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ABSTRACT
Learning redundant dictionaries for sparse representation
from sets of patches has proven its efficiency in solving in-
verse problems. In many methods, the size of the dictionary
is fixed in advance. Moreover the optimization process often
calls for the prior knowledge of the noise level to tune param-
eters. We propose a Bayesian non parametric approach which
is able to learn a dictionary of adapted size : the adequate
number of atoms is inferred thanks to an Indian Buffet Pro-
cess prior. The noise level is also accurately estimated so that
nearly no parameter tuning is needed. Numerical experiments
illustrate the relevance of the resulting dictionaries.

Index Terms— sparse representations, dictionary learn-
ing, inverse problems, Indian Buffet Process

1. INTRODUCTION

Inverse problems in image processing (denoising, inpainting,
deconvolution, super resolution...) are most often ill-posed
problems so that the set of solutions is not a singleton. Some
prior information or regularization is necessary. This can be
based on the use of sparse representations. Such represen-
tations can be either some family of mathematical functions
(DCT, wavelets...) or a dictionary learnt from the data, typi-
cally over a set of patches (e.g., 8×8 blocks). Several works
have proposed to learn redundant dictionaries where the num-
ber K of atoms may be larger than the dimension P of the
space, e.g, K > P = 64 for 8×8 patches. The richer the
dictionary, the sparser the representation. An oversized dic-
tionary leads to overfitting while too small it becomes useless.
The choice of the size of a dictionary is crucial. A few works
have elaborated on the seminal K-SVD approach [1] to pro-
pose dictionary learning (DL) methods that infer the size of
the dictionary. They automatically determine the ‘efficient’
number of atoms to represent image patches like enhanced K-
SVD [2], subclustering K-SVD [3] or stagewise K-SVD [4].
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These strategies essentially alternate between two steps to ei-
ther increase or decrease the size of the dictionary thanks to
some modification of the K-SVD approach. A fast online ap-
proach is Clustering based Online Learning of Dictionaries
(COLD) [5] which elaborates on the work in [6] by adding a
mean-shift clustering step in the dictionary update step. An-
other strategy was proposed in [7] that starts from 2 atoms
only. Then atoms are recursively bifurcated aiming at a com-
promise between the reconstruction error and the sparsity of
the representation. In these optimization methods sparsity is
typically promoted by L0 or L1 penalty terms on the set of
encoding coefficients.

In [8], a Bayesian DL method is proposed thanks to a
Beta-Bernoulli model where sparsity is promoted through an
adapted Beta-Bernoulli prior to enforce many encoding coef-
ficients to zero. Note that this corresponds to a parametric ap-
proximation of the Indian Buffet Process since this approach
works with a (large) fixed number of atoms. The present con-
tribution belongs to the same family but the size of the dic-
tionary is no more fixed in advance. This is made possible
thanks to the use of a Bayesian non parametric prior, namely
an Indian Buffet Process (IBP) [9, 10] to both promote spar-
sity and deal with an adaptive number of atoms. The proposed
method learns atoms starting from an empty dictionary, ex-
cept the constant atom to treat the DC component apart as
usual. Gibbs sampling is used for inference. The proposed
method does not need to tune parameters since the level of
noise, which determines the regularization level for sparse en-
coding, is also estimated during the dictionary learning. This
makes the method truely non parametric, only some crude
intialization is needed. We illustrate the relevance of this ap-
proach on a set of denoising experiments.

Section 2 briefly recalls on the problem of dictionary
learning. Section 3 first presents the Indian Buffet Process
(IBP) prior, then the proposed model and the Gibbs sampling
algorithm for inference. Section 4 illustrates the relevance of
our DL approach on classical image denoising experiments
in comparison with other DL methods. Section 5 concludes.
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Fig. 1: Graphical model for IBP-DL.

2. DICTIONARY LEARNING (DL)

Here is a brief introduction to the DL optimization problem,
see [11] for a review. Let matrix Y = [y1, ...,yN ] ∈ RP×N

a set of N image patches of size
√
P ×

√
P , ordered lexi-

cographically as column vectors y ∈ RP . Let dictionary of
K atoms D = [d1, ...,dK ] ∈ RP×K . In presence of some
additive noise ε ∈ RP×N , the data is modeled by

Y = DW + ε (1)

where W = [w1, ...,wN ] ∈ RK×N are the encoding co-
efficients. Each observation yi should be described by a
sparse set of coefficients wi. Usually, when working on
image patches of size 8 × 8 (in dimension P = 64), a set
of K = 256 or 512 atoms is learnt [1, 8, 11]. The noise is
generally assumed to be Gaussian i.i.d. (reconstruction error
= quadratic error). Sparsity is typically imposed through a
L0 or L1-penalty in the mixed optimization problem (other
formulations are possible):

