
HAL Id: hal-01249646
https://hal.science/hal-01249646

Submitted on 2 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Combining Traffic Shaping Methods with Congestion
Control Variants for HTTP Adaptive Streaming

Chiheb Ben Ameur, Emmanuel Mory, Bernard Cousin

To cite this version:
Chiheb Ben Ameur, Emmanuel Mory, Bernard Cousin. Combining Traffic Shaping Methods with
Congestion Control Variants for HTTP Adaptive Streaming. Multimedia Systems, 2018, 24 (1), pp.1
- 18. �10.1007/s00530-016-0522-9�. �hal-01249646�

https://hal.science/hal-01249646
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


1 

 

Combining Traffic Shaping Methods with Congestion 

Control Variants for HTTP Adaptive Streaming 

  
Chiheb Ben Ameur 

Orange Labs 
Rennes, France 

Chiheb.benameur@orange.com 
 

Emmanuel Mory 
Orange Labs 

Rennes, France 
emmanuel.mory@orange.com 

 

Bernard Cousin 
IRISA, University of Rennes 1 

Rennes, France 
Bernard.Cousin@irisa.fr

ABSTRACT 

HTTP adaptive streaming (HAS) is a streaming video technique 

widely used over the Internet. However, it has many drawbacks 

that degrade its user quality of experience (QoE). Our 

investigation involves several HAS clients competing for 

bandwidth inside the same home network.  Studies have shown 

that managing the bandwidth between HAS clients using traffic 

shaping methods improves the QoE. Additionally, the TCP 

congestion control algorithm in the HAS server may also impact 

the QoE because every congestion control variant has its own 

method to control the congestion window size. Based on previous 

work, we describe two traffic shaping methods, the Hierarchical 

Token Bucket shaping Method (HTBM) and the Receive Window 

Tuning Method (RWTM), as well as four popular congestion 

control variants: NewReno, Vegas, Illinois, and Cubic. In this 

paper, our objective is to provide a detailed comparative 

evaluation of combining these four congestion control variants 

with these two shaping methods. The main result indicates that 

Illinois with RWTM offers the best QoE without causing 

congestion. Results were validated through experimentation and 

objective QoE analytical criteria. 
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1. INTRODUCTION 
HTTP adaptive streaming (HAS) is a streaming video 

technique based on downloading video segments of short 

duration. These segments are called chunks, and they are 

streamed from a HAS server to a HAS client through the 

network. Each chunk is encoded at multiple quality levels. 

After requesting a chunk by an HTTP GET request 

message, when the chunk is received, the player on the 

client side stores it in a playback buffer. The HAS player 

operates in one of two states: a buffering state and a steady 

state. During the first state, the player requests a new chunk 

as soon as a previous chunk has been downloaded, until the 

playback buffer is filled. However, during the steady state, 

the player requests chunks periodically in order to maintain 

a constant playback buffer size. The steady state includes 

periods of activity (ON periods) followed by periods of 

inactivity (OFF periods) [9], [11].  

The Quality of Experience (QoE) of an HTTP adaptive 

stream depends primarily on three criteria: 

1. Video quality level stability [1], [11]: A frequent 

change of video quality level bothers the user. 

Therefore, quality level fluctuation should be avoided 

to improve the QoE. 

2. Fidelity to optimal quality level selection:  The user 

prefers to watch the best video quality level, when 

possible. Therefore, the HAS player should select the 

optimal quality level, which is the highest feasible 

quality level allowed by the available bandwidth.  

3. Convergence speed: The user prefers to view the 

optimal quality level as soon as possible. Accordingly, 

the HAS player should rapidly select the optimal 

quality level. The delay that the player requires before 

the optimal quality level has been attained is called the 

convergence speed [1].  

We studied a general use case in which several HAS clients 

are located in the same home network. In this use case, QoE 

degradations can be grouped into two main causes: 

 Congestion events:  

Video packets sent from the server to the client pass 

through many network devices. Each device has one or 

many queues that use a queuing discipline to schedule 

network packets. The implemented algorithm decides 

whether to route or drop incoming packets in order to avoid 

network congestion. The main bottleneck occurs near the 

home gateway, and more precisely, in the link between 

DSLAM and home gateway [12]. In fact, the DSLAM may 

considerably reduce the bandwidth offered to the home 

network, and it is more likely to drop packets than any other 

network device. To minimize network effects on the 

delivery, the TCP protocol implements a “congestion 

control algorithm” on the sender side, which reduces the 

bitrate of packets sent to the receiver when a packet is lost. 

However, this bitrate reduction may degrade QoE. In 

addition, there are many congestion control variants with 

different methods of managing the congestion window size, 

cwnd, and detecting congestion events. These differences 

may change the QoE between variants. 

 Concurrence with other streams - OFF periods issue: 

 The HAS player estimates the available bandwidth by 

computing the download bitrate for each chunk when it has 
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finished downloading; this is done by dividing the chunk 

size by its download duration. As a consequence, the player 

cannot estimate the available bandwidth during OFF 

periods, because no data are being received. When a HAS 

stream concurs with other streams in the same home 

network, accurate bandwidth estimation becomes more 

difficult. For example, when two HAS streams are 

competing for bandwidth and the ON period of the first 

player coincides with the OFF period of the second player, 

the first player will overestimate its available bandwidth. 

This overestimation may lead the player to select a higher 

quality level for the next chunk. This selection may lead to 

a congestion event and a resulting fluctuation of quality 

levels between the two players. Research has demonstrated 

that traffic shaping can considerably limit this problem [1, 

2, 11, 21, 25]. Traffic shaping consists of selecting a target 

bitrate for each HAS session in the home network based on 

bitrates of the available quality levels and the available 

bandwidth. It then shapes the outgoing traffic to each HAS 

client based on the selected target bitrate. 

The objective of our study is to combine two solution 

categories, TCP congestion control variants to reduce the 

negative effects of congestion events, and traffic shaping 

methods, to restrict the drawbacks of the concurrence 

between HAS streams in the home gateway. The optimal 

combination will have the highest grade of QoE, i.e. the 

best possible video quality level stability, best fidelity to 

optimal quality level selection, and best convergence speed.  

We note that there are many implementations of HAS that 

are currently deployed, such as Dynamic Adaptive 

Streaming over HTTP (MPEG-DASH), Microsoft Smooth 

Streaming (MSS), Apple HTTP Live Streaming (HLS), and 

Adobe HTTP Dynamic Streaming (HDS). For this reason, 

we wish to emphasize that in this paper we only choose 

HAS traffic shaping methods that do not change the HAS 

implementation either in the player or in the server. This 

choice provides adaptability to any HAS client or server 

implementations and thus offers a larger scope of 

application of our presented work. 

The remainder of this paper is organized as follows. In 

Section 2, we describe the background and related works. 

In Section 3, we detail our methodology and experimental 

implementation. Section 4 presents the results and 

discussion. In Section 5, we conclude the paper and suggest 

future directions for our work. 

2. BACKGROUND AND RELATED WORK 
In this section, we describe the TCP congestion control 

variants and the HAS traffic shaping methods used in this 

work, and explain the distinctions between them. 

2.1 TCP congestion control variants 
All TCP congestion control variants have two common 

phases: a slow start phase and a congestion avoidance 

phase. The slow start phase consists of increasing cwnd 

rapidly by one maximum segment size (MSS) for each 

received acknowledgment (ACK), i.e. the cwnd value is 

doubled for each round trip time (RTT). This rapidity has an 

objective of reaching a high bitrate within a short duration. 

When the cwnd size exceeds a threshold called ssthresh, the 

TCP congestion control algorithm switches to the second 

phase: the congestion avoidance phase. This phase slowly 

increases the cwnd until a congestion event is detected.   

TCP congestion control variants are classified according to 

two main criteria [13]: 

1- The first criterion is the increase of cwnd during the 

congestion avoidance phase and the decrease of cwnd 

immediately following congestion detection. Generally, 

the increase is additive, and the cwnd size increases by 

one MSS for each RTT. For decreasing cwnd, the 

standard variants employ multiplicative decreasing, i.e. 

the cwnd size is weighted by a multiplicative decrease 

factor (1-β), where 0 < β < 1. This category is called 

the Additive Increase Multiplicative Decrease (AIMD) 

approach. Other variants using different techniques are 

classified as non-AIMD approaches.  

2- The second criterion is the method by which the 

algorithm detects congestion. We distinguish three 

modes: loss-based, delay-based, and loss-delay-based 

modes. The loss-based mode considers any detection of 

packet loss as a congestion event. A majority of TCP 

congestion control variants that use the loss-based 

mode consider receiving three duplicated ACKs from 

the receiver as an indication of a packet loss and, as a 

consequence, as an indication of a congestion event. 

