
HAL Id: hal-01249646
https://hal.science/hal-01249646

Submitted on 2 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Combining Traffic Shaping Methods with Congestion
Control Variants for HTTP Adaptive Streaming

Chiheb Ben Ameur, Emmanuel Mory, Bernard Cousin

To cite this version:
Chiheb Ben Ameur, Emmanuel Mory, Bernard Cousin. Combining Traffic Shaping Methods with
Congestion Control Variants for HTTP Adaptive Streaming. Multimedia Systems, 2018, 24 (1), pp.1
- 18. �10.1007/s00530-016-0522-9�. �hal-01249646�

https://hal.science/hal-01249646
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

1

Combining Traffic Shaping Methods with Congestion

Control Variants for HTTP Adaptive Streaming

Chiheb Ben Ameur

Orange Labs
Rennes, France

Chiheb.benameur@orange.com

Emmanuel Mory
Orange Labs

Rennes, France
emmanuel.mory@orange.com

Bernard Cousin
IRISA, University of Rennes 1

Rennes, France
Bernard.Cousin@irisa.fr

ABSTRACT

HTTP adaptive streaming (HAS) is a streaming video technique

widely used over the Internet. However, it has many drawbacks

that degrade its user quality of experience (QoE). Our

investigation involves several HAS clients competing for

bandwidth inside the same home network. Studies have shown

that managing the bandwidth between HAS clients using traffic

shaping methods improves the QoE. Additionally, the TCP

congestion control algorithm in the HAS server may also impact

the QoE because every congestion control variant has its own

method to control the congestion window size. Based on previous

work, we describe two traffic shaping methods, the Hierarchical

Token Bucket shaping Method (HTBM) and the Receive Window

Tuning Method (RWTM), as well as four popular congestion

control variants: NewReno, Vegas, Illinois, and Cubic. In this

paper, our objective is to provide a detailed comparative

evaluation of combining these four congestion control variants

with these two shaping methods. The main result indicates that

Illinois with RWTM offers the best QoE without causing

congestion. Results were validated through experimentation and

objective QoE analytical criteria.

Keywords

Traffic shaping; Congestion control; Quality of Experience;

HTTP Adaptive Streaming; Bandwidth management.

1. INTRODUCTION
HTTP adaptive streaming (HAS) is a streaming video

technique based on downloading video segments of short

duration. These segments are called chunks, and they are

streamed from a HAS server to a HAS client through the

network. Each chunk is encoded at multiple quality levels.

After requesting a chunk by an HTTP GET request

message, when the chunk is received, the player on the

client side stores it in a playback buffer. The HAS player

operates in one of two states: a buffering state and a steady

state. During the first state, the player requests a new chunk

as soon as a previous chunk has been downloaded, until the

playback buffer is filled. However, during the steady state,

the player requests chunks periodically in order to maintain

a constant playback buffer size. The steady state includes

periods of activity (ON periods) followed by periods of

inactivity (OFF periods) [9], [11].

The Quality of Experience (QoE) of an HTTP adaptive

stream depends primarily on three criteria:

1. Video quality level stability [1], [11]: A frequent

change of video quality level bothers the user.

Therefore, quality level fluctuation should be avoided

to improve the QoE.

2. Fidelity to optimal quality level selection: The user

prefers to watch the best video quality level, when

possible. Therefore, the HAS player should select the

optimal quality level, which is the highest feasible

quality level allowed by the available bandwidth.

3. Convergence speed: The user prefers to view the

optimal quality level as soon as possible. Accordingly,

the HAS player should rapidly select the optimal

quality level. The delay that the player requires before

the optimal quality level has been attained is called the

convergence speed [1].

We studied a general use case in which several HAS clients

are located in the same home network. In this use case, QoE

degradations can be grouped into two main causes:

 Congestion events:

Video packets sent from the server to the client pass

through many network devices. Each device has one or

many queues that use a queuing discipline to schedule

network packets. The implemented algorithm decides

whether to route or drop incoming packets in order to avoid

network congestion. The main bottleneck occurs near the

home gateway, and more precisely, in the link between

DSLAM and home gateway [12]. In fact, the DSLAM may

considerably reduce the bandwidth offered to the home

network, and it is more likely to drop packets than any other

network device. To minimize network effects on the

delivery, the TCP protocol implements a “congestion

control algorithm” on the sender side, which reduces the

bitrate of packets sent to the receiver when a packet is lost.

However, this bitrate reduction may degrade QoE. In

addition, there are many congestion control variants with

different methods of managing the congestion window size,

cwnd, and detecting congestion events. These differences

may change the QoE between variants.

 Concurrence with other streams - OFF periods issue:

 The HAS player estimates the available bandwidth by

computing the download bitrate for each chunk when it has

2

finished downloading; this is done by dividing the chunk

size by its download duration. As a consequence, the player

cannot estimate the available bandwidth during OFF

periods, because no data are being received. When a HAS

stream concurs with other streams in the same home

network, accurate bandwidth estimation becomes more

difficult. For example, when two HAS streams are

competing for bandwidth and the ON period of the first

player coincides with the OFF period of the second player,

the first player will overestimate its available bandwidth.

This overestimation may lead the player to select a higher

quality level for the next chunk. This selection may lead to

a congestion event and a resulting fluctuation of quality

levels between the two players. Research has demonstrated

that traffic shaping can considerably limit this problem [1,

2, 11, 21, 25]. Traffic shaping consists of selecting a target

bitrate for each HAS session in the home network based on

bitrates of the available quality levels and the available

bandwidth. It then shapes the outgoing traffic to each HAS

client based on the selected target bitrate.

The objective of our study is to combine two solution

categories, TCP congestion control variants to reduce the

negative effects of congestion events, and traffic shaping

methods, to restrict the drawbacks of the concurrence

between HAS streams in the home gateway. The optimal

combination will have the highest grade of QoE, i.e. the

best possible video quality level stability, best fidelity to

optimal quality level selection, and best convergence speed.

We note that there are many implementations of HAS that

are currently deployed, such as Dynamic Adaptive

Streaming over HTTP (MPEG-DASH), Microsoft Smooth

Streaming (MSS), Apple HTTP Live Streaming (HLS), and

Adobe HTTP Dynamic Streaming (HDS). For this reason,

we wish to emphasize that in this paper we only choose

HAS traffic shaping methods that do not change the HAS

implementation either in the player or in the server. This

choice provides adaptability to any HAS client or server

implementations and thus offers a larger scope of

application of our presented work.

The remainder of this paper is organized as follows. In

Section 2, we describe the background and related works.

In Section 3, we detail our methodology and experimental

implementation. Section 4 presents the results and

discussion. In Section 5, we conclude the paper and suggest

future directions for our work.

2. BACKGROUND AND RELATED WORK
In this section, we describe the TCP congestion control

variants and the HAS traffic shaping methods used in this

work, and explain the distinctions between them.

2.1 TCP congestion control variants
All TCP congestion control variants have two common

phases: a slow start phase and a congestion avoidance

phase. The slow start phase consists of increasing cwnd

rapidly by one maximum segment size (MSS) for each

received acknowledgment (ACK), i.e. the cwnd value is

doubled for each round trip time (RTT). This rapidity has an

objective of reaching a high bitrate within a short duration.

When the cwnd size exceeds a threshold called ssthresh, the

TCP congestion control algorithm switches to the second

phase: the congestion avoidance phase. This phase slowly

increases the cwnd until a congestion event is detected.

TCP congestion control variants are classified according to

two main criteria [13]:

1- The first criterion is the increase of cwnd during the

congestion avoidance phase and the decrease of cwnd

immediately following congestion detection. Generally,

the increase is additive, and the cwnd size increases by

one MSS for each RTT. For decreasing cwnd, the

standard variants employ multiplicative decreasing, i.e.

the cwnd size is weighted by a multiplicative decrease

factor (1-β), where 0 < β < 1. This category is called

the Additive Increase Multiplicative Decrease (AIMD)

approach. Other variants using different techniques are

classified as non-AIMD approaches.

2- The second criterion is the method by which the

algorithm detects congestion. We distinguish three

modes: loss-based, delay-based, and loss-delay-based

modes. The loss-based mode considers any detection of

packet loss as a congestion event. A majority of TCP

congestion control variants that use the loss-based

mode consider receiving three duplicated ACKs from

the receiver as an indication of a packet loss and, as a

consequence, as an indication of a congestion event.

However, the delay-based mode considers a significant

increase in the RTT value as the only indication of a

congestion event. The third mode, the hybrid mode,

combines the delay-based and loss-based modes to

improve congestion detection.

In order to facilitate our study, we chose four well-known

congestion control variants, and we classify them according

to the two criteria cited above:

 - NewReno [3]: This variant is designed as the standard

TCP congestion control approach. It uses the AIMD

approach with the loss-based mode. Two mechanisms are

employed immediately following congestion detection: fast

retransmit and fast recovery [14]. Fast retransmit consists of

performing a retransmission of what appears to be the

missing packet (i.e. when receiving 3 duplicate ACKs),

without waiting for the retransmission timer to expire. After

the fast retransmit algorithm sends this packet, the fast

recovery algorithm governs the transmission of new data

until a non-duplicate ACK arrives. The reason for using fast

recovery is to allow the continual sending of packets when

the receiver is still receiving packets, even if some packets

are lost.