(D,W) = argmin(D,W)

1

2
‖Y −DW‖22 + λ‖W‖1 (2)

Various approaches have been proposed to solve this problem
by an alternate optimization on D and W, including K-SVD
(batch DL) [1, 11] and ODL (online DL) [6]. Note that the
choice of the regularization parameter λ is of importance and
should be decreasing with the noise level σε. We consider
a Bayesian formulation of this problem and Gibbs sampling
for inference; moreover the noise level is estimated simulta-
neously so that no parameter tuning is necessary.

3. PROPOSED APPROACH : IBP-DL

The present approach uses the Indian Buffet Process (IBP)
[9, 10] as a Bayesian non parametric prior on sparse binary
matrices. The IBP prior can be understood as a prior on sparse
binary matrices with a potentially infinite number of rows,
which is key to the learning of a dictionary for sparse rep-
resentation with adaptive (potentially infinite) size. We only
briefly recall about the IBP (see [10] for details) before de-
scribing the model and Gibbs sampling inference.

N (µ,Σ) : Gaussian distribution of expectation µ and covariance Σ

3.1. Indian Buffet Process (IBP)

The IBP was introduced in [9, 10] to deal with latent features
models in a Bayesian non parametric framework. It can be
built as the limit of a finite Beta-Bernoulli model with an in-
finite number of features. IBP provides a prior on infinite
binary feature-assignement matrices Z : Z(k, i) = 1 if ob-
servation i owns feature k (0 otherwise). It combines two
interesting properties for dictionary learning. IBP generates
binary matrices that are sparse and potentially infinite. There-
fore such a prior on the support of coefficients of a sparse
representation with an adaptive number of atoms may be rel-
evant. The properties of IBP are usually introduced thanks to
the following ‘history’. A sequence of customers (observa-
tions) taste dishes (features) in an infinite buffet. Customer
i tastes dish k with probability mk/i where mk is the num-
ber of previous customers who have tasted dish k : this be-
haviour induces some clustering of customers’choices who
exploits previous customers decisions. The customer i also
tastes Poisson(α/i) new dishes, which allows for exploration.
Taking into account the exchangeability of customers and the
invariance to the ordering of features, IBP is characterized by
a distribution on equivalence classes of binary matrices [9] :

P [Z] =
1

2N−1∏
h=1

Kh!

exp(−αHN )

K+∏
k=1

(N −mk)!(mk − 1)!

N !

(3)

where HN=
N∑
i=1

1
i , mk is the number of observations using

feature k, K+ is the number of features for whichmk > 0, Kh
is the number of features with the same ‘history’ Z(k, ·) =
h. Parameter α > 0 controls the expected total number of
features that K+ ∼ Poisson(αHN ) hence IE[K+]=αHN '
α logN . The IBP permits to both deal with a variable sized
dictionary (potentially infite but penalized) and promote spar-
sity (like a Bernoulli-Gaussian model).

3.2. The Bayesian non parametric model: IBP-DL

Fig. 1 shows the graphical model which may be expressed as

yi = Dwi + εi,∀1 ≤ i ≤ N (4)
wi = zi � si,∀1 ≤ i ≤ N (5)
dk ∼ N (0, P−1IP ),∀k ∈ N (6)
Z ∼ IBP (α) (7)
si ∼ N (0, σ2

sIK),∀1 ≤ i ≤ N (8)
εi ∼ N (0, σ2

εIP ),∀1 ≤ i ≤ N (9)

where yi is a column vector of dimension P ,� represents the
Hadamard product. We place priors on D, W and ε. The
vector zi ∈ {0, 1}K denotes wich of the K columns of D
are used for representation of yi ; si ∈ RK represents the
coefficients used for this representation. The representation



Fig. 2: Barbara, σε = 40 : IBP-DL dictionary of 59 atoms.

wi is defined : zki=0⇒ wki=0 and zki=1⇒ wki=ski, as in
a parametric Bernoulli-Gaussian model. Hence, the sparsity
properties of W are induced by the sparsity of Z thanks to the
IBP prior. The present model also deals with a potentially in-
finite number of atoms dk so that the size of the dictionary is
not limited a priori. However, the IBP prior plays the role of a
regularization term that tends to penalize the numberK of ac-
tive (non zero) rows in Z; we have seen that IE[K] ' α logN
in the IBP. Except for σ2

D that is fixed to 1/P , conjugate pri-
ors are used for parameters θ = (σ2

S , σ
2
ε, α): inverse Gamma

distributions for variances with very small hyperparameters
(c0 = d0 = e0 = f0 = 10−6) to make hyperpriors vague; a
G(1, 1) for α associated to a Poisson law in the IBP. Detailed
expressions of posterior distributions are given below. We
emphasize that the noise variance σ2

ε is estimated as well dur-
ing inference, making the approach very close to truely non
parametric. Fig 2 shows an example of a result of IBP-DL.

