
HAL Id: hal-01249628
https://hal.science/hal-01249628v1

Preprint submitted on 2 Jan 2016 (v1), last revised 1 Feb 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey on reverse Carleson measures
Emmanuel Fricain, Andreas Hartmann, Willam T. Ross

To cite this version:
Emmanuel Fricain, Andreas Hartmann, Willam T. Ross. A survey on reverse Carleson measures.
2015. �hal-01249628v1�

https://hal.science/hal-01249628v1
https://hal.archives-ouvertes.fr


A SURVEY ON REVERSE CARLESON MEASURES

EMMANUEL FRICAIN, ANDREAS HARTMANN, AND WILLIAM T. ROSS

ABSTRACT. This is a survey on reverse Carleson measures for various Hilbert spaces of analytic

functions. These spaces include Hardy, Bergman, certain harmonically weighted Dirichlet, Paley-

Wiener, Fock, model, and de Branges-Rovnyak spaces.

1. INTRODUCTION

Suppose that H is a Hilbert space of analytic functions on the open unit disk D = {z ∈ C :
|z| < 1} endowed with a norm ‖ · ‖H . If µ ∈ M+(D

−), the positive finite Borel measures on the

closed unit disk D− = {z ∈ C : |z| 6 1}, we say that µ is a Carleson measure for H when

(1.1) ‖f‖µ . ‖f‖H ∀f ∈ H ,

and a reverse Carleson measure for H when

(1.2) ‖f‖H . ‖f‖µ ∀f ∈ H .

Here we use the notation

‖f‖µ :=

(∫

D−

|f |2dµ
)1

2

for the L2(µ) norm of f and the notation ‖f‖µ . ‖f‖H to mean there is a constant cµ > 0 such

that ‖f‖µ 6 cµ‖f‖H for every f ∈ H (similarly for the inequality ‖f‖H . ‖f‖µ). We will use

the notation ‖f‖µ ≍ ‖f‖H when µ is both a Carleson and a reverse Carleson measure. There is

of course the issue of how we define f µ-a.e. on T = ∂D so that ‖f‖µ makes sense; but this will

be discussed later.

Carleson measures for many Hilbert (and Banach) spaces of analytic functions have been well

studied for many years now. Due to the large literature on this subject, it is probably impossible

to give a complete account of these results. Carleson measures make, and continue to make,

important connections to many areas of analysis such as operator theory, interpolation, boundary

behavior problems, and Bernstein inequalities and they have certainly proved their worth. We

will mention a few of these results as they relate to the lesser known topic, and the focus of this

survey, of reverse Carleson measures.
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Generally speaking, Carleson measures µ are often characterized by the amount of mass that µ
places on a Carleson window

SI :=
{
z ∈ D− : 1− |I| 6 |z| 6 1,

z

|z| ∈ I
}

relative to the length |I| of the side I of that window, i.e., whether or not there exists positive

constants C and α such that

µ(SI) 6 C|I|α.(1.3)

for all arcs I ⊂ T = ∂D. We will write this as µ(SI) . |I|α.

When H is a reproducing kernel Hilbert space, it is often the case that the Carleson condition in

(1.1) can be equivalently rephrased in terms of the, seemingly weaker, testing condition

(1.4) ‖kH

λ ‖µ . ‖kH

λ ‖H ∀λ ∈ D,

where kH
λ is the reproducing kernel function for H . This testing condition (where (1.4) implies

(1.1)) is often called the reproducing kernel thesis (RKT).

It is natural to ask as to whether or not reverse Carleson measures on H can be characterized by

replacing the conditions in (1.3) and (1.4) with the analogous “reverse” conditions

µ(SI) & |I|α or ‖kH

λ ‖µ & ‖kH

λ ‖H .

We will explore when this happens.