3

1: NewReno: ssthresh = max(cwnd/2, 2 MSS)

2: Vegas: ssthresh = min(ssthresh, cwnd - 1)

3: Illinois: ssthresh = max(cwnd.(1-β), 2 MSS)

4: Cubic: ssthresh = max(cwnd.(1-β), 2 MSS)

 1: ssthresh = max(ssthresh, ¾ cwnd)

 2: for i=1 to int(idle/RTO) do

 3: cwnd = max (min (cwnd , rwnd)/2, 1 MSS)

 4: end for

 - Vegas [4]: This non-AIMD variant is an Additive

Increase Additive Decrease (AIAD) variant. It is a delay-

based variant that accurately estimates RTT for every sent

packet and adjusts cwnd size based on actual throughput

and expected throughput. If RTT increases, cwnd decreases

by one MSS, and vice versa. Vegas is the smoothest TCP

congestion control variant [15]; it is able to allocate a fair

share of bandwidth with minimal packet loss events.

- Illinois [5]: This is a TCP loss-delay-based congestion

variant that employs a particular classification of the AIMD

approach, C-AIMD, which involves a concave window size

curve. Packet loss is used for primary congestion inference

to determine the direction (increase or decrease) of cwnd,

with a delay for secondary congestion inference to adjust

the value of the window size change. More precisely, when

the average queueing delay is small (small increase of

RTT), the sender supposes that the congestion is not

imminent and specifies a large additive increase α and small

multiplicative decrease β. In the opposite case, when the

average queuing delay is large (large increase of RTT), the

sender supposes that the congestion is imminent and selects

a small α and large β. Illinois measures RTT for each

received ACK to update α and β. Moreover, it retains the

same fast recovery and fast retransmit phases as NewReno.

Illinois was designed for high-speed and high-latency

networks, where the bandwidth-delay product is relatively

high. Consequently, it enables higher throughput than

NewReno.

- Cubic [6]: This variant is loss-based, but it uses a non-

AIMD approach. A cubic function is used to increase the

cwnd in the congestion avoidance phase immediately after

the fast recovery phase, and a multiplicative decrease

approach is used to update the cwnd after congestion event

detection. The cubic function has a concave region

followed by a convex region. The plateau between the two

regions, or the inflexion point (denoted by Wmax),

corresponds to the window size just before the last

congestion event. The cubic function enables a slow growth

around Wmax to enhance the stability of the bandwidth, and

enables a fast growth away from Wmax to improve

scalability of the protocol. Upon receiving an ACK during

the congestion avoidance phase at time t, Cubic computes

the new value of cwnd corresponding to the cubic function

at time t. As a consequence, Cubic uses the time instead of

the RTT to increase the cwnd. Cubic employs a new slow-

start algorithm called HyStart [8] (hybrid slow start), which

finds a safe exit point to the slow start, the ssthresh value, at

which the slow start can finish and safely move to

congestion avoidance before cwnd overshoot occurs.

HyStart employs the RTT delay increase and the inter-

arrival time between consecutive ACKs to identify the safe

exit point, and to modify the ssthresh value [8]. This variant

does not make any change to the fast recovery and fast

retransmit of standard NewReno. Cubic is the smoothest

loss-based congestion control variant [15]: it is

characterized by a congestion window that falls less

abruptly and that remains constant over a wide range of

elapsed time. It is also designed for high-speed and high-

latency networks.

For precise analysis, based on the descriptions of

congestion control algorithm variants and their source code,

we describe below the update of the congestion window

size, cwnd, and the slow start threshold value, ssthresh, for

different events:

- Congestion events: there are two cases

o When a congestion event is detected, the Fast

Recovery / Fast Retransmit (FR/FR) phase reduces

the ssthresh value and sets the cwnd value to

ssthresh+3, for the purpose of remaining in the

congestion avoidance phase. The ssthresh value after

a congestion event is updated as follows:

 Algorithm 1 ssthresh update after a congestion event

where MSS is the maximum segment size, and β is

the multiplicative decrease factor.

o When the retransmission timeout expires before

receiving any ACK of the retransmitted packet,

ssthresh is reduced as indicated in Algorithm 1 , and

cwnd is set to a small value and restarts from the

slow start phase.

- Idle period: When the server sends a packet after an idle
period that exceeds the retransmission timeout (RTO),
cwnd and ssthresh are computed for the four
congestion control variants as in Algorithm 2:

 Algorithm 2 cwnd and ssthresh updates after idle period

In the HAS context, an idle period coincides with an OFF

period between two consecutive chunks. An OFF period

whose duration exceeds RTO is denoted by OFF*.

Furthermore, we additionally want to emphasize that the

rate of a TCP connection can be approximated, if we

assume that transients due to slow start and fast recovery

can be neglected, by [26], where

rwnd is the TCP receive window indicated by the receiver

and RTT is the round trip time between the sender and the

receiver. Obviously, this approximation is valid for the four

TCP congestion control variants described above. As we

have shown, these variants employ different algorithms to

modify the congestion window, cwnd, during the

congestion avoidance phase and after congestion detection.

4

Accordingly, the generated rate as well as its variation over

time are different from one variant to another.

2.2 Traffic shaping methods
Many studies have been conducted to improve HAS

performance for cases in which several HAS clients are

located in the same home network. The ON-OFF periods

characterizing the HAS player in its steady state involve

three substantial problems when HAS players are

competing: player instability, unfairness between players,

and bandwidth underutilization [9]. The cause of these

problems is the inability to estimate the available bandwidth

during the OFF period, because no data are being received.

Three types of solutions are proposed to improve HAS user

experience: client-based, server-based, and gateway-based

solutions. They differ with respect to the device in which

the shaping solution is implemented. Below, we cite

relevant methods for each type of solution:

- The client-based solution involves only the HAS client

in order to reduce its OFF period durations. One of the

recent client-based methods is proposed in the

FESTIVE method [7]. It randomizes the events of

chunk requests inside the player in order to reduce the

periodicity of ON periods. Consequently, most of the

incorrect estimations of bandwidth could be avoided

when several HAS clients compete for bandwidth.

However, this method is not efficient enough to

prevent all incorrect estimations. In addition, it

modifies the HAS player implementation, which is

contradictory to our specifications described in the

Introduction. Moreover, the client-based solution does

not provide the coordination between HAS clients that

is required to further improve bandwidth estimations

and QoE.

- The server-based solution involves only the HAS

server. It proceeds according to two steps: First,

finding the optimal quality level for each provided

HAS flow, and second, shaping the sending rate of the

HAS server according to the encoding rate of this level.

In [25], the authors propose a server-based method: it

consists in detecting the oscillations between quality

levels on the server side and deciding which optimal

quality level must be selected. Although this method

improves the QoE, it cannot conveniently respond to

the typical use cases of several concurrent HAS clients

that do not share the same HAS server: the shared link

is on the HAS client side. Moreover, this server-based

solution requires an additional processing task, which

becomes burdensome and costly when many HAS

clients are demanding video contents from the same

HAS server. In addition, the server-based solution is

unable to acquire information about the other

competing flows with their corresponding HAS clients.

Hence, the selection of the optimal quality level at the

server is a vague estimation. This estimation is less

accurate than a quality level selection based on a

sufficient knowledge about the access network of the

corresponding HAS client(s).

- The gateway-based solution that consists of applying

the HAS traffic shaping in the gateway is more

convenient than client-based and server-based

solutions; in fact, the gateway can acquire information

about the HAS traffic of all clients of the same home

network, which is not possible either at the server or at

the client. In addition, the gateway-based solution is

able to perform traffic shaping without inducing any

modification of HAS implementation code either in the

server or the client. Hence, in this paper, our

evaluations only consider the gateway-based shaping

solution. For the gateway-based solution, the authors

assumed that the home gateway can intercept the

manifest file during the HAS session initialization and

can obtain the characteristics of the available video

quality levels of every session. This solution introduces

a bandwidth manager in the gateway that defines a

shaping rate for each connected active HAS client in

the home network. The bandwidth manager should be

able to update the number of active connected HAS

clients in the home gateway by sniffing the SYN and

FIN flags in TCP packets. Therefore, the difference

between the gateway-based methods is the manner in

which they shape the bandwidth for each HAS session.

The two main gateway-based methods found in the

literature and used in our comparative study are HTBM

[1] and RWTM [2]. They are briefly described in the

following:

2.2.1 HTBM
HTBM uses the Hierarchical Token Bucket (HTB) queuing

discipline to shape the HTTP adaptive streams. HTB is

integrated in Linux with the traffic controller tool of the

iproutes2 utility package. It uses one link, designated as the

parent class, to emulate several slower links, designated as

the children classes. Different types of traffic may be served

by the emulated links. HTB is exploited by the bandwidth

manager of HTBM in order to define a child class for each

HAS session. HTB also employs the tokens and buckets

concept, combined with the class-based system for better

control over traffic and for shaping in particular [16]. A

fundamental component of the HTB queuing discipline is

the borrowing mechanism: children classes borrow tokens

from their parent once they have exceeded the shaping rate.

