobp0O, σq “

ÿ

σďµ

ÿ

σ_νďξďµ

Mobpξ, µqMobp0O, σq

“
ÿ

νďξďµ

Mobpξ, µq
˜

ÿ

σďξ

Mobp0O, σq

¸

“
ÿ

νďξďµ

Mobpξ, µqδξ,0O “ δν,0O Mobp0O, µq,

Hence we have obtained ∆ν

`

ppmq
˘

“ δν,0Oppmq, that is ppmq is reduced.
Let us now prove that every reduced graph polynomial t satisfies t “ pptq. For

any η P PpOq let us define pηpmq “
ř

πěη Mobpη, πqmπ. Extended by linearity, the
pσ’s define a partition of the unity, that is t “

ř

ηPPpOq pηptq for any t. By the same
computation as above, one sees that t is reduced if and only if pηptq “ δη“0O t for any
η. Hence we obtain t “ p0O ptq “ pptq as expected.

The second lemma tells that any n-graph polynomial in CGx
Ů

j Ajy can be written
as a linear combination of bigraph operations evaluated in alternated and reduced
elements.

Definition 2.12. Let J be an index set and, for each j P J , let Aj be an ensemble.

• A colored bigraph operation with color set J is a couple pg, γq where g P
Ť

ně0 Bpnq
is a bigraph operation with L ě 1 inputs and γ : rLs “ t1, . . . , Lu Ñ J is a map
telling that the `-th input is of color γp`q. With small abuse, we still denote g
instead of pg, γq the colored bigraph operation with implicit mention of γ. We
say that g is alternated if γ associates distinct colors to the neighbours of a same
connector. We denote by Bpnqcol the set of colored bigraph operations with n ě 0
outputs and by Bpnqalt the set of alternated colored bigraph operations.

• Let t1, . . . , tL be graph polynomials of arbitrary ranks in
Ů

j Aj. We say that
the tensor product t “ pt1 b ¨ ¨ ¨ b tLq is g-colored if t` P CGpd`qxAγp`qy for any
` “ 1, . . . , L.

Lemma 2.13. Let J be an index set, let Aj be an ensemble for each j P J , and let
τ : CT x

Ů

Ajy Ñ C be a unital linear form. Then we have the decomposition

CGpnqx
ğ

jPJ

Ajy “ C p¨q `
ÿ

gPBpnq
alt

Wg

where Wg is the space generated by Tgpt1 b ¨ ¨ ¨ b tLq, for any pt1 b ¨ ¨ ¨ b tLq which
is a g-colored tensor product of reduced elements with respect to τ , and C p¨q denotes
the space generated by the graph monomial p¨q with a single vertex and no edge in
CGpnqx

Ů

jPJ Ajy.
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Proof. Let us denote by E0 the vector space on the right hand side, spanned by p¨q
and the Wg’s. For any k ě 1, let us denote by Ek the vector space generated by the
graph polynomials Tgptq, where g P Bcol has a number of vertices less than or equal
to k and t is g-colored. Let us prove by induction that for any k ě 1, Ek Ă E0. Since
CGpnqx

Ů

jPJ Ajy “
Ť

kě0 Ek, this shall conclude the proof.
To begin with, note that for any n ě 1 the only element of E1 is g “ p¨q consists

in a single connector vertex which is the common values of all outputs. Hence E1 “
Cp¨q Ă E0. If n “ 0, then g “ p¨q consists in a single input vertex and Wg,γ is the
linear space generated by the CT xAjy, j P J . Every element T in this space can be
written T “ τ rT sp¨q `

`

T ´ τ rT sp¨q
˘

P CI‘j Wp¨q,j .
Let us now assume the claim for k P N. For any k1 ě 1 and any s ě 0 we denote

by Esk1 , the vector space spanned by the graph polynomials Tgptq of Ek1 where at
most s elements are non reduced in t. Note in particular that E0 “

Ť

k1ě0 E0
k1 and

Ek1 “
Ť

sě0 Esk1 . Let us prove by induction on s ě 0 that Esk`1 Ă E .
We first assume that Esk`1 Ă E for some s ě 0 and consider Tgptq, a bigraph

operation g with k ` 1 vertices evaluated in a g-colored tensor product t with s ` 1
non reduced elements. Without loss of generality, we can assume the first graph t1 is
not reduced. We will denote t1 P CGpd1qxAγp1qy. If the rank d1 of t1 is one, then we
can write Tgptq “ Tg ppt1 ´ Φpt1qq b t2 . . .b tLq ` Φpt1qTg pp¨q b t2 . . .b tLq “: a ` b
where a P Esk`1 and b P Ek, so that Tgptq P E . If the rank of t1 is greater than one,
according to Lemma 2.11 we can write t1 “ r `

řm
i“1 xi, where r P CGpd1qxAγp1qy

is a reduced graph polynomial and x1, . . . , xm P CGpd1qxAγp1qy are graph monomials
having at least two outputs equal to the same vertex. Then, for any i “ 1, . . . ,m,
Tg pxi b t2 . . .b tLq P Ek and Tgpr b t2 b . . .b tLq P Esk`1, so that Tgptq P E .

Below, p denotes the operator defined in Lemma 2.11.

Corollary 2.14. In the setting of Lemma 2.13, the linear space CGpnqx
Ů

jPJ Ajy is
generated by the n-graph polynomials of the form Tg

`

ppm1q b ¨ ¨ ¨ b ppmLq
˘

, where
g P Bpnqalt and m1 b ¨ ¨ ¨ b mL is a g-colored tensor product of monomials, such that
outputs of the m`’s are pairwise distinct and Tg does not identify any pair of outputs
of each input.

Proof. Let t1 “ pt1, . . . , tLq be an arbitrary sequence of g-alternated, reduced graph
polynomials and denote t` “

ř

i α
p`q
i mi,` where the mi,`’s are graph monomials. Then

we have

Tgpt1 b ¨ ¨ ¨ b tLq “ Tg
`

ppt1q b ¨ ¨ ¨ b pptLq
˘

“
ÿ

i1,...,iL

´

L
ź

`“1
α
p`q
i`

¯

ˆ Tg
`

ppmi1,1q b ¨ ¨ ¨ b ppmiL,Lq
˘

.

By Lemma 2.13, we get that CGpnqx
Ů

jPJ Ajy is generated by the elements of the form
Tg
`

ppm1q b ¨ ¨ ¨ b ppmLq
˘

, where m1 b ¨ ¨ ¨ bmL is a g-alternated tensor product of
monomials. Moreover, if m has two outputs that are equal, then ppmq “ 0. Hence
one can assume that the outputs are pairwise distinct for each m`.

2.2.2 Solidity, validity and primitivity

This section contains most of the arguments of the proof of Theorem 2.8 and it
introduces tools that will be used later, in particular in Section 3.3 to prove the
positivity of the free product.
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In the first statement, we see how the reducedness of n-graph polynomials for
n ě 2 simplifies the computation of combinatorial traces (reducedness when n “ 1
plays a role at the last stage of the proof). We shall need the following definition.
Definition 2.15. Let A be an ensemble and let T “ Tgpm1 b ¨ ¨ ¨ b mLq be a test
graph in T xAy, where g is a bigraph operation and pm1 b ¨ ¨ ¨ b mLq is a tensor
product of graph monomials, such that outputs of a same m` are pairwise distinct and
the operation Tg does not identify any pair of outputs of each m`. Consider the graphs
of the m`’s as subgraphs of T and denote
• by V the vertex set of T ,

• by O` Ă V the set of outputs of m`,

• by π|O`
the restriction of π P PpV q on O`, namely tB YO`, B P πu,

• by 0O`
the partition of O` made of singletons.

Consider a partition π P PpV q. For each ` in t1, . . . , Lu, we say that m` is solid for
π whenever π|O`

“ 0O`
. In other words, in Tπ there is no identification of outputs of

the graph m`. In a context where there is no confusion about m1, . . . ,mL, we simply
say that π is solid, when m` is solid for π for any ` “ 1, . . . , L.

Beware that there is no uniqueness in the decomposition T “ Tgpm1 b ¨ ¨ ¨ bmLq.
Lemma 2.16. Let A be an ensemble and let h “ Tgpt1 b ¨ ¨ ¨ b tLq P CT xAy be a
0-graph polynomial, where g P Bp0q is a bigraph operation and
• t` “ m` is a monomial if n` “ 1,

• t` “ ppm`q where m` is a monomial with pairwise distinct outputs if n` ě 2.
Let T denote the test graph Tgpm1 b ¨ ¨ ¨ bmLq P T xAy. Then the trace of h is the
sum of the quotient graphs of T by solid partitions: with notations of Definition 2.15,
one has

τ rhs “
ÿ

πPPpV q
solid

τ0“Tπ
‰

.

Proof. Without loss of generality, we can assume that the indices ` P t1, . . . , Lu such
that n` ě 2 are 1, . . . ,K for K ď L. Let us denote cσk “ Mobp0Ok

, σkq for any
σk P PpO`q and any k “ 1, . . . ,K. Consider the graph Tσ “ Tgpm

σ1
1 b ¨ ¨ ¨ bmσL

L q,
with the convention that mσ`

` “ m` if ` ą K “ 1. The definition of p in Lemma 2.11
allows to write

τ rhs “
ÿ

σ`PPpO`q

@`“1,...,K

´

K
ź

k“1
cσk

¯

τ rTσs.

Denoting by Vσ the vertex set of Tσ, the linearity of τ and the definition of the
injective trace lead to

τ rhs “
ÿ

σ`PPpO`q

@`“1,...,K

´

K
ź

k“1
cσk

¯

ÿ

πPPpVσq

τ0“Tπσ
‰

. (2.3)

Recall that for two partitions π and π1 of some set, π ď π1 means that the blocks of
π are included in blocks of π1. Given σ1, . . . , σL as above, forming a graph Tµσ with a
choice of a partition µ of Vσ is equivalent to forming a graph Tπ with a choice of a
partition π of V with the restriction below.
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1. We consider firstly for each ` “ 1, . . . , L a partition π` of the vertex set V` of
m`. We assume that π` does more identifications of outputs of m` than σ`: for
any ` “ 1, . . . ,K, one has π`|O`

ě σ`.

2. Given a collection Π “ pπ1, . . . , πLq P
śL
`“1 PpV`q of partitions as in the previous

point, we consider a partition π of V with same identification as the π` for
vertices of the monomials: for any ` “ 1, . . . , L, one has πV` ě π`. We denote
by PΠpV q the set of partitions π P PpV q with this condition.

We then obtain as expected, using the property of the Möbius map [29, Sections
3.6 and 3.7] in the third identity,

τ rhs “
ÿ

σ`PPpO`q

@`“1,...,K

´

K
ź

k“1
cσk

¯

ÿ

π`PPpV`q
@`“1,...,L

s.t. σ`ďπ`|O`
@`“1,...,K

ÿ

πPPΠpV q

τ0“Tπ
‰

“
ÿ

π`PPpV`q
@`“1,...,L

´

K
ź

k“1

ÿ

σkPPpO`q
s.t. σkďπk|Ok

cσk

¯

ÿ

πPPΠpV q

τ0“Tπ
‰

“
ÿ

π`PPpV`q
π`|O`“0O`
@`“1,...,L

ÿ

πPPΠpV q

τ0“Tπ
‰

“
ÿ

πPPpV q
π|O`“0O`
@`“1,...,L

τ0“Tπ
‰

.

The next lemma highlights an elementary property of the graph of colored com-
ponents that we will use several times. We use the following terminology.

Definition 2.17. We say that a partition π of the vertex set of T P T x
Ů

Ajy is valid
whenever GCCpTπq is a tree.

Lemma 2.18. Let J be an index set and, for each j P J , let Aj be an ensemble. Let
consider the data of

• a test graph T P T x
Ů

j Ajy such that GCCpT q is not a tree,

• a valid partition π of the vertex set of T ,

• a simple cycle C : o1, S1, o2, S2, . . . , oK , SK of GCCpT q, K ě 2, where Sk is a
colored component of T attached to the connectors ok and ok`1, with indices k
modulo K (the ok’s and Sk’s are pairwise distinct).

Then, identifying connectors ok’s with their image in T , there exist at least two indices
k, k1 P t1, . . . ,Ku such that ok „π ok`1 and ok1 „π ok1`1, with indices modulo K. If
moreover K ě 4 then there exist non consecutive such k, k1, i.e. one can choose
|k ´ k1| ě 2 with distance in Z{KZ.

In simple words, we cannot fold a cycle into a tree of colored components without
pinching at least two colored components.

Proof. Given π P PpV q, the cycle C on GCCpT q induces a closed path on GCCpTπq.
Since GCCpTπq is a tree, the closed path visits a subtree of GCCpTπq. This subtree has
at least two leaves (vertices of degree one). They do not consist in connectors, since
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colors are alternated along the cycle. Hence each leaf corresponds to one or several
graphs Sk for which we have identified ok and ok`1. When K ě 4 it is clear that we
can choose separated connectors. Hence the result.

We deduce the following corollary which implies that traces of alternated bi-graph
operations in reduced elements vanish, by a simple argument of linearity that is given
explicitly in next section. .

Corollary 2.19. Let j be an index set and, for each j P J , let Aj be an ensemble.
Let τ : CT x

Ů

j Ajy Ñ C be a unital linear form such that τ is the free product of its
restrictions on test graphs labeled in Aj, j P J . Let h “ Tgpt1b¨ ¨ ¨btLq in CT x

Ů

j Ajy
where g P Bp0qalt and pt1 b ¨ ¨ ¨ b tLq is g-colored and satisfies t` “ m` for n` “ 1 and
t` “ ppm`q for n` ě 2 as in Lemma 2.16. Then if g is not a tree, τ rhs “ 0, and
otherwise

τ rhs “
L
ź

`“1
τ rt`s,

where in the above formula we extend τ as a linear map τ :
À

ně0 CGpnqxAy by
forgetting the position of the outputs.

The proof of the corollary can be summarised as follows. Let h “ Tgpt1b¨ ¨ ¨b tLq
and T “ Tgpm1 b ¨ ¨ ¨ bmLq be as in the above corollary. By Lemma 2.16 and since
τ is the free product of its restriction on the Aj ’s, one has τ rhs “

ř

π τ
0rTπs, where

the sum is over valid and solid partitions π. By Lemma 2.18 the set of such maps is
empty if g is not a tree. The first part of the corollary is then a direct consequence
of the lemmas. It will be enough to prove the following.

Lemma 2.20. We say that a partition π of the vertex set of T P T x
Ů

j Aj , j P Jy is
primitive whenever it satisfies one of the following equivalent properties:

1. the graph of colored components is preserved after a quotient by π: GCCpTπq “
GCCpT q;

2. for any vertices v, w of T belonging to different colored components such that
v „π w, the components of v and w in T have exactly one connector o in
common and v „π o „π w;

3. the colored components m1, . . . ,mL of T are solid for π and given its restriction
Π “ pπ|V1 , . . . , π|VLq on the vertex sets of the m`’s, it is the smallest partition
of the set PΠpV q constructed in the proof of Lemma 2.16.

Let T be a test-graph such that GCCpT q is a tree and let π be a valid partition which
is solid for the colored components of T . Then π is primitive.

The lemma implies that the trace of h is the sum of the injective trace of quotient
graphs of T by primitive partitions. Denote by T` the test graph of t` and V` its vertex
set. By multiplicativity with respect to the colored components in the definition of
traffic independence, for any π primitive we have τ0rTπs “

śL
`“1 τ

0rTπ`` s where π`
is the restriction of π to V`. Hence τ rhs “

śL
`“1

ř

π`
τ0rTπ`` s where the sums are

over the solid partitions π` of V` with respect to m`. By Lemma 2.16 again, the sum
of quotients of T` by solid partitions is τ

“

ppT`q
‰

. Hence this last lemma implies the
corollary.
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Proof of Lemma 2.20. We prove that a solid partition π which is not primitive is not
valid: that is if π does not identify outputs of a same m` but identifies vertices of
different colored components in a non trivial way, then GCCpTπq is not a tree. So let v
and w be two vertices in different colored components and denote by Tv„w the graph
obtained from T by identifying v and w. Then Tπ is a quotient of Tv„w, and we
apply Lemma 2.18 to the graph Tv„w, the induced partition partition πv„w such that
Tπ “ pTv„wq

πv„w , and the cycle coming from the path between v and w. All colored
components of this cycle are not solid, but only those that are attached to v and w, as
we explain thanks to the enumeration below. Lemma 2.18 tells that πv„w is not valid
if the cycle has length at least 4, which implies that π is not valid. The remaining
case (K “ 2, 3) are considered after the description of the different possibilities for
GCCpTv„wq, see Figure 5.

Say that a vertex of V` that is not an output is an internal vertex. A vertex which
is not internal is associated to a connector. We decompose five alternatives:

1

11

o2 o′2

o1

o1

o1

o1

o1

o1

o2

o2

o2

o2

o2 o2

o2

o1

o1

o1

o2

o3
o3

o′1

o′1 o′1

o′1 o′1

o′1
o′1

v w

v ∼ w

v ∼ w⇒

⇒

⇒

⇒

o′2

o′2

o1

o2

o2 o1

o3
o3

o′1 o′1v w
v ∼ w⇒

⇒

1.

2.

4.

4’.

3.

v w

v w
o1 o′1

o2 o′2

v ∼ w

v w

v w

v ∼ w

Figure 5: For each of the five items of the figure, the left-most picture is a local
detail of the graph GCCpT q. Square vertices represent inputs, circle vertices represent
connectors, and the different colors for inputs represent different labels Aj . They are
two different parts of GCCpT q (on the left and on the right) that contain respectively
the vertex v and w (inside the dotted rectangle) identified to give the right-most
picture for each item. The right-most picture of each item is a detail of GCCpTv„wq.
They are different cases, depending if v and w are input or output vertices and on
the colors of the input vertices. An input vertex is in grey when it is involved in the
identification (it is not a colored component of the original graph T ).

1. If v and w are internal vertices of components of the same color, then GCCpTv„wq
is obtained by identifying these components in GCCpT q.

2. If v and w are internal vertices of components of different colors, then GCCpTv„wq
is obtained by creating a new connector between them in GCCpT q.
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3. If v and w are not internal vertices, then GCCpTv„wq is obtained by identifying
them in GCCpT q, then identifying the possible components of same colors at-
tached to v and w, and then reducing the number of edges attaching them to
the connectors from two to one. In general for a partition π of PpV q, there may
exist a component attached both to v and w (which results in other operations),
but this is not possible if v and w do not belong to a same component.

