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Abstract. Learning the parameters of a Majority Rule Sorting model
(MR-Sort) through linear programming requires to use binary variables.
In the context of preference learning where large sets of alternatives and
numerous attributes are involved, such an approach is not an option in
view of the large computing times implied. Therefore, we propose a new
metaheuristic designed to learn the parameters of an MR-Sort model.
This algorithm works in two phases that are iterated. The first one con-
sists in solving a linear program determining the weights and the major-
ity threshold, assuming a given set of profiles. The second phase runs a
metaheuristic which determines profiles for a fixed set of weights and a
majority threshold. The presentation focuses on the metaheuristic and
reports the results of numerical tests, providing insights on the algorithm
behavior.

1 Introduction

Multiple criteria sorting procedures aim at assigning alternatives evaluated on
multiple criteria to a category selected in a set of pre-defined and ordered cate-
gories. In this article we investigate the Majority Rule Sorting procedure (MR-
Sort), a simplified version of the ELECTRE TRI sorting model [1, 2]. MR-Sort
is directly inspired by the work of Bouyssou and Marchant who provide an ax-
iomatic characterization [3, 4] of non-compensatory sorting methods. The general
principle of MR-Sort is to assign alternatives by comparing their performances
to those of profiles delimiting the categories. An alternative is assigned to a cat-
egory “above” a profile if and only if it is at least as good as the profile on a
(weighted) majority of criteria.

For using MR-Sort, several parameters need to be determined: the perfor-
mance vector associated to each profile, the criteria weights and a majority
threshold. It is not easy for a decision maker (DM) to assess such parameters.
He often prefers to provide typical examples of assignments of alternatives to



categories. Several papers have been devoted to learning the parameters of such
models on the basis of assignment examples. Mathematical programming tech-
niques for learning part or all the parameters of an ELECTRE TRI model are
described in [5–9] while [10] proposes a genetic algorithm designed for the same
purpose. Learning the parameters of a MR-Sort model is dealt with in [11, 12].

None of these proposals can be considered suitable to our case, since we
want to deal with large sets of assignment examples, having in mind the kind
of sorting problems encountered in the field of preference learning [13], more
precisely in the monotone learning subfield. [11] needs computing times as long
as 25 seconds to learn the parameters of a MR-Sort model involving 5 criteria
and 3 categories from a learning set containing 100 examples. This is no wonder
since their algorithm is based on the resolution of a mixed integer program
(MIP) in which the number of binary variables grows linearly with the number
of examples. The experimental results in [11] show that the computing time
increases very quickly with the number of examples.

From the previous work related to parameters learning for ELECTRE TRI
models, we retain two main lessons. Firstly, learning only the weights and the
majority threshold of a MR-Sort model can be done by solving a linear program
without binary variables as done in [6]. On the other hand, as demonstrated in
[7], learning only the profiles of such models by means of linear programming
does require binary variables.

Based on these observations, we have designed an algorithm that computes
the parameters of a MR-Sort model in order to assign as many as possible
alternatives in the learning set to their category. This algorithm has two main
components that are used repeatedly and alternatively. The first component
learns optimal weights and majority threshold, in case the profiles limiting the
categories are fixed. The second component adjusts the profiles for given weights
and majority threshold.

To assess the new algorithm, we have set up a series of numerical experiments
much in the spirit of [11]. The simulation experiments were designed in order to
address the following questions:

Algorithm performance Given a MR-Sort model involving n criteria and p
categories and a set of assignment examples compatible with this model, how
fast does the algorithm find parameters of an MR-Sort model which restores
the original assignments ?

Model Retrieval Given a MR-Sort model involving n criteria and p categories
and a set of assignment examples compatible with this model, how many
examples are required to obtain a model that is close to the original one?

Tolerance for errors Given a set of assignments, obtained through a MR-Sort
model, in which errors have been added, to what extent do the errors perturb
the algorithm?