A child class will continue to try to borrow until it reaches a

defined threshold of shaping, at which point it will begin to

queue packets that will be transmitted when more tokens

become available.

Accordingly, using HTBM enables the shaping of the

HTTP adaptive streams for each HAS session in the

gateway, as indicated by the bandwidth manager, by merely

5

delaying packets that are received from the HAS server.

The authors of [1] indicate that HTBM improves the user’s

QoE; it improves the stability of video quality level, the

fidelity to optimal quality level, and the convergence speed.

2.2.2 RWTM
The second shaping method, Receive Window Tuning

Method (RWTM), is a gateway-based shaping method that

was proposed in [2]. It is implemented in the TCP layer and

is based on TCP flow control at the receiver side. Indeed,

during a TCP session, each receiver specifies the maximum

number of bytes that it is able to buffer. This value is called

the receiver’s advertised window, denoted by rwnd, and its

size is specified in the rwnd field in the header of each TCP

packet sent from the receiver to the sender. The sender

receives the rwnd size from the receiver and limits its

sending window, W, so that the number of packets sent in

each RTT does not exceed rwnd; W=min(rwnd, cwnd).

The RWTM method consists of modifying, in the gateway,

the rwnd field of each TCP ACK packet sent from a HAS

client C to its HAS server S in order to limit the sending

rate of the HAS server to rwnd/RTTC-S. RWTM uses the

defined shaping rate of the bandwidth manager for each

connected active HAS client, and estimates the RTTC-S value

to compute the next value of rwnd. We note that the

estimation of RTTC-S is accomplished using only TCP ACK

packets sent from HAS clients to the HAS server by using

passive estimation. The rwnd is computed once for each

ON period. RWTM was tested in [2] and [21], and results

indicated that RWTM enhances the user’s QoE: it improves

the stability, the fidelity, and the convergence speed.

In [21], we showed that RWTM outperforms HTBM when

using the Cubic variant as congestion control on the server

side. However, due to the dissimilarity of TCP variants, an

extended evaluation using other variants and additional

scenarios will give us a better understanding of the

interaction between shaping methods and TCP variants.

3. METHODOLOGY AND

EXPERIMENTAL IMPLEMENTATION
In this section, we provide a description of the metrics used

to measure performance, the scenarios that cover many

operating conditions, and the framework that has been

developed to emulate our use case.

3.1 Performance metrics
We define three metrics in this section that we use to

evaluate the QoE and to understand how each combination

behaves. To do so, we present in Table 1 the main

parameters that are used to define the metrics.

Table 1. Description of parameters

Parameter Description

i Discrete time index

LC(i) Video quality level index of client C at time i.

LC,opt(i) Theoretical optimal value of LC(i)

QC(i) Video encoding bitrate of client C at time i

We note that the optimal quality level value, LC,opt(i),

corresponds to the quality level that the client C should

select at time i under the shaping rate defined by the

bandwidth manager. This shaping rate is chosen in a

manner that ensures the fairest share of the available home

bandwidth between clients with prioritization to achieve the

maximum use of the available home bandwidth. This entails

that some clients could have a higher quality level than

others when their fair share of available home bandwidth is

not sufficient to maximize the use of the available home

bandwidth. Below, we define analytically three

performance metrics that describe the three criteria of QoE

mentioned in the Introduction:

3.1.1 Video quality level stability
Many research studies indicate that HAS users are likely to

be sensitive to frequent and significant quality level

switches [22, 23]. We use the instability metric, ,
which measures the instability for client C for a K-second

test duration in conformity with its description in [7] as the

following equation:

 is the weighted sum of all encoding bitrate

switching steps observed within the last K seconds divided

by the weighted sum of the encoding bitrates selected in the

last K seconds. The lower the value is, the higher

the stability of the video quality level is.

More precisely, this formula uses the encoding bitrates of

the selected quality levels over time, , instead of the

quality level index over time, . In fact, the absolute

difference between two encoding bitrates that are displayed

on the client side during two successive seconds,

and , and denoted by ,
gives more significant indication of the observed video

quality change than when using the absolute difference

between the quality level indexes. Hence, we can offer an

adequate representation of the user expectation.

Moreover, in this formula, the authors of [7] use the weight

function in order to add a linear penalty to

more recent quality level switches. In fact, their justification

is that the switching of quality level is becoming more

disturbing for users’ experience when the video playback

position is far from the beginning of the video stream.

3.1.2 Fidelity to optimal quality level
In [7], the authors define two additional goals to achieve

within our use case: 1) fairness between players: players

should be able to converge to an equitable allocation of

network resources; 2) efficiency among players: players

should choose the highest feasible quality levels to

maximize the user’s experience. Furthermore, in [9], the

authors address the bandwidth underutilization issue that

may prevent the possible improvement of QoE. So,

6

maximizing the use of bandwidth can be considered as a

QoE criterion. Accordingly, in order to provide one formula

that satisfies these three criteria, we define our metric called

infidelity to optimal quality level.

The infidelity metric, of client C for a K-second

test duration, measures the duration of time over which the

HAS client C requests optimal quality:

The lower the value is, the higher the fidelity to

optimal quality is.

Here, we note that the theoretical optimal quality level

 aims to resolve the dilemma between the two

criteria of maximum use and fair share of bandwidth

between HAS players. In fact, considering that only the fair

share of bandwidth may cause bandwidth underutilization,

in some cases it may leave some residual bandwidth

allocated to nobody. Hence, based on the optimal quality

level, the value of the infidelity metric is representative of

user expectation.

3.1.3 Convergence speed
The convergence speed metric was previously defined in

[1]. We provide an analytical definition as follows:

This metric is the time that the player of HAS client C takes

to reach and remain at the optimal quality level for at least

T seconds during a K-second test duration. The reason of

selecting this criterion for evaluating the QoE in our use

case is observations made in [1], [2], [9], and [21]: they

show that when HAS players compete for bandwidth, the

convergence to optimal quality level may take several

seconds or may be very difficult to be achieved.

Accordingly, the speed of this convergence is a valuable

QoE criterion for our evaluations. The lower the

value is, the faster the convergence to the optimal quality

level is.

Additionally, we define two other metrics (CNG and frOFF*,

described below) that enable us to measure the reaction of

home gateway and HAS players.

3.1.4 Congestion rate
The congestion detection events influence to an extreme

degree both the QoS and QoE of HAS because the server

decreases its sending rate after each congestion detection.

Hence, by analyzing the code description of the four TCP

congestion control algorithms (NewReno, Vegas, Illinois,

and Cubic), we found that the congestion event appears

when the value of parameter slow start threshold (ssthresh)

decreases (see Algorithm 1). Hence, we define a metric

called congestion rate, denoted by , that

computes the rate of congestion events that are detected on

the server side, corresponding to the HAS flow between

client C and server S during a K-second test duration as

shown in equation (4):

where
 is the number of times the ssthresh has

been decreased for the C-S HAS session during the K-

second test duration.

3.1.5 Frequency of OFF* periods per chunk
This metric is important to measure the frequency of OFF*

periods. An OFF period whose duration exceeds RTO is

denoted by OFF* (as indicated in Subsect. 2.1). This

frequency is equal to the total number of OFF* periods

divided by the total number of downloaded chunks. This

metric is denoted by frOFF*.

For result analysis, we use the QoE metrics to quantitatively

discuss the user’s experience, and use CNG and frOFF*

metrics to explain the performance of each combination of

traffic method and congestion variant.

3.2 Scenarios
We define five scenarios that are typical of concurrence

between HAS clients in a same home network (scenarios 1,

2, and 3), and how the HAS client reacts when some

changes occur (scenarios 4 and 5):

1. Both clients start to play simultaneously and continue

for 3 minutes. This scenario illustrates how clients

compete.

2. Client 1 starts to play, the second client starts after 30

seconds, and both continue together for 150 seconds.

This scenario shows how the transition from one client

to two clients occurs.

3. Both clients start to play simultaneously, client 2 stops

after 30 seconds, and client 1 continues alone for 150

seconds. This scenario shows how a transition from

two clients to one takes place.

4. Only one client starts to play and continues for 3

minutes. At 30 seconds, we simulate a heavy

congestion event with a provoked packet loss of 50%

of the received packets at the server over a 1-second

period. This scenario shows the robustness of each

combination against the congestions that are induced

by external factors, such as by other concurrent flows

in the home network.

5. Only one client is playing alone for 3 minutes. We vary

the standard deviation value of RTTC-S (round trip time

between the client and the server) for each set of tests.

This scenario investigates the robustness against RTTC-S

instability.

The test duration was selected to be 3 minutes to offer

sufficient delay for players to stabilize.

7

3.3 General framework
We propose a testbed architecture presented in Figure 1 that

emulates our use case described in the Introduction. The

choice of only two clients is sufficient to show the behavior

of concurrence between many HAS flows in the same home

network.