Reverse Carleson measures probably first appeared under the broad heading of “sampling mea-

sures” for H , in other words, measures µ for which

‖f‖H ≍ ‖f‖µ ∀f ∈ H ,

i.e., µ is both a Carleson and a reverse Carleson measure for H . When µ is a discrete measure

associated to a sequence of atoms in D, this sequence is often called a “sampling sequence” for

H and there is a large literature on this subject [52]. Equivalent measures have also appeared in

the context of “dominating sets”. For example, it is often the case that H is naturally normed

by an L2(µ) norm, i.e.,

‖f‖H = ‖f‖µ ∀f ∈ H ,

as is the case with the Hardy, Bergman, Paley-Wiener, Fock, and model spaces. For a Borel set

E contained in the support of µ, one can ask whether or not the measure µE = µ|E satisfies

(1.5) ‖f‖H ≍ ‖f‖µE
∀f ∈ H .

Such sets E are called “dominating sets” for H . Historically, for the Bergman, Fock, and Paley-

Wiener spaces, the first examples of reverse Carleson measures were obtained via dominating

sets which, in these spaces, are naturally related with relative density, meaning that E is never

too far from the set on which the norm of the space is evaluated.

Though we will give a survey of reverse Carleson measures considered on a variety of Hilbert

spaces, our main effort, and efforts of much recent work, will be on the sub-Hardy Hilbert spaces
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such as the model spaces and their de Branges-Rovnyak space generalizations. We will also

comment on certain Banach space generalizations when appropriate.

2. THE HARDY SPACE

We assume the reader is familiar with the classical Hardy space H2. For those needing a review,

three excellent and well-known sources are [16, 20, 28]. Functions in H2 have radial boundary

values almost everywhere on T and H2 can be regarded as a closed subspace of L2 via the

“vanishing negative Fourier coefficients” criterion. If m is standard Lebesgue measure on T,

normalized so that m(T) = 1, then H2 is normed by the L2(m) norm ‖ · ‖m. As expected, the

subject of Carleson measures begins with this well-known theorem of Carleson [20, Chap. I,

Thm. 5.6].

Theorem 2.1 (Carleson). For µ ∈ M+(D) the following are equivalent:

(i) ‖f‖µ . ‖f‖m for all f ∈ H2;

(ii) ‖kλ‖µ . ‖kλ‖m for all λ ∈ D, where kλ(z) = (1 − λz)−1 is the reproducing kernel for

H2;

(iii) µ(SI) . |I| for all arcs I ⊂ T.

This theorem can be generalized in a number of ways. First, the theorem works for the Hp

classes for p ∈ (0,∞) (with nearly the same proof). In particular, the set of Carleson measures

for Hp does not depend on p. Furthermore, notice that the original hypothesis of the theorem

says that µ ∈ M+(D) and thus places no mass on T. Since H2 ∩ C(D−) is dense in H2 (finite

linear combinations of reproducing kernels belong to this set), one can replace the condition

‖f‖µ . ‖f‖m for all f ∈ H2 with the same inequality but with H2 replaced with H2 ∩ C(D−).
This enables an extension of Carleson’s theorem to measures µ which could possibly place mass

on T where the functions in H2 are not initially defined. In the end however, this all sorts itself

out since the Carleson window condition µ(SI) . |I| implies that µ|T ≪ m and so the integral

in ‖f‖µ makes sense when one defines H2 functions on T by their m-almost everywhere defined

radial limits. Stating this all precisely, we obtain a revised Carleson theorem.

Theorem 2.2. Suppose µ ∈ M+(D
−). Then the following are equivalent:

(i) ‖f‖µ . ‖f‖m for all f ∈ H2 ∩ C(D−);

(ii) ‖kλ‖µ . ‖kλ‖m for all λ ∈ D;

(iii) µ(SI) . |I| for all arcs I ⊂ T.

Furthermore, when any of the above equivalent conditions hold, then µ|T ≪ m; the Radon-

Nikodym derivative dµ|T/dm is bounded; and ‖f‖µ . ‖f‖m for all f ∈ H2.