4. If v is an internal vertex and w a connector that is not attached to a component
of the same color as the one containing v, then GCCpTv„wq is obtained by putting
an edge between the component of v and w in GCCpT q.

4’ If v is an internal vertex and w a connector attached to a component of the
same color as the one containing v, then GCCpTv„wq is obtained by identifying
these components in GCCpT q.

Hence the path between v and w in T induces a cycle C : o1, S1, . . . , oK , SK on
GCCpTv„wq. The components S1, . . . , SK of GCCpTv„wq are the original components
of GCCpT q except at most for two new components attached to a same connector (in
grey in Figure 5). The partition π cannot be valid.

When K “ 2, then a partition of the vertices of Tv„w is possibly valid only if the
two connectors of the cycle are identified, and so are the two outputs of the colored
components S1 and S2. At least one of the components is an original one, except if
v and w are in the second situation in the above list: they are internal vertices of
colored components of different colored, and a new connector appears in Tv„w. In
that case the GCC of a quotient of Tv„w is a tree only if v „ w is identified with the
connector between the initial components of v and w (this is the particular case). For
K “ 3, getting a tree needs at least one identification that reduces the problem to
the case K “ 2. This concludes the proof of the corollary.

2.2.3 End of the proof

We can now achieve the proof of Theorem 2.8. To start with, we prove that the
first two properties are equivalent. Assume first that the Aj , j P J , are independent
and let us prove that every alternated 0-bigraph polynomial in reduced elements is
centered using the preliminary results of the section. By Lemma 2.13 and Corollary
2.14, it is sufficient to consider h “ Tgpt1 b ¨ ¨ ¨ b tLq P CT x

Ů

j Ajy where g P B
p0q
alt

and t1 b ¨ ¨ ¨ b tL g-colored such that t` “ ppm`q for a graph monomial m` for each
` “ 1, . . . , L. Without loss of generality, assume that the indices ` for which n` “ 1
are 1, . . . ,K for K ď L. For any i “ pi1, . . . , iKq in t0, 1uK , let hi be the graph
polynomial Tgpt̃1 b ¨ ¨ ¨ b t̃Lq where

• t̃` “ t` if ` ą K,

• t̃` “ m` if ` ď K and i` “ 0,

• t̃` “ ´τ rm`s ˆ p¨q if ` ď K and i` “ 1, where p¨q is the 1-graph monomial with
a single vertex and no edges,

in such a way one has h “
ř

iPt0,1uK hi. We apply Corollary 2.19 to each hi: one has

τ rhs “ 1
`

g is a tree
˘

ˆ

L
ź

`“1
τ rppT`qs,
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where for n` “ 1 we denote ppT`q “ T`´ τ rT`s ˆ p¨q. Since a tree has leaves for which
τ rppT`qs “ 0, we get τ rhs “ 0 as expected.

Reciprocally, let τ be an unital linear form on Cx
Ů

j Ajy. Assume it satisfies
τ rhs “ 0 for any h given by an alternated bigraph operation in alternated and reduced
elements. Then by Lemma 2.13 and the previous paragraph, it coincides with the free
product of the traffic distribution of the A`’s on CT x

Ů

j Ajy. Hence the G-subalgebras
A` are independent.

The second and fourth items (the same property for 2-bigraph polynomials and
w.r.t. the anti-trace Ψ) are equivalent since an element h “ Tgpt1 b ¨ ¨ ¨ b tLq of
CGp2qxAy is an alternated bigraph operation in reduced elements if and only if the
element h̃ “ Tg̃pt1 b ¨ ¨ ¨ b tLq of CT xAy is as well, where in g̃ we forget the position
of the input and output. We recall that Ψphq “ τph̃q by definition of Ψ.

The third item (the property for 2-bigraph polynomials and w.r.t. the trace Φ)
implies the second one since if an element h “ Tgpt1 b ¨ ¨ ¨ b tLq of CT xAy is an
alternated bigraph operation in reduced elements, then so is the element h̃ “ Tg̃pt1b
¨ ¨ ¨ b tLq of CGp2qxAy obtained by declaring that a vertex is both the input and the
outputs.

Assume now that the second item is satisfied and let us prove the third one. There
we use again an argument of the previous section. Let h “ Tgptq in CGp2qxAy where
t is g-alternated reduced and given by monomials t` “ ppm`q as usual. If the two
outputs v and w of g are equal, then g “ ∆pgq so Φphq “ 0. Assume the outputs are
distinct, so that ∆pgq is possibly not alternated at the position where w and v are
identified (Figure 5). We apply Lemma 2.18 to the graph Tv„w, any partition, and a
cycle given by a path between v and w in T . As in the proof of Lemma 2.20, we get
Φphq “ 0.

3 Products of traffic spaces
This section is mainly devoted to the construction of the free product of traffic spaces,
in particular under the context where we assume a positivity condition for the com-
binatorial trace. In the last subsection we also consider the tensor product of traffic
spaces which will be used a couple of times in Part II.

3.1 The free product of algebraic traffic spaces
Let us first consider an arbitrary ensemble X. The free G-algebra generated by X is
the space CGxXy generated by graph monomials whose edges are labeled by elements
of X . It is endowed with the natural structure of G-algebra given by the composition
maps of the operad G (Section 1.2.1): for any graph operation g P GK and any graph
polynomials g1, . . . , gK P GxXy labeled in X,

Zgpg1 b ¨ ¨ ¨ b gKq “ gpg1, . . . , gKq,

where in the right hand side we identify the graph operation g P GK with the associ-
ated graph monomial in K variables. Hence G is well a G-algebra.

Let τ : CT xXy Ñ C be an arbitrary linear map, unital in the sense that τ rp¨qs “ 1.
Then it always induces a structure of algebraic traffic space on CGxXy. To explain
this fact, we first define a combinatorial trace τ̃ : CT

@

CGxXy
D

Ñ C as follow. For
any test graph T labeled in GxXy with K ě 1 edges denoted e1, . . . , eK and labeled
respectively by monomials g1, . . . , gK in GxXy, we set τ̃ rT s “ τ rTgs, where Tg is the
graph labeled in X obtained from T by replacing the edge ek by the graph gk for any
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k “ 1, . . . ,K. Then we extend τ̃ by multi-linearity with respect to the edges and set
τ̃ rp¨qs “ 1.

Lemma 3.1. The map τ̃ : CT
@

CGxXy
D

Ñ C satisfies the associativity property, and
so endows CGxXy with a structure of algebraic traffic space.

Proof. Let T P T xXy whose edges are denoted e1, . . . , en, where e1 has label Zh
`

g1b
¨ ¨ ¨ b gKq “ hpg1, . . . , gKq and ei, i ě 2, has label gK`i´1 for graph monomials
g1, . . . , gK`n´1 labeled in X. We have by definition τ̃ rT s “ τ rT̃ s where T̃ is the graph
labeled in X obtained by replacing e1 by hpg1, . . . , gKq and ei, i ě 2, by gK`i´1. But
we have τ rT̃ s “ τ̃ rThs, where Th is the graph labeled in GxXy obtained by replacing
in T the edge e1 by h. This implies the associativity property τ̃ rT s “ τ̃ rThs.

Let now J be a labeling set and for each j P J let Xj be an ensemble. Recall that
we denote by

Ů

jPJ Xj the set of couples pj, xq where j P J and x P Xj . Assume that
for each j P J we are given a unital linear map τj : CT xXjy Ñ C, and denote by
τ : CT x

Ů

jPJ Xjy Ñ C the free product of the τj , j P J . Denote by τ̃ the combinatorial
trace on CT

@

CGx
Ů

jPJ Xjy
D

Ñ C induced by τ and by τ̃j the restrictions of τ̃ to the
subspaces CT

@

CGxXjy
D

generated by test graphs whose labels are graphs labeled in
Xj , j P J .

Lemma 3.2. The map τ̃ is the free product of the τ̃j’s, j P J . Hence the G-subalgebras
CGxXjy, j P J are traffic independent in pCGx

Ů

j Xjy, ‹jτjq.

This fact is proved in [16, Proposition 2.14], based only on the definition of traffic
independence in terms of the injective trace. The proof of Theorem 2.8 is somehow
a strengthening of this proof, and now the lemma is actually a direct consequence of
the new characterization of traffic independence.

Proof. Let h “ Tgpt1b¨ ¨ ¨btLq be an alternated bigraph operation in reduced elements
labeled in

Ů

j CGxXjy and let us prove that τ̃ rhs “ 0. Let t̃1 b ¨ ¨ ¨ b t̃L be the tensor
product of elements labeled in

Ů

j Xj obtained as follow: for each graph t`, we replace
each edge by the linear combination of the graphs that appear on their labels. By
definition of τ̃ , we have τ̃ rhs “ τ rh̃s where h̃ “ Tgpt̃1 b ¨ ¨ ¨ b t̃Lq. Moreover, h̃ is still
an alternated bigraph operation in reduced elements. By Corollary 2.19, we hence
get τ̃ rhs “ 0.

We can now define the free product of G-algebras. The map g ÞÑ Zg is extended
for g by linearity for linear combinations of graph operations.

Definition 3.3. For any family of G-algebras pAjqjPJ , we denote by ˚jPJAj the
vector space CGx

Ů

jPJ Ajy, quotiented by the following relations: for any i P J , any
a1, . . . , ak P Ai, ak`1, . . . , an P

Ť

jPJ Aj, any g in Gn´k`1 and any linear combination
of graph operations h in Gk,

Zgp¨
Zhpa1b¨¨¨bakq

ÐÝ ¨ b ¨
ak`1
Ð ¨ b ¨ ¨ ¨ b ¨

an
Ð ¨q

„ ZgpZhp¨
a1
Ð ¨ b ¨ ¨ ¨ b ¨

ak
Ð ¨q b ¨

ak`1
Ð ¨ b ¨ ¨ ¨ b ¨

an
Ð ¨q.

This relation implies that, for a1, . . . , aK in a same algebra Ai,

Zhp¨
a1
Ð ¨ b ¨ ¨ ¨ b ¨

aK
Ð ¨q „ p¨

Zhpa1b¨¨¨baKq
ÐÝ ¨q,

and in particular, an edge labeled by the unit p¨ 1A
Ð ¨q is equal to the graph with no

edge p ¨ q. The other relations involving several algebras make the G-algebra structure
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of CGx
Ů

jPJ Ajy compatible with this quotient (similar to the proof of Lemma 3.1).
This allows to consider the G-algebra homomorphisms Vj : Aj Ñ ˚jPJAj given by the
image of a ÞÑ p¨

a
Ð ¨q by the quotient map.

The G-algebra ˚jPJAj is the free product of the G-algebras in the following sense.

Proposition 3.4. Let B be a G-algebra, and fj : Aj Ñ B a family of G-morphisms.
There exists a unique G-morphism ˚jPJfj : ˚jPJAj Ñ B such that fj “ p˚jPJfjq ˝ Vj
for all j P J . As a consequence, the maps Vj are injective.

Proof. The existence is given by the following definition of ˚jPJfj on CGp2qx
Ů

jPJ Ajy:

˚jPJfj
`

gp¨
a1
Ð ¨, . . . , ¨

an
Ð ¨q

˘

“ g
`

fjp1qpa1q, . . . , fjpnqpanq
˘

whenever a1 P Ajp1q, . . . , an P Ajpnq. It obviously respects the relation defining
˚jPJAj .

The uniqueness follows from the fact that ˚jPJfj is uniquely determined on
Ť

j VjpAjq
(indeed, ˚jPJfjpaq must be equal to fjpbq whenever a “ Vjpbq) and that

Ť

j VjpAjq
generates ˚jPJAj as a G-algebra.

We now construct the free product of algebraic traffic spaces.

Proposition 3.5. Let pAj , τjqjPJ be a family of algebraic traffic spaces. Let τ̃ :
CT

@

CGx
Ů

jPJ Ajy
D

Ñ C be the unital linear map induced by ˚jPJτj : CT x
Ů

jPJ Ajy Ñ
C as in the first paragraph of the section. Then τ̃ respects the quotient structure of
˚jPJAj. Still denoting the quotient map ‹jPJτj : CT x˚jPJAjy Ñ C, we then get an
algebraic traffic space p˚jPJAj , ‹jPJτjq called the free product of the algebraic traffic
spaces. Furthermore, we have τi “ p‹jPJτjq ˝ Vi, where Vi is the canonical injective
algebra homomorphism from Ai to ˚jPJAj, and the Ai, i P J , are traffic independent
in p˚jPJAj , ‹jPJτjq.

Proof. Let T P CT
@

CGx
Ů

jPJ Ajy
D

such that an edge e has label p¨ Zhpa1b¨¨¨bakq
ÐÝ ¨q,

where h “
ř

i aihi is linear combination of graph operations labeled in a same Ai. It
suffices to prove that τ̃ rT s “ τ̃ rThs, where Th “

ř

i aiThi with Thi the graph obtained
by replacing e1 by the graph hi evaluated in p¨ a1

Ð ¨, . . . , ¨
ak
Ð ¨q. But when decomposing

T and Th on CT
@

CGx
Ů

jPJ Ajy
D

according to the direct sum of Lemma 2.13, we get
the same coefficient on Cp¨q. Since the G-subalgebra are independent, τ̃ rT s and τ̃ rThs
are equal to these constants and so they are equal. Hence τ̃ respects the quotient
structure defining ˚jPJAj .

3.2 Definition of positivity and traffic spaces
We first define an analogue of ˚-algebras. On the set of graph operations G, we define
an involution t : g Ñ gt , where gt is obtained from g by reversing the orientation of
its edges and interchanging the input and the output.

Definition 3.6. A G˚-algebra is a G-algebra A endowed with an anti-linear involution
˚ : A Ñ A which is compatible with the action of G, in the following sense: for all
K-graph operation g and a1, . . . , aK P A,

`

Zgpa1 b . . .b aKq
˘˚
“ Zgtpa

˚
1 b . . .b a

˚
Kq.

A G˚-subalgebra is a G-subalgebra closed by adjoint. A G˚-morphism between A and
B is a G-morphism f : AÑ B such that fpa˚q “ fpaq˚ for any a P A.

Recall that for any n ě 1, a n-graph monomial is a test graph with the data of a
n-tuple of vertices. Let g, g1 be two n-graph monomials labeled in some set A. We set
g|g1 the test graph obtained by merging the i-th output of g and g1 for any i “ 1, . . . , n.
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Figure 6: Left: two 3-graph monomials t and t1. Middle: the test graph t1|t1. Right:
the bi-graph operation g such that t1|t1 “ Tgptb t

1q.

We extend the map pg, g1q ÞÑ t|t1 to a bilinear application CGpnqxAy2 Ñ CT xAy. Note
that one can also realize g|g1 as a bigraph operation evaluated in gb g1, see Figure 6.

Assume moreover that A is endowed with an anti-linear involution ˚ : A Ñ A.
Given an n-graph monomial g “ pV,E, γ,vq we set g: “ pV,E:, γ:,vq, where E: is
obtained by reversing the orientation of the edges in E and with γ: given by e ÞÑ γpeq˚.
Note that for n “ 2, g:pa1 b ¨ ¨ ¨ b anq ‰ gtpa˚1 b ¨ ¨ ¨ b a

˚
nq since there is no inversion

of the two outputs in the definition of g: as in Definition 3.6. We extend the map
g ÞÑ g: to an anti-linear map on CGpnqxAy.

Definition 3.7. A traffic space is an algebraic traffic space pA, τq such that:

• A is a G˚-algebra,

• the combinatorial trace on A satisfies the following positivity condition : for
any n ě 1 and any n-graph polynomials g labeled in A,

τ
“

g|g:
‰

ě 0. (3.1)

We call τ a combinatorial state.

A homomorphism between two traffic spaces is a G˚-morphism which is a homomor-
phism of algebraic traffic space.

Note that (3.1) for n “ 2 is equivalent to the positivity of the trace Φ induced by
τ on the ˚-algebra A. Moreover, (3.1) for n “ 1 implies the positivity of the anti-
trace Ψ (Definition 1.12): indeed we have Ψraa˚s “ τ

“

g|g:
‰

where g is the 1-graph
monomial with one simple edge whose source is the output.

By consequence, every traffic space pA, τq have two structures of ˚-probability
space pA,Φq and pA,Ψq (endowed with the product Z

¨
1
Ð¨

2
Ð¨

). Positivity of τ implies

the Cauchy Schwarz inequality |τ rt1|t2s| ď
b

τ rt1|t
:
1sτ rt2|t

:
2s.

Example 3.8. (Example 1.14 continued) The algebraic traffic space of random matrices
is actually a traffic space since τN is positive. Indeed, recall that in Remark 2.3 for
any n-graph monomial t labeled in J and a family AN “ pAjqjPJ we have defined a
random tensor matrix tpAN q P pCN qbn. The positivity is clear since one has

τN
“

pt|t:qpAN q
‰

:“ E
” 1
N

ÿ

iPrNsn
tpAN qi tpAN qi

ı

ě 0

Example 3.9. (Example 1.15 continued) The algebraic traffic space of a unimodular
random graph is also a traffic space. As in the previous example, for a test graph
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t and a family A of infinite matrices we define an infinite tensor matrix tpAq as in
Remark 2.1 but with summation over k : V Ñ V with kprq “ ρ, for an arbitrary
vertex r of V and with pξiqiPV the canonical basis of CV . The positivity of τ follows
as well since

τρ
“

tpAq|tpAq:
‰

:“ E
“

ÿ

iPVn:i1“ρ
tpAqi tpAqi

‰

ě 0.

We see now a consequence of the positivity, which will be an additional motivation
for Part II. Let pA, τq be a traffic space and let a1, . . . , an P A such that Φpa1 . . . anq ‰

0. Denote by T1 the oriented simple cycle with n edges labeled ¨ ¨ ¨ aiÐ ¨
ai`1
Ð ¨ ¨ ¨ along

the cycle. Let t1 be a 1-graph monomial with test graph T1 and whose output is an
arbitrary vertex. With p¨q denoting the 1-graph monomial with no edge, we have

Φpa1 . . . anq “ τ rT1s “ τ rt1|p¨qs ‰ 0.