Figure 1. Architecture of the testbed

In this section, we describe the configurations of each

component presented in Figure 1:

- HAS clients

We used two Linux machines as HAS clients. We

developed an emulated player in each client that reproduces

the behavior of the HAS player without decoding and

displaying a video stream. The playback buffer size is

specified to be 15 chunks, and the chunk duration is 2

seconds. In [18], the authors indicate that the bitrate

adaptation algorithm depends on bandwidth estimation and

playback buffer occupancy. Furthermore, players also

define an aggressiveness level, as described in a previous

study [19]. For example, the Netflix player is more

aggressive than the Smooth Streaming player [19]. An

aggressive player enables the user to ask for a video quality

level that is slightly higher than the estimated available

bandwidth. Moreover, aggressiveness is important for

minimizing the “downward spiral effect” phenomenon [20].

This phenomenon consists of underestimating the available

bandwidth, which leads to a lower video quality level

selection. Accordingly, taking into consideration [18], [19],

and [20], we used a bitrate adaptation algorithm based on

bandwidth estimation in which we define an aggressiveness

ρC(t) at time t that depends on playback buffer occupancy as

follows:

 ρC(t) = σ.RC(t)/BC (5)

where RC(t) is the filling level of the playback buffer at time

t, BC is the size of the playback buffer of client C, and σ is

the aggressiveness constant. The fuller the playback buffer

is, the closer to σ the aggressiveness is.

All tests use a HAS player with an aggressiveness constant

of σ=0.2. This enables the HAS player to add a maximum

of 20% to its available BW estimation.

- Home network

In the modeled home network, the clients are connected

directly to the gateway. The total download bitrate, or home

available bandwidth, is limited to 8 Mbps. We choose this

value because it is lower than twice the video encoding

bitrate of the highest quality level. Accordingly, two clients

in the home network cannot select the highest quality level

at the same time. In this case, one client should select

quality level n° 4 and the other should select the quality

level n° 3 as optimal qualities. We do not test a use case in

which two clients have the same optimal quality level,

because this is a very specific case, and dissimilarity

between optimal quality levels is more general.

- Home gateway

The emulated home gateway consists of a Linux machine

configured as a network bridge to forward packets between

the home network and the best effort network.

We emulate the queuing discipline of the home gateway by

using the Stochastic Fairness Queueing discipline (SFQ)

[24]. SFQ is a classless queuing discipline that we

configured using the Traffic Controller emulation tool (tc).

SFQ schedules packets based on flow identification (the

source and destination IP addresses and the source port)

and injects them into hash buckets during the enqueuing

process. Each bucket represents a unique flow.

Additionally, SFQ employs Round Robin fashion for

dequeuing packets by taking into consideration the bucket

classification. The goal of using buckets for enqueuing and

Round Robin for dequeuing is to ensure fairness between

flows so that the queue is able to forward data in turn and

prevents any single flow from drowning out the remaining

flows. We also configured SFQ in order to support the

Drop Tail queue management algorithm when the queue

becomes full. Hence, this configuration of the queuing

discipline is classified as a Drop Tail class. The queue

length of SFQ, which is indicated by parameter limit within

the tc tool, is set to the bandwidth-delay product.

 In the gateway, we implemented a bandwidth manager that

selects a shaping rate for each connected active HAS client

in a manner such that each client should attain its optimal

quality level described in Subsect. 3.1. The shaping rate for

each client was chosen as indicated in [1] and [2]; it is 10%

higher than the encoding bitrate of the optimal quality level

for each client. The two shaping methods HTBM and

RWTM are implemented in the gateway, and they shape

bandwidth in accordance with the decisions of the

bandwidth manager.

- Best effort network

The best effort network is characterized by the presence of

network devices to route packets. The round trip time RTTC-

S(t) in a best effort network is modeled as follows [10]:

 RTTC-S (t) = aC-S + q(t)/ς (6)

where aC-S is a fixed propagation delay between client C

and server S, q(t) is the queue length of a single congested

router (the home gateway in our use case), and ς is the

transmission capacity of the router. q(t)/ς models the

queuing processing delay. To comply with equation (6), we

used the normal distribution with a mean value aC-S and a

standard deviation equal to 0.07.aC-S. The standard

8

deviation emulates the queuing processing delay q(t)/ς. This

emulation is accomplished by using the “netem delay”

parameter of the traffic controller tool in the gateway

machine interface.

- HAS server

The HAS server is modeled by an HTTP Apache Server

installed on a Linux machine operating on Debian version

3.2. We can change the congestion control variant of the

server by varying the parameter

net.ipv4.tcp_congestion_control. All tests use five video

quality levels denoted by 0, 1, 2, 3, and 4. Their encoding

bitrates are constant and equal to 248 kbps, 456 kbps, 928

kbps, 1,632 kbps, and 4,256 kbps, respectively. HTTP

version 1.1 is used to enable a persistent connection.

4. RESULTS
In this section, we compare the different combinations of

TCP congestion control variants in the server and shaping

methods in the gateway in the five scenarios. Altogether, we

evaluate eight combinations: four TCP congestion control

variants combined with two shaping methods. We evaluate

QoE by discussing the QoE metrics IS, IF, and V. We also

use the CNG and frOFF* metrics to observe how each

combination reacts. For each scenario, we repeated each

test 60 times and we computed an average value of each

metric. The number of 60 runs is justified by the fact that

the difference of the average results obtained after 40 runs

and 60 runs are lower than 6%. This observation was

verified for all scenarios. Accordingly, 60 runs are

sufficient to achieve statistically significant results.

This section is organized as follows. First, we begin by

evaluating performance in scenario 1, and we analyze the

variation of cwnd for each combination. Second, we

evaluate the performance of scenarios 2 and 3 to study the

effect of transition from one to two clients (and vice versa)

on the performance of each studied combination. Third, we

present the performance of scenario 4 to measure the

robustness of the combinations against induced congestions.

Fourth, we study scenario 5 to measure the robustness

against the instability of RTTC-S for each combination.

Finally, we discuss all results by presenting a summary of

observations and defining the combination that is suitable

for each particular case.

4.1 Scenario 1
In this scenario, two clients are competing for BW and are

playing simultaneously. The available home bandwidth

permits only one client to have the highest quality level, n°

4. We make the assumption that the client who gets the

highest quality level n° 4 is identified as client 1. Optimally,

the first player in our use case should obtain quality level n°

4 with an encoding bitrate of 4,256 kbps, and the second

player should have quality level n°3 with an encoding

bitrate of 1,632 kbps.

In this section, we present our evaluation results and discuss

them. Then, we analyze the cwnd variation for each

combination in order to understand the reason for the

observed results.

4.1.1 Measurements of performance metrics
The average values of QoE metric measurements for client

1 and client 2 are listed in Tables 2 and 3, respectively.

Table 2. QoE for client 1 in scenario 1

Performance

metric

Shaping

method

TCP congestion control variant

NewReno Vegas Illinois Cubic

Instability

(%) IS1(180)

W/o* 4.95 2.15 8.35 7.47

HTBM 1.89 1.08 1.56 1.86

RWTM 1.69 4.10 1.88 1.63

Infidelity

(%)

IF1(180)

W/o 41.33 52.31 74.14 50.46

HTBM 49.57 47.81 7.75 20.45

RWTM 45.87 32.24 6.17 5.02

Convergence

speed (s)

V1,60(180)

W/o 100.93 102.11 174.13 145.03

HTBM 101.83 87.11 21.10 52.06

RWTM 94.51 104.00 24.22 19.55

Table 3. QoE for client 2 in scenario 1

Performance

metrics

Shaping

methods

TCP congestion control variants

NewReno Vegas Illinois Cubic

Instability

(%)

IS2(180)

W/o 5.82 3.06 7.85 5.82

HTBM 1.17 0.95 1.05 1.15

RWTM 1.09 0.95 1.03 1.13

Infidelity (%)

IF2(180)

W/o 26.64 70.77 39.27 36.33

HTBM 4.72 3.62 4.21 4.47

RWTM 2.49 2.30 2.47 2.61

Convergence

speed (s)

V2,60(180)

W/o 96.25 137.01 126.33 92.81

HTBM 12.41 6.95 9.73 13.26

RWTM 6.73 5.03 6.54 8.95

Our first overall observation is the large dissimilarity

between QoE measurements of the different combinations.

This observation is a valuable result that confirms that each

combination induces a change of HAS player behavior.

Consequently, using HAS traffic shaping without taking

into consideration the TCP congestion control employed in

the HAS server cannot guarantee a good user experience;

hence, the prominence of our proposed work.

The results show that traffic shaping considerably improves

the QoE metric measurements for a majority of cases,

especially for instability, which is largely reduced (e.g. a

reduction of instability rate by a factor of 2.6 from 4.95% to

1.89% when employing HTBM with NewReno, and a

reduction by a factor of 4.5 from 7.47% to 1.63% when

employing RWTM with Cubic, as shown in Table 2).