We took some time to chase down this technical detail since, for other Hilbert spaces, we need

to include the possibility that µ might place mass on the unit circle T and perhaps even have
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a non-trivial singular component (with respect to m). In fact, as we will see below when one

discusses the works of Aleksandrov and Clark, there are Carleson measures, in fact isometric

measures, for model spaces which are singular with respect to m.

The reverse Carleson measure theorem for H2 is the following [22]. We include the proof since

some of the ideas can be used to obtain a reverse Carleson measure for other sub-Hardy Hilbert

spaces such as the model or de Branges-Rovnyak spaces (see Section 7).

Theorem 2.3. Let µ ∈ M+(D
−). Then the following assertions are equivalent:

(i) ‖f‖µ & ‖f‖m for all f ∈ H2 ∩ C(D−);

(ii) ‖kλ‖µ & ‖kλ‖m for all λ ∈ D;

(iii) µ(SI) & |I| for every arc I ⊂ T;

(iv) ess-inf dµ|T/dm > 0.

Proof. (i) ⇒ (ii) is clear.

(iii) ⇒ (iv): Define

C = inf
I

µ(SI)

|I| .

Let I be an arc on T and take any (relatively) open set O in D− for which I ⊂ O. Then there

exists an integer N such that h = |I|/N satisfies SI,h ⊂ O where SI,h is the modified Carleson

window defined by

SI,h =
{
z ∈ D− : 1− h 6 |z| 6 1,

z

|z| ∈ I
}
.

Divide I into N sub-arcs Ik (suitable half-open except for the last one) such that |Ik| = h (and

hence SIk,h = SIk). Then

µ(SI,h) = µ(
N⋃

k=1

SIk,h) =
N∑

k=1

µ(SIk,h) > C
N∑

k=1

|Ik| = C|I|.

For every (relatively) open set O in D− for which I ⊂ O there exists h > 0 such that SI,h ⊂ O.

Since µ ∈ M+(D
−) is outer regular (see [46, Theorem 2.18]) we have

µ(I) = inf{µ(O) : I ⊂ O open in D−} > inf
h>0

µ(SI,h) > C|I|.

We deduce that m is absolutely continuous with respect to µ|T and the corresponding Radon-

Nikodym derivative of µ is (essentially) bounded below by C.

(iv) ⇒ (i): Let

A = ess-inf dµ|T/dm.

For all f ∈ H2 ∩ C(D−),
∫

D−

|f |2dµ >

∫

T

|f |2dµ > A

∫

T

|f |2dm.
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(ii) ⇒ (iii): Let

(2.4) Kλ(z) =
kλ(z)

‖kλ‖m
be the normalized reproducing kernel for H2 and observe that since

‖kλ‖m =
1√

1− |λ|2
,

the quantity

|Kλ(z)|2 =
1− |λ|2
|1− λz|2

is the Poisson kernel for the disk. Let

B = inf
λ∈D

‖Kλ‖2µ
and note that B > 0 by hypothesis.

Integrating over SI,h with respect to area measure dA on D we get

(2.5) B|I| × h 6

∫

SI,h

∫

D−

|Kλ|2dµ dA(λ) =

∫

D−

∫

SI,h

1− |λ|2
|1− λz|2

dA(λ)dµ(z).

Set

ϕh(z) =
1

h

∫

SI,h

1− |λ|2
|1− λz|2

dA(λ).

We claim that

lim
h→0

ϕh(z) =





1 if z ∈ I◦

1
2

if z ∈ ∂I

0 if z ∈ D− \ I−,
where I− denotes the closure, I◦ the interior, and ∂I the boundary of the arc I . Indeed, when

z /∈ I−, there are constants δ, h0 > 0 such that for every h ∈ (0, h0) and for every λ ∈ SI,h, we

have |1− λz| > δ > 0. The result now follows from the estimate

0 6 ϕh(z) =
1

h

∫

SI,h

1− |λ|2
|1− λz|2

dA(λ) 6
1

δ2
|I| × h

h
× (2h) . h.