Then, since τ is positive, the Cauchy-Schwarz inequality gives
ˇ

ˇ

ˇ
τ
“

t1|p¨q
‰

ˇ

ˇ

ˇ

2
ď τ rt1|t

:
1s ˆ τ

“

p¨q|p¨q
‰

“ τ rt1|t
:
1s.

Hence the test graph T2 “ t1|t
:
1 satisfies τ rT2s ‰ 0. It consists in two simple cycles

that share exactly one vertex. We iterate, assuming we have a test graph Tn such that
τ rTns ‰ 0. Let tn be a 1-graph monomial with test graph Tn and output an arbitrary
vertex. Then Tn`1 “ tn|t

:
n satisfies τ rTn`1s ‰ 0. We have proved the following.

Lemma 3.10. Let pA, τq be a traffic space such that τ is not constant to zero. Then
τ is nonzero on an infinite number of cacti, that are test graphs such that each edge
belong to a unique cycle (see Part II).

In the second part of the monograph, given a non-commutative probability space
pA,Φq we construct a traffic space pB, τq such that B contains A and the trace asso-
ciated to τ and restricted on A is Φ. The lemma shows that the naive answer for this
question,

• τ rT s “ Φpa1 . . . anq if T is an oriented simple cycle with consecutive edges
a1, . . . , an,

• τ rT s “ 1 for the test graph with no edge,

• and τ rT s “ 0 otherwise,

does not yield a positive combinatorial trace. There are no matrices converging to a
traffic with such a simple distribution.

3.3 Positivity of the free product
For each j P J, let pAj , τjq be a traffic space. By Section 3.1, we can consider the
algebraic traffic space p˚jPJAj , ‹jPJτjq, the free product of the pAj , τjq’s. We shall
now prove that τ :“ ‹jPJτj satisfies the positivity condition (3.1). Therefore, we give
in Lemma 3.12 a structural result for the canonical space CGpnqx

Ů

jPJ Ajy, introduced
in Definition 1.10. The ideas of the current section are inspired by the counterpart
of this construction for the free product of unital algebras with identification of units
(see [24, Chapter 6] and [24, Formula (6.2)]). The proofs build on the preliminary
material presented in Section 2.2.
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Figure 7: The above colored bigraph operation pg, γq has a single non trivial auto-
morphism σ, corresponding to vertical mirror symmetry.

Definition 3.11. Let us consider for n ě 1 a colored bigraph operation g P Bpnqcol

(Definition 2.12). A bijection of the vertex set of g is called an automorphism of g if
it preserves the adjacency, the bipartition, the ordered set of outputs and the coloring
of g. Their set forms a group denoted Autg that acts on Bpnqcol and on the subspace
Bpnqalt of alternated colored bigraph operations with n outputs. The quotient space is
denoted by B̃pnqcol (resp. B̃pnqalt ) and the equivalent class of a colored bigraph operations
g P Bpnqcol is denoted by ḡ.

See figure 7 for an example. Note that an automorphism does not necessarily
respect the ordering of the inputs nor the ordering of the neighbor connectors.

Every σ P Autg and every g-alternated tensor product m “ pm1 b ¨ ¨ ¨ bmLq of
graph monomials induces a new g-alternated tensor product mσ “ pm1,σb¨ ¨ ¨bmL,σq,
such that Tσpmq “ Tgpmσq by reordering the labels of the inputs and of neighbor
connectors as follow (see Figures 7 and 8):

• if `v denotes the order of the input vertex v of g, then m`v,σ “ m`σ´1pvq
,

• the order of neighbor connectors of an input of m`,σ is the order of its pre-image
by σ.

We extend this definition by linearity for graph polynomials. Note that we have
the property ptσ1qσ2 “ tσ2σ1 for all σ1, σ2 P Autg. For every alternated bigraph
operation g, the space Wḡ spanned by Tgptq for t reduced and g-colored does not
depends on g but only on the class ḡ P B̃pnqalt .

Lemma 3.12. Let pA, τq be a traffic space and Aj, j P J , be independent G-
subalgebras.

1. When considering the non-negative Hermitian form τ
“

¨ | ¨ :
‰

defined in (3.1),
the space of graph-polynomials admits the orthogonal decomposition

CGpnqx
ğ

jPJ

Ajy “ C p¨q ‘K
K

à

gPB̃pnq
alt

Wg.

2. If g is not a tree, then Wḡ is included in the kernel of τ
“

¨ | ¨ :
‰

, that is for any
h PWḡ and h1 P CGpnqx

Ů

jPJ Ajy, τ rh|h1s “ 0.
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Figure 8: Illustration of the equality Tgpmq “ Tgpmσq. With g the colored bigraph
operation of Figure 7 and pmA b ¨ ¨ ¨ b mEq a g-colored tensor product of graph
monomials, then pmA b ¨ ¨ ¨ bmEqσ is obtained by exchanging mB and mD, mC and
mE , and by permuting the outputs 1 and 2 of mA,mB and mD.

3. If g is a tree, then for any h “ Tgpt1 b ¨ ¨ ¨ b tLq, h1 “ Tgpt
1
1 b ¨ ¨ ¨ b t

1
Lq in Wḡ,

we have
τ rh|h1s “

ÿ

σPAutg

τ rt1|t
1
1,σs ¨ ¨ ¨ τ rtL|t

1
L,σs.

Example 3.13. With g consisting in a single path between two outputs, the only
automorphism of g is the identity, and we then get the following formula: for any
L,L1 ě 2, any j1 ‰ j2 ‰ ¨ ¨ ¨ ‰ jL and j11 ‰ j12 ‰ ¨ ¨ ¨ ‰ j1L1 in J , and any aj` P Aj` ,
a1j1
`
P Aj1

`1
, ` “ 1, . . . , L, `1 “ 1, . . . , L1, one has

Φ
´

`

aj1 ´∆paj1q
˘

. . .
`

ajL ´∆pajLq
˘

ˆ
`

a1j1
L1
´∆pa1j1

L1
q . . .

`

a1j11
´∆pa1j11q

˘

¯

“

“ 1pL “ L1, j` “ j1` @` “ 1, . . . , Lq
L
ź

`“1
Φ
´

`

aj` ´∆paj`q
˘

ˆ
`

a1j` ´∆pa1j`q
˘

¯

.

With g the colored bigraph operation of Figure 7, the automorphisms of g are the
identity and the vertical mirror symmetry: hence for any h “ g

`

tA b ¨ ¨ ¨ b tE
˘

where
pt1 b ¨ ¨ ¨ b tEq reduced and g-colored, one has

τ rh|hs “ τ
“

tA|tAs . . . τ rtE |tEs ` τ rtA|t̃Asτ rtB |t̃Dsτ rtD|t̃Bsτ rtC |tEs
2,

where t̃X is obtained from tX by permuting outputs 1 and 2 for X P tA,B,Du.

Proof of Theorem 1.2. Assuming Lemma 3.12 for now, let us deduce Theorem 1.2.
By Corollary 2.14, it suffices to prove that τ rh|h:s ě 0 for each finite combination
h “

ř

i βiTgiptiq for bigraph operations gi and tensor products of reduced polynomials
ti “ ti1b¨ ¨ ¨bt

i
Li
, where ti` “ ppmi

`q with a graph monomialmi
`. Moreover the previous

lemma allows to restrict our consideration to the case where all gi are in the equivalent
class of one particular colored tree g and the color of mi

` depends only on `, not on i.
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In particular, the automorphism group of colored graph Autgi is equal to Autg for
any i. With this notation at hand, we can write

τ
”

h|h:
ı

“
ÿ

ij

βiβ̄jτ
“

Tgptiq
ˇ

ˇTgptj
:
q
‰

“
1

7Autg

ÿ

i,j
σPAutg

βiβ̄jτ
“

Tgptiσq
ˇ

ˇTgptjσ
:
q
‰

,

“
1

7Autg

ÿ

i,j
σ,σ1PAutg

βiβ̄jτ
“

ti1,σ
ˇ

ˇtj1,σ1˝σ
:‰

¨ ¨ ¨ τ
“

tiL,σ
ˇ

ˇtjL,σ1˝σ
:‰

,

“
1

7Autg

ÿ

i,j
σ,σ1PAutg

βiβ̄jτ
“

ti1,σ
ˇ

ˇtj1,σ1
:‰

¨ ¨ ¨ τ
“

tiL,σ
ˇ

ˇtjL,σ1
:‰

.

We shall now see that the r.h.s. is nonnegative. First, for any ` “ 1, . . . , L, the matri-
ces

`

τ rti`,σ|t
j
`,σ1

:
s
˘

pi,σq,pj,σ1q
are non-negative since τ is non-negative on each G- subal-

gebra Aj . Moreover, their entrywise product
`

τ rti1,σ|t
j
1,σ1

:
s ¨ ¨ ¨ τ rtiL,σ|t

j
L,σ1

:
s
˘

pi,σq,pj,σ1q

is also non-negative ([24, Lemma 6.11]). This yields the positivity of above right-
hand-side.

Proof of Lemma 3.12. According to Lemmas 2.13 and Corollary 2.14, in order to
prove any of these three statements, it is enough to consider τ rh|h1s, where h “ Tgptq
and h1 “ Tg1pt1q, with g, g1 P Bpnqalt , t “ t1 b ¨ ¨ ¨ b tL a g-colored tensor product,
t1 “ t11 b ¨ ¨ ¨ b t1L1 a g1-colored tensor product, such that for each ` “ 1, . . . , L, `1 “
1, . . . , L1, t` “ ppm`q, t

1
`1 “ ppm1`1q, where m` (respectively m1`1) is n`-graph monomial

(respectively a n1`1 -graph monomial) whose outputs are pairwise distinct. It suffices
to prove that τ rh|h1s “ 0 if g or g1 is not a tree and if g and g1 do not belong to the
same class of alternated colored bigraph operations, and to prove the formula of the
third statement.

Assume that the integers `, `1 such that n`, n`1 “ 1 are t1, . . . ,Ku and t1, . . . ,K 1u
respectively. For any multi-index pi, i1q “ pi1, . . . , iK , i

1
1, . . . , i

1
K1q in t0, 1uK`K

1 , let
hi,i1 be the graph polynomial Tgpt̃1 b ¨ ¨ ¨ b t̃Lq|Tgpt̃11 b ¨ ¨ ¨ b t̃1L1q where

• t̃` “ t` if ` ą K,

• t̃` “ m` if ` ď K and i` “ 0,

• t̃` “ p¨q if i` “ 1,

and t̃1`1 is defined similarly, so that

h|h1 “
ÿ

pi,i1qPt0,1uK`K1

ź

`“l,...,K
s.t. ik“1

`

´ τ rtks
˘

ˆ
ź

k1“1,...,K1
s.t. ik1“1

`

´ τ rtk1s
˘

ˆ hi,i1 . (3.2)

We can apply Lemma 2.16 to each graph polynomial hi,i1 . Denote by gi and g1i1 the
colored bigraph operations obtained by erasing 1-graph monomials such that i` “ 1
and i1`1 “ 1 respectively, and gi|g

1
i1 the bigraph operation obtained by identifying the

i-th outputs of gi and g1i1 for any i “ 1, . . . , n. Denote by pt̃1b¨ ¨ ¨b t̃Lb t̃11b¨ ¨ ¨b t̃1L1qi,i1
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Figure 9: Left: a local detail of the bigraph operation gi|g
1
i1 , with the vertical dot-

ted line separating gi and g1i1 . Right: the bigraph operation galt,i,i1 . The sequence
A, o1, B, o2, C, o3, D, o4 forms a simple cycle in g. Going from gi|g

1
i1 to galt,i,i1 , the

inputs A and A1 are identified. Yet, if a partition does not identify o1 and o4 in the
leftmost picture, then it does not identify o21 and o4 in the rightmost one.

the tensor product where 1-graph monomials are discarded when ` ď K and i` “ 1
and `1 ď K 1 and i1`1 “ 1. Then we have the identity

hi,i1 “ Tgi|g1i1
pt̃1 b ¨ ¨ ¨ b t̃L b t̃

1
1 b ¨ ¨ ¨ b t̃

1
L1qi,i1 ,

and this graph polynomial satisfies the assumptions of Lemma 2.16. Hence, we get

τ
“

hi,i1
‰

“
ÿ

πPPpVi,i1 q

solid

τ0“Tπi,i
‰

, (3.3)

where we denote

• the graph monomial Ti,i1 “ Tgpm̃1 b ¨ ¨ ¨ b m̃Lq|Tgpm̃
1
1 b ¨ ¨ ¨ b m̃1L1q, with m̃`

defined as t̃` with m` instead of t` in the first case,

• Vi,i1 the vertex set of Ti,i1 ,

• O` and O1`1 are the sets of outputs of m` and m1`1 respectively, seen in Vi,i1 for
` ą K, `1 ą K 1,

• π|O`
and π|O`1

the restriction of π to these sets.

Solidity is with respect to the graph monomials m1, . . . ,mL,m
1
1, . . . ,m

1
L (out of

1-graph monomials such that i` “ i1`1 “ 1). Note that these graphs are not the colored
components of T , because of possible identifications between inputs of gi and g1i1 that
are neighbors of the outputs when forming gi|gi1 , as in the third example of Figure 5
of the previous section.

We first assume that g or g1 is not a tree and prove that a solid partition is not
valid, so we will conclude that τ rh|h1s “ 0 for any h1, as we expect. Note that for
any i, i1, we have that gi or gi1 is not a tree. We apply Lemma 2.18 to Ti,i1 , any
partition π solid w.r.t. the m`’s and m1`1 ’s, and a cycle C on GCCpTi,i1q coming from
a simple cycle of gi. Note that C is indeed simple since identifications with inputs
of g1 do not change the cycle, see Figure 9. Solidity of the m`’s implies that there
is no possible identifications of connectors neighbouring a same input on the cycle C.
Hence π cannot be valid. From now on, we shall assume that g and g1 are trees.

Let us use now the centering of 1-graph polynomials. Let k “ 1, . . . ,K be an
index such that ik “ 0 (mk is in gi) and let π be a partition of Vi,i1 . We say that
mk is isolated by π whenever no vertex of mk is identified with a vertex of another
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colored component except in the trivial way for a vertex of a neighboring component
identified with the connector linking them. We say that π is not isolating whenever no
mk nor m1k1 is isolated, for k “ 1, . . . ,K and k1 “ 1, . . . ,K 1. By the multiplicativity
property w.r.t. the colored components in the definition of traffic independence, for
any valid partition π

τ0rTπi,is “

˜

ź

`“1,...,L
s.t. m` isolated

τ0rT
π|V`
` s ˆ

ź

`1“1,...,L1
s.t. m1

`1
isolated

τ0rT 1`1
π|V 1

`1 s

¸

ˆ τ0rT
π|Vj,j1

j,j1 s,

where pj, 1q P t0, 1uK`K1 is defined by j` “ 1 if and only if i` “ 1 or m` is isolated.
Note that π|Vj,j1

is not isolated. Hence, with the notations

• εpi, i1q :“
śK
k“1p´1qik

śK
k1“1p´1qi

1

k1 ,

• αpi, i1q “
ś

k“1,...,K τ rtks
ik
ś

k1“1,...,K1 τ rt
1
k1s

i1
k1 ,

we have

τ rhs “
ÿ

pi,i1q

εpi, i1q ˆ

˜

ÿ

pj,j1q
jkěik @k
j1
k1
ěi1
k1
@k1

αpi, i1q ˆ
´

ÿ

πPPpVj,j1 q

solid
non isolating

τ0rTj,j1s
¯

¸

“
ÿ

pj,j1q

˜

ÿ

pi,i1q
ikďjk @k
i1
k1
ďj1

k1
@k1

εpi, i1q

¸

ˆ αpj, j1q
ÿ

πPPpVj,j1 q

solid
non isolating

τ0rTπj,j1s

“
ÿ

πPPpV q
solid

non isolating

τ0rTπs, (3.4)

where T “ Tg|gpm1 b ¨ ¨ ¨ b mL b m11 b ¨ ¨ ¨ b m1L1q and V its vertex set. In words,
the trace of h is the sum of the injective traces of quotients of T by solid and non
isolating partitions.

On the other hand, we claim that the valid partitions of T solid w.r.t. the m`’s
and m1`1 ’s satisfy half of the primitivity property of Lemma 2.20: two vertices v and w
of Ti,i1 that come from gi (respectively from g1i1) can be identified by a valid partition
solid w.r.t. the m`’s only in the trivial situation: they belong to a same colored
component, or they belong to neighboring components and are identified with the
vertex that belong to both the components. Indeed, let us assume conversely that
π is a solid partition that identifies v and w. We apply as usual Lemma 2.18 to the
graph pgiqv„w, the induced partition, and the cycle given by a path between v and w
in g. Solidity of the m`’s implies that there is no possible identifications of connectors
which are neighbors of a same input, except possibly around v „ w, see Figure 10.
So π is not valid except in the trivial case.

We are now ready to prove that if τ rhs ‰ 0 then g and g1 are isomorphic. Recall
that we assume g and g1 are trees. Let π be a valid and solid partition which does
not isolate 1-graph monomials, as in Formula (3.4). Because of the argument of the
previous paragraph, each 1-graph monomial of g must be identified with a single 1-
graph monomial of g1, which defines a bijection σ between the leaves of g and g1. We
now show that
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Figure 10: Left: the bigraph operation gi|g
1
i1 with the dot rectangle representing the

identification of two vertices. Right: the graph of colored components of pSi,i1qv„w.
Identifications o4 „π o3 and o4 „π o3 are possible since o4 appeared while identifying
v and w, but other identifications o2 „π o1 and o1 „π o3 are not possible if they are
not allowed in the leftmost graph.

• for any i1, i2 “ 1, . . . , n, the unique path from the i1-th to the i2-th outputs of
g is isomorphic to the unique path between the same outputs in g1.