Furthermore, RWTM shows better performance than

HTBM in the majority of cases. Moreover, client 2 always

has better performance than client 1 with both shaping

methods: the reason is that the optimal quality level of

client 2 (i.e. quality level n° 3) is lower than that of client 1

(i.e. quality level n° 4): obviously, the quality level n° 3 is

easier to achieve. In addition, the gap between the QoE

metric measurements of the two shaping methods is higher

for client 1 than client 2: For example, when considering

the Cubic variant, the gap of infidelity rate of client 1

between RWTM and HTBM is 15.43% (5.02% vs.

9

20.45%); this is higher than that of client 2, which is equal

to 1.86% (2.61% vs. 4.47%). Consequently, the

dissimilarity of performance between different

combinations is more visible for client 1. For this reason,

we limit our observation to client 1 in the remaining text of

this subsection.

Concerning the QoE measurements, based on Table 2, we

present the most important observations related to client 1:

 Combining NewReno or Vegas variants with

HTBM or RWTM does not improve the QoE.

Additionally, these four combinations have high

infidelity value (near 50%) and very high

congestion speed value (around 90 ~100 ms), but a

low value of instability. These values indicate that

the player was stable at a low quality level during

the first half of the test duration and has difficulties

converging to its optimal quality level.

 HTBM has better QoE with Illinois than with

Cubic: it is slightly more stable, 16% more faithful

to optimal quality, and converges 2.4 times faster.

 RWTM has better QoE with Cubic than with

Illinois: it is slightly more stable, slightly more

faithful to optimal quality level, and converges

1.24 times faster.

In order to be more accurate in our analysis, we use the two

defined metrics: the frequency of OFF* periods per chunk,

frOFF*, and the congestion rate, CNG. In Table 4, we present

the average value over 60 runs for each metric and for each

combination, related to client 1 and scenario 1.

Table 4. frOFF* and CNG for client 1 in scenario 1

Metric Shaping

method

TCP congestion control variant

NewReno Vegas Illinois Cubic

CNG W/o 46.13 43.00 66.11 85.65

HTBM 44.06 40.50 58.68 191.72

RWTM 0.10 8.26 0.76 1.11

frOFF* W/o 0.42 0.35 0.27 0.40

HTBM 0.31 0.32 0.06 0.16

RWTM 0.32 0.41 0.24 0.24

RWTM presents a negligible congestion rate, while HTBM

has a very high rate of congestion, especially when the

Cubic variant is used. Moreover, HTBM reduces the

frequency frOFF* better than RWTM, mainly with Illinois

and Cubic. These results have a direct relationship to the

shaping methods described in Subsect. 2.2:

 HTBM was designed to delay incoming packets,

which causes an additional queuing delay. In all of

the tests, we verified that HTBM induces a

queueing delay of around 100 ms in scenario 1 for

client 1. On one hand, this delay causes an

increase of congestion rate because it increases the

risks of queue overflow in the gateway, even when

the QoE is good, such as with Cubic or Illinois

variants. The dissimilarity of congestion rate

between congestion controls variants is

investigated in the next Subsect. 4.1.2. On the

other hand, the RTTC-S value also jumps from 100

ms to 200 ms, which increases the retransmission

timeout value, RTO, to approximately 400 ms,

hence reducing OFF* periods. The frOFF* of

HTBM is noticeably lower than RWTM and the

case without shaping (W/o). In addition, the

assertion “the higher the QoE metric measurement,

the lower the frOFF* value” seems to be valid; for

example, HTBM presents better QoE with Illinois

than with Cubic, and frOFF* is lower with Illinois

than with Cubic.

 Nevertheless, RWTM was designed to limit the

value of the receiver’s advertised window, rwnd,

of each client. Therefore, no additional queuing

delay is induced by RWTM. Hence, the congestion

rate is very low. Additionally, the RTTC-S

estimation is performed only once per chunk. So,

the cwnd value is constant during the ON period,

even if RTTC-S varies. In our configuration, the

standard deviation of RTTC-S is equal to 7 ms, i.e.

0.07.aC-S, as described in Subsect. 3.3.

Consequently, eliminating OFF* periods will not

be possible. Instead, the frOFF* value will be

bounded to a minimum value that characterizes

RWTM when the QoE measurements are the most

favorable. When testing with the four congestion

control variants, this frOFF* value is equal to 0.24

for the selected standard deviation. This means

that RWTM can guarantee, in the best case, one

OFF* period every 4.17 chunks. This frequency is

useful, and will be discussed in the next subsection

and in further detail in scenario 5.

4.1.2 Analysis of cwnd variation
To explain the results of scenario 1, we used the tcp_probe

module in the HAS server. This module shows the

evolution of the congestion window, cwnd, and the slow

start threshold, ssthresh, during each run. For each

combination, we selected a run the performance values of

which are the nearest to its average values of Tables 2 and

4, i.e. instability IS, infidelity IF, convergence speed V,

frequency of OFF* periods per chunk frOFF*, and

congestion rate CNG. Then, we present their cwnd and

ssthresh evolution in Figures 2 through 9. We also indicate

the moment of convergence by a vertical bold dotted line.

We observed that this moment corresponds to the second

from which the TCP congestion control is often processing

under the congestion avoidance phase; i.e. when cwnd >

ssthresh. In addition, from the moment of convergence, we

observe that ssthresh becomes more stable and is

practically close to a constant value.

Figure 2 shows that the combination NewReno with HTBM

cannot guarantee convergence to the optimal quality level.

The congestion rate is not very high compared with other

10

TCP congestion variants. After 50 seconds, cwnd was able

to reach the congestion avoidance phase for short durations,

but the continuous increase of cwnd with the additive

increase approach caused the detection of congestion.

Moreover, the multiplicative decrease approach after

congestions employed by NewReno was very aggressive; in

effect, as described in Subsect. 2.2, the new cwnd value will

be reduced by half (more precisely, to cwnd/2 + 3 MSS

following the FR/FR phase) and ssthresh will also be

reduced to cwnd/2. This aggressive decrease prevents the

server from rapidly reaching a desirable cwnd value and, as

a consequence, prevents the player from correctly

estimating the available bandwidth and causes a lower

quality level selection. Furthermore, the frOFF* value was

relatively high (around 0.3 OFF* period per chunk), which

is more than twice that of the Illinois and Cubic variants.

This value is also caused by the multiplicative decrease

approach that generates a lower quality level selection. Due

to the shaping rate that adapts the download bitrate of the

client to its optimal quality level, the chunk with a lower

quality level will be downloaded more rapidly, which

results in causing more frequent OFF* periods. For this

reason, the player was not able to stabilize on the optimal

quality level, resulting in a poor QoE.

Figure 2. Cwnd variation of {NewReno HTBM}

IS=5.48%, IF=35.68%, V=180s, frOFF*=0.2, CNG=43.33

When combining NewReno with RWTM, we observed that

test results diverged and could be classified into two

categories: those with an infidelity value of 100% and that

do not converge (Figure 3(a)), and those with a low value of

infidelity and that converge rapidly (Figure 3(b)). In both

figures, ssthresh is always invariable. Both figures have no

congestion events, which is due to the use of RWTM.

 (a) IS=0.95%, IF=100%, (b) IS=2.62%, IF=4.92%,

 V=180 frOFF*=0.68, CNG= 0 V=4 s frOFF*=0.23, CNG=0

Figure 3. Cwnd variation of {NewReno RWTM}

The OFF* periods are more frequent in Figure 3(a) (frOFF*

= 0.68) than in Figure 3(b) (frOFF* = 0.23). Although both

figures present a constant value of ssthresh, we observe that

the only difference between them is the initial value of

ssthresh. Figure 3(a) has a lower value of ssthresh than

Figure 3(b): 27 MSS vs. 69 MSS. The additive increase

approach of NewReno during the congestion avoidance

phase prevents the server from rapidly increasing the cwnd

value during ON periods. Therefore, the player was not able

to reach the optimal quality level n° 4 at any time. The

cause of the dissimilarity between the initial values of

ssthresh in the two figures is explained in [17]. Some

implementations of NewReno use the size of the receiver’s

advertised window, rwnd, to define the initial value of

ssthresh, but in fact, this value may be arbitrarily chosen.

Accordingly, the combination of NewReno with RWTM

could have high QoE if the initial value of ssthresh is well-

chosen.

When combining Vegas with HTBM, we obtain a cwnd

variation, as shown in Figure 4. The convergence moment

(at 87 s in Figure 4) occurs when cwnd becomes often set

higher than ssthresh (i.e. TCP congestion control is often

processing under the congestion avoidance phase) and

ssthresh is often set at the same value. We can observe the

additive increase and additive decrease aspect of cwnd in

the congestion avoidance phase after convergence. The

additive decrease of cwnd involved in Vegas is caused by

the queuing delay increases resulting from HTBM. This

additive decrease has the advantage of maintaining a high

throughput and reducing the dropping of packets in the

gateway. Therefore, the congestion rate, CNG, is relatively

low because it is reduced in Figure 4 from around 75

congestion events per 100 seconds to only 15. The additive

decrease also has the advantage of promoting convergence

to the optimal quality level, unlike multiplicative decrease.