However, the delay-based mode considers a significant 

increase in the RTT value as the only indication of a 

congestion event. The third mode, the hybrid mode, 

combines the delay-based and loss-based modes to 

improve congestion detection. 

In order to facilitate our study, we chose four well-known 

congestion control variants, and we classify them according 

to the two criteria cited above:  

 - NewReno [3]: This variant is designed as the standard 

TCP congestion control approach. It uses the AIMD 

approach with the loss-based mode.  Two mechanisms are 

employed immediately following congestion detection: fast 

retransmit and fast recovery [14]. Fast retransmit consists of 

performing a retransmission of what appears to be the 

missing packet (i.e. when receiving 3 duplicate ACKs), 

without waiting for the retransmission timer to expire. After 

the fast retransmit algorithm sends this packet, the fast 

recovery algorithm governs the transmission of new data 

until a non-duplicate ACK arrives. The reason for using fast 

recovery is to allow the continual sending of packets when 

the receiver is still receiving packets, even if some packets 

are lost. 
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1: NewReno: ssthresh = max(cwnd/2, 2 MSS) 

2: Vegas:       ssthresh = min(ssthresh, cwnd - 1) 

3: Illinois:     ssthresh = max(cwnd.(1-β), 2 MSS) 

4: Cubic:       ssthresh = max(cwnd.(1-β), 2 MSS) 

 

    1: ssthresh = max(ssthresh, ¾ cwnd) 

    2: for i=1 to int(idle/RTO) do 

    3:   cwnd = max ( min ( cwnd , rwnd )/2, 1 MSS ) 

    4: end for 

 

 - Vegas [4]: This non-AIMD variant is an Additive 

Increase Additive Decrease (AIAD) variant. It is a delay-

based variant that accurately estimates RTT for every sent 

packet and adjusts cwnd size based on actual throughput 

and expected throughput. If RTT increases, cwnd decreases 

by one MSS, and vice versa. Vegas is the smoothest TCP 

congestion control variant [15]; it is able to allocate a fair 

share of bandwidth with minimal packet loss events.  

- Illinois [5]: This is a TCP loss-delay-based congestion 

variant that employs a particular classification of the AIMD 

approach, C-AIMD, which involves a concave window size 

curve. Packet loss is used for primary congestion inference 

to determine the direction (increase or decrease) of cwnd, 

with a delay for secondary congestion inference to adjust 

the value of the window size change. More precisely, when 

the average queueing delay is small (small increase of 

RTT), the sender supposes that the congestion is not 

imminent and specifies a large additive increase α and small 

multiplicative decrease β. In the opposite case, when the 

average queuing delay is large (large increase of RTT), the 

sender supposes that the congestion is imminent and selects 

a small α and large β. Illinois measures RTT for each 

received ACK to update α and β. Moreover, it retains the 

same fast recovery and fast retransmit phases as NewReno. 

Illinois was designed for high-speed and high-latency 

networks, where the bandwidth-delay product is relatively 

high. Consequently, it enables higher throughput than 

NewReno. 

- Cubic [6]: This variant is loss-based, but it uses a non-

AIMD approach. A cubic function is used to increase the 

cwnd in the congestion avoidance phase immediately after 

the fast recovery phase, and a multiplicative decrease 

approach is used to update the cwnd after congestion event 

detection. The cubic function has a concave region 

followed by a convex region. The plateau between the two 

regions, or the inflexion point (denoted by Wmax), 

corresponds to the window size just before the last 

congestion event. The cubic function enables a slow growth 

around Wmax to enhance the stability of the bandwidth, and 

enables a fast growth away from Wmax to improve 

scalability of the protocol. Upon receiving an ACK during 

the congestion avoidance phase at time t, Cubic computes 

the new value of cwnd corresponding to the cubic function 

at time t. As a consequence, Cubic uses the time instead of 

the RTT to increase the cwnd. Cubic employs a new slow-

start algorithm called HyStart [8] (hybrid slow start), which 

finds a safe exit point to the slow start, the ssthresh value, at 

which the slow start can finish and safely move to 

congestion avoidance before cwnd overshoot occurs. 

HyStart employs the RTT delay increase and the inter-

arrival time between consecutive ACKs to identify the safe 

exit point, and to modify the ssthresh value [8]. This variant 

does not make any change to the fast recovery and fast 

retransmit of standard NewReno. Cubic is the smoothest 

loss-based congestion control variant [15]: it is 

characterized by a congestion window that falls less 

abruptly and that remains constant over a wide range of 

elapsed time. It is also designed for high-speed and high-

latency networks.   

For precise analysis, based on the descriptions of 

congestion control algorithm variants and their source code, 

we describe below the update of the congestion window 

size, cwnd, and the slow start threshold value, ssthresh, for 

different events: 

- Congestion events: there are two cases 

o When a congestion event is detected, the Fast 

Recovery / Fast Retransmit (FR/FR) phase reduces 

the ssthresh value and sets the cwnd value to 

ssthresh+3, for the purpose of remaining in the 

congestion avoidance phase. The ssthresh value after 

a congestion event is updated as follows: 
 

          Algorithm 1 ssthresh update after a congestion event 
  

  

 

 

where MSS is the maximum segment size, and β is 

the multiplicative decrease factor. 

o When the retransmission timeout expires before 

receiving any ACK of the retransmitted packet, 

ssthresh is reduced as indicated in Algorithm 1 , and 

cwnd is set to a small value and restarts from the 

slow start phase.  

- Idle period: When the server sends a packet after an idle 
period that exceeds the retransmission timeout (RTO), 
cwnd and ssthresh are computed for the four 
congestion control variants as in Algorithm 2: 

  Algorithm 2 cwnd and ssthresh updates after idle period  

 

 

 

In the HAS context, an idle period coincides with an OFF 

period between two consecutive chunks. An OFF period 

whose duration exceeds RTO is denoted by OFF*. 

Furthermore, we additionally want to emphasize that the 

rate of a TCP connection can be approximated, if we 

assume that transients due to slow start and fast recovery 

can be neglected, by                     [26], where 

rwnd is the TCP receive window indicated by the receiver 

and RTT is the round trip time between the sender and the 

receiver. Obviously, this approximation is valid for the four 

TCP congestion control variants described above. As we 

have shown, these variants employ different algorithms to 

modify the congestion window, cwnd, during the 

congestion avoidance phase and after congestion detection. 
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Accordingly, the generated rate as well as its variation over 

time are different from one variant to another. 

2.2 Traffic shaping methods 
Many studies have been conducted to improve HAS 

performance for cases in which several HAS clients are 

located in the same home network. The ON-OFF periods 

characterizing the HAS player in its steady state involve 

three substantial problems when HAS players are 

competing: player instability, unfairness between players, 

and bandwidth underutilization [9]. The cause of these 

problems is the inability to estimate the available bandwidth 

during the OFF period, because no data are being received.  

Three types of solutions are proposed to improve HAS user 

experience: client-based, server-based, and gateway-based 

solutions. They differ with respect to the device in which 

the shaping solution is implemented. Below, we cite 

relevant methods for each type of solution: 

- The client-based solution involves only the HAS client 

in order to reduce its OFF period durations. One of the 

recent client-based methods is proposed in the 

FESTIVE method [7]. It randomizes the events of 

chunk requests inside the player in order to reduce the 

periodicity of ON periods. Consequently, most of the 

incorrect estimations of bandwidth could be avoided 

when several HAS clients compete for bandwidth. 

However, this method is not efficient enough to 

prevent all incorrect estimations. In addition, it 

modifies the HAS player implementation, which is 

contradictory to our specifications described in the 

Introduction. Moreover, the client-based solution does 

not provide the coordination between HAS clients that 

is required to further improve bandwidth estimations 

and QoE. 

- The server-based solution involves only the HAS 

server. It proceeds according to two steps: First, 

finding the optimal quality level for each provided 

HAS flow, and second, shaping the sending rate of the 

HAS server according to the encoding rate of this level. 

In [25], the authors propose a server-based method: it 

consists in detecting the oscillations between quality 

levels on the server side and deciding which optimal 

quality level must be selected. Although this method 

improves the QoE, it cannot conveniently respond to 

the typical use cases of several concurrent HAS clients 

that do not share the same HAS server: the shared link 

is on the HAS client side. Moreover, this server-based 

solution requires an additional processing task, which 

becomes burdensome and costly when many HAS 

clients are demanding video contents from the same 

HAS server. In addition, the server-based solution is 

unable to acquire information about the other 

competing flows with their corresponding HAS clients. 

Hence, the selection of the optimal quality level at the 

server is a vague estimation. This estimation is less 

accurate than a quality level selection based on a 

sufficient knowledge about the access network of the 

corresponding HAS client(s).  