• if S and S1 are two leaves of g and g1 such that σpSq “ σpS1q, then for any
i “ 1, . . . , n, the unique path from S to the i-th output of g is isomorphic to
the unique path from S1 to the same output in g1,

This clearly implies that g and g1 must be isomorphic. For the first point, consider
a simple path D : o1, S1, . . . , SQ, oQ`1 between two outputs in g and the simple path
D1 : o11, S11, . . . , S1Q1 , o1Q1`1 in g between the same outputs. We apply Lemma 2.18 to
Ti,i1 , a solid and valid partition π, and a cycle C formed by identifying extremities of
the paths. Denote by jq the color of Sq and j1q1 the one of S1q1 . The inputs Sq, S1q1
different from S1, S

1
1, SQ, S

1
Q1 are components of g or g1 and they are therefore solid in

π. The inputs S1 and S11 are identified C if and only if j1 “ j11, and the same holds for
the last inputs SQ and S1Q1 . Hence necessarily they are the only pairs of identification.
If Q ě 2 and Q1 ě 2, we can iterate this reasoning on the graph obtained from Si,i1

with these two identifications, see Figure 11. Hence the two colored paths D and D1
are isomorphic: one has Q “ Q1 and jq “ j1q for any q “ 1, . . . , Q, and moreover the
partition π identifies pairwise ok „π o1k for any k “ 1, . . . ,K. For the second point,
the proof is the same with paths form the colored components to the outputs.

Valid partitions identifying pairwise a connectors of g with connectors of g1, the
multiplicativity property in the definition of traffic independence yields the expected
formula.

3.4 The tensor product of traffic spaces
Let J be an integer and for each j “ 1, . . . , J , let pAj , τjq be an algebraic traffic
space. We construct a traffic space p

Â

j Aj ,
Â

j τjq, that contain each traffic space
Aj and such that the Aj commute. Their algebraic tensor product

Â

j Aj is indeed
a G-algebra with action of K-graph operations

Zg
`

pa1,1 b ¨ ¨ ¨ b a1,Jq b ¨ ¨ ¨ b paK,1 b ¨ ¨ ¨ b aK,Jq
˘

“ Zp1qg pa1,1 b ¨ ¨ ¨ b aK,1q b ¨ ¨ ¨ b Z
pJq
g pa1,J b ¨ ¨ ¨ b aK,Kq,

for any g P GK and any ak,j P Aj , where Zpjq denotes the action of graph operations
on Aj , j “ 1, . . . , J . The tensor product of the combinatorial traces is defined, for
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oK+1 ∼ oK′+1

SK

...

...

S′
1

o′2

S′
K′

Figure 11: Left: two paths from the same outputs that form a simple cycle in g|g1.
The pair of extremal inputs must be of a same color if a quotient whose GCC is a tree
exists. Such a quotient must be a quotient of the graph with identifications o2 „ o12
and oQ „ oQ1 , so we can iterate the reasoning.

any T P T x
Â

j Ajy whose edges are labeled by pure tensor products, by
Â

j τjrT s “
τ1rT1s ¨ ¨ ¨ τJ rTJ s, where Tj is obtained from T by replacing a label a1b¨ ¨ ¨b ¨ ¨ ¨ aJ by
aj .

We will need later the following lemma.

Lemma 3.14. The injective version of
Â

j τj is given as follow. For any test graph
T P T x

Â

j Ajy, denote by ΛT the set of J-tuples pπ1, . . . , πJq P PpV qJ such that if
two elements belong to a same block of πi then they belong to different blocks of πj
for some j ‰ i. Then

`
â

j

τj
˘0
rT s “

ÿ

pπ1,...,πJ qPΛT

τ0
1 rT

π1
1 s ¨ ¨ ¨ τ0

J rT
πJ
J s.

Proof. We clearly have

ÿ

πPPpV q

´

ÿ

pπ1,...,πJ qPΛTπ

J
ź

j“1
τ0
j rT

πj
j s

¯

“

J
ź

j“1

ÿ

πjPPpV q

τ0
j rT

πj
j s “

â

j

τjrT s.

This implies the expected result by uniqueness of Mobiüs transform.

If the spaces are traffic spaces, i.e. if the maps τj ’s are positive, then their tensor
product is also a traffic space by the usual argument of positivity of the Hadamard
product [24, Lemma 6.11].

4 Conclusion of Part I and perspectives
Our initial motivation was to prove the positivity of traffic independence. This is
indeed important since many statements about traffics involve the consideration of
independent variables, for instance the law of large numbers and the central limit
theorem. Doing so, we have discovered a natural characterization of traffic indepen-
dence and understood more about the nature of this notion. In particular, Corollary
2.9 gives a tool to use traffic independence in order to prove the free independence of
variables.
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Figure 12: On the left, a bi-graph operation t , and on the right, the associated wiring
diagram t1. The inputs of t (resp. its outputs) are represented by internal boxes (resp.
by the external box). Connectors of t are represented by bonds between the boxes.
Note that general wiring diagram are not assume to be connected.

In this section we would like to emphasis an aspect which is present in this analysis
we hardly mentioned: the notion of traffics, made initially for the analysis of large
matrices, can be generalized to cover the case of tensor matrices of arbitrary order.
Whereas a matrix A “ pAi,jqNi,j“1 P MN pCq „ CN b CN is a collection of complex
numbers labeled by two variables, a tensor matrix A “ pAiqiPrNsn P pCN qbn, n ě 1,
is labeled by a multi-index i P rN sn.

4.1 Operadic aspects: bigraph operations and wiring diagrams
Recall that B “

Ť

ně0 Bpnq denotes the set of bigraph operations. It is actually a
so-called colored operad, encoding operations on objects of different kinds (the rank of
the graph polynomials in the preceding sections). It is in bijection with the so-called
operad of (undirected, connected) wiring diagrams, initially introduced by Rupel and
Spivak [25] and developed in several variants in [27, 28, 30]. They have an important
potential to model and design complex systems in many different disciplines, such
as computer science and cognitive neuroscience. They are applied to study open
dynamical systems, certain differential equations, databases recursions, plug-and-play
circuits, etc. See [34] for an extended presentation of wiring diagrams. Formulating
the notion of traffic independence is then a new application of wiring diagrams.

As for graph operations, we can define a notion of algebra over the operad B of
bigraph operations (or equivalently of wiring diagrams), in short B-algebra. Since the
operad is colored, a B-algebra is a graded vector space A “

À

ně0Apnq endowed with
an action of the elements of B as follow. For any bigraph operation g P BpnqL,d, i.e.
with L inputs and sequence of input degree d “ pd1, . . . , dLq, there is a linear map
Tg : Apd1q b ¨ ¨ ¨ bApdLq Ñ Apnq satisfying the following properties:

1. For the bigraph operation idn P Bpnq with n distinct outputs, a single input of
degree n and such that the i-th neighbor of the input is the i-th output, one
has Tg “ idApnq ,

2. Tg
`

Tg1 b . . .b TgLq “ Tg pg1,...,gLq, for any g P B
pnq
L,d and g` P Bpd`q, ` “ 1, . . . , L,

3. Tgpa1b¨ ¨ ¨baLq “ Tgσ paσ´1p1qb¨ ¨ ¨baσ´1pLqq for any permutation σ that only
permute elements of same degree, where gσ is as g with the i-th input becoming
the σ´1piq-th input.

41



The definition of Example 2.3 defines a structure of B-algebra on the space of
random variables with values on

À

ně0pCN q‘n.
Another operadic aspects of bigraph operations to be commented is about its

relations with the work of Jones [15] on planar algebras. Firstly, we can mention that
the action of graph operations on tensor matrices appears in this paper as a slight
generalization of [15, Example 2.6]. Recall that a combinatorial map, i.e. a graph
embedded into a surface such that the connected components of the complementary of
the graph are isomorphic to discs. Then by a result of Heffter [14] a combinatorial map
is a bigraph operation with no output such that each connector as degree two. It would
be interesting to know if this set of observables is associated to some distributional
symmetry of random tensor matrices.

4.2 Definition of traffics of arbitrary ranks and their indepen-
dence

Most of the analysis provided for traffic spaces can be generalized in extenso in the
context of B-algebra. We briefly describe in this section this generalization.

Definition 4.1. An algebraic traffic space of arbitrary rank is a pair pA, τq where
A “

À

ně0Apnq is a B-algebra and τ is a linear form on Ap0q such that τ
“

p.q
‰

“ 1.

The term algebraic can be dropped provided τ satisfies the positivity property
of Section 3.2. Contrary to the rank two case, there is no need for associativity and
multi-linearity properties for τ since there are encoded in the structure. An element of
An is called a traffic of rank n. Hence the theory of traffics is the theory of traffics of
rank two. By Example 2.3, the space of tensor matrices is a traffic space of arbitrary
rank.

Notions of B-subalgebras and reduced elements are defined as for G-algebras.

Definition 4.2. The B-subalgebras A1, . . . ,AL Ă A are said to be independent when-
ever any bigraph operation in alternated reduced elements is centered.

With minor modifications of the proof, we can prove the following extension of the
asymptotic traffic independence theorem. Let ApNq

1 , . . . ,ApNq
L be independent families

of tensors, namely for each ` “ 1, . . . , N , ApNq
` “ pA`,jqjPJ` where Aj P pCN qbnj for

some nj ě 1. Assume the following properties:

1. For each ` “ 1, . . . , L, the family ApNq
` is permutation invariant in law in the

sense that for any permutation σ of rN s,

ApNq
` “ pA`,jqjPJ`

L
“

´

A`,j
`

σpi1q, . . . , σpinj q
˘

iPrNsnj

¯

jPJ`
.

2. For any bigraph operation g of rank 0, the quantity E
“

Tg
`

A`1,j1b¨ ¨ ¨bA`K ,jK

˘‰

converges as N goes to infinity for any compatible A`k,jk .

3. On has the asymptotic factorization property:
n
ź

i“1
E
”

Tgi
`

A`1,i,j1,i b ¨ ¨ ¨ bA`Ki,i,jKi,i
˘

ı

´E
”

n
ź

i“1
Tgi

`

A`1,i,j1,i b ¨ ¨ ¨ bA`Ki,i,jKi,i
˘

ı

ÝÑ
NÑ8

0,

for any g1, . . . , gn and any tensors such that the evaluation makes sense.
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Then the families ApNq
1 , . . . ,ApNq

L are asymptotically independent. This can be proved
in two steps analogous to the random matrices case. The first determines the limit
in terms of an analogue for the injective trace, following the argument of [16] for
random matrices. The second characterises traffic independence in terms of the latter
injective trace, replacing graph polynomials by elements of a B-algebra (let us stress
emphasis that this proof does not rely on the G-algebra structure of traffic spaces).

4.3 Potential perspectives
Traffics of arbitrary ranks may be interesting to study new objects, e.g. simplicial
complexes, in a similar fashion we study the non-commutative distributions of large
random graphs. Moreover, it could also open new perspectives, for instance in the
setting of Voiculescu’s notion of bi-freeness [32] . Let pA,Φq be a ˚-probability space
such that Φ is a faithful state. Denote by H the closure of A for the Hilbert norm
a ÞÑ

a

Φpaa˚q. There are two commuting actions of A on H given by left and right
multiplications. Recall that the theory of bi-freeness is about the relations of free
operators from these two points of view. Let now pA, τq be a traffic space of arbitrary
rank. Assume that τ is positive and for any a P Apnq one has }a}2 :“

a

τ ra|a:s “ 0
implies a “ 0 (the definition of a|a˚ is the same as for g|g˚ in traffic spaces as it only
involves bigraph operations). Consider the closure of Apnq by } ¨ }2. Then we have
now n commuting actions of A, one in the direction of each output, and so we can
develop a theory of multi-freeness dedicated in the relations between these actions.
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Part II

On the three types of traffics
associated to non-commutative
independences
Presentation
In [16] three types of traffics were identified, one for each notion of the three non-
commutative notions independence.

Definition 4.3. Let pA, τq be an algebraic traffic space and let a “ pajqjPJ a family
of elements of A. We said that a is of

• free type if it is unitarily invariant, in the sense that a has the same traffic
distribution as uau˚ “ puaju˚qjPJ , where pu, u˚q is traffic independent of a and
limit of pUN , U˚N q for a Haar unitary random matrix UN ;

• Boolean type if, for any T P T xYy, one has τ rT s “ 0 if T is not a tree;

• tensor type if the traffics are diagonals, in the sense that aj “ ∆pajq for all
j P J .

The precise link with the usual notions of independences is given by [16, Theorem
5.5]:

• the traffic independence of traffics of free type implies the free independence with
respect to the trace Φ of pA, τq;

• the traffic independence of traffics of Boolean type implies the Boolean indepen-
dence with respect to the anti-trace Ψ of pA, τq;

• the traffic independence of traffics of tensor type implies the tensor independence
with respect to the trace Φ of pA, τq;

This section is mostly devoted to the study of traffics of free types. We give an
explicit description of the injective distribution of traffics of this type, and we prove
Theorems 1.1 and 5.7 about unitarily invariant random matrices.

More generally, we give, for each type of traffic, a characterization as a particular
symmetry of the traffic distribution, a characterization with respect to the injective
distribution, and for any non-commutative probability space we construct a canonical
traffic space containing the initial space as a subalgebra of traffics of each type, under
mild assumptions. The whole picture is contained in Section 9.
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5 Generalities on unitarily invariant traffics
The canonical construction of free type consists in proving that any tracial non-
commutative probability space pA,Φq can be realized as an algebra of unitarily in-
variant traffics. A crucial step is an explicit description of the distribution of traffics
of this type, which is given in the two next sections.

5.1 Cacti and non crossing partitions
Recall that we call simple cycle of a graph a closed path visiting pairwise distinct
vertices (orientation of the edges is ignored).

Definition 5.1. A cactus is a finite connected graph such that each edge belongs
exactly to one simple cycle. A well oriented cactus is a cactus such that the simple
cycles of the graph are oriented.

Figure 13: A well oriented cactus.

Well oriented cacti are related to non crossing partitions in the following way. Let
T be a test graph consisting in a simple cycle with consecutive edges p¨ 1

Ð ¨ ¨ ¨ ¨ ¨
n
Ð ¨q.

Let σ be a non crossing partition of the set E :“ t1, . . . , nu of edges of T . Let us
denote by V “ t11, . . . , n1u the set of vertices of T , so that i1 is neighbor of i and i` 1
with notation modulo n. The Kreweras complement σ̂ of σ is the largest partition
of V such that the partition σ \ σ̂ of E \ V is non crossing (with the convention
1 ă 11 ă 2 ă ¨ ¨ ¨ ă n ă n1).

Lemma 5.2. For any partition π of V , the quotient Tπ is a well oriented cactus if
and only if there exists σ a non crossing partition of E such that π “ σ̂.

x1

x2

x3
x4

x5

x6

x7x8

x9

x1

x2

x3
x4

x5

x6

x7
x8

x9

Figure 14: Left: A cycle of length nine, a non crossing partition ν of its edges (grey)
and the Kreweras complement π (dotted) of ν. Right: the quotient of the cycle by π.

The Kreweras operation σ ÞÑ σ̂ is a bijection NCpnq Ñ NCpn1q. Hence the content
of the lemma is unchanged if we replace the sentence "Dσ P NCpnq such that π “ σ̂"
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by "π P NCpn1q". There we emphasis the role of σ since this is how non crossing
partitions play a role in free probability theory.

Proof. For any partition π of V , denote σpπq the partition of the edges of T such
that i „σ i1 if and only if i and i1 belong to a same simple cycle of T . Note first
that Tπ is a cactus if and only if there exists at least one isolated simple cycle, that
is a subgraph attached to the rest of the graph by a single vertex, and the graph
without this simple graph is a cactus. Indeed, let G be the (undirected) graph whose
vertices are the simple cycles of T with an edge between two cycles for each vertex
they have in common. Then Tπ is a cactus if and only if G is a tree. A leaf of this
tree is a simple cycle with the expected property. On the other hand, σ is a non
crossing partition if and only if there is at least one block of σ interval I of rns and
the restriction of σ to rnszI is non crossing (the proof is similar, see for instance [13,
Property 17.9]). Since isolated simple cycles of T correspond to intervals of σ, we get
the expected property.

Corollary 5.3. Let pA, τq be an algebraic traffic space with trace Φ and let a be a
family of elements of A. Assume that the injective distribution of a is supported on
well oriented cacti and is multiplicative w.r.t. their cycles, that is: for any test graph
T P T xay,

τ0rT s “ 1
`

T is a well oriented cactus
˘

ˆ
ź

C

τ0rCs,

where the product is over the simple cycles of T . Then for any simple cycle C with
consecutive edges p¨ a1

Ð ¨ ¨ ¨ ¨ ¨
an
Ð ¨q we have τ0rCs “ κnpa1, . . . , anq where κn is the

n-th free cumulant function relative to the trace Φ.

Proof. Let T denotes a simple cycle with consecutive edges p¨ a1
Ð ¨ ¨ ¨ ¨ ¨

an
Ð ¨q. Then

the definition of Φ, the formula for τ0, and the lemma yield

Φpa1 . . . anq “ τ rT s “
ÿ

πPPpV q

1pTπ well oriented cactusq
ź

C

τ0rCs

“
ÿ

σPNCpnq

ź

CPσ

τ0rCs,

with in the second line the abuse of notation that a cycle C with consecutive edges
p¨
ai1
Ð ¨ ¨ ¨ ¨ ¨

ai`
Ð ¨q of a cactus T σ̂ is identified with the corresponding block ti1, . . . , i`u

of σ. Since τ0 is multi-linear when seen as function of the labels of its edges, this prop-
erty characterizes the free cumulants functions by Möbius inversion formula stated in
Section 1.2.3.

The motivation to introduce this notion is that the traffic distribution of a is com-
pletely determined by its non-commutative distribution in pA,Φq since free cumulants
are determined by Φ. This is the starting point of the canonical construction which
is developed in Section 8. Before stating this, we first present properties and example
of such traffics.

5.2 Unitarily invariant traffics
Let us temporarily say that a family of traffics is of cactus type when its injective
distribution is supported on well oriented cacti and multiplicative w.r.t. their cycles,
as in Corollary 5.3. We characterize this ensemble of traffics in terms on the following
distributional symmetry.
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Definition 5.4. Let pA, τq be an algebraic traffic space and a “ pajqjPJ be a family
of elements of A. We say that a is unitarily invariant if and only if it has the same
traffic distribution as uau˚ “ puaju

˚qjPJ , where pu, u˚q is traffic independent of a
and limit of pUN , U˚N q for a Haar unitary random matrix UN .

Proposition 5.5. A family of traffics is unitarily invariant if and only if it is of
cactus type.

The proof of the proposition is given in Section 6 and requires an analysis of the
geometry of cacti and graph of colored components.