Idiosyncrasy Each alternative of a set is assigned to a category by a rule that
is not a MR-Sort rule (actually, they are assigned by an additive sorting
rule). What’s the ability of the algorithm to find a MR-Sort model restoring



as many examples as possible ? In other terms, is MR-Sort flexible enough
to reproduce assignments by another type of sorting rule?

In the next section of this paper, we briefly recall the precise definition of the
MR-Sort procedure. In section 3, we describe the algorithm that we have devel-
oped. Numerical experiments designed for testing the algorithm are described,
their results summarized and commented on in section 4. We finally conclude
this paper with some perspectives for further research in view of improving the
current version of the algorithm.

2 MR-Sort procedure

The MR-Sort procedure is a simplified version of the ELECTRE TRI procedure
[1, 2], based on the work of Bouyssou and Marchant developed in [3, 4].

Let X be a set of alternatives evaluated on n criteria, F = {1, 2, ..., n}. We
denote by aj the performance of alternative a ∈ X on criterion j. The categories
of the MR-Sort model, delimited by the profiles bh−1 and bh, are denoted by
Ch, where h denotes the category index. We convene that the best category Cp
is delimited by a fictive upper profile, bp, and the worst one by a fictive lower
profile, b0. The performances of the profiles are denoted by bh,j , with j = 1, ..., n.
It is assumed that the profiles dominate one another, i.e.:

bh−1,j ≤ bh,j h = 1, . . . , p; j = 1, . . . , n.

Using the MR-Sort procedure (without veto), an alternative is assigned to a
category if its performances are at least as good as the performances of the
category’s lower profile and worse than the performances of the category’s upper
profile on a weighted majority of criteria. In the former case, we say that the
alternative is preferred to the profile, while, in the latter, it is not. Formally, an
alternative a ∈ X is preferred to profile bh, and we denote it by aSbh, if the
following condition is met:

aSbh ⇔
∑

j:aj≥bh,j
wj ≥ λ,

where wj for j ∈ F are nonnegative weights attached to the criteria and satisfying
the normalization condition

∑
j∈F wj = 1; λ is the majority threshold ; it satisfies

λ ∈ [1/2, 1]. The preference relation S can be seen as an outranking relation
without veto [2, 14, 15].

The condition for an alternative a ∈ X to be assigned to category Ch is
expressed as follows:∑

j:aj≥bh−1,j

wj ≥ λ and
∑

j:aj≥bh,j
wj < λ (1)

The MR-Sort assignment rule described above involves pn + 1 parameters,
i.e. n weights, (p − 1)n profiles evaluations and one majority threshold. Note



that the profiles b0 and bp are conventionally defined as follows: b0,j is a value
such that aj ≥ b0,j for all a ∈ X and j ∈ F ; bp,j is a value such that aj < bp,j
for all a ∈ X and j ∈ F .

A learning set is a subset of alternatives A ⊆ X for which an assignment for
each alternative is known. For h = 1, . . . , p, Ah denotes the subset of alternatives
a ∈ A which are assigned to category Ch. The subsets Ah are disjoint; some of
them may be empty.

3 The algorithm

3.1 Learning all the parameters

As demonstrated in [11], the problem of learning the parameters of a MR-Sort
model on the basis of assignment examples can be formulated as a mixed integer
program (MIP) but only instances of modest size can be solved in reasonable
computing times. The MIP proposed in [11] contains m · (2n + 1) binary vari-
ables, with n, the number of criteria, and m, the number of alternatives. A
problem involving 1000 alternatives, 10 criteria and 5 categories requires 21000
binary variables. For a similar program in [12], it is mentioned that problems
with less than 400 binary variables can be solved within 90 minutes. Following
these observations, we understand that MIP is not suitable for the applications
we want to deal with. In [10], a genetic algorithm was proposed to learn the
parameters of an ELECTRE TRI model. This algorithm could be transposed
for learning the parameters of a MR-Sort model. However, it is well known [16]
that genetic algorithms which take the structure of the problem into account to
perform crossovers and mutations give better results. It is not the case of the
genetic algorithm proposed in [10] since the authors’ definitions of crossover and
mutation operators are standard.