3.3. Algorithm for Gibbs sampling

Now we briefly describe the Gibbs sampling strategy to sam-
ple the posterior distribution P (D,S,Z,θ|Y).
Sampling Z ∼ IBP (α). Z is a matrix with an infinite num-
ber of rows, but only non-zero rows are kept in memory. Let
mk,−i the number of observations other than i using atom k.
One possible Gibbs sampling of the IBP goes in 2 steps [10]
: 1) update the zki = Z(k, i) for ‘active’ atoms k such that
mk,−i > 0 (at least 1 patch other than i uses dk); 2) add
new rows to Z which corresponds to activating new atoms in
dictionary D. In practice, one deals with finite matrices Z
and S despite their theoretically potentially infinite size.
Update active atoms : The prior term is p(zki = 1|Zk,−i) =
mk,−i/N . The likelihood p(Y|D,Z,S,θ) is easily com-
puted from the Gaussian noise model. Thanks to conjugacy
of the prior on dictionary D, we can marginalize D out. Then

p(Y|Z,S, σ2
ε, σ

2
D) = p(Y|W, σ2

ε, σ
2
D) = (10)

exp
{
− 1

2σ2
ε

tr[Y(I−WT (WWT +
σ2
ε

σ2
D
I)−1W)YT ]

}
(2π)NP/2σ

(N−K)P
ε σKPD |WWT +

σ2
ε

σ2
D
I|P/2

In [10], from Bayes’ rule:

p(zki|Y,Zk,−i,S, σ
2
ε, σ

2
D) ∝ p(Y|W, σ2

ε, σ
2
D)p(zki|Zk,−i)

(11)

G(x; a, b) = xa−1ba exp(−bx)/Γ(a) pour x > 0

Init. : K=0, Z=∅, D=∅, α=1, σ2
D=P−1, σ2

S=1, σε
Result: D ∈ RP×K ,Z ∈ {0; 1}K×P ,S ∈ RK×P , σε
for iteration t=1:T do

Sample Z ∼ IBP(α)
for data i=1:N do

for atom k=1:K do
Sample Z(k, i) according to (11)

end
Sample knew (# of new atoms) acc. to (13)
Complete Z with knew rows
Complete S with knew rows ∼ N (0, σ2

S)
Update K← size(Z,1)

end
for intern loop f=1:F (e.g. 1 ≤ F ≤ 10) do

for atoms k=1:K do
Sample dk ∼ N (µdk,Σdk) (14)
Sample S(k, zk 6= 0) ∼ N (µsk,Σsk) (15)

end
Sample σS according to (16)
Sample σε according to (17)

end
Sample α according to (18)

end
Algorithm 1: Pseudo-algorithm of the IBP-DL method.

If row Z(k, ·)=0, we suppress this row and the atom dk in D.
Activate new atoms : Following [12], we use a Metropolis-
Hastings method to sample the number knew of new atoms.
This is equivalent in fact to deal with rows of Z such that
mk,−i = 0: this happens either when an atom is not used (in-
active, not stored) or when it is used by 1 patch only. Rows
with singletons have a unique coefficient 1 and zeros else-
where: zki = 1 and mk,−i = 0. To sample the number
of new atoms amounts to sample the number of singletons
since when a new atom is activated, it creates a new single-
ton. Let ksing the number of such singletons in matrix Z. Let
kprop ∈ N a proposal for the new number of singletons ac-
cording to the same distribution as the prior on ksing that is a
Poisson law with parameter α

N in the IBP model:

J(kprop) = P(kprop;α/N) (12)

Then the acceptance threshold is simply governed by the like-
lihood ratio after integrating new atoms dk out. The proposal
is accepted so that knew = kprop if a uniform random variable
u ∈ (0, 1) verifies

u ≤ min

(
1,
p(Y |kprop, rest)
p(Y |ksing, rest)

)
(13)

Let γε=1/σ2
ε, γD=1/σ2

D, γS=1/σ2
S . Sampling D, S and

θ = (σ2
S , σ

2
ε, α) are done according to



D


p(dk|Y,Z,S,D−k,θ) ∝ N (µdk

,Σdk
)