- The gateway-based solution that consists of applying 

the HAS traffic shaping in the gateway is more 

convenient than client-based and server-based 

solutions; in fact, the gateway can acquire information 

about the HAS traffic of all clients of the same home 

network, which is not possible either at the server or at 

the client. In addition, the gateway-based solution is 

able to perform traffic shaping without inducing any 

modification of HAS implementation code either in the 

server or the client. Hence, in this paper, our 

evaluations only consider the gateway-based shaping 

solution. For the gateway-based solution, the authors 

assumed that the home gateway can intercept the 

manifest file during the HAS session initialization and 

can obtain the characteristics of the available video 

quality levels of every session. This solution introduces 

a bandwidth manager in the gateway that defines a 

shaping rate for each connected active HAS client in 

the home network. The bandwidth manager should be 

able to update the number of active connected HAS 

clients in the home gateway by sniffing the SYN and 

FIN flags in TCP packets. Therefore, the difference 

between the gateway-based methods is the manner in 

which they shape the bandwidth for each HAS session. 

The two main gateway-based methods found in the 

literature and used in our comparative study are HTBM 

[1] and RWTM [2]. They are briefly described in the 

following: 

2.2.1 HTBM 
HTBM uses the Hierarchical Token Bucket (HTB) queuing 

discipline to shape the HTTP adaptive streams. HTB is 

integrated in Linux with the traffic controller tool of the 

iproutes2 utility package.  It uses one link, designated as the 

parent class, to emulate several slower links, designated as 

the children classes. Different types of traffic may be served 

by the emulated links. HTB is exploited by the bandwidth 

manager of HTBM in order to define a child class for each 

HAS session. HTB also employs the tokens and buckets 

concept, combined with the class-based system for better 

control over traffic and for shaping in particular [16]. A 

fundamental component of the HTB queuing discipline is 

the borrowing mechanism: children classes borrow tokens 

from their parent once they have exceeded the shaping rate. 

A child class will continue to try to borrow until it reaches a 

defined threshold of shaping, at which point it will begin to 

queue packets that will be transmitted when more tokens 

become available. 

Accordingly, using HTBM enables the shaping of the 

HTTP adaptive streams for each HAS session in the 

gateway, as indicated by the bandwidth manager, by merely 
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delaying packets that are received from the HAS server. 

The authors of [1] indicate that HTBM improves the user’s 

QoE; it improves the stability of video quality level, the 

fidelity to optimal quality level, and the convergence speed. 

2.2.2 RWTM 
The second shaping method, Receive Window Tuning 

Method (RWTM), is a gateway-based shaping method that 

was proposed in [2]. It is implemented in the TCP layer and 

is based on TCP flow control at the receiver side. Indeed, 

during a TCP session, each receiver specifies the maximum 

number of bytes that it is able to buffer. This value is called 

the receiver’s advertised window, denoted by rwnd, and its 

size is specified in the rwnd field in the header of each TCP 

packet sent from the receiver to the sender. The sender 

receives the rwnd size from the receiver and limits its 

sending window, W, so that the number of packets sent in 

each RTT does not exceed rwnd; W=min(rwnd, cwnd). 

The RWTM method consists of modifying, in the gateway, 

the rwnd field of each TCP ACK packet sent from a HAS 

client C to its HAS server S in order to limit the sending 

rate of the HAS server to rwnd/RTTC-S. RWTM uses the 

defined shaping rate of the bandwidth manager for each 

connected active HAS client, and estimates the RTTC-S value 

to compute the next value of rwnd. We note that the 

estimation of RTTC-S is accomplished using only TCP ACK 

packets sent from HAS clients to the HAS server by using 

passive estimation. The rwnd is computed once for each 

ON period. RWTM was tested in [2] and [21], and results 

indicated that RWTM enhances the user’s QoE: it improves 

the stability, the fidelity, and the convergence speed.  

In [21], we showed that RWTM outperforms HTBM when 

using the Cubic variant as congestion control on the server 

side. However, due to the dissimilarity of TCP variants, an 

extended evaluation using other variants and additional 

scenarios will give us a better understanding of the 

interaction between shaping methods and TCP variants.  

3. METHODOLOGY AND 

EXPERIMENTAL IMPLEMENTATION 
In this section, we provide a description of the metrics used 

to measure performance, the scenarios that cover many 

operating conditions, and the framework that has been 

developed to emulate our use case. 

3.1 Performance metrics 
We define three metrics in this section that we use to 

evaluate the QoE and to understand how each combination 

behaves. To do so, we present in Table 1 the main 

parameters that are used to define the metrics. 

Table 1. Description of parameters 

Parameter Description 

i Discrete time index 

LC(i) Video quality level index of client C at time i. 

LC,opt(i) Theoretical optimal value of LC(i) 

QC(i) Video encoding bitrate of client C at time i 

We note that the optimal quality level value, LC,opt(i), 

corresponds to the quality level that the client C should 

select at time i under the shaping rate defined  by the  

bandwidth manager. This shaping rate is chosen in a 

manner that ensures the fairest share of the available home 

bandwidth between clients with prioritization to achieve the 

maximum use of the available home bandwidth. This entails 

that some clients could have a higher quality level than 

others when their fair share of available home bandwidth is 

not sufficient to maximize the use of the available home 

bandwidth. Below, we define analytically three 

performance metrics that describe the three criteria of QoE 

mentioned in the Introduction: 

3.1.1 Video quality level stability 
Many research studies indicate that HAS users are likely to 

be sensitive to frequent and significant quality level 

switches [22, 23]. We use the instability metric,       , 
which measures the instability for client C for a K-second 

test duration in conformity with its description in [7] as the 

following equation: 

       
                            

   

              
   

      

       is the weighted sum of all encoding bitrate 

switching steps observed within the last K seconds divided 

by the weighted sum of the encoding bitrates selected in the 

last K seconds. The lower the        value is, the higher 

the stability of the video quality level is. 

More precisely, this formula uses the encoding bitrates of 

the selected quality levels over time,      , instead of the 

quality level index over time,      . In fact, the absolute 

difference between two encoding bitrates that are displayed 

on the client side during two successive seconds,       

and    , and denoted by                      , 
gives more significant indication of the observed video 

quality change than when using the absolute difference 

between the quality level indexes. Hence, we can offer an 

adequate representation of the user expectation. 

Moreover, in this formula, the authors of [7] use the weight 

function          in order to add a linear penalty to 

more recent quality level switches. In fact, their justification 

is that the switching of quality level is becoming more 

disturbing for users’ experience when the video playback 

position is far from the beginning of the video stream.  

3.1.2 Fidelity to optimal quality level 
In [7], the authors define two additional goals to achieve 

within our use case: 1) fairness between players: players 

should be able to converge to an equitable allocation of 

network resources; 2) efficiency among players: players 

should choose the highest feasible quality levels to 

maximize the user’s experience. Furthermore, in [9], the 

authors address the bandwidth underutilization issue that 

may prevent the possible improvement of QoE. So, 
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maximizing the use of bandwidth can be considered as a 

QoE criterion. Accordingly, in order to provide one formula 

that satisfies these three criteria, we define our metric called 

infidelity to optimal quality level. 

The infidelity metric,         of client C for a K-second 

test duration, measures the duration of time over which the 

HAS client C requests optimal quality: 

 

The lower the        value is, the higher the fidelity to 

optimal quality is. 

Here, we note that the theoretical optimal quality level 

          aims to resolve the dilemma between the two 

criteria of maximum use and fair share of bandwidth 

between HAS players. In fact, considering that only the fair 

share of bandwidth may cause bandwidth underutilization, 

in some cases it may leave some residual bandwidth 

allocated to nobody. Hence, based on the optimal quality 

level, the value of the infidelity metric is representative of 

user expectation. 

3.1.3 Convergence speed 
The convergence speed metric was previously defined in 

[1]. We provide an analytical definition as follows: 

 

This metric is the time that the player of HAS client C takes 

to reach and remain at the optimal quality level for at least 

T seconds during a K-second test duration. The reason of 

selecting this criterion for evaluating the QoE in our use 

case is observations made in [1], [2], [9], and [21]: they 

show that when HAS players compete for bandwidth, the 

convergence to optimal quality level may take several 

seconds or may be very difficult to be achieved. 

Accordingly, the speed of this convergence is a valuable 

QoE criterion for our evaluations. The lower the         

value is, the faster the convergence to the optimal quality 

level is.  

 

Additionally, we define two other metrics (CNG and frOFF*, 

described below) that enable us to measure the reaction of 

home gateway and HAS players. 

3.1.4 Congestion rate 
The congestion detection events influence to an extreme 

degree both the QoS and QoE of HAS because the server 

decreases its sending rate after each congestion detection. 