Learning only the weights and the majority threshold of an MR-Sort model on
the basis of assignment examples can be done using an ordinary linear program
(without binary or integer variables). On the contrary, learning profiles evalu-
ations is not possible by linear programming without binary variables. Taking
these observations into account, we propose an algorithm that takes advantage of
the ease of learning the weights and the majority threshold by a linear program
and adjusts the profiles by means of a dedicated heuristic.

The algorithm uses the following components (see Algorithm 1):

1. a heuristic for initializing the profiles;
2. a linear program learning the weights and the majority threshold, given the

profiles;
3. a dedicated heuristic adjusting the profiles, given weights and a majority

threshold.

In the next subsections we describe in more detail these three elements. The al-
gorithm uses the latter two components iteratively: starting from initial profiles,
we find the optimal weights and threshold for these profiles by solving a linear



program; then we adjust the profiles, using the heuristic, keeping the weights
and threshold fixed; the profile adjustment operation is repeated Nit times. We
call main loop the optimization of the weights and threshold followed by Nit

iterations of the profiles adjustment operation. The main loop is executed until
a stopping criterion is met.

Since the process of alternating the optimization of the weights and thresh-
old, on the one hand, and several iterations of the (heuristic) optimization of the
profiles, on another hand, is not guaranteed to converge to a good set of param-
eters, we implement the algorithm as an evolutionary metaheuristic, evolving,
not a single MR-Sort model, but a population of them. The number of models
in the population is denoted by Nmodel . After each application of the main loop
to all models in the population, we assess the resulting population of models
by using them to assign the alternatives in the learning set. The quality of a
MR-Sort model is assessed by its classification accuracy :

CA =
Number of assignment examples restored

Total number of assignment examples
.

At this stage, the algorithm reinitializes the
⌊
Nmodel

2

⌋
models giving the worst

CA. The stopping criterion of the algorithm is met either once the classification
accuracy of some model in the population is equal to 1 or after a maximum
number of iterations No (fixed a priori).

Algorithm 1 Metaheuristic to learn all the parameters of an MR-Sort model

Generate a population of Nmodel models with profiles initialized with a heuristic
repeat

for all model M of the set do
Learn the weights and majority threshold with a linear program, using the
current profiles
Adjust the profiles with a metaheuristic Nit times, using the current weights
and threshold.

end for
Reinitialize the

⌊
Nmodel

2

⌋
models giving the worst CA

until Stopping criterion is met

3.2 Profiles initialization

The first step of the algorithm consists in initializing a set of profiles so that it
can be used to learn a set of weights and a majority threshold. The general idea of
the heuristic we designed to set the value bh,j of the profile bh on criterion j is the
following. We choose this value in order to maximize the discriminating power of
each criterion, relatively to the alternatives in the learning set A. More precisely,
we set bh,j in such a way that alternatives ranked in the category above bh (i.e.
Ch+1) typically have an evaluation greater than bh,j on criterion j and those



ranked in the category below bh (i.e. Ch), typically have an evaluation smaller
than bh,j . In setting the profile values, the proportion of examples assigned to
a category is taken into account so that the alternatives assigned to categories
which are not often represented in the learning set have more importance. Note
the initial value of a profile bh is determined by only considering the examples
assigned to the category just below and just above the profile i.e. the examples
belonging respectively to the subsets Ah and Ah+1 in the learning set A. The
reason for this option is to balance the number of categories above and below
the profile that are taken into account for determining this profile. For profiles
b1 and bp−1, the only way of satisfying this requirement is to consider only one
category above and one category below the profile. For guaranteeing an equal
treatment of all profiles, we chose to consider only Ch and Ch+1 for determining
bh.

The heuristic works as follows:

1. For each category Ch, compute the frequency πh with which alternatives a

in the learning set are assigned to category Ch : πh = |Ah|
|A| .

