Model-based clustering with mixed/missing data using the new software MixtComp

https://modal-research.lille.inria.fr/BigStat/

Christophe Biernacki

(with Thibault Deregnaucourt and Vincent Kubicki)

CMStatistics 2015 (ERCIM 2015) London (UK), 12-14 December 2015

1 The problem

2 Conditional independent clustering

3 Estimation

- 4 Clustering with MixtComp
- 5 Imputation with MixtComp

Clustering of complex data

- **Data:** *n* individuals: $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n) = (\mathbf{x}^O, \mathbf{x}^M)$ belonging to a space \mathcal{X}
 - Observed individuals x^O
 Missing individuals x^M

Aim: estimation of the partition \mathbf{z} and the number of clusters KPartition in K clusters G_1, \ldots, G_K : $\mathbf{z} = (\mathbf{z}_1, \ldots, \mathbf{z}_n), \mathbf{z}_i = (z_{i1}, \ldots, z_{iK})'$

$$\mathbf{x}_i \in G_k \quad \Leftrightarrow \quad z_{ih} = \mathbb{I}_{\{h=k\}}$$

Mixed, miss	ing, uncertai	in						
	Individua	als x ⁰		Pa	rtitio	n z ⁰	\Leftrightarrow	Group
?	0.5	red	5	?	?	?	\Leftrightarrow	???
0.3	0.1	green	3	?	?	?	\Leftrightarrow	???
0.3	0.6	{red,green}	3	?	?	?	\Leftrightarrow	???
0.9	[0.25 0.45]	red	?	?	?	?	\Leftrightarrow	???
\downarrow	↓	\downarrow	\downarrow					
continuous	continuous	categorical	integer					

Model-based clustering

- Cluster k is modelled by a parametric distribution: $\mathbf{X}_{i|Z_{ik}=1} \overset{i.i.d.}{\sim} p(\cdot; \boldsymbol{\alpha}_k)$
- Cluster k has probability π_k with $\sum_{k=1}^{K} \pi_k = 1 : \mathbf{Z}_i \stackrel{i.i.d.}{\sim} \mathsf{Mult}_{\mathcal{K}}(1, \pi_1, \dots, \pi_{\mathcal{K}})$
- Missing data x are obtained by a missing completely at random process (MCAR)¹
- Observed mixture pdf: with parameter $\theta = (\pi_1, \dots, \pi_K, \alpha_1, \dots, \alpha_K)$, it is written

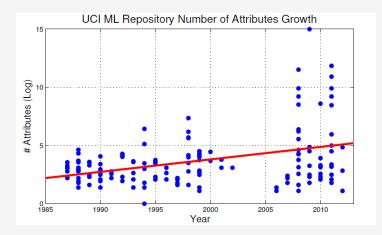
$$\mathsf{p}(\mathbf{x}_i^O; \boldsymbol{\theta}) = \sum_{k=1}^K \pi_k \mathsf{p}(\mathbf{x}_i^O; \boldsymbol{\alpha}_k) = \sum_{k=1}^K \pi_k \int_{\mathbf{x}_i^M} \mathsf{p}(\mathbf{x}_i^O, \mathbf{x}_i^M; \boldsymbol{\alpha}_k) d\mathbf{x}_i^M$$

Maximum a posteriori (MAP): with $t_k(\mathbf{x}_i^O; \theta) = p(Z_{ik} = 1 | \mathbf{x}_i^O; \theta) = \frac{\pi_k p(\mathbf{x}_i^O; \alpha_k)}{p(\mathbf{x}_i^O; \theta)}$

$$\hat{\mathbf{z}}_i = \arg \max_{k = \{1, \dots, K\}} t_k(\mathbf{x}_i^O; \boldsymbol{\theta})$$

Seems to be suitable for missing/uncertain data but which $p(\cdot; \alpha_k)$ for mixed data?