Hence, by analyzing the code description of the four TCP 

congestion control algorithms (NewReno, Vegas, Illinois, 

and Cubic), we found that the congestion event appears 

when the value of parameter slow start threshold (ssthresh) 

decreases (see Algorithm 1). Hence, we define a metric 

called congestion rate, denoted by           , that 

computes the rate of congestion events that are detected on 

the server side, corresponding to the HAS flow between 

client C and server S during a K-second test duration as 

shown in equation (4): 

          
    

           

 
                       

where     
            is the number of times the ssthresh has 

been decreased for the C-S HAS session during the K-

second test duration. 

3.1.5 Frequency of OFF* periods per chunk 
This metric is important to measure the frequency of OFF* 

periods. An OFF period whose duration exceeds RTO is 

denoted by OFF* (as indicated in Subsect. 2.1). This 

frequency is equal to the total number of OFF* periods 

divided by the total number of downloaded chunks. This 

metric is denoted by frOFF*. 

For result analysis, we use the QoE metrics to quantitatively 

discuss the user’s experience, and use CNG and frOFF* 

metrics to explain the performance of each combination of 

traffic method and congestion variant. 

3.2 Scenarios 
We define five scenarios that are typical of concurrence 

between HAS clients in a same home network (scenarios 1, 

2, and 3), and how the HAS client reacts when some 

changes occur (scenarios 4 and 5): 

1. Both clients start to play simultaneously and continue 

for 3 minutes. This scenario illustrates how clients 

compete. 

2. Client 1 starts to play, the second client starts after 30 

seconds, and both continue together for 150 seconds. 

This scenario shows how the transition from one client 

to two clients occurs.  

3. Both clients start to play simultaneously, client 2 stops 

after 30 seconds, and client 1 continues alone for 150 

seconds. This scenario shows how a transition from 

two clients to one takes place.  

4. Only one client starts to play and continues for 3 

minutes. At 30 seconds, we simulate a heavy 

congestion event with a provoked packet loss of 50% 

of the received packets at the server over a 1-second 

period. This scenario shows the robustness of each 

combination against the congestions that are induced 

by external factors, such as by other concurrent flows 

in the home network. 

5. Only one client is playing alone for 3 minutes. We vary 

the standard deviation value of RTTC-S (round trip time 

between the client and the server) for each set of tests. 

This scenario investigates the robustness against RTTC-S 

instability.  

The test duration was selected to be 3 minutes to offer 

sufficient delay for players to stabilize. 
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3.3 General framework 
We propose a testbed architecture presented in Figure 1 that 

emulates our use case described in the Introduction. The 

choice of only two clients is sufficient to show the behavior 

of concurrence between many HAS flows in the same home 

network.  

 
Figure 1. Architecture of the testbed 

In this section, we describe the configurations of each 

component presented in Figure 1: 

- HAS clients 

We used two Linux machines as HAS clients. We 

developed an emulated player in each client that reproduces 

the behavior of the HAS player without decoding and 

displaying a video stream. The playback buffer size is 

specified to be 15 chunks, and the chunk duration is 2 

seconds. In [18], the authors indicate that the bitrate 

adaptation algorithm depends on bandwidth estimation and 

playback buffer occupancy. Furthermore, players also 

define an aggressiveness level, as described in a previous 

study [19]. For example, the Netflix player is more 

aggressive than the Smooth Streaming player [19]. An 

aggressive player enables the user to ask for a video quality 

level that is slightly higher than the estimated available 

bandwidth. Moreover, aggressiveness is important for 

minimizing the “downward spiral effect” phenomenon [20]. 

This phenomenon consists of underestimating the available 

bandwidth, which leads to a lower video quality level 

selection. Accordingly, taking into consideration [18], [19], 

and [20], we used a bitrate adaptation algorithm based on 

bandwidth estimation in which we define an aggressiveness 

ρC(t) at time t that depends on playback buffer occupancy as 

follows: 

  ρC(t) = σ.RC(t)/BC   (5) 

where RC(t) is the filling level of the playback buffer at time 

t, BC is the size of the playback buffer of client C, and σ is 

the aggressiveness constant. The fuller the playback buffer 

is, the closer to σ the aggressiveness is.  

All tests use a HAS player with an aggressiveness constant 

of σ=0.2. This enables the HAS player to add a maximum 

of 20% to its available BW estimation.  

- Home network 

In the modeled home network, the clients are connected 

directly to the gateway. The total download bitrate, or home 

available bandwidth, is limited to 8 Mbps. We choose this 

value because it is lower than twice the video encoding 

bitrate of the highest quality level. Accordingly, two clients 

in the home network cannot select the highest quality level 

at the same time. In this case, one client should select 

quality level n° 4 and the other should select the quality 

level n° 3 as optimal qualities. We do not test a use case in 

which two clients have the same optimal quality level, 

because this is a very specific case, and dissimilarity 

between optimal quality levels is more general. 

- Home gateway 

The emulated home gateway consists of a Linux machine 

configured as a network bridge to forward packets between 

the home network and the best effort network.  

We emulate the queuing discipline of the home gateway by 

using the Stochastic Fairness Queueing discipline (SFQ) 

[24]. SFQ is a classless queuing discipline that we 

configured using the Traffic Controller emulation tool (tc). 

SFQ schedules packets based on flow identification (the 

source and destination IP addresses and the source port) 

and injects them into hash buckets during the enqueuing 

process. Each bucket represents a unique flow. 

Additionally, SFQ employs Round Robin fashion for 

dequeuing packets by taking into consideration the bucket 

classification. The goal of using buckets for enqueuing and 

Round Robin for dequeuing is to ensure fairness between 

flows so that the queue is able to forward data in turn and 

prevents any single flow from drowning out the remaining 

flows. We also configured SFQ in order to support the 

Drop Tail queue management algorithm when the queue 

becomes full. Hence, this configuration of the queuing 

discipline is classified as a Drop Tail class. The queue 

length of SFQ, which is indicated by parameter limit within 

the tc tool, is set to the bandwidth-delay product. 

 In the gateway, we implemented a bandwidth manager that 

selects a shaping rate for each connected active HAS client 

in a manner such that each client should attain its optimal 

quality level described in Subsect. 3.1. The shaping rate for 

each client was chosen as indicated in [1] and [2]; it is 10% 

higher than the encoding bitrate of the optimal quality level 

for each client. The two shaping methods HTBM and 

RWTM are implemented in the gateway, and they shape 

bandwidth in accordance with the decisions of the 

bandwidth manager. 

- Best effort network 

The best effort network is characterized by the presence of 

network devices to route packets. The round trip time RTTC-

S(t) in a best effort network is modeled as follows [10]: 

  RTTC-S (t) =  aC-S + q(t)/ς  (6) 

where aC-S  is a fixed propagation delay between client C 

and server S, q(t) is the queue length of a single congested 

router (the home gateway in our use case), and ς is the 

transmission capacity of the router. q(t)/ς models the 

queuing processing delay. To comply with equation (6), we 

used the normal distribution with a mean value aC-S and a 

standard deviation equal to 0.07.aC-S. The standard 
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deviation emulates the queuing processing delay q(t)/ς. This 

emulation is accomplished by using the “netem delay” 

parameter of the traffic controller tool in the gateway 

machine interface. 

- HAS server 

The HAS server is modeled by an HTTP Apache Server 

installed on a Linux machine operating on Debian version 

3.2. We can change the congestion control variant of the 

server by varying the parameter 

net.ipv4.tcp_congestion_control. All tests use five video 

quality levels denoted by 0, 1, 2, 3, and 4. Their encoding 

bitrates are constant and equal to 248 kbps, 456 kbps, 928 

kbps, 1,632 kbps, and 4,256 kbps, respectively. HTTP 

version 1.1 is used to enable a persistent connection. 

4. RESULTS 
In this section, we compare the different combinations of 

TCP congestion control variants in the server and shaping 

methods in the gateway in the five scenarios. Altogether, we 

evaluate eight combinations: four TCP congestion control 

variants combined with two shaping methods. We evaluate 

QoE by discussing the QoE metrics IS, IF, and V. We also 

use the CNG and frOFF* metrics to observe how each 

combination reacts. For each scenario, we repeated each 

test 60 times and we computed an average value of each 

metric. The number of 60 runs is justified by the fact that 

the difference of the average results obtained after 40 runs 

and 60 runs are lower than 6%. This observation was 

verified for all scenarios. Accordingly, 60 runs are 

sufficient to achieve statistically significant results.  

This section is organized as follows. First, we begin by 

evaluating performance in scenario 1, and we analyze the 

variation of cwnd for each combination. Second, we 

evaluate the performance of scenarios 2 and 3 to study the 

effect of transition from one to two clients (and vice versa) 

on the performance of each studied combination. Third, we 

present the performance of scenario 4 to measure the 

robustness of the combinations against induced congestions. 

Fourth, we study scenario 5 to measure the robustness 

against the instability of RTTC-S for each combination. 

Finally, we discuss all results by presenting a summary of 

observations and defining the combination that is suitable 

for each particular case.  