When z = eiθ0 ∈ I◦, then setting λ = reiθ for λ ∈ SI,h we have

ϕh(z) =
1

h

∫

SI,h

1− |λ|2
|1− λz|

dA(λ) =
1

h

∫ 1

1−h

∫

I

1− r2

|1− re−iθz|2dθrdr.

Since dist(z,T \ I◦) > 0 we see that when r → 1 we have, via Poisson integrals,
∫

I

1− r2

|1− re−iθz|2dθ = 1−
∫

T\I

1− r2

|1− re−iθz|2dθ → 1.
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Similarly, if can be shown that at the endpoints of I , ϕh converges to 1
2
. Hence ϕh converges

pointwise to a function comparable to χI , and ϕh is uniformly bounded in h. From (2.5) and the

dominated convergence theorem we finally deduce that

µ(I) =

∫

D−

χIdµ ≃
∫

D−

lim
h→0

ϕh(z)dµ(z) = lim
h→0

∫

D−

ϕh(z)dµ(z) & |I| . �

This theorem was proved in [22] and extends to 1 < p < ∞ with the same proof. There is a

somewhat weaker version of this result in [30], appearing in the context of composition operators

on H2 with closed range, where the authors needed to assume from the onset that µ was a

Carleson measure for H2. Observe that in this theorem we do not require absolute continuity

of the restriction µ|T. However, if we want to extend ‖f‖µ & ‖f‖m, originally assumed for

f ∈ H2 ∩ C(D−), to all of H2, then, in order for the integral in ‖f‖µ to make sense for every

function in H2 (via radial boundary values), we need to impose the condition µ|T ≪ m. Note

that we are allowing the possibility that the integral ‖f‖µ be infinite for certain f ∈ H2 when the

Radon-Nikodym derivative of µ|T is unbounded.

When µ ∈ M+(D
−) one can combine Theorem 2.2 and Theorem 2.3 to see that

‖f‖µ ≍ ‖f‖m ∀f ∈ H2 ⇐⇒ ‖kλ‖µ ≍ ‖kλ‖m ∀λ ∈ D ⇐⇒ µ(SI) ≍ |I| ∀I ⊂ T.

One might ask what are the “isometric measures” for H2, i.e., ‖f‖µ = ‖f‖m for all f ∈ H2.

Notice how this is a significantly stronger condition than ‖f‖m ≍ ‖f‖µ. As it turns out, there is

only one such isometric measure.

Proposition 2.6. Suppose µ ∈ M+(D
−) and ‖f‖µ = ‖f‖m for all f ∈ H2 ∩ C(D−). Then

µ = m.

Proof. Indeed for each n ∈ N ∪ {0} we have

1 = ‖zn‖2m =

∫

D

|z|2ndµ+ µ(T).

Clearly, letting n → ∞, we get µ(T) = 1. When n = 0 this yields

µ(D) = 0 and µ = µ|T.
By Carleson’s criterion we see that µ ≪ m and so dµ = hdm, for some h ∈ L1(m). To

conclude that h is equal to one almost everywhere, apply the fact that µ is an isometric measure

to the normalized reproducing kernels Kλ (see (2.4)) to see that

1 =

∫

T

1− |λ|2
|1− ζλ|2

h(ζ)dm(ζ) ∀λ ∈ D.

If we express the above as a Fourier series, we get

1 = ĥ(0) +

∞∑

n=1

ĥ(−n)λ
n
+

∞∑

n=1

ĥ(n)λn, λ ∈ D,

and it follows that h = 1 m-a.e. on T. Thus µ = m. �
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3. BERGMAN SPACES

The Bergman space A2 is the space of analytic functions f on D with finite norm

‖f‖A2 :=

(∫

D

|f |2dA
)1

2
,

where dA = dxdy/π is normalized area Lebesgue measure on D [17, 25]. As with the Hardy

space, we begin our discussion with the Carleson measures for A2. This was done by Hastings

[23]:

Theorem 3.1. For µ ∈ M+(D) the following are equivalent:

(i) µ(SI) . |I|2 for every arc I ∈ T;

(ii) ‖f‖A2 . ‖f‖µ for every f ∈ A2.