2. For each criterion, the value of the profile bh,j is chosen s.t.:

maxbh,j [|a ∈ Ah+1 : aj ≥ bh,j | − |a ∈ Ah+1 : aj < bh,j |] (1− πh+1)

+ [|a ∈ Ah : aj < bh,j | − |a ∈ Ah : aj ≥ bh,j |] (1− πh).

The profiles are computed in descending order.

3.3 Learning the weights and the majority threshold

Assuming that the profiles are given, learning the weights and the majority
threshold of a MR-Sort model from assignment examples is done by means of
solving a linear program. The MR-Sort model postulates that the profiles dom-
inate each other, i.e. bh+1,j ≥ bh,j for all h and j, and the inequality is strict
for at least one j. The constraints derived from the alternatives assignments are
expressed as follows:∑

j:aj≥bh−1,j
wj − xa + x′a = λ ∀a ∈ Ah, h = 2, ..., p− 1∑

j:aj≥bh,j wj + ya − y′a = λ− δ ∀a ∈ Ah, h = 1, ..., p− 2∑n
j=1 wj = 1; λ ∈ [0.5; 1] wj ∈ [0; 1] ∀j ∈ F

xa, ya, x
′
a, y
′
a ∈ R+

0

The value of xa − x′a (resp. ya − y′a) represents the difference between the sum
of the weights of the criteria belonging to the coalition in favor of a ∈ Ah w.r.t.
bh−1 (resp. bh) and the majority threshold. If both xa − x′a and ya − y′a are
positive, then the alternative a is assigned to the right category. In order to
try to maximize the number of examples correctly assigned by the model, the
objective function of the linear program minimizes the sum of x′a and y′a, i.e. the
objective function is min

∑
a∈A(x′a + y′a). Note however that such an objective



function does not guarantee that the maximal number of examples are correctly
assigned. Failing to do so may be due to possible compensatory effects between
constraints, i.e. the program may favor a solution involving many small positive
values of x′a and y′a over a solution involving large positive values of a few of
these variables. Such a compensatory behavior could be avoided, but at the
cost of introducing binary variables indicating each violation of the assignment
constraints. We do not consider such formulations in order to limit computing
times.

3.4 Learning the profiles

Learning the profiles by using a mathematical programming formulation requires
binary variables, leading to a mixed integer program [7]. As we want to deal with
problems involving large learning sets, 10 criteria and 3 to 5 categories, MIP is
not an option. Therefore we opt for a randomized heuristic algorithm which is
described below.

Consider a model having 2 categories and 5 criteria and assume that two
alternatives are misclassified by this model. The one, a′, is assigned in category
C1 by the DM and in C2 by the model, while the other one, a′′, is assigned in
category C2 by the DM and in C1 by the model. Assuming fixed weights and
majority threshold, it means that the profile delimiting the two categories, is
either too high or too low on one or several criteria. In Figure 1, the arrows
show the direction in which moving the profile in order to favor the correct
classification of a′ or a′′. δa

′
j (resp. δa

′′
j ) denotes the difference between the profile

value b1,j and the alternative evaluations a′j (resp. a′′j ) on criterion j.

C1

C2

crit. 1 crit. 2 crit. 3 crit. 4 crit. 5

b0

b1

b2

a′

a′′

δa
′

1
δa

′
2

δa
′

3 δa
′

4

δa
′

5

δa
′′

4
δa

′′
5

δa
′′

2

w1 = 0.2

w2 = 0.2

w3 = 0.2

w4 = 0.2

w5 = 0.2

λ = 0.8

Fig. 1. Alternative wrongly assigned because of profile too low or too high

Based on these observations, we define several subsets of alternatives for each
criterion j and each profile h and any positive value δ:



V +δ
h,j (resp. V −δh,j ) : the sets of alternatives misclassified in Ch+1 instead of Ch

(resp. Ch instead of Ch+1), for which moving the profile bh by +δ (resp. −δ)
on j results in a correct assignment. For instance, a′′ belongs to the set V −δ1,4

on criterion 4 for δ ≥ δa′′4 .