4.1 Scenario 1 
In this scenario, two clients are competing for BW and are 

playing simultaneously. The available home bandwidth 

permits only one client to have the highest quality level, n° 

4. We make the assumption that the client who gets the 

highest quality level n° 4 is identified as client 1. Optimally, 

the first player in our use case should obtain quality level n° 

4 with an encoding bitrate of 4,256 kbps, and the second 

player should have quality level n°3 with an encoding 

bitrate of 1,632 kbps. 

In this section, we present our evaluation results and discuss 

them. Then, we analyze the cwnd variation for each 

combination in order to understand the reason for the 

observed results. 

4.1.1 Measurements of performance metrics 
The average values of QoE metric measurements for client 

1 and client 2 are listed in Tables 2 and 3, respectively.  

Table 2. QoE for client 1 in scenario 1 

Performance 

metric 

Shaping 

method 

TCP congestion control variant 

NewReno Vegas Illinois Cubic 

Instability 

(%) IS1(180) 

W/o*   4.95 2.15 8.35 7.47 

HTBM   1.89 1.08 1.56 1.86 

RWTM   1.69 4.10 1.88 1.63 

Infidelity 

(%) 

IF1(180) 

W/o      41.33  52.31 74.14 50.46 

HTBM      49.57 47.81 7.75 20.45 

RWTM      45.87 32.24 6.17 5.02 

Convergence 

speed (s) 

V1,60(180) 

W/o    100.93 102.11 174.13 145.03 

HTBM    101.83 87.11 21.10 52.06 

RWTM      94.51 104.00 24.22 19.55 

Table 3. QoE for client 2 in scenario 1 

Performance 

metrics 

Shaping 

methods 

TCP congestion control variants 

NewReno Vegas Illinois Cubic 

Instability 

(%) 

IS2(180) 

W/o 5.82 3.06 7.85 5.82 

HTBM 1.17 0.95 1.05 1.15 

RWTM 1.09 0.95 1.03 1.13 

Infidelity (%) 

IF2(180) 

W/o 26.64 70.77 39.27 36.33 

HTBM 4.72 3.62 4.21 4.47 

RWTM 2.49 2.30 2.47 2.61 

Convergence 

speed (s) 

V2,60(180) 

W/o 96.25 137.01 126.33 92.81 

HTBM 12.41 6.95 9.73 13.26 

RWTM 6.73 5.03 6.54 8.95 

Our first overall observation is the large dissimilarity 

between QoE measurements of the different combinations. 

This observation is a valuable result that confirms that each 

combination induces a change of HAS player behavior. 

Consequently, using HAS traffic shaping without taking 

into consideration the TCP congestion control employed in 

the HAS server cannot guarantee a good user experience; 

hence, the prominence of our proposed work. 

The results show that traffic shaping considerably improves 

the QoE metric measurements for a majority of cases, 

especially for instability, which is largely reduced (e.g. a 

reduction of instability rate by a factor of 2.6 from 4.95% to 

1.89% when employing HTBM with NewReno, and a 

reduction by a factor of 4.5 from 7.47% to 1.63% when 

employing RWTM with Cubic, as shown in Table 2). 

Furthermore, RWTM shows better performance than 

HTBM in the majority of cases. Moreover, client 2 always 

has better performance than client 1 with both shaping 

methods: the reason is that the optimal quality level of 

client 2 (i.e. quality level n° 3) is lower than that of client 1 

(i.e. quality level n° 4): obviously, the quality level n° 3 is 

easier to achieve. In addition, the gap between the QoE 

metric measurements of the two shaping methods is higher 

for client 1 than client 2: For example, when considering 

the Cubic variant, the gap of infidelity rate of client 1 

between RWTM and HTBM is 15.43% (5.02% vs. 
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20.45%); this is higher than that of client 2, which is equal 

to 1.86% (2.61% vs. 4.47%). Consequently, the 

dissimilarity of performance between different 

combinations is more visible for client 1. For this reason, 

we limit our observation to client 1 in the remaining text of 

this subsection. 

Concerning the QoE measurements, based on Table 2, we 

present the most important observations related to client 1: 

 Combining NewReno or Vegas variants with 

HTBM or RWTM does not improve the QoE. 

Additionally, these four combinations have high 

infidelity value (near 50%) and very high 

congestion speed value (around 90 ~100 ms), but a 

low value of instability. These values indicate that 

the player was stable at a low quality level during 

the first half of the test duration and has difficulties 

converging to its optimal quality level. 

 HTBM has better QoE with Illinois than with 

Cubic: it is slightly more stable, 16% more faithful 

to optimal quality, and converges 2.4 times faster. 

 RWTM has better QoE with Cubic than with 

Illinois: it is slightly more stable, slightly more 

faithful to optimal quality level, and converges 

1.24 times faster.  

In order to be more accurate in our analysis, we use the two 

defined metrics: the frequency of OFF* periods per chunk, 

frOFF*, and the congestion rate, CNG. In Table 4, we present 

the average value over 60 runs for each metric and for each 

combination, related to client 1 and scenario 1. 

Table 4. frOFF* and CNG for client 1 in scenario 1 

Metric Shaping 

method 

TCP congestion control variant 

NewReno Vegas Illinois Cubic 

CNG W/o 46.13 43.00 66.11   85.65 

HTBM     44.06  40.50 58.68 191.72 

RWTM 0.10   8.26  0.76     1.11  

frOFF* W/o 0.42   0.35  0.27     0.40 

HTBM 0.31   0.32  0.06     0.16 

RWTM 0.32   0.41  0.24     0.24 

RWTM presents a negligible congestion rate, while HTBM 

has a very high rate of congestion, especially when the 

Cubic variant is used. Moreover, HTBM reduces the 

frequency frOFF* better than RWTM, mainly with Illinois 

and Cubic. These results have a direct relationship to the 

shaping methods described in Subsect. 2.2: 

 HTBM was designed to delay incoming packets, 

which causes an additional queuing delay. In all of 

the tests, we verified that HTBM induces a 

queueing delay of around 100 ms in scenario 1 for 

client 1. On one hand, this delay causes an 

increase of congestion rate because it increases the 

risks of queue overflow in the gateway, even when 

the QoE is good, such as with Cubic or Illinois 

variants. The dissimilarity of congestion rate 

between congestion controls variants is 

investigated in the next Subsect. 4.1.2. On the 

other hand, the RTTC-S value also jumps from 100 

ms to 200 ms, which increases the retransmission 

timeout value, RTO, to approximately 400 ms, 

hence reducing OFF* periods. The frOFF* of 

HTBM is noticeably lower than RWTM and the 

case without shaping (W/o). In addition, the 

assertion “the higher the QoE metric measurement, 

the lower the frOFF* value” seems to be valid; for 

example, HTBM presents better QoE with Illinois 

than with Cubic, and frOFF* is lower with Illinois 

than with Cubic.   

 Nevertheless, RWTM was designed to limit the 

value of the receiver’s advertised window, rwnd, 

of each client. Therefore, no additional queuing 

delay is induced by RWTM. Hence, the congestion 

rate is very low. Additionally, the RTTC-S 

estimation is performed only once per chunk. So, 

the cwnd value is constant during the ON period, 

even if RTTC-S varies. In our configuration, the 

standard deviation of RTTC-S is equal to 7 ms, i.e. 

0.07.aC-S, as described in Subsect. 3.3. 

Consequently, eliminating OFF* periods will not 

be possible. Instead, the frOFF* value will be 

bounded to a minimum value that characterizes 

RWTM when the QoE measurements are the most 

favorable. When testing with the four congestion 

control variants, this frOFF* value is equal to 0.24 

for the selected standard deviation. This means 

that RWTM can guarantee, in the best case, one 

OFF* period every 4.17 chunks. This frequency is 

useful, and will be discussed in the next subsection 

and in further detail in scenario 5. 

4.1.2 Analysis of cwnd variation 
To explain the results of scenario 1, we used the tcp_probe 

module in the HAS server. This module shows the 

evolution of the congestion window, cwnd, and the slow 

start threshold, ssthresh, during each run. For each 

combination, we selected a run the performance values of 

which are the nearest to its average values of Tables 2 and 

4, i.e. instability IS, infidelity IF, convergence speed V, 

frequency of OFF* periods per chunk frOFF*, and 

congestion rate CNG. Then, we present their cwnd and 

ssthresh evolution in Figures 2 through 9. We also indicate 

the moment of convergence by a vertical bold dotted line. 

We observed that this moment corresponds to the second 

from which the TCP congestion control is often processing 

under the congestion avoidance phase; i.e. when cwnd > 

ssthresh. In addition, from the moment of convergence, we 

observe that ssthresh becomes more stable and is 

practically close to a constant value. 

Figure 2 shows that the combination NewReno with HTBM 

cannot guarantee convergence to the optimal quality level. 