We also refer to [25] for further information about Carleson measures in Bergman spaces, includ-

ing an equivalent restatement of this theorem involving pseudo-hyperbolic disks. In particular

(see [25, Theorem 2.15]) condition (i) is replaced by the condition: there exists an r ∈ (0, 1)
such that

µ(D(a, r)) . A(D(a, r)), a ∈ D,

where

D(a, r) =

{
z ∈ C :

∣∣∣∣
z − a

1− za

∣∣∣∣ < r

}

denotes a pseudo-hyperbolic disk of radius r centered at a. Observe that since r is fixed, we have

A(D(z, r)) ≍ (1 − |z|2)2. Again, the geometric condition measures the amount of mass that µ
places on a pseudohyperbolic disk with respect to an intrinsic area measure of that disk. Hastings

result was generalized by Oleinik and Pavlov, and Stegenga (see [35] for the references).

Reverse Carleson embeddings for the Bergman spaces, and other closely related spaces, were

discussed by Luecking [33, 35, 36]. One of his first results in this direction concerns dominating

sets, i.e., measures of the type χGdA (see (1.5)). Here we have the following “reverse” of the

inequality in Hasting’s result (see [33]).

Theorem 3.2. Suppose G is a (Lebesgue) measurable subset of D. Then µ = χGdA is a reverse

Carleson measure for A2 if and only if µ(SI) & |I|2 for all arcs I ⊂ T.

A similar result holds for the harmonic Bergman space [34]. We will discuss dominating sets

again later when we cover model spaces (see Definition 6.12).

As it turns out, the general reverse Carleson measure result for Bergman spaces is more delicate

[35, Thm. 4.2].
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Theorem 3.3. Let δ, ε > 0. Then there exists a β > 0 with the following property: Whenever

µ ∈ M+(D) for which

(3.4) c = sup
a∈D

µ(D(a, 1/2))

A(D(a, 1/2))
< ∞,

and for which the set

(3.5) G = {z : µ(D(z, β)) > εcA(D(z, β))}
satisfies

(3.6) m(G ∩ SI) > δ|I|2,
then ‖f‖A2 . ‖f‖µ for all f ∈ A2.

Notice how this theorem requires a priori that µ is a Carleson measure for A2 (via (3.4)). The

next two conditions tell us that the reverse Carleson condition (3.5) must be satisfied on a set

which is, in a sense, relatively dense. Moreover, the relative density condition in (3.6) should

hold close to the unit circle.

For simplicity we stated the results for the A2 Bergman space. Analogous theorems (with the

same proofs) are true for the Ap Bergman spaces for p ∈ (0,∞).

4. FOCK SPACES

We briefly discuss Carleson and reverse Carleson measures for a space of entire functions - the

Fock space. Here the conditions are a bit different since the functions are entire and there are no

“boundary conditions” or “Carleson boxes”.

Let ϕ be a subharmonic function on C (often called the weight) such that

1

c
6 ∆ϕ 6 c

for some positive constant c. The weighted Fock space F 2
ϕ is the space of entire functions f with

finite norm

‖f‖ϕ =

(∫

C

|f(z)|2e−2ϕ(z)dA(z)

)1
2

.

Recall that dA is Lebesgue area measure on C. When ϕ(z) = |z|2, this space is often called the

Bargmann-Fock space. A good primer for the Fock spaces is [55]. There is also a suitable Lp

version of this space denoted by F p
ϕ and the results below apply to these spaces as well.

The Carleson measures for F 2
ϕ were characterized by several authors (for various ϕ) but the final,

most general, result is found in Ortega-Cerdà [40]. Below let B(a, r) = {z ∈ C : |z − a| < r}
be the open ball in C centered at a with radius r.