Corollary 5.6. Let pA, τq be an algebraic traffic space and let a be a family of traffics
of cactus type. Then the unital algebra spanned by a is of cactus type.

Proof. Let b “
`

Pjpaq
˘

jPJ
for some non-commutative polynomials Pj , j P J . Then

ubu˚ “
`

Pjpuau˚q
˘

jPJ
has the same traffic distribution as b, so it is of cactus type.

For all N ě 1, let AN be a family of random matrices in MN pCq. We recall that
under the assumptions of Theorem 1.1 (the convergence in ˚-distribution and the
asymptotic factorization of ˚-moments), AN converges in traffic distribution toward
a unitarily invariant family.

Theorem 5.7. Under the above setting, the asymptotic factorization property holds
for the traffic distribution: for all test graphs T1, . . . , Tk, we have the following con-
vergence

lim
NÑ8

E
„

1
N

Tr pT1pAN qq ¨ ¨ ¨
1
N

Tr pTkpAN qq



(5.1)

“ lim
NÑ8

E
„

1
N

Tr pT1pAN qq



¨ ¨ ¨ lim
NÑ8

E
„

1
N

Tr pTkpAN qq



.

The proof of Theorems 1.1 and 5.7 is given in Section 7 and is based on Weingarten
calculus. Factorization property of ˚-moments is required to get the multiplicativity
of the injective distribution with respect to the cycles of cacti as in Corollary 5.3.
Let us give now some examples of large random matrices converging to traffics of free
types.
Example 5.8. 1. A Haar unitary matrix UN converges to a unitarily invariant

traffic u in some traffic space pA, τq, and we can assume that u is unitary
(u˚u “ uu˚ “ 1), see [16]. Denote by Φ the trace associated to τ . It is known
that in the non-commutative probability space pA,Φq, u is a Haar unitary,
characterized by Φ

`

ukpu˚q`
˘

“ 1pk “ `q for any k, ` ě 0. Recall that the only
nonzero free cumulants of u are

κ2npu, u
˚, . . . , u, u˚q “ κ2npu

˚, u, . . . , u˚, uq “ cn´1p´1qn´1

where cn “ 2n!
pn`1q!n! are the Catalan numbers. In particular, the injective traffic

distribution of u is supported on well oriented cacti whose cycles have even size
and whose labels are alternated.

2. Let XN “
`xi,j?

n

˘

i,j“1,...,N be a complex Wigner matrix (the xi,j are independent
and identically distribution along and out of the diagonal, the distribution of
xi,j does not depend on N and admit moments of all orders). Assume the
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entries are centered, invariant in law by complex conjugation (xi,j
law
“ xi,j) and

that Er|xi,j |2s “ 1, Erx2
i,js “ 0. Then XN converges to a unitarily invariant

traffic x in some traffic space pA, τq, and we can assume that x is self-adjoint
(x˚ “ x), see [16]. It is known that in the non-commutative probability space
pA,Φq, x is a semicircular variable, characterized Φpakq “ 1pk evenqck{2 for any
k, where cn are the n-th Catalan numbers. The only nonzero free cumulant of x
is κ2px, xq “ 1. In particular, the injective traffic distribution of x is supported
on cacti whose cycles have size two (called the double trees in [16]).

3. An interest of the notion of unitarily invariant traffics is that it is not restricted
to the limit of unitarily invariant matrices, as we have seen in the previous
example with Wigner matrices. Matrices which are asymptotically unitarily
invariant can even be more structured. For instance, convergence to a uni-
tarily invariant semicircular traffic remains true when Wigner matrix models
is generalized to Wigner matrices with intermediated exploding moments (like
diluted Erdös-Reńyi graphs) [17], for uniform regular graphs with large degree
[18] (when restricting the traffic distribution to cyclic test graphs), periodic band
Wigner matrices and band Wigner matrices with slow growth [2]. Hence, the
properties of unitarily invariant traffic we state below are asymptotically true
for these models.

5.3 Relation with freeness and large random matrices
5.3.1 Abstract statement

The following proposition motivates that unitarily invariant traffics are referred as
traffics of free type.

Proposition 5.9. Let pA, τq be an algebraic traffic space with trace Φ. For each j P J
let aj be a family of traffics in A and set a “ Yjaj. Let b be an arbitrary family of
traffics in A.

1. If aj is unitarily invariant for each j P J and the aj’s are traffic independent
then a is unitarily invariant and the aj’s are free independent in pA,Φq.

2. Reciprocally if a is unitarily invariant and the aj’s are free independent in pA,Φq
then they are traffic independent in pA, τq.

3. If a is unitarily invariant and is traffic independent from b then a and b are
freely independent in pA,Φq.

Remark 5.10. For the first and third parts of the statement, it is sufficient to assume,
instead of the unitary invariance of the aj ’s that for any test graph T with no cutting
edge, τ0rT s “ 0 whenever T is not a cactus.

A proof of the proposition is given in [16, Section 5.2] based on the property of
unitary invariance (Definition 5.4). For completeness, we give a proof using the cactus
property.

Proof. 1. Let T P T x
Ů

j ajy. Under the assumptions of the proposition, we can write,
using w.o. as a shortcut for well oriented,

τ0rT s “ 1
`

GCCpT q is a tree
˘

ź

SPCCpT q

1pS w.o. cactusq
ź

C cycle of S
τ0rCs.
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Let us say that a cactus T in variables a “
Ů

j aj is well colored (in short w.c.)
whenever each cycle of T is labeled by variables in a same family aj . Note that T is
well colored if and only if σ is a non-mixing non crossing partitions, that is each of its
blocks contain variables in a same family aj . Since the graph of colored components
of a cactus is a tree if and only if it is well colored, we then get

τ0rT s “ 1pT w.o.w.c. cactusq
ź

C cycle of S
τ0rCs. (5.2)

Moreover, let C P T x
Ů

j ajy be a simple cycle with consecutive edges p¨
ai1
Ð ¨ ¨ ¨ ¨ ¨

ain
Ð ¨q,

where the ai are elements of the aj ’s. The above formula yields

Φpai1 . . . ainq “ τ rCs “
ÿ

σPNCpnq
non´mixing

ź

ti1ă¨¨¨ăi`uPσ

κ`pai1 , . . . , ai`q,

which characterizes free variables. Moreover, this implies the correspondance between
injective traces of well-oriented cycles and free cumulants. Hence, coming back to
Equation (5.2) for general T we can write

τ0rT s “ 1pT w.o. cactusq
ź

C cycle of S
τ0rCs. (5.3)

since for test graphs T that are not well colored, there are mixed cumulants along
some cycles. Hence a is of cactus type, so it is unitarily invariant.

2. Reciprocally, let us assume that a is unitarily invariant and that the aj ’s are
free independent. Let us prove that they are traffic independent. Since a is of cactus
type, for any test graph T P T x

Ů

j ajy, Equation (5.3) is satisfied. Freeness of the
aj ’s implies vanishing of mixed cumulants, so that τ0rCs “ 0 for some cycle if T is
not a well colored cactus. But T is a w.o.w.c. cactus if and only GCCpT q is a tree
and the colored components are cacti. This yields the formula (5.2) and by the above
computation that the aj ’s are traffic independent.

3. Let now a be a unitarily invariant family of traffics independent of an arbitrary
family b, and let us prove that a and b are free independent in pA,Φq. Without loss
of generality, we can assume that the families of matrices contain the identity. By
[24, Theorem 14.4], it suffices to prove that for any a1, . . . , an in a and any b1, . . . , bn
in b, the following is satisfied

Φpa1b1 . . . anbnq “
ÿ

σPNCpnq
κσpa1, . . . , anq ˆ Φσ̂pb1, . . . , bnq,

where σ̂ is the Kreweras complement of σ, that is the largest non crossing partition
of t11, . . . , n1u such that σ \ σ̂ is a non crossing partition of t1, 11, . . . , n, n1u, and

κσpa1, . . . , anq “
ź

ti1ă¨¨¨ăi`uPσ

κ`pai1 , . . . , ai`q,

with a similar definition for Φσ̂.
Let T be a simple cycle with consecutive edges p¨ a1

Ð ¨
b1
Ð ¨ ¨ ¨ ¨ ¨

an
Ð ¨

bn
Ð ¨q. Then

by definition of traffic independence and the cactus property of a, denoting by V the

49



vertex set of T one has

Φpa1b1 . . . anbnq “ τ rT s

“
ÿ

πPPpV q

1
`

GCCpTπq is a tree
˘

ˆ

˜

ź

SPCCbpTπq

τ0rSs ˆ
ź

SPCCapTπq

´

1pS w.o. cactusq
ź

C cycle of S
τ0rCs

¯

¸

,

where CCapT q is the set of colored components of T labeled in a, and CCbpT q is defined
similarly.

The arguments of the proof are those used in [17] (replacing the so-called fat
trees by the cacti). Given π P PpV q, denote by Sa,π the graph obtained from Tπ

by identifying the source and target of each edge labeled in b and suppressing these
edges. If GCCpTπq is a tree and CCa is a set of cacti, then Sa,π is a cactus. By Lemma
5.2, π induces a non crossing partition σa,π of the set Ea of edges of T labeled a,
whose blocks are associated to variables labeled a in a same cycle of T (the cyclic
order of Ea is the one around the cycle T ).

Reciprocally, consider a non crossing partition σa of Ea and then a cactus Spσaq

labeled a. Let σb “ σ̂a be the Kreweras complement of σa, which is a partition of
the set Eb of edges of T labeled b, and let Spσbq denotes the cactus associated to
σb. Once more we consider the Kreweras complement of σ “ σa \ σb, which is now
a partition π0 P PpV q of the vertex set of T . By Lemma 5.2, Tπ0 and Spσbq are
cacti. Moreover, the partitions π P PpV q such that GCCpTπq is a tree, CCa is a set of
cacti and Sa,π “ Spσaq are those that only identifies vertices in a same cycle of Tπ0

labeled b, which are the cycles of Spσbq, see Figure 15. Then we have, using that a
is of cactus type and the definition of τ0 in the second line,

τ rT s “
ÿ

σaPNCpEaq

ź

Ca cycle of Sσa

τ0rCas ˆ
ź

Cb cycle of Sσ̂a

ÿ

πPP
`

V pCbq
˘

τ0rCπb s

“
ÿ

σaPNCpEaq

ź

Ca cycle of Spσaq

κpCaq ˆ
ź

Cb cycle of Spσ̂aq

ΦpCbq,

where V pCbq denoting the vertex set of Cb, κpCqmeans the free cumulants κpx1, . . . , x`q
for a cycle with consecutive edges px1, . . . , x`q, and ΦpCq is defined similarly. With
this notation, this is the desired formula.

5.3.2 Asymptotic freeness of random matrices

The previous proposition implies a universal property of free independence for asymp-
totically unitarily invariant matrices.

Corollary 5.11. Let ApNq
j , j P J , be independent families of random matrices such

for each j P J ,

(H0) UApNq
j U˚ has the same law as ApNq

j for any permutation matrices U .

(H1) ApNq
j converges in traffic distribution to a unitarily invariant family traffics.

(H2) ApNq
j satisfies the factorization property (5.1).
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Figure 15: Left: the cycle T with a non crossing partition σa (full grey blocks), its
kreweras complement σb (striped grey blocks), and the Kreweras complement π0 of
σa\σb (dotted lines). Center and right: the quotient graph Tπ0 , and another quotient
graphs Tπ such that Sπ is the cactus of σa.

Then the ApNq
j ’s are asymptotically freely independent with respect to E

“ 1
NTr

‰

and
YjApNq

j is asymptotically freely independent from any auxiliary independent family of
random matrices converging in traffic distribution and satisfying (H2).

The universal aspect of this statement is that it holds for any auxiliary matrices,
without assumptions on the form of their limiting traffic distribution.

Proof. The three first assumptions implies the asymptotic traffic independence by
[16], so the corollary follows directly from Proposition 5.9.

One can work under a slightly weaker assumption than the convergence in traffics
distribution of the matrices, since the conclusion is about non-commutative distri-
bution. This is allowed by the modification of the asymptotic traffic independence
theorem of [17]. Let us say that a test graph T is cyclic if there exists a cycle vis-
iting each edge once in the sense of the orientation. For a family BN of matrices,
we denote by }BN } the supremum of the operation norm (square-root of the largest
singular value) of the matrices of BN .

Corollary 5.12. Let ApNq
j , j P J , be independent families of random matrices such

for each j P J , ApNq
j satisfies (H0) and the following modifications of the previous

hypotheses:

(H1’) E
“ 1
NTrT pAN q

‰

converges for any cyclic test graph T and the limit satisfies the
cactus formula.

(H2’) AN satisfies the factorization property on cyclic test graphs, and furthermore it
satisfies the tightness condition of [17], for instance }AN } is uniformly bounded
as N goes to infinity.

Then the ApNq
j ’s are asymptotically free independent and YjApNq

j is asymptotically
free independent from any independent family of random matrices converging in traffic
distribution on cyclic test graphs and satisfying (H2’).

For instance, a normalized adjacency matrix AN of a regular large graph with
large degree may converges to a unitarily invariant traffics a on cyclic graphs (see
[18]). It cannot converges to a on all test graphs since degpAN q is a constant matrix
whereas degpaq is a non trivial random variable for a nonzero unitarily invariant traffic
a.
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Proof. The first assumptions implies the asymptotic traffic independence when dis-
tribution are restricted to cyclic graphs by [17]. Computation of trace of cyclic test
graphs involves only computation of injective trace of cyclic graphs and reciprocally.
Moreover the trace depends only on combinatorial traces of such graphs. Hence all
the computation of the section is valid with this restriction.

6 Equivalence between unitary invariance and cac-
tus type

This section is dedicated to the proof of Proposition 5.5.

6.1 On the geometry of cacti
Definition 6.1. • A cutting edge of a finite graph is an edge whose removal in-

creases the number of connected component. A two-edge connected (t.e.c.) graph
is a connected graph with no cutting edges.

• The cut number between two vertices is the minimal number of edges whose
removal separate them.

• Two vertices of a graph form a 3-connection whenever there exist three edge-
distinct paths joining them.

We will use Menger’s theorem [19]:

Theorem 6.2. Let v and w two distinct vertices of a connected graph. The cut
number between v and w is equal to the maximum number of edge-disjoint paths from
v to w.

In particular, a 3-connection consists in vertices with cut number at least three.
A t.e.c. graph is a graph whose vertices have cutting numbers at least two. We can
then deduce the following characterization of cacti.

Proposition 6.3. A finite graph is a cactus if and only if the cut number between
two vertices is constant, equal to two.

Proof. Let T be a finite graph with cut number constant to two. It is connected since
the cut number is finite. There is no vertices v and w with cut number equal to one,
so every edge e “ pv, wq is contained in a simple cycle. Moreover, if an edge e of a
graph belongs to more than two distinct simple cycles, the union of these cycles with
e remove is still t.e.c. so one can find a 3-connection in the graph. Hence T is a
cactus.

Let now T be a cactus. The cut number between two vertices is greater than
one since the graph is connected and each edge belong to a cycle. Moreover, the cut
number between two vertices v and w is alway two. Indeed, consider a simple path
between v and w and remove one of its edges. In the cycle with this edge removed,
we can remove an edge to separate v and w: the two vertices cannot be in a same
connected component of the graph outside this cycle because the path between them
is simple.

Let T be a test graph and let π be a partition of its vertices. Since edge-disjoint
paths on T induce edge-disjoint paths on the quotient graph Tπ, the cut number of
two vertices v and w in T cannot decrease if v and w are not identified in Tπ. This
implies the following lemma.
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Lemma 6.4. Let T be a connected finite graph, let two vertices v, w forming a 3-
connection, and let π a partition of the vertex set of T . If the quotient graph Tπ is a
cactus then v „π w.

We now deduce from this lemma three properties characterizing unitarily invariant
traffics that we use in next section.

Corollary 6.5. Let a be a family of traffics of cactus type in an algebraic traffic
space pA, τq. Let T be a test graph labeled in a with two vertices v and w forming a
3-connection. Let Tv„w be the test graph obtained by identifying v and w in T . Then
one has τ rT s “ τ rTv„ws.

In particular, by iterating this procedure, we get that τ rT s “ τ rT̃ s where T̃ is
obtained by identifying all pairs of 3-connections. The cut number of pairs of vertices
of T̃ is always smaller than or equal to two.

Proof. If a quotient graph Tπ of T is a cactus then v „ w. Since τ0 is supported on
cacti Lemma 6.4 implies

τ rT s “
ÿ

πPPpV q

τ0“Tπ
‰

“
ÿ

πPPpV q
v„πw

τ0“Tπ
‰

“ τ rTv„ws.

Corollary 6.6. Let a be a family of traffics of cactus type in an algebraic traffic space
pA, τq. Let T be a test graph that can be obtained by identifying two vertices of test
graphs S and S1, where S is t.e.c. Then

τ rT s “ τ rSs ˆ τ rS1s.

In particular, by iterating this procedure, we get that if T is a cactus then

τ rT s “
ź

C cycle of T
τ rCs.

Proof. Denote by o the vertex of T that belong both to S and S1. Let v (resp. v1)
be a vertex of S (resp. S1), seen in T and different from o. Let π be a partition of
T such that v „π v1 and Tπ is a cactus. Then Tπ is a quotient of Tv„πv1 for which
pv, oq forms a 3-connection and so by Lemma 6.4 one has v „π o „π v1. Hence, each
partition π such that Tπ is a cactus is the union π “ σ Y σ1 of a partition σ of the
vertices of S and a partition σ1 of those of S1. For such a partition π “ σ Y σ1, by
definition of cactus type traffics we have τ0rTπs “ τ0rSσs ˆ τ0rpS1qσ

1

s. Hence we get,
denoting by VS and VS1 the vertex sets of S and S1 respectively,

τ rT s “
ÿ

σPPpVSq

τ0rSσs ˆ
ÿ

σ1PPpVSq

τ0rpS1qσ
1

s “ τ rSs ˆ τ rS1s.

It remains to show how to handle test graphs with cutting edges.