W+δ
h,j (resp. W−δh,j ) : the sets of alternatives misclassified in Ch+1 instead of Ch

(resp. Ch instead of Ch+1), for which moving the profile bh of +δ (resp. −δ)
on j strengthens the criteria coalition in favor of the correct classification
but will not by itself result in a correct assignment. For instance, a′ belongs
to the set W+δ

1,1 on criterion 1 for δ > δa
′

1 .

Q+δ
h,j (resp. Q−δh,j) : the sets of alternatives correctly classified in Ch+1 (resp.
Ch+1) for which moving the profile bh of +δ (resp. −δ) on j results in a
misclassification.

R+δ
h,j (resp. R−δh,j) : the sets of alternatives misclassified in Ch+1 instead of Ch

(resp. Ch instead of Ch+1), for which moving the profile bh of +δ (resp. −δ)
on j weakens the criteria coalition in favor of the correct classification but
does not induce misclassification by itself. For instance, a′′ belongs to the
set R+δ

1,2 on criterion 2 for δ > δa
′′

2 .

T+δ
h,j (resp. T−δh,j ) : the sets of alternatives misclassified in a category higher

than Ch+1 (resp. in a category lower than Ch) for which the current profile
evaluation weakens the criteria coalition in favor of the correct classification.

In order to formally define these sets we introduce the following notation. Alh
denotes the subset of misclassified alternatives that are assigned in category Cl
by the model while the DM assigns them in category Ch. A>l<h denotes the subset
of misclassified alternatives that are assigned in category higher than Cl by the
model while the DM assigns them in a category below Ch. And similarly for
A<l>h. Finally, σ(a, bh) =

∑
j:aj≥bh,j wj . We have, for any h, j and positive δ:

V +δ
h,j =

{
a ∈ Ah+1

h : bh,j + δ > aj ≥ bh,j and σ(a, bh)− wj < λ
}

V −δh,j =
{
a ∈ Ahh+1 : bh,j − δ < aj < bh,j and σ(a, bh) + wj ≥ λ

}
W+δ
h,j =

{
a ∈ Ah+1

h : bh,j + δ > aj ≥ bh,j and σ(a, bh)− wj ≥ λ
}

W−δh,j =
{
a ∈ Ahh+1 : bh,j − δ < aj < bh,j and σ(a, bh) + wj < λ

}
Q+δ
h,j =

{
a ∈ Ah+1

h+1 : bh,j + δ > aj ≥ bh,j and σ(a, bh)− wj < λ
}

Q−δh,j =
{
a ∈ Ahh : bh,j − δ < aj < bh,j and σ(a, bh) + wj ≥ λ

}
R+δ
h,j =

{
a ∈ Ahh+1 : bh,j + δ > aj ≥ bh,j

}
R−δh,j =

{
a ∈ Ah+1

h : bh,j − δ < aj < bh,j
}

T+δ
h,j =

{
a ∈ A>h+1

<h+1 : bh,j + δ > aj ≥ bh,j
}

T−δh,j =
{
a ∈ A<h>h : bh,j − δ < aj ≤ bh,j

}
To avoid violations of the dominance rule between the profiles, on each criterion
j, +δ or −δ is chosen in the interval [bh−1,j , bh+1,j ]. We define the value P (b+δh,j)



which aggregates the number of alternatives contained in the sets described
above as follows:

P (b+δh,j) =
kV |V +δ

h,j |+kW |W
+δ
h,j |+kT |T

+δ
h,j |+kQ|Q

+δ
h,j |+kR|R

+δ
h,j |

dV |V +δ
h,j |+dW |W

+δ
h,j |+dT |T

+δ
h,j |+dQ|Q

+δ
h,j |+dR|R

+δ
h,j |

with kV , kW , kT , kQ, kR, dV , dW , dT , dQ and dR fixed constants. We define
similarly P (b−δh,j). In the definition of P (b+δh,j) (resp. P (b−δh,j)), the coefficients
weighting the number of elements in the sets in the numerator are chosen so as to
emphasize the arguments in favor of moving the value bh,j of profile bh to bh,j+δ
(resp. −δ), while the coefficients in the denominator emphasize the arguments
against such a move. The values of the coefficients are empirically set as follows:
kV = 2, kW = 1, kT = 0.1, kQ = kR = 0, dV = dW = dT = 1, dQ = 5, dR = 1.