¹Could be relaxed to missing at random (MAR)

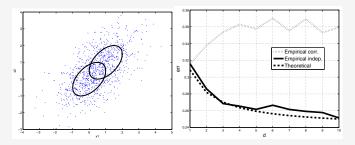

1 The problem

2 Conditional independent clustering

3 Estimation

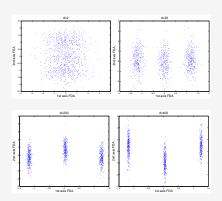
- 4 Clustering with MixtComp
- 5 Imputation with MixtComp

High-dimensional today's data²


²S. Alelyani, J. Tang and H. Liu (2013). Feature Selection for Clustering: A Review. Data Clustering: Algorithms and Applications, **29**

HD clustering: blessing (1/2)

A two-component *d*-variate Gaussian mixture with intra-dependency:


$$\pi_1=\pi_2=rac{1}{2}, \hspace{1em} \mathsf{X}_1|z_{11}=1\sim\mathsf{N}_d(\mathbf{0},\mathbf{\Sigma}), \hspace{1em} \mathsf{X}_1|z_{12}=1\sim\mathsf{N}_d(\mathbf{1},\mathbf{\Sigma})$$

- Each variable provides equal and own separation information
- Theoretical error decreases when d grows: $err_{theo} = \Phi(-\|\mu_2 \mu_1\|_{\Sigma^{-1}}/2)$
- Empirical error rate with the (true) intra-correlated model worse with d
- Empirical error rate with the (false) intra-independent model better with d!

HD clustering: blessing (2/2)

FDA

Neglect intra-dependency in HD clustering for better bias/variance trade-off^a

^aWhen variables convey no redundant cluster information; see conlusion

Mixed data: conditional independence everywhere

The aim is to combine continuous, categorical and integer data

$$\mathbf{x}_1 = (\mathbf{x}_1^{cont}, \mathbf{x}_1^{cat}, \mathbf{x}_1^{int})$$

The proposed solution is to mixed all types by inter-type conditional independence

$$\mathsf{p}(\mathsf{x}_1; \boldsymbol{\alpha}_k) = \mathsf{p}(\mathsf{x}_1^{cont}; \boldsymbol{\alpha}_k^{cont}) \times \mathsf{p}(\mathsf{x}_1^{cat}; \boldsymbol{\alpha}_k^{cat}) \times \mathsf{p}(\mathsf{x}_1^{int}; \boldsymbol{\alpha}_k^{int})$$

In addition, for symmetry between types, intra-type conditional independence

Only need to define the univariate pdf for each variable type!

- Continuous: Gaussian
- Categorical: multinomial
- Integer: Poisson

1 The problem

2 Conditional independent clustering

3 Estimation

- 4 Clustering with MixtComp
- 5 Imputation with MixtComp

SEM algorithm

A SEM algorithm to estimate θ by maximizing the observed-data log-likelihood

 $\ell(\boldsymbol{\theta}; \boldsymbol{x}^{O}) = \ln p(\boldsymbol{x}^{O}; \boldsymbol{\theta})$

Initialisation $\theta^{(0)}$

Iteration nb q:

- **E-step:** compute conditional probabilities $p(x^M, z | D; \theta^{(q)})$
- **S-step:** draw $(x^{M(q)}, z^{(q)})$ from $p(x^M, z|x^0; \theta^{(q)})$
- M-step: maximize $\theta^{(q+1)} = \arg \max_{\theta} \ln p(\mathbf{x}^O, \mathbf{x}^{M(q)}, \mathbf{z}^{(q)}; \theta)$

Stopping rule: iteration number

Properties

- simplicity because of conditional independence
- classical M steps
- avoids local maxima
- the mean of the sequence $(\theta^{(q)})$ approximates $\hat{\theta}$
- the variance of the sequence $(\theta^{(q)})$ gives confidence intervals

SE algorithm

A SE algorithm estimates then (x^M, z)

- Iteration nb q:
 - E-step: compute conditional probabilities p(x^M, z|x^O; ô)
 S-step: draw (x^{M(q)}, z^(q)) from p(x^M, z|x^O; ô)
- Stopping rule: iteration number

Properties

- simplicity because of conditional independence
- the mean/mode of the sequence $(\mathbf{x}^{M(q)}, \mathbf{z}^{(q)})$ estimates $(\mathbf{x}^{M}, \mathbf{z})$
- confidence intervals are also derived