Lemma 6.7. Let a be a family of traffics of cactus type in an algebraic traffic space
pA, τq. Let T be a test graph labeled in a and denote by O the set of vertices of T
with odd degree (the degree is the number of neighbors, here we forget the orientation
of the edges). For any partition σ of O, let us denote

pσpT q “
ÿ

σ1ěσ

MobPpOqpσ, σ
1qTσ

1

,
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where MobPpOq denotes the Möbius function of the poset of partitions of O and Tσ1

the graph obtained by identifying vertices in a same block of T . Then one has

τ rT s “
ÿ

σPPpOq
|B| is even @BPσ

τ
“

pσpT q
‰

.

In particular, we get that τ rT s can be written as a linear combination of τ rSs
where S has no cutting edges. Since the cutting number can always increase when
taking quotients, together with the above lemmas, one gets an expression of τ rT s in
terms of linear combinations of products of τ rCs where C are simple cycles.

Proof. Cacti have only vertices of even degree. Hence, if π is a partition such that T
is a cactus then it must re-group the vertices in O in blocks of even size. Hence

τ rT s “
ÿ

σPPpOq
|B| is even @BPσ

ÿ

πPPpV q
s.t. πO“σ

τ0rTπs.

By the same proof as Lemma 2.15 applied to Tσ, the second sum in nothing else than
τ
“

pσpT q
‰

.

6.2 Proof of the equivalence
Let a “ pajqjPJ be an arbitrary family of traffics, independent from the limit pu, u˚q
of a Haar unitary matrix and its conjugate, and denote b “ puaju

˚qjPJ . We shall
prove that a and b have the same traffic distribution.

For a test graph T labeled in b we denote by T̃ the graph labeled in a, u, u˚

obtained by replacing each edge p¨ b
Ð ¨q by the sequence of edges p¨ u

Ð ¨
a
Ð ¨

u˚
Ð ¨q

and by Ṽ the vertex set of T̃ . In this section, we say that a partition π of Ṽ is valid
whenever GCCpT̃πq is a tree and the colored components of T̃π labeled in pu, u˚q are
well oriented cacti whose edges along each cycle alternate between u and u˚.

Lemma 6.4 is replaced by the following.

Lemma 6.8. If π is a valid partition then for any 3-connection pv, wq of T̃ one has
v „π w.

Proof. Let pv, wq be such a pair in T̃ and π a valid partition. Assume moreover v π w
and let us find a contradiction. Let S1, . . . , Sn be the path in GCCpT̃ q between the
colored components S1 and Sn containing v and w respectively. If n ě 2, then one
of these components is labeled in pu, u˚q and it is traversed by at least three edge
disjoint paths, so it cannot be a cactus. If n “ 1, then T̃π has a cycle with an odd
number of variables in u and u˚, so there are colored components labeled in pu, u˚q
which are not cacti whose edges are labeled alternatively by u and u˚.

We now prove that the tree properties stated in Corollary 6.5, Corollary 6.6 and
Lemma 6.7 hold for b. By independence of a and pu, u˚q and by the formula for the
traffic distribution of pu, u˚q, we have

τ rT s “ τ rT̃ s “
ÿ

πPPpṼ q

1
`

GCCpT̃πq is a treeq
ź

SPCCapT̃πq

τ0rSs

ˆ
ź

SPCCpu,u˚qpT̃πq

1pS w.o. cactusq
ź

C cycle of S
τ0rSs,
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where CCa and CCpu,u˚q denote the set of colored components labeled in a and pu, u˚q
respectively.

The 3-connections of T correspond to those of T̃ . Hence for any such pair pv, wq
in T , we get τ rT s “ τ rT̃ s “ τ rT̃v,ws “ τ rTv,ws, so the first property is clear. The
proof of the second property is similar: if T is a t.e.c. graph that can be obtained by
identifying two vertices of disjoint test graphs S and S1, then T̃ can be obtained by
identifying two vertices S̃ and S̃1 and the proof is unchanged, using the above lemma
instead of of Lemma 6.4.

Let now T be an arbitrary test graph and denote by O the set of vertices of odd
degree. Corresponds in T̃ a set Õ. Moreover, denote by Õ1 the set of vertices of T̃
both adjacent to an edge labeled in a and in pu, u˚q. If a partition π of the vertices of
T̃ is valid, it must regroup the vertices of ÕY Õ1 in blocks of even size (since vertices
of considered cacti are of even degree). But if π identifies a vertex of Õ and a vertex
of Õ1, then Tπ has a cycle with an odd number of edges in pu, u˚q, so π is not valid.
We hence get

τ rT̃ s “
ÿ

σPPpÕq
|B| even @BPσ

τ
“

pσrT̃ s
‰

“
ÿ

σPPpOq
|B| even @BPσ

τ
“

pσrT s
‰

.

Hence τ rT s has the same expression as if labels were in a. Since for a simple
cycle C labeled bj1 , . . . , bjn one has τ rSs “ Φpbj1 , . . . , bjnq “ Φpaj1 , . . . , ajnq, we get
as expected that a and b have the same traffic distribution.

7 Asymptotically unitarily invariant random matri-
ces

The purpose of this section is to prove Theorems 1.1 and 5.7. Namely. for any
unitarily invariant families of matrices XN satisfying the assumptions, for any test
graphs T1, . . . , Tm,

τXN
pT1, . . . , Tmq :“ 1

Nm
E
”

m
ź

i“1
TrTipXN q

ı

converges to
m
ź

i“1

ÿ

πPPpViq

˜

1pTπi well oriented cactusq
ź

CPCyclepTπ
i
q

lim
NÑ8

´

τ0
XN
rCs

¯

¸

, (7.1)

where Vi denotes the vertex set of Ti.
Before reviewing some results about the free cumulants, some results about the

Weingarten function, and the links between those two objects in large dimension, let
us mention two applications of this result.

7.1 Applications
Lemma 7.1. If AN is a family of matrices converging in traffic distribution to a
unitarily invariant family, then AN ,At

N and
`

degpAN q,degpAt
N q

˘

are asymptotically
freely independent.

This generalize a recent result of Mingo and Popa [20] stating the asymptotic free
independence of AN and At

N for unitarily invariant matrices. There we only assume
that unitary invariance holds asymptotically.
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Proof. Let pA, τq be an algebraic traffic space with trace Φ and let a “ pajqjPJ
be a unitarily invariant family of traffics. It is sufficient to prove that the families
a, at “ patjqjPJ and

`

degpaq,degpatq
˘

“
`

degpajq,degpatjq
˘

are free independent in
pA,Φq.

We first prove that a and at are free. Let us consider 2n elements c1, . . . , c2n
alternatively in Cx¨ a

Ð ¨ : a P Ay and Cx¨ a
Ñ ¨ : a P Ay such that τΦpc1q “ . . . “

τΦpc2nq “ 0. We want to prove that τΦp∆pc1 . . . c2nqq “ 0. Using Proposition 8.3 in
order to regroup consecutive edges which are oriented in the same direction, we can
assume that the c1is are written as ¨ aiÐ ¨ with ai P A such that Φpaiq “ 0, and ci and
ci`1 not oriented in the same direction.

Consider now a partition π such that τ0
Φp∆pc1 . . . c2nqπq ‰ 0. Then, take a leaf

of the oriented cactus ∆pc1 . . . c2nqπ. This leaf is a cycle of only one edge, because
if not, the cycle cannot be oriented, since two consecutive edges in ∆pc1 . . . c2nq are
not oriented in the same way. This produces a term τ0

Φp∆pciqq “ 0 in the prod-
uct τ0

Φp∆pc1 . . . c2nqπq, which leads at the end to a vanishing contribution. Finally,
τΦpc1 . . . c2nq “ 0 and we have the freeness wanted.

Now, let us prove that Cx Òa¨ : a P Ay is free from Cx¨ a
Ð ¨, ¨

a
Ñ ¨ : a P Ay. By

the same argument as above, we can consider that we have a cycle ∆pc1 . . . cnq which
consists in an alternating sequence of c1is written as ¨ ai

Ð ¨ with ai P A such that
Φpaiq “ 0, ¨ aiÑ ¨ with ai P A such that Φpaiq “ 0, and ci P Cx Òa¨ : a P Ay such
that τΦpciq “ 0. We want to prove that τΦp∆pc1 . . . cnqq “ 0. If there is no term
ci P Cx Òa¨ : a P Ay, we are in the case of the previous paragraph. Let us assume that
there exists at least one such term, say c1. By linearity, we can consider that the term
c1 P Cx Òa¨ : a P Ay is written as Òb1¨ ¨ ¨ ¨

Òbk
¨ ´τΦp

Òb1
¨ ¨ ¨ ¨

Òbk
¨ q, where Òb1¨ ¨ ¨ ¨

Òbk
¨ is some vertex

input/output from which start k edges labelled by b1, . . . , bk P A. Let us prove that
τΦp∆ppÒb1¨ ¨ ¨ ¨

Òbk
¨ qc2 . . . cnqq and τΦp

Òb1
¨ ¨ ¨ ¨

Òbk
¨ qτΦp∆pc2 . . . cnqq are equal, which implies

by linearity that τΦp∆pc1 . . . cnqq “ 0. Decomposing into injective trace, we are left
to prove that for all partition π of the vertices of ∆ppÒb1¨ ¨ ¨ ¨

Òbk
¨ qc2 . . . cnq which do not

respect the blocks pÒb1¨ ¨ ¨ ¨
Òbk
¨ q and ∆pc2 . . . cnq, τ0

Φp∆pp
Òb1
¨ ¨ ¨ ¨

Òbk
¨ qc2 . . . cnq

πq “ 0. The
same argument as previous paragraph works again. If one of the vertex of pÒb1¨ ¨ ¨ ¨

Òbk
¨ q

is identified by π with one of the vertex of ∆pc2 . . . cnq, and ∆ppÒb1¨ ¨ ¨ ¨
Òbk
¨ qc2 . . . cnq

π is
a cactus there exists a cycle not oriented or a leaf labelled by one ai, which leads to
a vanishing contribution.

Lemma 7.2. Let ApNq
1 , . . . ,ApNq

L (resp. BpMq1 , . . . ,BpMqL ) be independent families of
N by N (resp. M by M) random matrices, that converge in traffic distribution to
unitarily invariant variables and satisfy the factorization property as N (resp. M)
goes to infinity. Let U1, . . . , UL be independent uniform permutation matrices of size
NˆM . Assume that pApNq

` q`“1,...,L, pBpMq` q`“1,...,L and pU`q`“1,...,L are independent.
Then the families U1pApNq

1 b BpMq1 qU1, . . . , ULpApNq
L b BpMqL qUL are asymptotically

freely independent with respect to 1
NMTr. If moreover CNM is a family of NM by NM

random matrices that converge in traffic distribution and satisfies the factorization
property, then it is asymptotically free independent from the previous families.

Proof. For each ` “ 1, . . . , L, the family of matrices ApNq
` bBpMq` converges in traffic

distribution to the tensor product a` b b` of the limits of each factor, and it satisfy
the factorization property. Hence by the asymptotic traffic independence theorem,
the families of matrices U`pApNq

` bBpMq` qU`, ` “ 1, . . . , L, are asymptotically traffic
independent.

On the other hand, let us compute the limiting distribution of each family. Let T
be a test graph in T xa`bb`y. Assume that it has not cutting edge, which is sufficient
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to characterize the limiting ˚-distribution. Recall that we denote by ΛT the set of
pairs pπ1, π2q P PpV q2 such that if two elements belong to a same block of πi then
they belong to different blocks of πj , i ‰ j P t1, 2u. We have by Lemma 3.14

pτ1 b τ2q
0rT s “

ÿ

pπ1,π2qPΛT

τ0“Tπ1
1
‰

ˆ τ0“Tπ2
2
‰

,

where Ti is the graph whose edges are labeled the variables of the i-th factor.
If pπ1, π2q P ΛT contributes in the above term then Tπ1 and Tπ2 are cacti with

oriented cycles. Since T is t.e.c., it is a cactus if and only if it has a 3-connection.
But if T has a 3-connection, it must be identified to produce a cactus. Hence there is
no pπ1, π2q in ΛT such that both Tπ1

1 and Tπ2
2 are cacti.

By Lemma 5.9 and Remark 5.10, we then get that the matrices are asymptotically
freely independent.

7.2 The Weingarten function.
We need to integrate against the UpNq-Haar measure. Expressions for these integrals
appeared in [33] and were first proven in [7] and given in terms of a function on
symmetric group called the Weingarten function. We recall here its definition and
some of its properties. For any n P N˚ and any permutation σ P Sn, let us set

Ωn,N pσq “ N#σ,

where #σ is the number of cycles of σ. When n is fixed andN Ñ8, N´nΩn,N Ñ δIdn .
For any pair of functions f, g : Sn Ñ C and π P Sn, let us define the convolution
product

f ‹ gpσq “
ÿ

πďσ

fpπqgpπ´1σq,

Hence, for N large enough, Ωn,N is invertible in the algebra of function on Sn endowed
with convolution as a product. We denote by Wgn,N the unique function on Sn such
that

Wgn,N ˚ Ωn,N “ Ωn,N ˚Wgn,N “ δIdn .

Then, [7, Corollary 2.4] says that, for any indices i1, i11, j1, j11 . . . , in, i1n, jn, j1n P t1, . . . , Nu
and U “

`

Upi, jq
˘

i,j“1,...,N a Haar distributed random matrix on UpNq,

ErUpi1, j1q . . . Upin, jnqUpi11, j11q . . . Upi1n, j1nqs “
ÿ

α,βPSn
iαpkq“i

1
k,jβpkq“j

1
k

Wgn,N pαβ´1q. (7.2)

7.3 Free cumulants and the Möbius function µ.
As explained in [5], it is equivalent to consider lattices of non-crossing partitions or
sets of permutations endowed with an appropriate distance. For our purposes, it is
more suitable to define the free cumulants using sets of permutations. Let us endow
Sn with the metric d, by setting for any α, β P Sn,

dpα, βq “ n´#pβα´1q,

where #pβα´1q is the number of cycles of βα´1. We endow the set Sn with the partial
order given by the relation σ1 ĺ σ2 if dpIdn, σ1q ` dpσ1, σ2q “ dpIdn, σ2q, or similarly
if σ1 is on a geodesic between Idn and σ2.
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Given a state Φ : Cxxj , x˚j yjPJ Ñ C, we define the free cumulants pκnqnPN recur-
sively on Cxxj , x˚j yjPJ by the system of equations: @y1, . . . , yn P Cxxj , x˚j yjPJ

Φpy1 ¨ ¨ ¨ ynq “
ÿ

σďp1¨¨¨nq

ź

pc1...ckq
cycle of σ

κpyc1 , . . . , yckq. (7.3)

Let us fix y1, . . . , yn P Cxxj , x˚j yjPJ and denote by respectively φ and k the functions
from Sn to C given by

φpαq “
ź

pc1...ckq
cycle of σ

Φpyc1 . . . yckq and kpαq “
ź

pc1...ckq
cycle of σ

κpyc1 , . . . , yckq,

which are such that φpp1 ¨ ¨ ¨nqq “
ř

πďp1¨¨¨nq kpπq. In fact, we have more generally the
relation

φpαq “
ÿ

πďσ

kpπq.

Note that φ “ k‹ζ, where ζ is identically equal to one. The identically one function ζ
is invertible for the convolution ‹ (see [5]), and its inverse µ is called Möbius function.
It allows us to express the free cumulants in terms of the trace:

k “ φ ‹ µ. (7.4)

7.4 Asymptotics of the Weingarten function.
One can observe that, for any pair of functions f, g : Sn Ñ C and π P Sn,

ÿ

πPSn

NdpIdn,σq´dpIdn,πq´dpπ,σqfpπqgpπ´1σq “ f ‹ gpσq ` op1q.

Defining the convolution ‹N as

f ‹N g “ NnΩ´1
n,N ppN

´nΩn,Nfq ˚ pN´nΩn,Ngqq

“
ÿ

πPSn

NdpIdn,σq´dpIdn,πq´dpπ,σqfpπqgpπ´1σq,

it follows that ‹ is the limit of ‹N . Because Wgn,N is the inverse of Ωn,N for the
convolution ˚, we have pN2nΩ´1

n,NWgn,N q ‹N ζ “ N´nΩn,N , from which we deduce
that pN2nΩ´1

n,NWgn,N q ‹ ζ “ δIdn ` op1q, or similarly that

N2nΩ´1
n,NWgn,N “ µ` op1q.

More generally, if f, fN : Sn Ñ C are such that fN “ f ` op1q, then

NnΩ´1
n,N ppΩn,NfN q ˚Wgn,N q “ pfN q ‹N pWgn,N q “ f ‹ µ` op1q. (7.5)

Proof of Theorem 1.1. Let XN “ pXjqjPJ a family of unitarily invariant random ma-
trices which converges in ˚-distribution, as N goes to infinity, to x “ pxjqjPJ family
of some non-commutative probability space pA,Φq. We fix m ě 1 and test graph
Ti “ pVi, Ei, jiq P CT xJy, i “ 1, . . . ,m, and show the convergence stated in (7.1).

By taking the real and the imaginary parts, we can assume that the matrices of
XN are Hermitian and so we do not consider adjoint of the matrices. We shall denote
by T “ pV,E, jq the labeled graph obtained from the disjoint unions of T1, . . . , Tm,
where the label map is given by restriction: j|Vi “ ji for i “ 1, . . . ,m.
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We consider a random unitary matrix U , distributed according to the Haar dis-
tribution, and independent of XN . By assumption ZN :“ UXNU

˚ PMN pCq has the
same distribution as XN . We denote respectively by e and e the origin vertex and
the goal vertex of e. Then

τXN
rT1, . . . , Tms

“
1
Nm

ÿ

φ:VÑrNs
E

«

ź

ePE

Zjpeq
`

φpeq, φpeq
˘

ff

“
1
Nm

ÿ

φ:VÑrNs
ϕ,ϕ1:EÑrNs

E

«

ź

ePE

U
`

φpeq, ϕpeq
˘

U
`

φpeq, ϕ1peq
˘

ff

E

«

ź

ePE

Xjpeq

`

ϕpeq, ϕ1peq
˘

ff

.