Theorem 4.1. For a locally finite positive Borel measure µ on C, a weight ϕ as above, and

dν = e−2ϕdµ, the following are equivalent:
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(i) ‖f‖ν . ‖f‖ϕ for all f ∈ F 2
ϕ;

(ii) supz∈C µ(B(z, 1)) < ∞.

The discussion of reverse Carleson measures for Fock spaces was begun by Janson-Peetre-

Rochberg [26], again via dominating sets.

Theorem 4.2. For a weight ϕ, a measurable set E ⊂ C, and dν = e−2ϕχEdA, the following are

equivalent:

(i) ‖f‖ϕ . ‖f‖ν for all f ∈ Fϕ;

(ii) there exists an R > 0 such that infz∈CA(E ∩ B(z, R)) > 0.

Condition (ii) is a relative density condition which, in a way, appeared in Theorem 3.2. We will

meet such a condition again in Theorem 5.1 below when we discuss the Paley-Wiener space.

In [40] Ortega-Cerdà examined the measures µ on C for which

‖f‖2ϕ ≍
∫

C

|f(z)|2e−2ϕ(z)dµ(z) ∀f ∈ Fϕ,2.

in other words, the “equivalent measures” for F 2
ϕ. He called such measures sampling measures.

A special instance is when

µ =
∑

n>1

δλn
,

where Λ = {λn}n>1 is a sequence in the complex plane. In this case, {λn}n>1 is called a

sampling sequence, meaning that

‖f‖2ϕ ≍
∑

n>1

|f(λn)|2e−2ϕ(λn) ∀f ∈ Fϕ,2.

Contrary to the approach in Bergman spaces, where Luecking characterized Carleson and reverse

Carleson measures which, in turn, yielded information on sampling sequences, Ortega-Cerdà dis-

cretized µ to reduce the general case of sampling measures to that of sampling sequences. These

were characterized in a series of papers by Seip, Seip-Wallstén, Berndtsson-Ortega-Cerdà and

Ortega-Cerdà-Seip (see [52] for these references). The main summary theorem is the following:

Theorem 4.3. A sequence Λ ⊂ C is a sampling sequence for F 2
ϕ if and only if the following two

conditions are satisfied:

(i) Λ is a finite union of uniformly separated sequences.

(ii) There is a uniformly separated subsequence Λ′ ⊂ Λ such that

lim
r→∞

inf
z∈C

#(B(z, r) ∩ Λ′)∫
B(z,r)

∆ϕdA
>

1

2π
.
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To state the result in terms of sampling measures, we need to introduce some notation. For a

large integer N and positive numbers δ and r, decompose C into big squares S of side-length Nr
and each square S is itself decomposed into N2 little squares of side-length r. Let n(S) denote

the number of little squares s contained in S such that µ(s) > δ. In terms of sampling measures,

we have the following:

Theorem 4.4. The measure µ is a sampling measure if and only if the following conditions are

satisfied:

(i) supz∈C µ(B(z, 1)) < ∞;

(ii) There is an r > 0 and a grid consisting of squares of side-length r, an integer N > 0
and a positive number δ such that

(4.5) inf
S

n(S)∫
S
∆ϕdA

>
1

2π
,

where the infimum is taken over all squares S consisting of N2 little squares from the

original grid.

Notice how (i) is a Carleson measure condition while (ii) is a reverse Carleson measure condition.

To deduce Theorem 4.3 from Theorem 4.4, Ortega-Cerdà first showed that it is sufficient to

consider the measure µ1 which is the part of µ supported only on the little squares s for which

µ(s) > δ and then he discretized µ1 by µ∗
1 =

∑
n µ1(sn)δan , where an is the center of sn. In order

to show that µ1 is sampling exactly when µ∗
1 is sampling, he used a Bernstein-type inequality.