The value bh,j of profile bh on criterion j will possibly be moved to the value
aj of one of the alternatives a contained in V +δ

h,j , V −δh,j , W+δ
h,j or W−δh,j . More

precisely, it will be set to aj or a value slightly below or slightly above aj . The
exact new position of the profile is chosen so as to favor a correct assignment for
a.

All such values aj are located in the interval [bh−1,j , bh+1,j ]. A subset of such
values is chosen in a randomized way. The candidate move corresponds to the
value aj in the selected subset for which P (b∆h,j) is maximal, ∆ being equal to
aj − bh,j (i.e. a positive or negative quantity). To decide whether to make the
candidate move, a random number r is drawn uniformly in the interval [0, 1] and
the value bh,j of profile bh is changed if P (b∆h,j) ≤ r.

This procedure is executed for all criteria and all profiles. Criteria are treated
in random order and profiles in ascending order.

Algorithm 2 summarizes how this randomized heuristic operates.

Algorithm 2 Randomized heuristic used for improving the profiles

for all profile bh do
for all criterion j chosen randomly do

Choose, in a randomized manner, a set of positions in the interval [bh−1,j , bh+1,j ]
Select the one such that P (b∆h,j) is maximal
Draw uniformly a random number r from the interval [0, 1].
if r ≤ P (b∆h,j) then

Move bh,j to the position corresponding to bh,j +∆
Update the alternatives assignment

end if
end for

end for



4 Numerical experiments

4.1 Performance of the algorithm

Our first concern is to measure the performance of the algorithm and its conver-
gence, i.e. how many iterations are needed to find a model restoring a majority
of assignment examples and how much time is required to learn this model? To
measure this, an experimental framework is set up:

1. An MR-Sort model M is generated randomly. The weights are uniformly
generated as described in [17], i.e. n−1 random numbers are uniformly drawn
from the interval [0, 1] and ranked s.t. rn = 1 > rn−1 ≥ ... ≥ r1 > 0 = r0.
Then weights are defined as follows: wj = rj − rj−1, with j = 1, ..., n. The
majority threshold is uniformly drawn from the interval [1/2, 1]. For the
profiles evaluations, on each criterion p − 1 random numbers are uniformly
drawn from the interval [0, 1] and ordered s.t. r′p−1 ≥ ... ≥ r′1. Profiles
evaluations are determined by bh,j = r′h, h = 1, ..., p − 1. Using model M
as described by (1), each alternative can be assigned to a category. The
resulting assignment rule is referred to as sM .

2. A set of m alternatives with random performances on the n criteria is gen-
erated. The performances are uniformly and independently drawn from the
[0, 1] interval. The set of generated alternatives is denoted by A. The alter-
natives in A are assigned using the rule sM . The resulting assignments and
the performances of the alternatives in the set A are given as input to the
algorithm. They constitute the learning set.

3. On basis of the assignments and the performances of the alternatives in A,
the algorithm learns a MR-Sort model which maximizes the classification
accuracy. The model learned by the metaheuristic is denoted by M ′ and the
corresponding assignment rule, sM ′ .

4. The alternatives of the learning set A are assigned using the rule sM ′ . The
assignment resulting from this step are compared to the one obtained at step
2 and the classification accuracy CA(sM , sM ′) is computed 3

We test the algorithm with models having 10 criteria and 3 to 5 categories
and learning sets containing 1000 assignment examples. These experiments are
done on an Intel Dual Core P8700 running GNU/Linux with CPLEX Studio
12.5 and Python 2.7.3.

In Figure 2, the average value of CA(sM , sM ′) obtained after repeating 10
times the experiment is shown. When the number of categories increases, we
observe that the algorithm needs more iterations to converge to a model restoring
correctly all assignment examples. This experiment shows that it is possible to
find a model restoring 99% of the assignment examples in a reasonable computing
time. On average two minutes are required to find the parameters of a model
having 10 criteria and 5 categories with Nmodel = 10, No = 30 and Nit = 20.