In the integration formula (7.2), the number n of occurrence of each term Upi, jq is
the cardinality of E and the sum over permutations of t1, . . . , nu is replaced by a sum
over the set SE of permutations of the edge set E. By identifying E with the set of
integers t1, . . . , |E|u, we consider that Wgn,N is defined on SE instead of Sn. Then,
one has

τXN
rT1, . . . , Tms

“
1
Nm

ÿ

α,βPSE

Wgn,N pαβ´1q
ÿ

φ:VÑt1,...,Nu
ϕ,ϕ1:EÑt1,...,Nu

φpαpeqq“φpeq,ϕpβpeqq“ϕ1peq

E

«

ź

ePE

Xjpeq

`

ϕpeq, ϕ1peq
˘

ff

.

For any permutation α P SE , let πpαq be the smallest partition of V such that, for
all e P E, e is in the same block as αpeq. Summing over φ in the previous expression
yields

τXN
rT1, . . . , Tms

“
ÿ

α,βPSE

N#πpαq´mWgn,N pαβ´1q
ÿ

ϕ,ϕ1:EÑt1,...,Nu
ϕpβpeqq“ϕ1peq

E

«

ź

ePE

Xjpeq

`

ϕpeq, ϕ1peq
˘

ff

“
ÿ

α,βPSE

N#πpαq´mWgn,N pαβ´1qE

»

—

—

–

ź

pe1...ekq
cycle of β

TrpXjpe1qXjpe2q . . . Xjpekqq

fi

ffi

ffi

fl

To conclude we will need the following

Lemma 7.3. i) For any permutation α P SE, #πpαq`#α ď #E`m and the equality
implies that the graph of Tπpαq is the disjoint union of m oriented cacti, with resp.
set of edges E1, . . . , Em, and that α fixes the sets E1, . . . , Em.
ii) The map

π : tα : #πpαq `#α “ #E `mu ÝÑ tπ : the graph of Tπ is the disjoint union
of m oriented cacti with resp. edges set E1, . . . , Emu

is a bijection whose inverse γ is given, for all π P PpV q such that Tπ is a disjoint
union of m oriented cacti with resp. edges E1, . . . , Em, by the permutation γpπq whose
cycles are the biconnected components of Tπ.
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Proof Lemma 7.3. i) Let α P SE . Let us define a connected graph Gα whose vertices
are the cycles of α altogether with the blocks of πpαq, and whose edges are defined
as follow. There is an edge between a cycle c of α and a block b of πpαq if and only
if there is an edge e of T such that e P c and e P b. This way, the edges of Gα are
in bijective correspondence with the edges of T . Therefore, #πpαq `#α ď #E `m
with equality if and only Gα is the disjoint unions of two trees.

In fact, each cycle of α yields a cycle in Tπpαq, and in the case where Gα is acyclic,
there exist no other cycle in Tπpαq. What is more, since T1, . . . , Tm are connected, if
Tπ has m connected components, the latter cannot use edges of several sets among
E1, . . . , Em. Hence, the biconnected component of Tπpαq are exactly the cycles of α,
that cannot use edges from several sets E1, . . . , Em, and Tπpαq is therefore the disjoint
union of m oriented cacti, with α fixing each set Ei, i “ 1, . . . ,m.

ii) π ˝ γ and γ ˝ π are the identity functions: π is one-to-one and its inverse is
γ.

For all α P SE , set

φN pαq “ N´#αE

»

—

—

–

ź

pe1...ekq
cycle of σ

TrpXγpe1qXγpe2q . . . Xγpekqq

fi

ffi

ffi

fl

and
φpαq “

ź

pe1...ekq
cycle of σ

Φpxγpe1qxγpe2q . . . xγpekqq

in such a way that that φN “ φ` op1q. Let us fix α P SE . On the one hand we have

N#πpαq`#α´#E´m “ 1#πpαq`#α“#E`m ` op1q.

On the other hand, according to (7.5), the quantity

ÿ

βPSE

N#E´#αWgn,N pαβ´1qE

»

—

—

–

ź

pe1...ekq
cycle of β

TrpXγpe1qXγpe2q . . . Xγpekqq

fi

ffi

ffi

fl

is equal to ppφN q ‹N Wgn,N qpαq “ pφ‹µqpαq` op1q. Let us write α1ˆ¨ ¨ ¨ˆαm for the
permutation whose restriction to E1, . . . , Em is given by αi P SEi , for i “ 1, . . . ,m. It
follows that

τXN
pT1, . . . , Tmq “

ÿ

αiPSEi ,i“1,...,m
#πpαiˆ¨¨¨ˆαmq`#α1ˆ¨¨¨ˆαm“#E`m

pφ ‹ µqpα1 ˆ ¨ ¨ ¨ ˆ αmq ` op1q.

From (7.4), we know that pφ ‹ µqpαq “ kpαq “
ś

pe1...ekq
cycle of α

κpxγpe1q, . . . , xγpekqq. Let

us write now π1 \ π2, the partition of E that is finer than tE1, . . . , Emu and whose
restriction of these m sets is fixed, when πi P PpViq, i “ 1, . . . ,m. Thanks to Lemma
7.3, we can now write

τXN
pT q “

ÿ

πiPPpViq,i“1,...,m
T
πi
i

is an oriented cactus

ź

pe1...ekq
cycle of γpπ1\¨¨¨\πmq

κpxγpe1q, . . . , xγpekqq ` op1q

“
ÿ

πiPPpViq,i“1,...,m
T
πi
i

is an oriented cactus

ź

pe1...ekq

simple cycle of one graph T
πi
i

κpxγpe1q, . . . , xγpekqq ` op1q.
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In order to pursue the computation, let ti be the test graph pVi, Ei, λipeqq P CT xGpAqy
such that λipeq “ xjipeq, for i “ 1, 2. By Definition of unitarily invariant traffics, we
get

τXN
pT1, . . . , Tmq “

ÿ

πiPPpViq,i“1,...,m

m
ź

i“1
τ0
Φrt

πi
i s ` op1q

“

m
ź

i“1
τX rtis ` op1q

so that τXN
pT1, . . . , Tmq converges towards the expected limit.

Remark 7.4. From the above proof, it is tempting to believe that expansions of mo-
ments of the evaluation of test graphs in powers of N´1 should actually be expansions
in powers of N´2, so that for any ˚-test graph T “ pV,E, j ˆ εq P CT xJ ˆ t1, ˚uy,
the fluctuations of 1

NTrpT pXN qq ´ E
“ 1
NTrpT pXN qq

‰

should be of order N´1. This is
nonetheless wrong as shows the following simple example. Consider a random N ˆN
matrix A, whose law is invariant by unitary conjugation and the test graph T with
one simple edge labeled by A and one extremity equal both to the input and output.
For the associated traffic distribution as in Example 1.8, TrpT pXN qq “

ř

1ďi,jďN Ai,j .
In the setting of the central limit theorem where entries of A have variance of order
1
N , the fluctuations of 1

NTrpT pXN qq are of order Op 1?
N
q.

8 Canonical construction of spaces of free type
The purpose of this section is to prove the Theorem 1.3, which states that any tracial
˚-probability space can be enlarged into a traffic space.

8.1 Free G-algebra generated by an algebra
We first describe how an algebra can be canonically extended into a G-algebra.

Definition 8.1. Let A be an algebra. We denote by GpAq the G-algebra CGxAy of
graph polynomials labeled in A, quotiented by the following relations: for all g P
Gn´k`1, a1, . . . , an P A and P non-commutative polynomial in n variables, we have

Zgp¨
P pa1,...,akq
ÐÝ ¨b¨

ak`1
Ð ¨b . . .b¨

an
Ð ¨q “ Zg

`

P p¨
a1
Ð ¨, . . . , ¨

ak
Ð ¨qb¨

ak`1
Ð ¨b . . .b¨

an
Ð ¨

˘

(8.1)
which allows to consider the algebra homomorphism V : A Ñ GpAq given by a ÞÑ
p¨

a
Ð ¨q.

As for the free product of G-algebra of Section 3.1, the space GpAq is a G-algebra.
Moreover, it is the free G-algebra generated by the algebra A in the following sense.

Proposition 8.2. Let B be a G-algebra and f : A Ñ B a algebra homomorphism.
There exists a unique G-algebra homomorphism f 1 : GpAq Ñ B such that f “ f 1 ˝ V .
As a consequence, the algebra homomorphism V : AÑ GpAq is injective.

Proof. The existence is given by the following definition of f 1 on GpAq:

f 1pZgp¨
a1
ÐÝ ¨ b . . .b ¨

an
Ð ¨qq “ Zgpfpa1q b . . .b fpanqq

for all a1, . . . , an P A; which obviously respects the relation defining ˚jPJAj .
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The uniqueness follows from the fact that f 1 is uniquely determined on V pAq
(indeed, f 1paq must be equal to fpbq whenever a “ V pbq) and that V pAq generates
GpAq as a G-algebra.

For example, the free G-algebra generated by the variables x “ pxiqi P J and
x˚ “ px˚i qi P J is the G-algebra CGxx,x˚y of graphs whose edges are labelled by x
and x˚.

8.2 Algebraic construction
Let pA,Φq be a non-commutative probability space such that Φ is a trace. We want
to equip the G-algebra GpAq with a combinatorial distribution that is of cactus type
and whose induced distribution on A Ă GpAq is Φ. We firstly define τ : CT xAy Ñ C
by the cactus formula, namely for any test graph T labeled in A,

τ0rT s “ 1pT is a w.o. cactus q
ź

C cycle of T
κpCq,

where as usual κ is the free cumulant function with respect to Φ of the variable along
the oriented cycle. Then, as in Section 3.1, we consider the map τ̃ : CT

@

CGxAy
D

Ñ C
defined as follow: for any test graph T with edges e1, . . . , ek labeled respectively by
graph monomial g1, . . . , gK , we set τ̃ rT s “ τ rTgs where Tg is obtained by replacing
the egde ek by the graph gk for any k “ 1, . . . ,K. We extend the definition by multi-
linearity with respect to the edges and set τ̃

“

p¨q
‰

“ 1. By Lemma 3.1, τ̃ satisfies the
associativity property and then endows CGxAy with a structure of algebraic traffic
space. It remains to prove that it induces a same structure on GpAq.

Proposition 8.3. The linear form τ̃ is invariant under the relations (8.1) defining
GpAq, and consequently yields to an algebraic traffic space pGpAq, τ̃q. Furthermore,
the trace induced by τ̃ coincides with Φ on A, seen as a subalgebra of GpAq.

Proof. It is sufficient to prove the following:

1. For any test graph T having an edge e labeled a1 ` αa2, where a1, a2 P A and
α P C, one has τ rT s “ τ rT1s ` ατ rT2s where Ti is obtained from T by putting
label ai on e.

2. For any test graph T having an edge e labeled 1A, one has τ rT s “ τ rT‚s where
T‚ is obtained by identifying source and target of e and suppressing this edge.

3. For any test graph T having an edge e labeled a1a2, where a1, a2 P A, one has
τ rT s “ τ rTˆs where Tˆ is obtained by replacing e by two consecutive edges
p¨
a1
Ð ¨

a2
Ð ¨q.

The first property is an immediate consequence of the linearity of the cumulants. Let
us prove the others properties at the level of the injective trace.

Lemma 8.4. With notations as above, we have the following formulas:

1. Whenever e has label 1A, one has τ0rT s “ τ0rT‚s if the goal and the source of
the edge e are equal in T , and τ0rT s “ 0 otherwise.

2. Whenever e has label a1a2, denote by V the vertex set of T and by v0 the new ver-
tex in Tˆ. Then for any partition π of V , one has τ0rTπs “

ř

σPPpVYtv0uq
σztv0u“π

τ0rTσˆs.
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This implies the proposition as we see now. When e has label 1A, we get

τ rT s “
ÿ

πPPpV q

τ0rTπs “
ÿ

πPPpV‚q

τ0rTπ‚ s “ τ rT‚s.

Moreover, when e has label a1a2, one has

τ rT s “
ÿ

πPPpV q

τ0rTπs “
ÿ

πPPpV q

ÿ

σPPpVYtv0uq
σztv0u“π

τ0rTσˆs

“
ÿ

σPPpVYtv0uq

τ0rTσˆs “ τ rTˆs.

Finally, for any a P A, seen as an element of A, its trace associated to τ is given
by τpöaq “ τ0pöaq “ κpaq “ Φpaq as expected. This finishes the proof of the
proposition.

Proof of Lemma 8.4. The first item follows from the fact that a cumulant involving
1A is equal to 0, except κp1Aq “ 1 (see [24, Proposition 11.15]). As a consequence,
for a cactus T having a loop labeled 1A, we can remove the loop without changing
the value of the invective trace.

Let us prove the second item, and consider a test graph T with an edge e labeled
a1a2 and Tˆ defined as before. Let π be a partition of the vertex set of T . If Tπ is
not a cactus, then the two side of the equation are equal to zero. Assume that Tπ is a
cactus. We denote by c the cycle of ¨ a1a2

Ð ¨ in Tπ and a1a2, b2, . . . , bk´1 the elements
of the cycle c starting at a1a2.

Let us consider a partition σ P PpVYtv0uq such that Tσˆ is a cactus and π “ σztv0u.
Then, we have two cases:

1. v0 is of degree 2 (this occurs for only one partition σ given by πYttv0uu). Denot-
ing by c` the cycle of Tσˆ which contains v0, we have c` “ pa2, b2, . . . , bk´1, a1q.
The cycles of Tπ and Tσˆ different from c and c` are the same, and by conse-
quence

τ0rTπs{kpa1a2, b2, . . . , bk´1q “ τ0rTσˆs{kpa2, b2, . . . , bk´1, a1q.

2. v0 is of degree ą 2. We denote by c1 the cycle of ¨ a2
Ð ¨ in Tσˆ, c2 the cycle of

¨
a1
Ð ¨ in Tσˆ (of course, c1 and c2 are not equal, because if it is the case, Tπ

would be disconnected, which is not possible). The cycles of Tπ different from c
are exactly the cycles of Tσˆ different from c1 or c2. We have c1 “ pa2, b2, . . . , blq
and c2 “ pbl`1, . . . , bk, a1q with l the place of the vertex which is identified with
v0 in Tσˆ. By definition, we have

τ0rTπs{kpa1a2, b2, . . . , bk´1q “ τ0rTσˆs{pkpa2, b2, . . . , blq ¨ kpbl`1, . . . , bk, a1qq.

Conversely, for each vertex v1 in the cycle c, we are in the above situation for
σ “ π|v0»v1 .

Finally, using [24, Theorem 11.12] for computing kpa1a2, b2, . . . , bk´1q, we can com-
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pute

τ0rTπs “τ0rTπs{kpa1a2, b2, . . . , bk´1q ¨ kpa1a2, b2, . . . , bk´1q

“τ0rTπs{kpa1a2, b2, . . . , bk´1q

¨

˜

kpa2, b2, . . . , bk´1, a1q `
ÿ

1ďlďk
kpa2, b2, . . . , blq ¨ kpbl`1, . . . , bk, a1q

¸

“τ0rT
πYttv0uu
ˆ s `

ÿ

σPPpVYtv0uqztπYttv0uuu
σztv0u“π

τ0rTσˆs

“
ÿ

σPPpVYtv0uq
σztv0u“π

τ0pTσˆq.

8.3 Positivity
Let pA,Φq be a ˚-probability space. We define τ : CT xAy Ñ C by the cactus formula
with respect to Φ and then pGpAq, τ̃q as in Proposition 8.3. It remains to prove that
τ̃ satisfies the positivity condition (3.1), and it is actually sufficient to prove that τ is
positive.

In the four steps of the proof, we will prove successively that τ
“

t|t˚
‰

ě 0 for
n-graph polynomials t “

řL
i“1 αiti with an increasing generality:

1. the ti are 2-graph monomials without cycles and the leaves are outputs, that is
chains of edges with possibly different orientations;

2. the ti are trees whose leaves are the outputs;

3. the ti are such that ti|t˚i have no cutting edges (see Definition 6.1);

4. the ti are n-graph monomials.

Step 1 By Proposition 8.3, the trace associated to τ coincides with Φ on A Ă GpAq.
We still denote it by Φ. Hence we get the positivity if all the ti’s consist in chains of
edges all oriented in the same direction. Indeed, we can write ti “ ¨

ai
Ð ¨ for all i (or

ti “ ¨
ai
Ñ ¨ for all i) and so, we get

τ
“

t|t˚
‰

“ τ
”

L
ÿ

i,j“1
αiᾱjtit

˚
j

ı

“ Φ
´

L
ÿ

i,j“1
αiᾱjaia

˚
j

¯

ě 0,

by positivity of Φ on A. We deduce that Φ is positive on the subalgebras Cx¨ a
Ð ¨ :

a P Ay and Cx¨ a
Ñ ¨ : a P Ay of GpAq. From Lemma 7.1 these subalgebras are freely

independent, so Φ is also positive on the mixed algebra Cx¨ a
Ð ¨, ¨

a
Ñ ¨ : a P Ay (the

free product of positive trace is positive [24, Lecture 6]). Finally, if the ti’s consist in
chains of edges labeled by elements of A, we know that

τ
“

t|t˚
‰

“ Φ
“

L
ÿ

i,j“1
αiᾱjtit

˚
j

‰

ě 0.
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Step 2 Assume that the ti’s are trees whose leaves are the outputs. Let us prove
by induction on the number D of all edges of the ti’s that we have τ

“

t|t˚
‰

ě 0.
If the number of edges of the ti’s is 0, we have τΦ

“

t|t˚
‰

“
ř

i,j αiα
˚
j ě 0. We

suppose that D ě 1 and that this result is true whenever the number of edges of the
ti’s is less than D ´ 1.

We can remove one edge in the following way. Let us choose one leaf v of one of
the t1is which has at least one edge. It is an output and for each tree ti we denote by
vpiq the first node (or distinct leaf if there is no node) of the tree of ti encountered by
starting from this output v, and by tpiq the branch of ti between this output v and
vpiq. Of course, vpiq can be equal to v and tpiq can be trivial, but there is at least
one of the tpiq’s which is not trivial. Denote by t̆i the n-graph obtained from ti after
discarding the tpiq’s, and whose output v is replaced by vpiq. We claim that

τ
“

t|t˚
‰

“ τ
“

t|t˚
‰

ˆ τ
“

t̆i|t̆
˚
j

‰

.