This naturally links the problem of sampling measures to the description of sampling sequences.

Note that Bernstein inequalities also appear in the context of Carleson and reverse Carleson

measures for model spaces (see Section 6).

5. PALEY-WIENER SPACE

Though the Paley-Wiener space enters into the general discussion of model spaces presented in

Section 6, we would like to present some older results which will help motivate the more recent

ones. The Paley-Wiener space PW is the space of entire functions F of exponential type at most

π, i.e.,

lim sup
|z|→∞

log |F (z)|
|z| 6 π,

and which are square integrable on R. The norm on PW is

‖F‖PW =

(∫

R

|F (t)|2dt
)1

2
.

A well-known theorem of Paley and Wiener [15] says that PW is the set of Fourier transforms of

functions in L2 which vanish on R \ [−π, π]. Authors such as Kacnelson [27], Panejah [41, 42],
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and Logvinenko [32] examined Lebesgue measurable sets E ⊂ R for which
∫

R

|F |2dt ≍
∫

E

|F |2dt ∀F ∈ PW.

Following (1.5), such sets will be called dominating sets for PW . Clearly we always have
∫

E

|F |2dt 6
∫

R

|F |2dt ∀F ∈ PW.

The issue comes with the reverse lower bound. The summary theorem here is the following:

Theorem 5.1. For a Lebesgue measurable set E ⊂ R, the following are equivalent:

(i) the set E is a dominating set for PW ;

(ii) there exists a δ > 0 and an η > 0 such that

(5.2) |E ∩ [x− η, x+ η]| > δ, ∀x ∈ R.

Notice how condition (ii) is a relative density condition we have met before when studying the

Bergman and Fock spaces.

Lin [31] generalized the above result for measures µ on R. We say that a positive locally finite

measure µ on R is h-equivalent to Lebesgue measure if there exists a K > 0 such that

µ(x− h, x+ h) ≍ h ∀x ∈ R, |x| > K.

Theorem 5.3. Suppose µ is a locally finite Borel measure on R.

(i) There exists a constant γ > 0 such that if µ is h-equivalent to Lebesgue measure for some

h < γ then ∫

R

|F |2dt ≍
∫

R

|F |2dµ ∀F ∈ PW.

(ii) If ∫

R

|F |2dt ≍
∫

R

|F |2dµ ∀F ∈ PW,

then µ is h-equivalent to Lebesgue measure for some h > 0.

6. MODEL SPACES

A bounded analytic function Θ on D is called an inner function if the radial limits of Θ (which

exist almost everywhere on T [16]) are unimodular almost everywhere. Examples of inner func-

tions include the Blaschke products BΛ with (Blaschke) zeros Λ ⊂ D and singular inner functions

with associated (positive) singular measure ν on T. In fact, every inner function is a product of

these two basic types [16].
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Associated to each inner function Θ is a model space

KΘ := (ΘH2)⊥ =

{
f ∈ H2 :

∫

T

fΘgdm = 0 ∀g ∈ H2

}
.

Model spaces are the generic (closed) invariant subspaces of H2 for the backward shift operator

(S∗f)(z) =
f(z)− f(0)

z
.

Moreover, the compression of the shift operator

(Sf)(z) = zf(z)

to a model space is the so-called “model operator” for certain types of Hilbert space contractions.

It turns out that the Paley-Wiener space PW can be viewed as a certain type of model space. We

follow [47]. Let

Ψ(z) := exp

(
2π

z + 1

z − 1

)

be the atomic inner function with point mass at z = 1 and with weight 2π,

(Ff)(x) :=
1√
2π

∫

R

e−ixtf(t)dt,

the Fourier transform on L2(R), and

J : L2(m) → L2(R), (Jg)(x) =
1√
π

1

x+ i
f
(x− i

x+ i

)
.

It is well known that F is a unitary operator on L2(R) and a change of variables will show that

J is a unitary map from L2(m) onto L2(R). It is also known [47, p. 33] that

(FJ)KΨ = L2[0, 2π].