1 The problem

2 Conditional independent clustering

3 Estimation

4 Clustering with MixtComp

5 Imputation with MixtComp

Prostate cancer data³

- Individuals: 506 patients with prostatic cancer grouped on clinical criteria into two Stages 3 and 4 of the disease
- Variables: d = 12 pre-trial variates were measured on each patient, composed by eight continuous variables (age, weight, systolic blood pressure, diastolic blood pressure, serum haemoglobin, size of primary tumour, index of tumour stage and histolic grade, serum prostatic acid phosphatase) and four categorical variables with various numbers of levels (performance rating, cardiovascular disease history, electrocardiogram code, bone metastases)
- Some missing data: 62 missing values ($\approx 1\%$)

We forget the classes (Stages of the desease) for performing clustering

Questions

- How many clusters?
- Which partition?

³Byar DP, Green SB (1980): Bulletin Cancer, Paris 67:477-488

Create a free account in MixtComp⁴

https://modal-research.lille.inria.fr/BigStat/

It implements the mixed/missing data clustering in a software as a service (SaaS)

BigStat	MixtComp	HDPenReg	MixAll	BlockClust	er Dev	+🕽 Login	+ Register
					Log in		
					Username		
					biernacki Password		
					Log In		
					Forgot Password?		
				ļ			

⁴See documentation at https://modal.lille.inria.fr/wikimodal/doku.php?id=mixtcomp

Two files to merge into a unique zip file

Variable descriptor file: descriptor.csv

8					rostate_descrip	tor.csx - OpenC	Hice.org Calc					- 6
Echier Ephien Mil												
🗄 + 🐸 🖯 🗛	2 🖬	8 🔻 🖉 🖇	6 No 🛷 (N	- (i - i 🚳 😫	31 🕸 🖌 I	H 🖉 🖬 🖯 🕯	. 0.					
80 Add	¥ 1	6/	5	= 111 🌲 X	923	e e i D • 2	- A - 1					
AL 1	- <u>F</u> E -	z_ches										
A		C	D	t		6	н			×	L	M
2 class	Age	300		HX	S8P		EKG	HG	52	93	AP	EM
2 LatertClass	Gaussian sik	Gaussian sik	Categorical pik	Categorical pik	Gaussian sik	Gaussian sik	Categorical pik	Gaussian sik	Gaussian sik	Gaussian sik	Gaussian sik	Categoric

													d	ata.csv - O
jichi	er É <u>d</u> ition	Affich	age į	nserti	on F	ormat	Qutils	Donnée	s Fe	gétre Aid	2			
	• 😕 🖯	-	2	a	3 0	N 145	ABC	× Ra	<u>.</u>	19		- @	1 81 80	ء 🏑 🗄
RU	Arial			Y	10	V	-	/ S	-			. %	5.8 to	W 20
89	Anal			~	10	¥	G	1 2					- 1000	32 42
A1		V	Ť	x ·	- [z_class								
-	٨	В	c	D	E	F	G	н			K	L	M	N
1	z class				нх				HG	SZ .	SG	AP	BM	
2	?	75	76		1	15	9		138	1.4142	6	1.0986	1	
3	?	54	116	1	1	13	7	4	146	6.4807	?	1.9459	1	
4	?	69	102			14	8	5	134	1.7321	9	1.0986	1	
5	?	75	94	2	2	14	7	2	176	2	8	2.1972	1	
6	?	67	99	1	1	17	10	1	134	5.831	8	1.6094	1	
7	?	71	- 98		1	19	10			3.1623		1.7918	1	
8	?	75	100		1	14	10	2	130	3.6056	- 9	2.0794	1	
9	?	73	114	1	2	17	11		126	1.7321		1.7918	1	
10	?	60	110		1	12	8		146			1.9459	1	
11	?	78	107	1			8			4.5826		1.3863	1	
12	?	77	89		1	15				1.7321		1.7918	1	
13	?	74	105		2		14			2.4495		1.3863	1	
14	?	74	107	1	1	14	9			2.4495		1.0986	1	
15	?	55	112		2							2.3026	1	
16	?	73	88			19	10			3.873		1.7918	1	
17	?	87	81	2			12			1.7321		1.3863	1	
18	?	64	90			14	8			2.4495		1.9459	1	
19	?	79	104			13				2.2361		1.6094	1	
20	?	62	90	1	2	13	8		144	1.4142		1.9459	1	

Learn!