Σdk
=

(
γDIp + γε

N∑
i=1

w2
ki

)−1

µdk
= γεΣdk

N∑
i=1

wki(yi −Dwi + dkwki)

(14)

S



p(ski|Y,D,Z,Sk,−i,θ) ∝ N (µski
,Σski

)

zki = 1⇒

{
Σski

=
(
γεd

T
k dk + γS

)−1

µski
= γεΣski

dTk (yi −Dwi + dkski)

zki = 0⇒
{

Σski
= σ2

S

µski
= 0

(15)

1

σ2
S

∼ G

(
c0 +

KN

2
, d0 +

1

2

N∑
i=1

sTi si

)
(16)

1

σ2
ε

∼ G

(
e0 +

NP

2
, f0 +

1

2

N∑
i=1

‖yi −Dwi]‖22

)
(17)

α ∼ G

1 +K, 1 +

N∑
j=1

1/j

 (18)

An optional intern loop of F iterations can be used to sample
(D,S, σS , σε|Z) at fixed support Z (see Algo. 1).

4. NUMERICAL EXPERIMENTS

Dictionary learning (DL) provides an adapted representation
to solve inverse problems. Even though there exist better state
of the art methods for denoising, e.g. BM3D [13], one sim-
ple and usual way to compare the relevance of different dic-
tionary learning methods is to compare their denoising per-
formances. Results from BM3D are recalled for informa-
tion only since we do not expect to obtain better results here.
Present experiments aim at checking the relevance of the dic-
tionaries obtained from the proposed IBP-DL in the simple
setting for comparisons. In our experiments, 9 images of size
512×512 (8 bits) are processed for 2 noise levels σε=25 or
40. The initial value of σ̂ε is set to a crude estimate of twice
the true one in Algo. 1. There are (512 − 7)2 = 255025
overlapping patches in each image. Here IBP-DL works with
16129 50%-overlapping patches only. The DC component
(the mean value) is kept apart; it is associated to the con-
stant atom d0 = (1, ..., 1). The denoising method [14]1 use
Orthogonal Matching Pursuit (OMP) and K-SVD dictionary.
It averages pixel estimates from overlapping patches recon-
structed by OMP with maximum number of coefficients set to
ten. The images are denoised by using this method with the
same default initialization: the maximum tolerance of rep-
resentation error is set to 1.15σε and Lagrangian multiplier

1Matlab code by R. Rubinstein is available at http://www.cs.
technion.ac.il/˜ronrubin/software.html

Image Case σε=25 Case σε=40
Initial value σinit = 51 σinit = 76.5

Barbara 25.86 40.76
Boat 25.82 40.64

Cameraman 26.10 41.16
Fingerprint 25.79 40.90
GoldHill 25.89 40.70

House 25.53 40.36
Lena 25.45 40.24

Mandrill 27.57 42.50
Peppers 25.76 40.58

Table 1: Estimation results of noise level estimates for 2
noise levels in 9 images.

λ = 30/σε. But the K-SVD dictionary is here replaced by
IBP-DL and the noise level σε is its IBP-DL estimate σ̂ε.

We illustrate the relevance of IBP-DL by comparing de-
noising results with BM3D (state of the art as a top reference)
and several DL based methods [1]:

1. BM3D as a state of the art reference

2. K-SVD with K=256 learnt from all available patches,

3. K-SVD with K=256 learnt from the same reduced
dataset as IBP-DL,

4. DLENE [7], an adaptive approach to learn overcom-
plete dictionaries with efficient numbers of elements.

Fig.3 gathers numerical results. It gives denoising perfor-
mances and the dictionary size of IBP-DL, and results of other
methods. The main observation is that IBP-DL performances
are comparable to K-SVD, 0.3dB below at worst. Since our
purpose is not to achieve the best denoising but to validate
our dictionary learning approach, this is a good indication that
IBP-DL dictionaries are as relevant as K-SVD ones. Note that
the results using K-SVD are presented in the best conditions,
that is when the parameters are set to their optimal values.
This is possible in particular when an accurate estimate of
the level of noise is available. However we emphasize that in
IBP-DL the noise level is part of the set of estimated param-
eters so that the method does not call for any parameter tun-
ing. Another important observation with respect to K-SVD
is its sensitivity to the training set. It appears that denois-
ing performances drop dramatically when a reduced training
set is used which indicates a worse learning efficiency than
IBP-DL of which performances are similar using a full or re-
duced training set. Here, to reduce computational time, IBP-
DL works with a reduced set of 50% overlapping patches
(16129 patches). Fig.3 shows that K-SVD performs much
worse when using this same dataset in place of the full set of
255025 patches.