The congestion rate is not very high compared with other 
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TCP congestion variants. After 50 seconds, cwnd was able 

to reach the congestion avoidance phase for short durations, 

but the continuous increase of cwnd with the additive 

increase approach caused the detection of congestion. 

Moreover, the multiplicative decrease approach after 

congestions employed by NewReno was very aggressive; in 

effect, as described in Subsect. 2.2, the new cwnd value will 

be reduced by half (more precisely, to cwnd/2 + 3 MSS 

following the FR/FR phase) and ssthresh will also be 

reduced to cwnd/2. This aggressive decrease prevents the 

server from rapidly reaching a desirable cwnd value and, as 

a consequence, prevents the player from correctly 

estimating the available bandwidth and causes a lower 

quality level selection. Furthermore, the frOFF* value was 

relatively high (around 0.3 OFF* period per chunk), which 

is more than twice that of the Illinois and Cubic variants. 

This value is also caused by the multiplicative decrease 

approach that generates a lower quality level selection. Due 

to the shaping rate that adapts the download bitrate of the 

client to its optimal quality level, the chunk with a lower 

quality level will be downloaded more rapidly, which 

results in causing more frequent OFF* periods. For this 

reason, the player was not able to stabilize on the optimal 

quality level, resulting in a poor QoE. 

 
Figure 2. Cwnd variation of {NewReno HTBM}        

IS=5.48%, IF=35.68%, V=180s, frOFF*=0.2, CNG=43.33 

When combining NewReno with RWTM, we observed that 

test results diverged and could be classified into two 

categories: those with an infidelity value of 100% and that 

do not converge (Figure 3(a)), and those with a low value of 

infidelity and that converge rapidly (Figure 3(b)). In both 

figures, ssthresh is always invariable. Both figures have no 

congestion events, which is due to the use of RWTM. 

 

           (a) IS=0.95%, IF=100%,            (b) IS=2.62%, IF=4.92%, 

         V=180 frOFF*=0.68, CNG= 0       V=4 s frOFF*=0.23, CNG=0 

Figure 3. Cwnd variation of {NewReno RWTM} 

The OFF* periods are more frequent in Figure 3(a) (frOFF* 

= 0.68) than in Figure 3(b) (frOFF* = 0.23). Although both 

figures present a constant value of ssthresh, we observe that 

the only difference between them is the initial value of 

ssthresh. Figure 3(a) has a lower value of ssthresh than 

Figure 3(b): 27 MSS vs. 69 MSS. The additive increase 

approach of NewReno during the congestion avoidance 

phase prevents the server from rapidly increasing the cwnd 

value during ON periods. Therefore, the player was not able 

to reach the optimal quality level n° 4 at any time. The 

cause of the dissimilarity between the initial values of 

ssthresh in the two figures is explained in [17]. Some 

implementations of NewReno use the size of the receiver’s 

advertised window, rwnd, to define the initial value of 

ssthresh, but in fact, this value may be arbitrarily chosen. 

Accordingly, the combination of NewReno with RWTM 

could have high QoE if the initial value of ssthresh is well-

chosen.  

When combining Vegas with HTBM, we obtain a cwnd 

variation, as shown in Figure 4. The convergence moment 

(at 87 s in Figure 4) occurs when cwnd becomes often set 

higher than ssthresh (i.e. TCP congestion control is often 

processing under the congestion avoidance phase) and 

ssthresh is often set at the same value. We can observe the 

additive increase and additive decrease aspect of cwnd in 

the congestion avoidance phase after convergence. The 

additive decrease of cwnd involved in Vegas is caused by 

the queuing delay increases resulting from HTBM. This 

additive decrease has the advantage of maintaining a high 

throughput and reducing the dropping of packets in the 

gateway. Therefore, the congestion rate, CNG, is relatively 

low because it is reduced in Figure 4 from around 75 

congestion events per 100 seconds to only 15. The additive 

decrease also has the advantage of promoting convergence 

to the optimal quality level, unlike multiplicative decrease. 

As a result, the delay-based aspect with the additive 

decrease approach improves the stability of the HAS player 

after convergence. In contrast, Vegas uses a slightly low 

value of ssthresh (60 MSS) and employs the additive 

increase approach for cwnd updates during the congestion 

avoidance phase. As a consequence, the server cannot 

rapidly increase the cwnd value during the ON period, 

which  results  in  slow  convergence.  Therefore, the player  

 
Figure 4. Cwnd variation of {Vegas HTBM}                 

IS=1.31%, IF=46.74%, V=87 s, frOFF*=0.4, CNG=46.11 

convergence 
convergence 
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was not able to reach the optimal quality level n° 4 at any 

time before the moment of convergence. Consequently, the 

frequency of the OFF* period increases before the 

convergence moment; hence, the high value of frOFF*. 

The performance worsens when Vegas is combined with 

RWTM. As presented in Figure 5, the player was not able 

to converge. Instead, we observed many timeout 

retransmissions characterized by ssthresh reduction and 

cwnd restarting from slow start. The timeout 

retransmissions are generated by Vegas when only a 

duplicate ACK is received and the timeout period of the 

oldest unacknowledged packet has expired [4]. Because of 

that, Vegas generates more timeout retransmissions than 

NewReno. Hence, the CNG value is worse than in the other 

combinations of RWTM. Moreover, OFF* periods are 

frequent during the first 45 seconds, because the player 

requests quality level n° 3. Subsequently, OFF* periods 

become less frequent (they occur only at 79, 125, 138, 150, 

165, and 175 s) because the player was able to switch to an 

optimal quality level (n° 4). Hence frOFF* related to the 

whole test duration is equal to an acceptable value (0.29 

OFF* period per chunk). The player becomes able to 

request the optimal quality level n° 4 predominantly in the 

second period (after 45 seconds), but it is incapable of 

being stable for more than 60 seconds because of the 

retransmission timeout events. 

 
Figure 5. Cwnd variation of {Vegas, RWTM}             

IS=5.32%, IF=31.15%, V= 180s, frOFF*=0.29, CNG=6.11 

When we use the loss-delay-based variant Illinois, 

significant improvement of performance is observed with 

the two shaping methods: 

In Figure 6, despite the rapid convergence, a high rate of 

congestions (that reduces the ssthresh and cwnd values but 

maintains the cwnd higher than ssthresh, as described in 

Algorithm 1) and timeout retransmissions (that reduces 

ssthresh, drops cwnd, and begins from the slow start phase) 

was recorded. Consequently, the frequent reduction of 

ssthresh was the cause of the high rate of CNG: in this 

example, CNG is equal to 51.11. CNG is higher than that 

recorded for NewReno. The cause is the high value of 

ssthresh of approximately 115 MSS. The variable ssthresh 

was able to rapidly return to a fixed value after 

retransmissions, due to the update of α and β using accurate 

RTTC-S estimation (see Subsect. 2.1). As a consequence, 

cwnd restarts from the slow start phase after timeout 

detection and rapidly reaches the high value of ssthresh. 

Hence, the HAS player converges despite high congestion. 

In addition, OFF* periods were negligible, with only two 

periods after congestion. This is why frOFF* was very low 

(0.03). In the congestion avoidance phase, cwnd was able to 

increase and reach high values, even during short timeslots. 

This was due to the concave curve of cwnd generated by 

Illinois, which is more aggressive than NewReno. As a 

consequence, the player could be stabilized with optimal 

quality level n° 4. 

 
Figure 6. Cwnd variation of {Illinois, HTBM}            

IS=2.00%, IF=7.66%, V=5s, frOFF*=0.03, CNG=51.11 

When using RWTM with Illinois, the player converges, as 

presented in Figure 7. The congestion rate is very low 

(CNG=0.55), but congestions are caused by the 

aggressiveness of Illinois (the concave curve of cwnd in the 

C-AIMD approach) and its high ssthresh value (120 MSS). 

Congestions slow down the convergence speed and slightly 

reduce the QoE due to the multiplicative decrease approach 

of Illinois. As shown in Figure 7, one congestion event 

delayed the convergence time to 27 seconds. In addition, 

Illinois has the ability to select the suitable ssthresh value 

(110 MSS in Figure 7) that minimizes congestion events in 

the future, in spite of the sensitivity of RWTM to 

congestions. OFF* periods still exist, but with low 

frequency (frOFF* = 0.22). 

 
Figure 7. Cwnd variation of {Illinois RWTM},  

IS=2.40%, IF=5.47%, V=27s, frOFF*=0.22, CNG=0.55 

The Cubic variant yielded good performances with both 

shaping methods. The variations of cwnd when Cubic is 

combined with HTBM and RWTM are presented in Figures 

8 and 9, respectively. 

In Figure 8, the player converges tardily after a delay of 33 

seconds. The cause is mainly the low value of ssthresh that 

is selected by the Cubic algorithm. As explained in Subsect. 