Step 1: input zip file and K

BigStat ModComp + HDPenReg +	MtxAll + BlockCluster + Dev +			🕈 Hom	e 🕒 Logout
New Job	ew MixtComp/Learn job	×			
	Trial for ERCIM 2015				
	Browse (100MB max.) prostate_clustering_K2.zip				
Tr	🗉 Use param.ini		End	Down	loads
Calek view Essal 1/12 sor	Clusters 2 •		décembre 115 23:02:23	irput ≧ Params	Z Output Z Logs
Culot view Essai mardi 1/12	Submit		décembre 15 14:51:13	≧ Irput ≧ Params	A Output
Cause view Essai3 pour Euratech		Close	novembre 15 09:15:54	2 trout 2 Params	2 Output 2 Logs
Guidknew Essai2 pour EuraTech	23 novembre 23 novembre 23 novembre 23 novembre 23 novembre 2015 18:50:52 2015 18:		8 novembre 015 18:51:03	irput ≧Params	A Output

Step 2: it is running!

BigStat								
• New Ja	Tutorial							
		Fist 1	Les	st				
	Title	Status		Creation	Begin	End		
								loads
Quick view	Trial for ERCIM 2015	40%	×	11 décembre	11 décembre	Eng	Down	loads
Quick view		40% 13s left				Ella		loads
Quick view			-	11 décembre	11 décembre	1 décembre	2 Input	loads ≛ Output

Output

Nom	Modifié le	Туре	Taille
IDClass.html	23/11/2015 19:01	Fichier HTML	5 Ko
📋 log.txt	23/11/2015 19:01	Document texte	1 Ko
R output.RData	23/11/2015 19:01	R Workspace	54 Ko

Option 2: instant viewing clusters (variable-wise normalized entropy)

gStat	MbtCom	p + HDPenRe	eg -	Mb(All +	BlockC	luster +	Dev -									A Home	G• Log
IDC	Class																
Rela	tive impo	rtance of var	iables	in class	es												
	0.0	0.1	0.2	0.3	3	0.4		0,5	0.0	5	0.7		0.8		0.9		1.0
			AP	Age	ВМ	DBP	EKG	HG	нх	PF	SBP	sG	sz	w			
	c 1, pi: 0.42	491677769887	1	0	0.3	0	0	0.1	0	0	0	1	0.2	0			
	:: 2, pi: 0.57	3157557755304	1	0	0.3	0	0	0.1	0	0	0	1	0.2	0			
	imeters																
rdid	Class	Variable	Type			Param	ieters										
1	1	AP	Gaussi	an_sjk			mu: 3.94 sigma: 1.										
0.3	2	BM	Catego	rical pik				0005774			28903654	105051					

Output R format

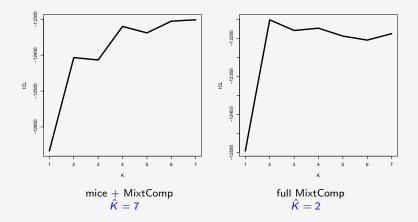
```
res
 strategy
     nbTrialInInit
     nbBurnInIter
     nbIter
     nbGibbsBurnInIter
     nbGibbsIter
 mixture
     nbCluster
     nbFreeParameters
     InObservedLikelihood
     InSemiCompletedLikelihood
     InCompletedLikelihood
     BIC
     ICL
     runTime
     nbSample
     warnLog
 variable
     data
         z class
             completed !!! <- imputed classes
             stat !!! <- a posteriori distribution of class for each individual (= p(z_i / x_i))</pre>
         categorical1
             completed
             stat
         categorical2, etc ...
     param
         z_class
             stat !!! <- model proportions and quantiles
             log
         categorical1
             stat
             log
         categorical2. etc ...
```