It is noticeable that IBP-DL dictionaries sometimes fea-
ture K < 64 atoms : the adaptive sized dictionary is not
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Fig. 3: Denoising results and sizes of IBP-DL dictionaries for noise level (top) σε = 25, (bottom) σε = 40. The text above
each group of bars is the IBP-DL dictionary size. From left to right are the PSNR using IBP-DL, K-SVD with 256 atoms learnt
from the full set of available patches, K-SVD with 256 atoms learnt from the reduced training set (as IBP-DL), BM3D.

always redundant. However, the denoising performance re-
mains comparable with K-SVD that learns a larger redundant
dictionary of 256 atoms : the IBP-DL dictionary well cap-
tures a reduced and efficient representation of the image con-
tent. One can observe that the size of the dictionary seems
to increase for a smaller noise level. This is understandable
since in the limit of no noise, the dictionary should ideally
comprise all the original patches of the image (up to 255025)
in a 1-sparse representation while in the limit of large noise,
more and more patches must be combined to reduce noise in
less atoms by averaging.

Fig. 4 shows the evolution of the size K of the dictionary
over iterations. The final size (around 100 in this example) is
attained typically after about 15 iterations only; implicitly, it
also means that α converges to about K/ logN ' 10. Using
a really non-parametric approach like IBP-DL, it appears that
the size of the dictionary can considerably vary from one im-
age to the other, for instance from dozens to hundreds at the
same level of noise, see Table 3. The approach in [8] works
with a finite but ’large’ dictionary in which only a subset of
atoms are used in the end. In practice, the size of the ’large’
dictionary is most often fixed to 256 and the method generally
yields dictionaries of size slightly smaller than 256, typically
about 200 atoms. To this respect, IBP-DL improves on the
previous method [8] and our observations support the inter-
est of a non parametric approach that is more adaptive to the
actual content of the image.

We briefly compare our results with DLENE [7], a recent
work which also adapts the size of the dictionary. DLENE
also uses the reduced training set. It targets a compromise
between reconstruction error and sparsity by adapting the
number of atoms. For Barbara with σε=25, DLENE yields
PSNRDLENE= 28.82 dB while we get PSNRIBP-DL=29.06
dB; for Peppers with σε=40, PSNRDLENE=27.27dB and
PSNRIBP-DL=27.07dB; see results in [7] for other compar-
isons. In general, IBP-DL performs as well as DLENE
for denoising. Again this supports the relevance of the
dictionaries by IBP-DL. One limitation of our algorithm
is its computational cost because of Gibbs sampling. In-
deed, the complexity per-iteration of the IBP sampler is
O(N3(K2 +KP )). Sampling IBP is expensive even though
the accelerated sampling [15] is implemented, reducing the
complexity to O(N(K2 + KP )), and a reduced dataset is
used. For example, the Barbara image costs 1 hour for 30
iterations. There is room for a significant improvement on
this aspect maybe by using a different kind of inference.

Finally, note that the noise level σε is inferred with good
accuracy. Fig. 5 shows the evolution of the sampled σε over
iterations on an example. After 15 iterations, the sampled
value is very close to the ground truth and converges to it.
Table 1 presents noise level estimates for a set of images. The
estimation error is at most of a few percents only, from 2% to
10% when σε = 25 and from 1% to 6% when σε = 40. This
accurate estimate is an essential profit of this approach.



Fig. 4: Evolution of the number of atoms in the dictionary
across iterations of IBP-DL on Barbara for 4 different noise
realizations with σε = 25.

Fig. 5: Evolution of the noise level sampled over iterations
of IBP-DL on Barbara when σε = 25 and σinit = 51.

5. CONCLUSION

The present Bayesian non parametric (BNP) approach learns
a dictionary of adaptive size from noisy images. To illus-
trate and compare the relevance of the proposed IBP-DL with
respect to other DL methods, numerical experiments study
the denoising performances of the proposed IBP-DL: they are
similar to those of other DL approaches such as K-SVD (in
its optimal setting) [1] for fixed size or DLENE [7] for an
adaptive size of the dictionary. The proposed approach si-
multaneously infers the size of the dictionary starting from
an empty one, as well as other parameters of the model such
as the noise level that is a crucial input to later solution of
any inverse problem. We emphasize that IBP-DL appears as
a non parametric method with an adaptive number of degrees
of freedom and no parameter tuning. Future work will explore
other inference methods for scalability.
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