As a result, the delay-based aspect with the additive

decrease approach improves the stability of the HAS player

after convergence. In contrast, Vegas uses a slightly low

value of ssthresh (60 MSS) and employs the additive

increase approach for cwnd updates during the congestion

avoidance phase. As a consequence, the server cannot

rapidly increase the cwnd value during the ON period,

which results in slow convergence. Therefore, the player

Figure 4. Cwnd variation of {Vegas HTBM}

IS=1.31%, IF=46.74%, V=87 s, frOFF*=0.4, CNG=46.11

convergence
convergence

11

was not able to reach the optimal quality level n° 4 at any

time before the moment of convergence. Consequently, the

frequency of the OFF* period increases before the

convergence moment; hence, the high value of frOFF*.

The performance worsens when Vegas is combined with

RWTM. As presented in Figure 5, the player was not able

to converge. Instead, we observed many timeout

retransmissions characterized by ssthresh reduction and

cwnd restarting from slow start. The timeout

retransmissions are generated by Vegas when only a

duplicate ACK is received and the timeout period of the

oldest unacknowledged packet has expired [4]. Because of

that, Vegas generates more timeout retransmissions than

NewReno. Hence, the CNG value is worse than in the other

combinations of RWTM. Moreover, OFF* periods are

frequent during the first 45 seconds, because the player

requests quality level n° 3. Subsequently, OFF* periods

become less frequent (they occur only at 79, 125, 138, 150,

165, and 175 s) because the player was able to switch to an

optimal quality level (n° 4). Hence frOFF* related to the

whole test duration is equal to an acceptable value (0.29

OFF* period per chunk). The player becomes able to

request the optimal quality level n° 4 predominantly in the

second period (after 45 seconds), but it is incapable of

being stable for more than 60 seconds because of the

retransmission timeout events.

Figure 5. Cwnd variation of {Vegas, RWTM}

IS=5.32%, IF=31.15%, V= 180s, frOFF*=0.29, CNG=6.11

When we use the loss-delay-based variant Illinois,

significant improvement of performance is observed with

the two shaping methods:

In Figure 6, despite the rapid convergence, a high rate of

congestions (that reduces the ssthresh and cwnd values but

maintains the cwnd higher than ssthresh, as described in

Algorithm 1) and timeout retransmissions (that reduces

ssthresh, drops cwnd, and begins from the slow start phase)

was recorded. Consequently, the frequent reduction of

ssthresh was the cause of the high rate of CNG: in this

example, CNG is equal to 51.11. CNG is higher than that

recorded for NewReno. The cause is the high value of

ssthresh of approximately 115 MSS. The variable ssthresh

was able to rapidly return to a fixed value after

retransmissions, due to the update of α and β using accurate

RTTC-S estimation (see Subsect. 2.1). As a consequence,

cwnd restarts from the slow start phase after timeout

detection and rapidly reaches the high value of ssthresh.

Hence, the HAS player converges despite high congestion.

In addition, OFF* periods were negligible, with only two

periods after congestion. This is why frOFF* was very low

(0.03). In the congestion avoidance phase, cwnd was able to

increase and reach high values, even during short timeslots.

This was due to the concave curve of cwnd generated by

Illinois, which is more aggressive than NewReno. As a

consequence, the player could be stabilized with optimal

quality level n° 4.

Figure 6. Cwnd variation of {Illinois, HTBM}

IS=2.00%, IF=7.66%, V=5s, frOFF*=0.03, CNG=51.11

When using RWTM with Illinois, the player converges, as

presented in Figure 7. The congestion rate is very low

(CNG=0.55), but congestions are caused by the

aggressiveness of Illinois (the concave curve of cwnd in the

C-AIMD approach) and its high ssthresh value (120 MSS).

Congestions slow down the convergence speed and slightly

reduce the QoE due to the multiplicative decrease approach

of Illinois. As shown in Figure 7, one congestion event

delayed the convergence time to 27 seconds. In addition,

Illinois has the ability to select the suitable ssthresh value

(110 MSS in Figure 7) that minimizes congestion events in

the future, in spite of the sensitivity of RWTM to

congestions. OFF* periods still exist, but with low

frequency (frOFF* = 0.22).

Figure 7. Cwnd variation of {Illinois RWTM},

IS=2.40%, IF=5.47%, V=27s, frOFF*=0.22, CNG=0.55

The Cubic variant yielded good performances with both

shaping methods. The variations of cwnd when Cubic is

combined with HTBM and RWTM are presented in Figures

8 and 9, respectively.

In Figure 8, the player converges tardily after a delay of 33

seconds. The cause is mainly the low value of ssthresh that

is selected by the Cubic algorithm. As explained in Subsect.

2.1, the HyStart algorithm, implemented in Cubic, defines

convergence

 convergence

12

this ssthresh in order to have a less aggressive increase of

cwnd. The ssthresh becomes lower when the RTTC-S

increases. Knowing that HTBM increases RTTC-S by

introducing an additional queuing delay, HyStart decreases

ssthresh to be approximately 57 MSS. This is why the

player cannot upgrade to its optimal quality level n° 4

before convergence. The second cause is the multiplicative

decrease approach of Cubic and the high rate of congestions

caused by HTBM. This second cause makes the

convergence to optimal quality level more difficult because

the server is not able to increase its reduced congestion

window cwnd during the ON period, as it should be

increased.

After convergence, many congestions were recorded, and

OFF* periods were negligible. The ssthresh becomes more

stable around 75 MSS: this is well-set by the HyStart

algorithm. This enhances stability in the congestion

avoidance phase with a more uniform increase of cwnd, as

shown between 60 and 80 seconds in Figure 8.

Furthermore, there is a set of large cubic curves with

inflection points close to the ssthresh value. The variable

cwnd is more present in the convex region, which is more

aggressive when moving away from the inflection point.

Figure 8. Cwnd variation of {Cubic HTBM},

IS=1.98%, IF=19.03%, V=33s, frOFF*=0.16, CNG=186.11

In Figure 9, the player converges rapidly in only 8 seconds.

The ssthresh begins with a low value (60 MSS) for a few

seconds during the buffering state, and then the HyStart

algorithm implemented in Cubic rapidly adjusts the ssthresh

value and enables the server to be more aggressive.

Comparing with Figure 7, selecting a lower initial value of

ssthresh is better for accelerating convergence, because

otherwise there are more risks of congestion that slow down

the convergence speed.

Congestions are infrequent: only two congestions are

visible in Figure 9 at seconds 70 and 130, and they are

resolved by fast retransmission in accordance with

Algorithm 1 and by using Hystart. As a consequence,

separated congestion events do not dramatically affect the

performance, as when Illinois is used with RWTM (Figure

9). The Cubic algorithm chooses the inflection point to be

around 140 MSS, which is much higher than the ssthresh

value, so that the concave region becomes more aggressive

than the convex region. The OFF* periods persist, even

with Cubic, but with a low frequency: frOFF* = 0.22.

Figure 9. Cwnd variation of {Cubic RWTM}, IS=1.78%,

IF=5.5%, V=8s, frOFF*=0.22, CNG=1.66

Accordingly, the Cubic variant is able to adjust its

congestion window curve in different situations. When

many congestions occur, the cubic curve becomes rather

convex to carefully increase cwnd. When many OFF*

periods occur, the cubic curve becomes rather concave, and

is thus more aggressive than the concave curve of Illinois in

order to rapidly achieve the desired send bitrate and

compensate for the reduction of the cwnd value. However,

Cubic begins by estimating a low value of ssthresh that is

adjusted over time by the HyStart algorithm, which is

beneficial only when using RWTM as a shaping method.

Using HTBM slows down convergence considerably and

affects the infidelity metric.

4.2 Scenarios 2 and 3
In this section, we present the five performance

measurements of client 1 for the first three scenarios

described in Subsect. 3.2. We make the assumption that the

optimal quality level of client 1 is n° 4. We do not present

NewReno and Vegas variants because they demonstrated

low performance. The average values of QoE metrics for

client 1 in the first three scenarios are listed in Table 5, and

the average values of CNG and frOFF* in the first three

scenarios are listed in Table 6. Both tables show the total

mean values (denoted by MV) over the three scenarios.

MVs are the global performance values proposed for

consideration to compare between different combinations.