Note that the z_class variable contains all the information pertaining to the latent classes:

- res\$variable\$data\$sample\$completed contains the imputation for the class, \hat{z}_i
- res\$variable\$data\$sample\$stat contains the estimated a posteriori probabilities, \hat{t}_{ik}
- res\$variable\$param\$z_class\$stat contains the proportions, $\hat{\pi}_k$

Two strategies in competition

Strategy "mice⁵ + MixtComp": MixtComp on the dataset completed by mice


> data.imp=mice(data)

> data.comp.mice=complete(data.imp)

Strategy "full MixtComp": MixtComp on the observed (no completed) dataset

⁵http://cran.r-project.org/web/packages/mice/mice.pdf

Choosing K with the ICL criterion

... may lose some cluster information when imputation before clustering

Partition quality with K = 2

Strategy	mice + MixtComp	full MixtComp
% misclassified	12.8	8.1

To be compared also to missing data removal:

- 475 patients with non-missing data
- MixtComp for clustering
- possibility to consider continuous, categorical or mixed data

Strategy	continuous only	categorical only	mixed cont/cat
% misclassified	9.46	47.16	8.63

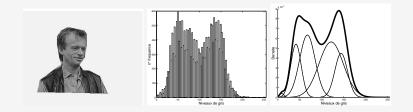
- \blacksquare risk of information lost when removing missing data lines/columns
- avoid to complete missing data (imputation depends on the purpose)

And for supervised classification?

Use now the predict functionality of MixtComp

Then same output format as the learn functionality of MixtComp

1 The problem


2 Conditional independent clustering

3 Estimation

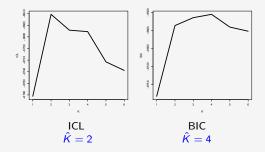
- 4 Clustering with MixtComp
- 5 Imputation with MixtComp

Mixture models as a extremely flexible family of distributions

Allow to estimate any distribution by increasing the number of components

Cancer dataset with more missing data

Add artificially $\approx 30\%$ missing data with a MCAR design


Then compare two strategies of imputation:

Strategy "mice": dataset completed by mice

> data.imp=mice(data)

> data.comp.mice=complete(data.imp)

Strategy "full MixtComp": MixtComp on the observed (no completed) dataset

Imputation accuracy

Continuous variables: mean of absolute difference between x and \hat{x}

var.	mice	$MixtComp\ (K=2)$	$MixtComp\;(K=4)$
Age	8.907143	5.546571	5.526861
Wt	13.51656	9.779485	9.731182
SBP	2.103226	1.788152	1.795820
DBP	1.317568	1.165201	1.169672
HG	21.67568	14.83514	14.51291
SZ	1.714899	1.160546	1.158105
SG	1.979866	1.386841	1.416053
AP	1.359299	1.027513	1.009126
Global mean	6.5718	4.5862	4.5400

Categorical variable: mean of the proportion of difference between x and \hat{x}

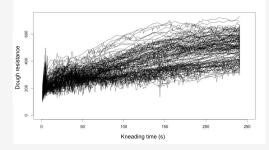
var.	mice	$MixtComp\;(K=2)$	MixtComp ($K = 4$)
PF	0.1904762	0.0952381	0.0952381
HX	0.4121622	0.4391892	0.4121622
EKG	0.7564103	0.6858974	0.7179487
BM	0.1081081	0.1486486	0.1216216
Global mean	0.3668	0.3422	0.3367

1 The problem

2 Conditional independent clustering

3 Estimation

- 4 Clustering with MixtComp
- 5 Imputation with MixtComp


Present and future of MixtComp

Present

- Clustering and/or imputation for mixed/mixing/incertain data
- Current variables: continuous, categorical, integer
- Limit highly the preprocessing step: upload data as they are
- Software as a Service (SaaS) facility, nothing to intall on the laptop
- Output: R objects and friendly/interactive graphical displays

Future

- Add other kinds of widespread variables: ordinal, ranks, functional, directional
- Add variable selection ability for tackle (very) high dimension: variable clustering?
- Improve gradually the server computing performance