3 To assess the quality of a sorting model, other indices are also used, like the area
under curve (AUC). In this paper, we use only the classification accuracy (CA) as
quality indicator.
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Fig. 2. Evolution of the classification accuracy of the learning set of a model composed
of 10 criteria and a variable number of categories (Nmodel = 10;No = 30;Nit = 20)

4.2 Model retrieval

This experiment aims at answering the following question: How many assign-
ment examples are required to obtain the parameters of a model which restores
correctly a majority of assignment examples? This question has been already
covered in [11] for models having no more than 5 criteria and 3 categories. To
answer this question for models with more parameters we add a step to the test
procedure described above:

5. A set of 10000 random alternatives, B, is generated analogously to 2. We
call this set, the generalization set. Alternatives of the set B are assigned by
models M and M ′. Finally the assignment obtained by models M and M ′

are compared and the classification accuracy CA(sM , sM ′) is computed.

Figure 3(a) and 3(b) show the average, min and max CA(sM , sM ′) of the
generalization set after learning the parameters of models having 10 criteria
and 3 or 5 categories on the basis of 100 to 1000 assignment examples. Figure
3(a) shows that 400 examples are sufficient to restore on average 95 % of the
assignments for models having 3 categories, 10 criteria while 800 examples are
needed for ones having 5 categories, 10 criteria (see Figure 3(b)). As expected,
the higher the cardinality of the learning set, the more CA(sM , sM ′) is high in
generalization.

4.3 Tolerance for errors

To test the behavior of the algorithm when the learning set is not fully compatible
with a MR-Sort model, a step is added in the test procedure after generating
the assignment examples:

2’ A proportion of errors is added in the assignments obtained using the model
M . For each alternative of the learning set, its assignment is altered with
probability P , the altered assignment example is uniformly drawn among
the other categories. We denote by s̃M the rule producing the assignments
with errors.
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Fig. 3. Evolution of the classification accuracy on the generalization set. A 10 criteria
with 3 or 5 categories model has been learned on the basis of learning sets containing
from 100 up to 1000 assignment examples (Nmodel = 10;No = 30;Nit = 20)

Tolerance for errors is tested by learning the parameters of a MR-Sort model
having 5 categories and 10 criteria on the basis of 1000 assignment examples
generated using s̃M . In Figure 4(a), the average classification accuracy of the
learning set is shown for 10 test instances with 10 to 40 % of errors in the
learning set. We observe that CA(s̃M , sM ′) converges to 1 − P when there are
errors in the learning set. Among the assignment examples badly assigned by
the model, a majority corresponds to altered examples. To see to what extent
the errors affect the algorithm, we generate a generalization set that is assigned
both by the rule sM and sM ′ . The resulting sets are compared and CA(sM , sM ′)
is computed. In Figure 4(b), average, minimal and maximal CA(sM , sM ′) are
shown for 10 test instances. We observe that for small numbers of errors, i.e. less
than 20 %, the algorithm tends to modify the model s.t. CA(sM , sM ′) is altered
on average by the same percentage of error in generalization. When there are
more than 20% of errors in the learning set, the algorithm is able to find a model
giving a smaller proportion of assignment errors in generalization.
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Fig. 4. Evolution of the classification accuracy (CA(s̃M , sM′)) for the alternatives in
the learning set (a) and the generalization set (b). A 5 categories and 10 criteria model
is inferred on the basis of 1000 assignment examples containing 10 to 40 % of errors
(Nmodel = 10;No = 30;Nit = 20)