Table 5. QoE for client 1 in scenarios 1, 2, and 3

T
C

P
 v

a
r
ia

n
t

S
c
e
n

a
r
io

 Performance metric

Instability (%) Infidelity (%)
Convergence

speed (seconds)
HTBM RWTM HTBM RWTM HTBM RWTM

C
u

b
ic

1 1.86 1.63 20.45 5.02 52.06 19.55
2 3.44 1.43 32.90 3.42 64.13 10.98
3 2.19 1.63 18.49 4.81 34.65 14.34

MV* 2.49 1.56 23.95 4.42 50.28 14.96

Il
li

n
o

is
 1 1.56 1.88 7.75 6.17 21.10 24.22

2 3.20 1.56 29.75 4.42 59.58 13.28
3 1.85 1.76 7.92 5.66 21.03 18.80

MV 2.20 1.73 15.14 5.42 33.90 18.56

convergence

convergence

13

Table 6. frOFF* and for client 1 in scenario 1, 2 and 3

Metric Scenario Cubic Illinois
HTBM RWTM HTBM RWTM

CNG

1 191.72 1.11 58.68 0.76

2 375.62 0.82 33.11 0.68

3 173.48 0.66 56.27 0.76

MV 246.92 0.86 49.35 0.73

frOFF*

1 0.16 0.24 0.06 0.24

2 0.23 0.24 0.21 0.24

3 0.13 0.26 0.05 0.26

MV 0.17 0.25 0.10 0.25

Both tables indicate two valuable points:

On one hand, RWTM has better QoE metric measurements

than HTBM with both Cubic and Illinois variants.

Moreover, RWTM not only has a lower congestion rate,

CNG, than HTBM, but it also has a negligible CNG with

the two TCP variants for all three scenarios. RWTM also

preserves a constant value of frOFF*. Consequently, even the

transition from one to two clients and vice versa (i.e.,

scenarios 2 and 3, respectively) does not disturb RWTM,

which preserves its inherit characteristics of negligible

congestion rate and its frOFF* rate around 0.25. This

preservation has positive consequences for the user’s QoE.

Although the gap between the QoE metrics measurements

of {Cubic RWTM} and {Illinois RWTM} is not very

significant, {Cubic RWTM} yields better values.

Accordingly, we can say that the use of Cubic or even

Illinois is beneficial for improving the user’s experience,

with a slight preference for Illinois.

On the other hand, HTBM presents better QoE with Illinois

than with the Cubic variant. In conjunction, it has a fivefold

lower congestion rate (49.35 vs. 246.92) and lower OFF*

period frequency frOFF*. This observation is valid not only

for total mean values, MV, but also with every scenario (1,

2, and 3). Therefore, Illinois is distinctly better than Cubic

for the HTBM shaping method, even when the number of

active HAS clients in the home gateway changes between

one and two clients. Accordingly, the loss-delay-based

variant with the C-AIMD approach used by Illinois has

more favorable impacts on QoE, CNG, and frOFF* than the

loss-based variant with the AIAD approach using the

HyStart algorithm employed by Cubic.

4.3 Scenario 4
The objective of this section is to evaluate the robustness of

each combination against the congestions that are induced

by other flows. Therefore, we employed scenario 4, as

described in Subsect. 3.2, in which a heavy congestion is

induced. To be able to compare performances correctly, a

reference scenario, denoted by WL, consisting of a HAS

client working alone in the home network, is used. No loss

is observed in the reference scenario. We do not present the

NewReno and Vegas variants because they showed poor

performance. Altogether, we have four combinations to

evaluate: Cubic and Illinois combined with two shaping

methods, HTBM and RWTM. The average values of the

QoE metrics of the client in scenario 4 are provided in

Table 7, and the average values of CNG and frOFF* are listed

in Table 8.

Table 7. QoE for client 1 in scenario 4

T
C

P

v
a

r
ia

n
t

S
c
e
n

a
r
io

 Performance metric

Instability (%)

Infidelity (%)

Convergence

speed (s)

HTBM RWTM HTBM RWTM HTBM RWTM

Cubic WL1
1.08 1.07 3.71 1.79 7.61 4.10

4 4.86 6.40 48.2 46.14 120.3 129.3
Illinois WL 1.08 1.07 2.23 1.66 5.37 4.01

4 2.7 2.92 15.6 17.81 35.48 42.75
1Without loss 2Degradation percentage

Table 8. frOFF* and CNG for client 1 in scenarios 1, 2, and 3

Metric Scenario
Cubic Illinois

HTBM RWTM HTBM RWTM

CNG

WL 34.2 0.98 38.51 0.79

4 216.19 120.36 146.68 143.54

frOFF*

WL 0.03 0.36 0.03 0.43

4 0.40 0.41 0.09 0.31

The measurements in the two tables indicate three major

observations:

 The lowest QoE metric measurements are recorded for

the Cubic variant for both shaping methods: their

instability is around 5~6%, their infidelity is near 50%,

and their convergence speed is approximately 125 ms.

We also notice that the congestion rate, CNG, is very

high, between 120 and 220, and the frequency frOFF* is

important around 0.4 (i.e., one OFF* period occurs for

every 2.5 chunks, on average). We observe not only

lower measurements, but also a higher degradation rate

in performance: the gap of QoE metric measurements,

CNG and frOFF*, is clearly large between scenario WL

and scenario 4. Accordingly, Cubic is not suitable as a

TCP congestion control variant of the HAS server for

both shaping methods when heavy congestion occurs.

This result can be verified by examining Figures 8 and

9 in Subsect. 4.1.2, where Cubic has difficulties with

rapidly defining the suitable ssthresh value before

convergence and after congestion, respectively.

 The RWTM shaping method presents higher

degradation in QoE metric measurements than HTBM

when we compare scenario WL to scenario 4 for both

TCP congestion variants, Cubic and Illinois. The cause

is mainly related to the fact that HTBM is used to

generate congestion events and maintain high QoE

under normal circumstances, which is not the case with

RWTM. Accordingly, we can say that RWTM is more

sensitive to induced congestions than HTBM. This

result can be verified when examining Figures 7 and 9

in Subsect. 4.1.2, in which a single congestion event

instantaneously degrades performance.

14

From the first and the second observations, we can deduce

that the best combination that maintains optimal QoE

metric measurements with low degradation and has the

lowest frequency of OFF* periods, frOFF*, is ensured by the

combination {Illinois HTBM}.

 The second-best combination is {Illinois RWTM}.

Here, the QoE metric measurements are acceptable, but

the degradation rate is higher than the best combination

{Illinois HTBM}. This degradation indicates that

{Illinois RWTM} cannot adequately resist against

induced congestions, especially when we have a highly

congested link between client and server. However,

this combination could successfully be used with a link

under less frequent congestions.

4.4 Scenario 5
In this section, we present the performance metric

measurements when the standard variation of RTTC-S varies.

The behavior of the resulting curves will indicate how

performance degrades when the standard deviation of

RTTC-S increases. The variation of QoE (instability,

infidelity, and convergence speed) is presented in Figure

10, and the variation of CNG and frOFF* is listed in Figure

11. We have two major observations:

Figure 10. QoE variation

Figure 11. Variation of CNG and frOFF*

On the one hand, the {Illinois RWTM} (purple cross) and

the {Cubic RWTM} (red square) curves are convex and

close to each other and are predominantly below the other

curves. The three QoE metric values are good until an

RTTC-S standard deviation of around 40 ms, where

performance degradation begins to be visible. Moreover,

the combination {Illinois RWTM} preserves its

performance better and has a less aggressive degradation

rate for higher RTTC-S standard deviation, especially from

35 ms. Accordingly, we can say that using RWTM with

Illinois is safer when RTTC-S is very unstable. Otherwise,

{RWTM Cubic} can also be used, most usefully when the

standard deviation of RTTC-S is lower than 35 ms. We also

observe in Figure 11 that both combinations have a

similarly low congestion rate, CNG, and similar frequency

of OFF* periods, frOFF*. Based on this observation, we can

deduce that RWTM preserves its inherent characteristics

with Cubic and Illinois variants, and that the degradation of

QoE metric measurements for highly unstable RTTC-S is

mainly caused by the congestion control algorithms used by

Cubic and Illinois variants. Since RWTM seems to be more

adequate with Illinois, we can say that the loss-delay-based

and C-AIMD approach of Illinois helps more than the loss-

based and cubic RTT-independent approach of Cubic to

preserve good performance for highly unstable RTTC-S

values.

On the other hand, HTBM is less robust against RTTC-S

instability. The green and the blue curves that present the

combination of HTBM with Illinois and Cubic,

respectively, show a significant degradation of QoE metric

measurements when the standard deviation of RTTC-S is

above 14 ms. However, {HTBM Illinois} is more sensitive

to RTTC-S instability than {HTBM Cubic}. This means that

combining the loss-delay-based congestion control variant

Illinois with the HTBM shaping method that increases the

queuing delay, entails harmful drawbacks for QoE when the

RTTC-S is unstable. We can also validate this observation in

Figure 11: the congestion rate CNG of {HTBM Illinois}

and {HTBM Cubic} are predominantly close to each other,

but the frequency of OFF* periods explodes with {HTBM

Illinois} for RTTC-S standard deviation higher than 20 ms.

This implies that the additional delay caused by HTBM is

practically the same for both congestion control variants

Cubic and Illinois, but the effects on frOFF* and QoE are

quite different and involve more drawbacks for the Illinois

variant. In contrast, HTBM with Cubic has fewer

drawbacks and presents QoE metrics measurements that are

relatively constant for instability and infidelity from RTTC-S

standard deviations around 20 ms. This results can be

explained by the fact that the Cubic variant does not use

RTTC-S to compute its congestion window cwnd during the

congestion avoidance phase, as explained in Subsect. 2.1.