2.1, the HyStart algorithm, implemented in Cubic, defines 

convergence 

  convergence 
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this ssthresh in order to have a less aggressive increase of 

cwnd. The ssthresh becomes lower when the RTTC-S 

increases. Knowing that HTBM increases RTTC-S by 

introducing an additional queuing delay, HyStart decreases 

ssthresh to be approximately 57 MSS. This is why the 

player cannot upgrade to its optimal quality level n° 4 

before convergence. The second cause is the multiplicative 

decrease approach of Cubic and the high rate of congestions 

caused by HTBM. This second cause makes the 

convergence to optimal quality level more difficult because 

the server is not able to increase its reduced congestion 

window cwnd during the ON period, as it should be 

increased. 

After convergence, many congestions were recorded, and 

OFF* periods were negligible. The ssthresh becomes more 

stable around 75 MSS: this is well-set by the HyStart 

algorithm. This enhances stability in the congestion 

avoidance phase with a more uniform increase of cwnd, as 

shown between 60 and 80 seconds in Figure 8. 

Furthermore, there is a set of large cubic curves with 

inflection points close to the ssthresh value. The variable 

cwnd is more present in the convex region, which is more 

aggressive when moving away from the inflection point. 

 

Figure 8. Cwnd variation of {Cubic HTBM},  

IS=1.98%, IF=19.03%, V=33s, frOFF*=0.16, CNG=186.11 

In Figure 9, the player converges rapidly in only 8 seconds. 

The ssthresh begins with a low value (60 MSS) for a few 

seconds during the buffering state, and then the HyStart 

algorithm implemented in Cubic rapidly adjusts the ssthresh 

value and enables the server to be more aggressive. 

Comparing with Figure 7, selecting a lower initial value of 

ssthresh is better for accelerating convergence, because 

otherwise there are more risks of congestion that slow down 

the convergence speed.  

Congestions are infrequent: only two congestions are 

visible in Figure 9 at seconds 70 and 130, and they are 

resolved by fast retransmission in accordance with 

Algorithm 1 and by using Hystart. As a consequence, 

separated congestion events do not dramatically affect the 

performance, as when Illinois is used with RWTM (Figure 

9). The Cubic algorithm chooses the inflection point to be 

around 140 MSS, which is much higher than the ssthresh 

value, so that the concave region becomes more aggressive 

than the convex region. The OFF* periods persist, even 

with Cubic, but with a low frequency: frOFF* = 0.22. 

 

Figure 9. Cwnd variation of {Cubic RWTM}, IS=1.78%, 

IF=5.5%, V=8s, frOFF*=0.22, CNG=1.66 

Accordingly, the Cubic variant is able to adjust its 

congestion window curve in different situations. When 

many congestions occur, the cubic curve becomes rather 

convex to carefully increase cwnd. When many OFF* 

periods occur, the cubic curve becomes rather concave, and 

is thus more aggressive than the concave curve of Illinois in 

order to rapidly achieve the desired send bitrate and 

compensate for the reduction of the cwnd value. However, 

Cubic begins by estimating a low value of ssthresh that is 

adjusted over time by the HyStart algorithm, which is 

beneficial only when using RWTM as a shaping method. 

Using HTBM slows down convergence considerably and 

affects the infidelity metric. 

4.2 Scenarios 2 and 3 
In this section, we present the five performance 

measurements of client 1 for the first three scenarios 

described in Subsect. 3.2. We make the assumption that the 

optimal quality level of client 1 is n° 4. We do not present 

NewReno and Vegas variants because they demonstrated 

low performance. The average values of QoE metrics for 

client 1 in the first three scenarios are listed in Table 5, and 

the average values of CNG and frOFF* in the first three 

scenarios are listed in Table 6. Both tables show the total 

mean values (denoted by MV) over the three scenarios. 

MVs are the global performance values proposed for 

consideration to compare between different combinations.  

Table 5. QoE for client 1 in scenarios 1, 2, and 3 

T
C

P
 v

a
r
ia

n
t 

S
c
e
n

a
r
io

 Performance metric 

Instability (%) Infidelity (%) 
Convergence 

speed (seconds) 
HTBM RWTM HTBM RWTM HTBM RWTM 

C
u

b
ic

 

1 1.86 1.63 20.45 5.02 52.06 19.55 
2 3.44 1.43 32.90 3.42 64.13 10.98 
3 2.19 1.63 18.49 4.81 34.65 14.34 

MV* 2.49 1.56 23.95 4.42 50.28 14.96 

Il
li

n
o

is
 1 1.56 1.88  7.75 6.17 21.10 24.22 

2 3.20 1.56 29.75   4.42 59.58 13.28 
3 1.85 1.76  7.92 5.66 21.03 18.80 

MV 2.20  1.73 15.14 5.42 33.90 18.56 

 

convergence 

convergence 
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Table 6. frOFF* and for client 1 in scenario 1, 2 and 3 

Metric Scenario Cubic Illinois 
HTBM RWTM HTBM RWTM 

 
 

CNG 

1 191.72 1.11 58.68 0.76 

2 375.62 0.82 33.11 0.68 

3 173.48 0.66 56.27 0.76 

MV 246.92  0.86 49.35 0.73 

 

frOFF* 

1 0.16 0.24 0.06 0.24 

2 0.23 0.24 0.21 0.24 

3 0.13 0.26 0.05 0.26 

MV 0.17 0.25 0.10 0.25 

Both tables indicate two valuable points: 

On one hand, RWTM has better QoE metric measurements 

than HTBM with both Cubic and Illinois variants. 

Moreover, RWTM not only has a lower congestion rate, 

CNG, than HTBM, but it also has a negligible CNG with 

the two TCP variants for all three scenarios. RWTM also 

preserves a constant value of frOFF*. Consequently, even the 

transition from one to two clients and vice versa (i.e., 

scenarios 2 and 3, respectively) does not disturb RWTM, 

which preserves its inherit characteristics of negligible 

congestion rate and its frOFF* rate around 0.25. This 

preservation has positive consequences for the user’s QoE. 

Although the gap between the QoE metrics measurements 

of {Cubic RWTM} and {Illinois RWTM} is not very 

significant, {Cubic RWTM} yields better values. 

Accordingly, we can say that the use of Cubic or even 

Illinois is beneficial for improving the user’s experience, 

with a slight preference for Illinois. 

On the other hand, HTBM presents better QoE with Illinois 

than with the Cubic variant. In conjunction, it has a fivefold 

lower congestion rate (49.35 vs. 246.92) and lower OFF* 

period frequency frOFF*. This observation is valid not only 

for total mean values, MV, but also with every scenario (1, 

2, and 3). Therefore, Illinois is distinctly better than Cubic 

for the HTBM shaping method, even when the number of 

active HAS clients in the home gateway changes between 

one and two clients. Accordingly, the loss-delay-based 

variant with the C-AIMD approach used by Illinois has 

more favorable impacts on QoE, CNG, and frOFF* than the 

loss-based variant with the AIAD approach using the 

HyStart algorithm employed by Cubic. 

4.3 Scenario 4 
The objective of this section is to evaluate the robustness of 

each combination against the congestions that are induced 

by other flows. Therefore, we employed scenario 4, as 

described in Subsect. 3.2, in which a heavy congestion is 

induced. To be able to compare performances correctly, a 

reference scenario, denoted by WL, consisting of a HAS 

client working alone in the home network, is used. No loss 

is observed in the reference scenario. We do not present the 

NewReno and Vegas variants because they showed poor 

performance. Altogether, we have four combinations to 

evaluate: Cubic and Illinois combined with two shaping 

methods, HTBM and RWTM. The average values of the 

QoE metrics of the client in scenario 4 are provided in 

Table 7, and the average values of CNG and frOFF* are listed 

in Table 8. 

Table 7. QoE for client 1 in scenario 4 

T
C

P
 

v
a

r
ia

n
t 

S
c
e
n

a
r
io

 Performance metric 

Instability (%) 

 

Infidelity (%) 

 

Convergence 

speed (s) 

HTBM RWTM HTBM RWTM HTBM RWTM 

Cubic WL1 
1.08 1.07 3.71 1.79 7.61 4.10 

4 4.86 6.40 48.2 46.14 120.3 129.3 
Illinois WL 1.08 1.07 2.23 1.66 5.37 4.01 

4 2.7 2.92 15.6 17.81 35.48 42.75 
1Without loss 2Degradation percentage 

Table 8. frOFF* and CNG for client 1 in scenarios 1, 2, and 3 

Metric Scenario 
Cubic Illinois 

HTBM RWTM HTBM RWTM 

 
CNG 

WL 34.2 0.98 38.51 0.79 

4 216.19 120.36 146.68 143.54 

 
frOFF* 

WL 0.03 0.36 0.03 0.43 

4 0.40 0.41 0.09 0.31 

The measurements in the two tables indicate three major 

observations: 

 The lowest QoE metric measurements are recorded for 

the Cubic variant for both shaping methods: their 

instability is around 5~6%, their infidelity is near 50%, 

and their convergence speed is approximately 125 ms. 