4.4 Idiosyncratic behavior

This experiment aims at checking if an MR-Sort model is able to represent
assignments that have been obtained by another sorting rule based on an additive
value function (AVF-Sort model). In such a model, a marginal utility function
uj is associated to each criterion. In the chosen model, utility functions are
piecewise linear and monotone. They are split in k parts in the criterion range
[gj∗, g∗j ], with gj∗ the less preferred value and g∗j the most preferred value on j,
s.t. u(gj∗) = 0 and u(g∗j ) = 1. The end points of the piecewise linear functions

are given by glj = gj∗ + l
k

(
g∗j − gj∗

)
, with l = 0, ..., k. Marginal utility of an

alternative a on criterion j is denoted by uj(aj). The score of an alternative is
given by the global utility function which is equal to U(a) =

∑n
j=1 wjuj(aj),

with U(a) ∈ [0, 1] and
∑n
j=1 wj = 1. The higher the value of U(a), the more a

is preferred. Categories are delimited by ascending global utility values βh, s.t.
an alternative a is assigned in category h iff βh−1 ≤ U(a) < βh with β0 = 0 and
βp = 1 + ε, ε being a small positive value. Such an additive model is used in the
UTADIS method [18, 19]. We study the ability of our metaheuristic to learn an
MR-Sort model from a learning set generated by an AVF-Sort model. To do so,
we replace step 1 by:

1. A sorting model M based on an additive value function is randomly gener-
ated. To generate the weights, the same rule as for the MR-Sort model is
used. For each value function, k − 1 random are uniformly drawn from the
interval [0, 1] and ordered s.t. rk = 1 ≥ rk−1 ≥ ... ≥ r1 ≥ 0 = r0, then end
points are assigned as follows u(glj) = rl, with l = 0, ..., k. For the category
limits βh, p−1 random numbers are uniformly drawn from the interval [0, 1]
and then ordered s.t. rp−1 ≥ ... ≥ r1. Category limits are given by βh = rh,
h = 1, ..., p− 1. The assignment rule is denoted by s∗M .

Once the model generated, the alternatives are assigned by the model M and
the metaheuristic tries to learn a MR-Sort model from the assignments obtained
by M . To assess the ability of the heuristic to find a MR-Sort model restoring
the maximum number of examples, we test it with 1000 assignment examples,
on models composed of 10 criteria and 2 to 10 categories. We choose to use an
AVF-Sort model in which each additive value function is composed of 3 segments.
This experiment is repeated 10 times. Figure 5(a) presents the average, minimum
and maximum CA(s∗M , sM ′) of the learning set. The plot shows that the MR-
Sort model is able to represent on average 80% of the assignment examples
obtained with an AVF-Sort model when there are no more than 5 categories. We
perform a generalization by assigning 10000 alternatives through the AVF-Sort
model, M and through the learned MR-Sort model, M ′. Figure 5(b) shows the
average, minimum and maximum classification accuracy of the generalization set.
These results confirm the behavior observed with the learning set. The ability to
represent assignments obtained by an AVF-Sort model with an MR-Sort model
is limited, even more when the number of categories increases.
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Fig. 5. Evolution of the classification accuracy (CA(s∗M , sM′)) for alternatives in the
learning set (a) and the generalization set (b). An MR-Sort model is learned on the
basis of assignment examples obtained with an AVF-Sort model having 10 criteria and
2 to 10 categories.

5 Conclusions and further research

In this paper we presented an algorithm that is suitable to learn a MR-Sort model
from large sets of assignment examples. Unlike the MIP proposed in [11], it is
possible to learn a model composed of 10 criteria and 5 categories that restores
99% of the examples of assignments in less than two minutes for a learning set
composed of 1000 alternatives with no error.

In the case of a learning set containing a proportion of assignment errors,
the experimentations showed that the algorithm finds a model giving on av-
erage a smaller or equal proportion of errors in generalization. We also found
that assignment examples obtained by an AVF-Sort model are quite difficult to
represent with an MR-Sort model. Further researches have to be done with the
AVF-Sort model to see if it is able to learn a model that restores correctly a set
of assignment examples obtained by an MR-Sort model.

The metaheuristic described in this paper does not cover MR-Sort models
with vetoes. Learning the parameters of a MR-Sort model with vetoes deserves
to be studied and will improve a bit the ability of the model to represent assign-
ments.
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