Firstly, we can identify the pairs vpiq and vpjq in the computation of the left hand-side.
Indeed, we write τ

“

ti|t
˚
j

‰

“
ř

π τ
0“pti|t

˚
j q
π
‰

, and consider a term in the sum for which
π does not identify vpiq and vpjq. Because t̆i|t̆˚j is t.e.c., there exists two disjoints paths
between vpiq and vpjq. But because tpiq|tpjq˚ contains a third distinct path, by Lemma
6.4 π cannot be a cactus if it does not identify vpiq and vpjq and so τ0“pti|t

˚
j q
π
‰

is zero.
Consider a term in the sum

ř

π τ
0“pti|t

˚
j q
π
‰

for which π identifies the pairs vpiq, vpjq.
Assume that a vertex v1 of t̆i|t̆˚j is identified with a vertex v2 which is not in t̆i|t̆

˚
j .

Assume that π does not identify vpiq with v1 and v2. Because t̆i|t̆˚j is t.e.c. there
exists two distinct paths between v1 and vpiq out of τ

“

tpiq|tpjq˚
‰

. But there exists also
a path between v2 and vpiq in tpiq|tpjq˚. By Lemma 6.4, we get that pti|t˚j qπ is not a
cactus and so τ0“pti|t

˚
j q
π
‰

is zero.
Hence, to determine which vertices of t̆i|t̆˚j are identified with some vertices of

tpiq|tpjq˚, one can first determine which vertices of t̆i|t̆˚j are identifies with vpiq “ vpjq

and which vertices of tpiq|tpjq˚ are identified with this vertex. Hence the sum over π
partition of the set of vertices of ti|t˚j can be reduced to a sum over π1 partition of the
set of vertices of t̆i|t̆˚j and a sum over π2 partition of the set of vertices of the graph
tpiq|tpjq˚. Moreover, by definition of τ , for two test graphs T1 and T2, if T is obtained
by considering the disjoint union of T1 and T2 and merging one of their vertices, one
has τ0rT s “ τ0rT1sˆτ

0rT2s. Hence, the contribution of t̆i|t̆˚j factorizes in τ
“

t̆i|t̆
˚
j

‰

and
the contribution of tpiq|tpjq˚ factorizes in τ

“

tpiq|tpjq˚
‰

, and we get the expected result.
From Step 1, we know that A “

`

τ
“

tpiq|tpjq˚
‰˘

i,j
is nonnegative. By induction

hypothesis, we know that B “
`

τ
“

t̆i|t̆
˚
j

‰˘

i,j
is also nonnegative. We obtain as desired

that the Hadamard product of A and B is nonnegative ([24, Lemma 6.11]) and in
particular, for all αi, we have

ÿ

i,j

αiᾱjτ
“

ti|t
˚
j

‰

ě 0.

Step 3 Let us prove that, for all ti such that ti|t˚i have no cutting edges, we have
τ
“

t|t˚
‰

ě 0.
For a graph T , recall that the t.e.c. components are the maximal subgraphs of T

with no cutting edges. We call tree of t.e.c. of T the graph whose vertices are the
t.e.c. components of T and whose edges are the cutting edges of T . First of all, our
condition is equivalent to the condition that, for each ti, any leaf of the tree of the
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t.e.c. components of ti is a component containing an output. Here again, we can
proceed by induction. Let D be the total number of t.e.c. components of the ti’s
which do not consists in a single vertex.

If D “ 0, we are in the case of the previous step. Let us assume that D ą 0 and
that the result is true up to the case D´1. We can remove one t.e.c. in the following
way. Let us choose a t.e.c. component tpkq which is not a single vertex of a certain
n-graph monomial tk, for some k in t1, . . . , Lu. We consider tpkq as a multi ˚-graph
monomial, where the outputs are the vertices which are attached to cutting edges.
Let t̆k be the n-graph monomial obtained from tk by replacing the component tpkq by
one single vertex. We define also for i ‰ k the ˚-graph monomial tpiq to be the trivial
leaf and set t̆i “ ti. We claim that

τ
“

T pti, t
˚
j q
‰

“ τ
“

T pt̆i, t̆
˚
j q
‰

ˆ τ
“

tpiq
‰

ˆ τ
“

tpjq˚
‰

(of course, this equality is nontrivial only if we consider i “ k or j “ k).
Firstly, the outputs of tpiq can be identified. Indeed, consider v1, v2 two distinct

outputs of tpiq. Writing τ
“

ti|t
˚
j

‰

“
ř

π τ
0“pti|t

˚
j q
π
‰

, consider a term in the sum for
which π does not identify v1 and v2. Since tpiq is t.e.c. there exist two distinct simple
paths γ1 and γ2 between v1 and v2. Consider a path from v2 to v1 that does not visit
tpiq in ti|t

˚
j . Such a path exists as v1 and v2 belong to two subtrees of ti that are

attached to outputs of ti, themselves being attached to the connected graph t˚j . The
quotient by π yields three distinct paths γ between v1 and v2 in pti|t˚j qπ which implies
that pti|t˚j qπ is not a cactus by Lemma 6.4. Hence, by definition of τ , τ0“pti|t

˚
j q
π
‰

is
zero. Thus, when we write τ

“

ti|t
˚
j

‰

“
ř

π τ
0“pti|t

˚
j q
π
‰

we can restrict the sum over
the partition π that identify v1 and v2, therefore, we can replace ti by the graph t̃i
where we have identify v1 and v2. Hence we have τ

“

ti|t
˚
j

‰

“ τ
“

t̃i|t̃
˚
j

‰

.
Let us write τ

“

t̃i|t̃
˚
j

‰

“
ř

π τ
0“pt̃i|t̃

˚
j q
π
‰

. Let π be as in the sum. Assume that a
vertex v1 of tpiq is identified by π with a vertex v2 which is not in tpiq. Assume that π
does not identify wpiq with v1 and v2. Since tpiq is t.e.c. there exist two distinct paths
between v1 and wpiq in tpiq. But t̆i is connected and there exists a third path between
v2 and wpiq. As usual this implies that pt̃i|t̃˚j qπ is not a cactus and so τ0

Φ
“

pt̃i|t̃
˚
j q
π
‰

is
zero.

Hence, to determine which vertices of tpiq are identified with some vertices out of
tpiq, one can first determine which vertices of tpiq are identified with wpiq and which
vertices out of tpiq are identified with this vertex. Thus the sum over π partition of the
set of vertices of t̃i|t̃˚j can be reduced to a sum over π1 partition of the set of vertices of
tpiq and a sum over π2 partition of the set of vertices of the graph with tpiq removed.
Moreover, by definition of τ , for two ˚ test graphs T1 and T2, if T is obtained by
considering the disjoint union of T1 and T2 and merging one of their vertices, one has
τ0rT s “ τ0rT1sˆ τ

0rT2s. Hence, the contribution of T pti, t˚j q factorizes in τ
“

T pt̆i, t
˚
j q
‰

and the contribution of tpiq factorizes in τ
“

tpiq
‰

. We can do the same factorization for
the n-graph monomial t˚j , and we get the expected result.

Now, setting βi “ αiτ
“

tpiq
‰

, we have

τ
“

T pt, t˚q
‰

“
ÿ

i,j

βiβ̄jτ
“

T pt̆i, t̆
˚
j q
‰

which is nonnegative thanks to the induction hypothesis.

Step 4 A direct proof of the positivity in general case requires appropriate tools,
and we bypass this difficulty using both the positivity of the free product (Theorem
1.2) and the fact that unitary invariant traffics are of cactus type (Proposition 5.5).
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We define an auxiliary distribution of traffic τ 1 : CT xAy Ñ C which is defined to
be equal to τ on the test graphs without cutting edges and equal to 0 on those with
cutting edges. This map τ 1 induces a combinatorial distribution on the G-algebra
CGxAy of graph polynomials labeled in A.

On the one hand, the map τ 1 does satisfy the positivity property since for any
n-graph polynomial t “

ř

i αiti, we have

τ 1
“

t|t˚
‰

“
ÿ

i,j

αiᾱjτ
1
“

ti|t
˚
j

‰

“
ÿ

i,j

ti|t
˚
j

without cutting edges

αiᾱjτ
“

ti|t
˚
j

‰

“
ÿ

i,j

ti|t
˚
i
, tj |t

˚
j

without cutting edges

αiᾱjτΦ
“

ti|t
˚
j

‰

ě 0,

using the result of the previous step. By positivity of the free product, the distribution
remains positive if we enlarge CGxAy into a traffic space B with a unitary traffic u
such that pu, u˚q is the limit of a Haar unitary matrix, traffic independent from the
elements of CGxAy. We consider the function f : CT xAy Ñ CT xBy which replaces
each edge ea :“ a

Ð of a graph in CT xAy by the edges u
Ð ¨

ea
Ð ¨

u˚
Ð, obtaining a graph

whose edges are labelled by elements of GxAy Y tu, u˚u Ă B. By unitary invariance,
the traffic distribution τ 1 ˝ f is exactly τ because they coincide on cycles. Hence τ is
the restriction of a positive combinatorial distribution, so it is positive.

9 Three types of traffics
From Proposition 5.5, we recall the following for traffics of free type. Let pA, τq be
a traffic space. A family a “ pajqjPJ of elements of B is of free type if one of the
following equivalent properties holds :

1. Cactus type. The injective distribution is supported on well oriented cacti
that are multiplicative w.r.t. their cycles.

2. Unitary invariance. The family a has the same traffic distribution as uau˚ “
puaju

˚qjPJ where u is traffic independent from a and is a Haar unitary on A
(i.e. u is unitary and Φpuku˚`q “ δk,` for any k, ` ě 0).

Thus we have two different characterizations of traffic of free type. A distributional
symmetry and a property of the injective distribution. In this section, we will state
the corresponding caracterization for the two other types of traffics (see Table 1).

Table 1: The three types of traffics
Type Distributional symmetry Injective distribution

Tensor Diagonality: a “ ∆paq Supported on flowers
where ∆ “ Z öis the diagonal projection

Boolean J-Invariance: a ” Jb a in distribution, Supported on trees
for J the limit of the matrix whose entries are 1

N

Free Unitary Invariance: a ” uau˚ Supported on cacti
in distribution, for u traffic independent and multiplicative
and limit of Haar unitary matrix on cycles
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9.1 Boolean type
Let pA, τq be an algebraic traffic space and let Y a family of elements of A. Let us
remark that Y is of Boolean type whenever one of the following equivalent conditions
is satisfied:

1. For any T P T xYy, one has τ rT s “ 0 if T is not a tree, or

2. for any T P T xYy, one has τ0rT s “ 0 if T is not a tree.

In that case, the plain and injective combinatorial distributions coincides, namely
τ rT s “ τ0rT s for any T P T xYy. With respect to the trace Φ associated to τ , Y has
the null distribution since Φpyq “ τ

“ ö

pyq
‰

“ 0 for any y in the algebra spanned by
Y.

Lemma 9.1. If Y is of Boolean type, then the non unital algebra generated by Y is
of Boolean type.

Proof. Let T be a test graph whose edges are labeled by monomials mi “ yi,1 . . . yi,ni
with yi,j in Y. Then τ rT s “ τ rT̃ s where T̃ is obtained by replacing each edge of T by
the sequence of edges p¨ y1

Ð . . .
yn
Ð ¨q. The graph T is a tree if and only if T̃ is a tree,

hence the result.

We now associate a distributional symmetry for Boolean type variables. The ma-
trix JN whose all entries are 1

N converges in traffic distribution to a traffic J of Boolean
type, whose distribution is given by τ rT s “ τ0rT s “ 1pT is a treeq for any T P T xJy.

Proposition 9.2. Let pA, τq be an algebraic traffic space and let Y a family of ele-
ments of A. A family of traffics A is of Boolean type whenever one of the following
equivalent conditions is satisfied:

1. Trees. for any T P T xYy, one has τ0rT s “ 0 if T is not a tree.

2. J-invarianceThe family A as the same distribution as J b A in the tensor
product of traffic spaces.

Proof. We have for any T P T xJbAy,

τ rT s “ τ rTJs ˆ τ rTAs “ 1pT is a treeqτ rTAs.

Hence the J-invariance is equivalent to the fact that the traffic distribution of A is
supported on tree, or equivalently the fact that the injective combinatorial distribution
of A is supported on tree.

Example 9.3. Let AN be a family of random matrices that converges in traffic dis-
tribution (such families can be built from Theorem 1.1). Then for any M “ MN ,
sequence of integers that converges to infinity, the family JM b AN converges to a
family of traffics of Boolean type. Moreover the distribution of JM bAN with respect
to ΨN is the same as for AN .

Together with the asymptotic traffic independence theorem, this gives a new pro-
cedure to produce asymptotically Boolean independent matrices. More precisely, if
AN and BN are independent families of random matrices that converge in traffic
distribution, and S is a uniform matrix of permutation of size pMN ¨Nq ˆ pMN ¨Nq,
then SpJM bAN qS

˚ and JM bBN are independent and asymptotically traffic inde-
pendent, thanks to [16, Theorem 1.8]. Because the limiting traffics are of Boolean
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type, SpJM b AN qS
˚ and JM b BN are asymptotically Boolean independent with

respect to the anti-trace ΨN “
1
N

ř

i,j xEij , ¨y
Note that the size of the matrices is pMN ¨ Nq ˆ pMN ¨ Nq. In contrast, in [8,

Section 3.1], the author describe a procedure that leads to Boolean independence
using tensor product, which produces matrices of size Nn, where n is the number of
Boolean independent variables.

9.2 Tensor type
A test-graph is a flower if it has only one vertex. Let pA, τq be an algebraic traffic
space and let Y a family of elements of A; [16, Proposition 5.8] says that if Y is of
tensor type, for any T P T xYy, one has τ0rT s “ 0 if T is not a flower.

In fact, the converse is also true and we have the following.

Proposition 9.4. Let pA, τq be an algebraic traffic space and let Y a family of ele-
ments of A. Y is of tensor type whenever one of the following equivalent conditions
is satisfied:

1. Diagonality. For any a P Y, one has a “ ∆paq.

2. Flowers. for any T P T xYy, one has τ0rT s “ 0 if T is not a flower.

Proof. It remains to prove that if the injective distribution of Y is supported on
flowers, we have a “ ∆paq for all a P Y. It suffices to compute Φppa ´ ∆paqqpa ´
∆paqq˚q “ 0 and we deduce that a “ ∆paq.

Lemma 9.5. If Y is of tensor type, then the traffic space generated by Y is of tensor
type.

Proof. For all K-graph operation g, we have

Zgpa1 b ¨ ¨ ¨ b aKq “ Zgp∆pa1q b ¨ ¨ ¨ b∆paKqq
“ Zg˝p∆,...,∆qpa1 b ¨ ¨ ¨ b aKq

“ Z∆˝g˝p∆,...,∆qpa1 b ¨ ¨ ¨ b aKq

“ ∆
`

Zg˝p∆,...,∆qpa1 b ¨ ¨ ¨ b aKq
˘

“ ∆ pZgp∆pa1q b ¨ ¨ ¨ b∆paKqqq
“ ∆pZgpa1 b ¨ ¨ ¨ b aKqq.

9.3 Canonical traffic spaces
Proposition 8.3 and Section 8.3 allow also to conclude the following.

Proposition 9.6. Let pA,Φq be a tracial ˚-probability space. There exists a traffic
space B such that A Ă B as ˚-algebras, the trace induced by B on A is Φ, and the
family of traffics A is of free type.

We now deduce from this canonical construction of traffic spaces of free type an
analogue construction for traffics of Boolean type.

Proposition 9.7. Let pA,Ψq be a non-unital ˚-probability space. Then, there exists
a traffic space pB, τq, and an injective morphism of non-commutative probability space
ψ : AÑ B such that ψpAq is a family of traffics of Boolean type.
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Proof. One the one hand, let ψ1 : pA,Φq Ñ pB1, τ1q be the universal construction of
Part II, namely whose image consists in unitarily invariant traffics. One the other
hand, let pB2, τ2q be a traffic space generated by the limit J of the matrix JN . Then
pB, τq :“ pB1bB2, τ1b τ2q and ψ : a ÞÑ ψ1paqb J satisfy the expected properties.

Finally, we have the same result for traffics of tensor types.

Proposition 9.8. Let pA,Φq be a commutative ˚-probability space. There exists a
traffic space B such that A Ă B as ˚-algebras, the trace induced by B on A is Φ, and
the family of traffics A is of tensor type.

Proof. It is the first example of [16, Example 4.10.]. One has just to remind that, for
a test-graph T whose edges are labelled by γ : E Ñ A, we have

τpT q “ Φp
ź

ePE

γpeqq,

which allows to prove the positivity of the traffic space easily from the positivity of
Φ.

9.4 Relations between the traffics of different types, conclu-
sion

We now investigating the independence relations between traffics of tensor, Boolean
and free types.

Proposition 9.9. Let Y be a family of traffics of Boolean type, traffic independent
from a unital subalgebra Z of traffics of free or tensor type. Then, with respect to the
anti-trace, Z is monotone independent from Y.

More generally, the result holds whenever the unital subalgebra Z is such that
Ψpzq “ Φpzq for any z P Z.

Proof. For any n ě 2, any zi in Z, i “ 0, . . . , n and any yi in Y, i “ 1, . . . , n,

Ψrz0y1z1 . . . ynzns “ τ
”

¨
z0
Ð ¨

y1
Ð . . .

zn´1
Ð ¨

yn
Ð ¨

zn
Ð ¨

ı

.

Let π be a partition of the above test graph T such that the graph of colored com-
ponents of Tπ is a tree and the colored components of Tπ labeled in Y are tree.
Then π do not identify vertices that are not extremal vertices of an edge labeled zi,
i “ 1, . . . , n. If π does not identify two vertices of an edge labeled zi, then one can
factorizes τ0r¨

zi
Ð ¨s in the expression of τ0rTπs. But τ0r¨

zi
Ð ¨s “ Ψpziq ´ Φpziq “ 0.

Hence we have Ψrz0y1z1 . . . ynzns “ τ0rTπs where π is the partition identifying the
source and target of each edge labeled in Z. We then get

Ψrz0y1z1 . . . ynzns “

n
ź

i“1
τ0
”ziö

¨

ı

ˆ τ0
”

y1
Ð ¨

y2
Ð . . .

yn
Ð ¨

ı

“

n
ź

i“1
Φpziq ˆΨry1y2 . . . yns.

We use in the last line the fact that τ and τ0 coincide for test graphs labeled by
traffics of Boolean types. Since Φ “ Ψ for elements of Z, we get the result.
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