We also notice that the congestion rate, CNG, is very 

high, between 120 and 220, and the frequency frOFF* is 

important around 0.4 (i.e., one OFF* period occurs for 

every 2.5 chunks, on average). We observe not only 

lower measurements, but also a higher degradation rate 

in performance: the gap of QoE metric measurements, 

CNG and frOFF*, is clearly large between scenario WL 

and scenario 4. Accordingly, Cubic is not suitable as a 

TCP congestion control variant of the HAS server for 

both shaping methods when heavy congestion occurs. 

This result can be verified by examining Figures 8 and 

9 in Subsect. 4.1.2, where Cubic has difficulties with 

rapidly defining the suitable ssthresh value before 

convergence and after congestion, respectively. 

 The RWTM shaping method presents higher 

degradation in QoE metric measurements than HTBM 

when we compare scenario WL to scenario 4 for both 

TCP congestion variants, Cubic and Illinois. The cause 

is mainly related to the fact that HTBM is used to 

generate congestion events and maintain high QoE 

under normal circumstances, which is not the case with 

RWTM. Accordingly, we can say that RWTM is more 

sensitive to induced congestions than HTBM. This 

result can be verified when examining Figures 7 and 9 

in Subsect. 4.1.2, in which a single congestion event 

instantaneously degrades performance. 
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From the first and the second observations, we can deduce 

that the best combination that maintains optimal QoE 

metric measurements with low degradation and has the 

lowest frequency of OFF* periods, frOFF*, is ensured by the 

combination {Illinois HTBM}.  

 The second-best combination is {Illinois RWTM}. 

Here, the QoE metric measurements are acceptable, but 

the degradation rate is higher than the best combination 

{Illinois HTBM}. This degradation indicates that 

{Illinois RWTM} cannot adequately resist against 

induced congestions, especially when we have a highly 

congested link between client and server. However, 

this combination could successfully be used with a link 

under less frequent congestions. 

4.4 Scenario 5 
In this section, we present the performance metric 

measurements when the standard variation of RTTC-S varies. 

The behavior of the resulting curves will indicate how 

performance degrades when the standard deviation of  

RTTC-S increases. The variation of QoE (instability, 

infidelity, and convergence speed) is presented in Figure 

10, and the variation of CNG and frOFF* is listed in Figure 

11. We have two major observations: 

 
Figure 10. QoE variation 

      

 

 

Figure 11. Variation of CNG and frOFF* 

On the one hand, the {Illinois RWTM} (purple cross) and 

the {Cubic RWTM} (red square) curves are convex and 

close to each other and are predominantly below the other 

curves. The three QoE metric values are good until an 

RTTC-S standard deviation of around 40 ms, where 

performance degradation begins to be visible. Moreover, 

the combination {Illinois RWTM} preserves its 

performance better and has a less aggressive degradation 

rate for higher RTTC-S standard deviation, especially from 

35 ms. Accordingly, we can say that using RWTM with 

Illinois is safer when RTTC-S is very unstable. Otherwise, 

{RWTM Cubic} can also be used, most usefully when the 

standard deviation of RTTC-S is lower than 35 ms. We also 

observe in Figure 11 that both combinations have a 

similarly low congestion rate, CNG, and similar frequency 

of OFF* periods, frOFF*. Based on this observation, we can 

deduce that RWTM preserves its inherent characteristics 

with Cubic and Illinois variants, and that the degradation of 

QoE metric measurements for highly unstable RTTC-S is 

mainly caused by the congestion control algorithms used by 

Cubic and Illinois variants. Since RWTM seems to be more 

adequate with Illinois, we can say that the loss-delay-based 

and C-AIMD approach of Illinois helps more than the loss-

based and cubic RTT-independent approach of Cubic to 

preserve good performance for highly unstable RTTC-S 

values. 

On the other hand, HTBM is less robust against RTTC-S 

instability. The green and the blue curves that present the 

combination of HTBM with Illinois and Cubic, 

respectively, show a significant degradation of QoE metric 

measurements when the standard deviation of RTTC-S is 

above 14 ms. However, {HTBM Illinois} is more sensitive 

to RTTC-S instability than {HTBM Cubic}. This means that 

combining the loss-delay-based congestion control variant 

Illinois with the HTBM shaping method that increases the 

queuing delay, entails harmful drawbacks for QoE when the 

RTTC-S is unstable. We can also validate this observation in 

Figure 11: the congestion rate CNG of {HTBM Illinois} 

and {HTBM Cubic} are predominantly close to each other, 

but the frequency of OFF* periods explodes with {HTBM 

Illinois} for RTTC-S standard deviation higher than 20 ms. 

This implies that the additional delay caused by HTBM is 

practically the same for both congestion control variants 

Cubic and Illinois, but the effects on frOFF* and QoE are 

quite different and involve more drawbacks for the Illinois 

variant. In contrast, HTBM with Cubic has fewer 

drawbacks and presents QoE metrics measurements that are 

relatively constant for instability and infidelity from RTTC-S 

standard deviations around 20 ms. This results can be 

explained by the fact that the Cubic variant does not use 

RTTC-S to compute its congestion window cwnd during the 

congestion avoidance phase, as explained in Subsect. 2.1.  

4.5 Discussion 
After comparing the results of five scenarios, we have made 

numerous observations, but in this subsection, we want to 

summarize the most important observations. First, 

NewReno and Vegas variants do not provide good 

performance in the HAS context, excepting the combination 

{NewReno RWTM} that could perform well if the initial 

 

 

  (a)  CNG variation  (b) frOFF* variation 
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value of ssthresh is well-chosen. Second, we summarize the 

observations of the five scenarios for the four combinations 

in Table 9. Thus, we assign a score for each combination 

that ranges between "--" and "++": -- (bad), - (insufficient), 

+/- (average), + (good), and ++ (excellent). This score is 

based on the analysis of results for each scenario. 

Table 9. The final score for each combination 

 

Scenario 

Combination 

RWTM HTBM 

Cubic Illinois Cubic Illinois 

{1,2, 3} ++ ++ +/- + 

4 -- + -- ++ 

5 + ++ +/- -- 

The best combination is {Illinois RWTM}: it yields good 

performance when two clients compete for bandwidth and 

is robust against high RTTC-S variation, but it is somewhat 

vulnerable to heavy congestions that could be caused by 

external factors. In the second position, we have two 

combinations: 

- {Cubic RWTM}: Unfortunately, it is very vulnerable 

to congestions and slightly sensitive to high RTTC-S 

variation. 

- {Illinois HTBM}: It has the advantage of being robust 

against heavy congestions. However, it is very sensitive 

to RTTC-S variation. Furthermore, it causes a high rate 

of congestion in the gateway that could disturb other 

sessions in concurrence with HAS sessions. 

5. CONCLUSION AND FUTURE WORK 
A comparative evaluation has been developed in order to 

study the effect of combining two well-known traffic 

shaping methods (HTBM and RWTM) in the gateway with 

four very common TCP congestion algorithms (NewReno, 

Vegas, Illinois, and Cubic) in the server in the context of 

HTTP adaptive streaming technique. We examined the 

user’s QoE by applying objective metrics. Furthermore, we 

observed the evolution of the congestion window on the 

server side in order to explain the behavior of each 

combination and its relationship with QoE metrics. We also 

used the congestion rate and the frequency of OFF periods 

that exceeds retransmission timeout as indicators. We have 

addressed many scenarios: two HAS clients competing for 

the home bandwidth simultaneously, adding or removing a 

HAS client, inducing a heavy congestion in the gateway, 

and increasing the instability of the round trip time, RTT, 

between the HAS server and the HAS client. The results 

show that there is a significant discordance in performance 

between combinations. The best combination that improves 

the QoE, reduces the congestion rate, and reduces the OFF 

periods in the majority of scenarios is when combining the 

loss-delay-based congestion control variant, Illinois, which 

uses the C-AIMD approach, with the TCP flow control-

based method, RWTM. The characteristics of Illinois and 

RWTM seem to be similarly robust against high RTT 

instability. This combination does not disturb other real-

time streams in the home network because it does not 

induce additional queueing delay and it considerably 

reduces the congestion rate. However, this combination is 

slightly vulnerable to heavy congestions that could be 

caused by external factors such as other concurrent streams. 

Having extended our knowledge about the combination of 

TCP congestion control variants with shaping methods in 

this work, we intend as future work to design a new TCP 

congestion control variant that is compatible with all 

specifications of HAS and shaping methods. 
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