4.5 Discussion
After comparing the results of five scenarios, we have made

numerous observations, but in this subsection, we want to

summarize the most important observations. First,

NewReno and Vegas variants do not provide good

performance in the HAS context, excepting the combination

{NewReno RWTM} that could perform well if the initial

 (a) CNG variation (b) frOFF* variation

15

value of ssthresh is well-chosen. Second, we summarize the

observations of the five scenarios for the four combinations

in Table 9. Thus, we assign a score for each combination

that ranges between "--" and "++": -- (bad), - (insufficient),

+/- (average), + (good), and ++ (excellent). This score is

based on the analysis of results for each scenario.

Table 9. The final score for each combination

Scenario

Combination

RWTM HTBM

Cubic Illinois Cubic Illinois

{1,2, 3} ++ ++ +/- +

4 -- + -- ++

5 + ++ +/- --

The best combination is {Illinois RWTM}: it yields good

performance when two clients compete for bandwidth and

is robust against high RTTC-S variation, but it is somewhat

vulnerable to heavy congestions that could be caused by

external factors. In the second position, we have two

combinations:

- {Cubic RWTM}: Unfortunately, it is very vulnerable

to congestions and slightly sensitive to high RTTC-S

variation.

- {Illinois HTBM}: It has the advantage of being robust

against heavy congestions. However, it is very sensitive

to RTTC-S variation. Furthermore, it causes a high rate

of congestion in the gateway that could disturb other

sessions in concurrence with HAS sessions.

5. CONCLUSION AND FUTURE WORK
A comparative evaluation has been developed in order to

study the effect of combining two well-known traffic

shaping methods (HTBM and RWTM) in the gateway with

four very common TCP congestion algorithms (NewReno,

Vegas, Illinois, and Cubic) in the server in the context of

HTTP adaptive streaming technique. We examined the

user’s QoE by applying objective metrics. Furthermore, we

observed the evolution of the congestion window on the

server side in order to explain the behavior of each

combination and its relationship with QoE metrics. We also

used the congestion rate and the frequency of OFF periods

that exceeds retransmission timeout as indicators. We have

addressed many scenarios: two HAS clients competing for

the home bandwidth simultaneously, adding or removing a

HAS client, inducing a heavy congestion in the gateway,

and increasing the instability of the round trip time, RTT,

between the HAS server and the HAS client. The results

show that there is a significant discordance in performance

between combinations. The best combination that improves

the QoE, reduces the congestion rate, and reduces the OFF

periods in the majority of scenarios is when combining the

loss-delay-based congestion control variant, Illinois, which

uses the C-AIMD approach, with the TCP flow control-

based method, RWTM. The characteristics of Illinois and

RWTM seem to be similarly robust against high RTT

instability. This combination does not disturb other real-

time streams in the home network because it does not

induce additional queueing delay and it considerably

reduces the congestion rate. However, this combination is

slightly vulnerable to heavy congestions that could be

caused by external factors such as other concurrent streams.

Having extended our knowledge about the combination of

TCP congestion control variants with shaping methods in

this work, we intend as future work to design a new TCP

congestion control variant that is compatible with all

specifications of HAS and shaping methods.

6. REFERENCES
[1] Houdaille Rémi, and Stéphane Gouache. "Shaping

HTTP adaptive streams for a better user experience."

In Proceedings of the 3rd Multimedia Systems

Conference. p. 1-9. ACM, 2012.

[2] Ben Ameur Chiheb, Emmanuel Mory, and Bernard

Cousin. "Shaping HTTP adaptive streams using receive

window tuning method in home gateway." In

Proceedings of the 33
rd

 Performance Computing and

Communications Conference. p. 1-2. IEEE, 2014.

[3] Floyd Sally, Thomas Henderson, et al. "The NewReno

modification to TCP\ x27s fast recovery algorithm."

RFC 3782, 2012.

[4] Lawrence S. Brakmo, Sean W. O'Malley, and Larry L.

Peterson. “TCP Vegas: New techniques for congestion

detection and avoidance”, Vol. 24, no. 4. ACM, 1994.

[5] Liu Shao, Tamer Başar, and Ravi Srikant. “TCP-

Illinois: A loss-and delay-based congestion control

algorithm for high-speed networks”, Performance

Evaluation 65, no. 6 (2008): 417-440.

[6] Ha Sangtae, Injong Rhee, and Lisong Xu. "CUBIC: a

new TCP-friendly high-speed TCP variant." ACM

SIGOPS Operating Systems Review 42.5 (2008): 64-

74.

[7] Jiang Junchen, Vyas Sekar, and Hui Zhang.

"Improving fairness, efficiency, and stability in http-

based adaptive video streaming with festive." In

Proceedings of the 8th International Conference on

Emerging Networking Experiments and Technologies.

p. 97-108. ACM, 2012.

[8] Ha Sangtae and Injong Rhee. "Taming the elephants:

New TCP slow start." Computer Networks 55.9

(2011): 2092-2110.

[9] Akhshabi Saamer, Narayanaswamy Sethumadhavan, et

al. "What happens when HTTP adaptive streaming

players compete for bandwidth?." In Proceedings of

the 22nd International Workshop on Network and

Operating System Support for Digital Audio and

Video. p. 9-14. ACM, 2012.

[10] Misra Vishal, Wei-Bo Gong, and Don Towsley.

"Fluid-based analysis of a network of AQM routers

16

supporting TCP flows with an application to RED." In

Proceedings of ACM SIGCOMM Computer

Communication Review. Vol. 30. No. 4. ACM, 2000.

[11] Villa Bjørn J. and Poul E. Heegaard. "Group based

traffic shaping for adaptive HTTP video streaming by

segment duration control." In Proceedings of the 27th

International Conference on Advanced Information

Networking and Applications. p. 830-837. IEEE, 2013.

[12] Stewart Lawrence, Hayes David, et al. "Multimedia-

unfriendly TCP congestion control and home gateway

queue management." In Proceedings of the Second

Annual ACM Conference on Multimedia Systems. p.

35-44. ACM, 2011.

[13] Hayes David and Grenville Armitage. "Improved

coexistence and loss tolerance for delay based TCP

congestion control." In Proceedings of the 35th

Conference on Local Computer Networks. p. 24–31.

IEEE, 2010.

[14] Ho Cheng-Yuan, et al. "Fast retransmit and fast

recovery schemes of transport protocols: A survey and

taxonomy." Computer Networks 52.6 (2008): 1308-

1327.

[15] Jamal Habibullah, and Kiran Sultan. "Performance

analysis of TCP congestion control algorithms."

International Journal of Computers and

Communications 2.1 (2008): 18-24.

[16] Brown Martin A. "Traffic Control HOWTO." Guide to

IP Layer Network (2006).

[17] Allam Mark,Vern Paxson, and William Stevens. "RFC

2581: TCP congestion control." (1999).

[18] Yin Xiaoqi, Vyas Sekar, and Bruno Sinopoli. "Toward

a principled framework to design dynamic adaptive

streaming algorithms over HTTP." In Proceedings of

the 13th ACM Workshop on Hot Topics in Networks,

p. 1-9. ACM, 2014.

[19] Akhshabi Saamer, Narayanaswamy Sethumadhavan, et

al. "An experimental evaluation of rate-adaptive video

players over HTTP." Signal Processing: Image

Communication 27.4 (2012): 271-287.

[20] Huang Te-Yuan, Handigol Nikhil, et al. "Confused,

timid, and unstable: picking a video streaming rate is

hard." In Proceedings of the Internet Measurement

Conference. p. 225-238. ACM, 2012.

[21] Chiheb Ben Ameur, Emmanuel Mory and Bernard

Cousin, “Evaluation of gateway-based shaping methods

for HTTP adaptive streaming”, In Proceedings of

Quality of Experience-based Management for Future

Internet Applications and Services Workshop. p. 1777-

1782. IEEE International Conference on

Communications, 2015.

[22] Cranley Nicola, Philip Perry, and Liam Murphy. "User

perception of adapting video quality". International

Journal of Human-Computer Studies, p.637-647, 2006.

[23] Mok Ricky KP, Chan Edmond, et al. "Inferring the

QoE of HTTP video streaming from user-viewing

activities." In Proceedings of the First ACM

SIGCOMM Workshop on Measurements Up the Stack.

p. 31-36. ACM, 2011.

[24] Eric Dumazet “Stochastic fairness queuing discipline”,

http://manpages.ubuntu.com/manpages/trusty/man8/ tc-

sfq.8.html. Ubuntu Manuals, 2010.

[25] Akhshabi Saamer, Narayanaswamy Sethumadhavan, et

al. "Server-based traffic shaping for stabilizing

oscillating adaptive streaming players." In Proceedings

of the 23rd ACM Workshop on Network and Operating

Systems Support for Digital Audio and Video. p. 19-

24. ACM, 2013.

[26] Jean Yves Le Boudec, "Rate Adaptation, Congestion

Control and Fairness: A Tutorial." p. 1-44. Ecole

Polytechnique Federale de Lausanne (EPFL), 2014.