If

T : L2[0, 2π] → L2[−π, π], (Th)(x) = h(x+ π)

is the translation operator then

(TFJ)KΨ = L2[−π, π]

and

(FTFJ)KΨ = PW.

Thus the Paley-Wiener space is an isometric copy of a certain model space in a prescribed way.

An important set associated with an inner function is its boundary spectrum

(6.1) σ(Θ) :=

{
ξ ∈ T : lim

z→ξ

|Θ (z)| = 0

}
.

Using the factorization of Θ into a Blaschke product and a singular inner function, one can show

that when σ(Θ) 6= T, there is a two-dimensional open neighborhood Ω containing T\σ(Θ) such

that Θ has an analytic continuation to Ω.



A SURVEY ON REVERSE CARLESON MEASURES 13

Functions in model spaces can have more regularity than generic functions in H2. Indeed, a

result of Moeller [37] says every function in KΘ follows the behavior of its corresponding inner

functions and has an analytic continuation to a two dimensional open neighborhood of T\σ(Θ).
In fact, one can say a little bit more. Indeed, for every ξ ∈ T \ σ(Θ) the evaluation functional

Eξf = f(ξ) is continuous on KΘ with

‖Eξ‖ =
√
|Θ′(ξ)|.

Thus

(6.2) sup
ξ∈W

‖Eξ‖ < ∞

for any compact set W ⊂ D− \ σ(Θ).

In terms of a measure µ ∈ M+(D
−) being a Carleson measure for KΘ, let us make the following

simple observation.

Proposition 6.3. Suppose µ ∈ M+(D
−) with support contained in D− \ σ(Θ). Then µ is a

Carleson measure for KΘ.

Proof. Let W denote the support of µ. From our previous discussion, every f ∈ KΘ has an

analytic continuation to an open neighborhood of W . Furthermore, using (6.2) we see that

sup
ξ∈W

|f(ξ)| . ‖f‖m ∀f ∈ KΘ.

It follows that ‖f‖µ . ‖f‖m and hence µ is a Carleson measure for KΘ. �

Two observations come from Proposition 6.3. The first is that there are Carleson measures for

KΘ which are not Carleson for H2 since µ(SI) . |I| need not hold for all arcs I ⊂ T. In fact

one could even put point masses on T \ σ(Θ). This is in contrast with the H2 situation where

we have already observed in Theorem 2.2 that if µ ∈ M+(D
−) is a Carleson measure for H2,

then µ|T ≪ m. The second observation is that if there is to be a Carleson testing condition like

µ(SI) . |I|, the focus needs to be on the Carleson boxes SI which are, in a sense, close to σ(Θ).

So far we have avoided the issue of making sense of the integrals ‖f‖µ for f ∈ KΘ when the

measure µ could potentially place mass on T. Indeed, we side stepped this in Proposition 6.3 by

stipulating that the measure places no mass on σ(Θ), where the functions in KΘ are not well-

defined. In order to consider a more general situation, and to adhere to the notation used in [54],

we make the following definition.

Definition 6.4. A measure µ ∈ M+(D
−) will be called Θ-admissible if the singular component

of µ|T (relative to Lebesgue measure) is concentrated on T \ σ(Θ).

Since functions from KΘ are continuous (even analytic) on this set, it follows that for Θ-admissible

measures and functions f ∈ KΘ, the integral ‖f‖µ makes sense.
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As was done with the Hardy spaces in Theorem 2.2, one could state the definition of a Carleson

measure for KΘ to be a µ ∈ M+(D
−) for which

(6.5) ‖f‖µ . ‖f‖m ∀f ∈ KΘ ∩ C(D−).

Indeed, an amazing result of Aleksandrov [2] says that KΘ ∩ C(D−) is dense in KΘ and so

this set makes a good “test set” for the Carleson (reverse Carleson) condition. Furthermore, if

µ ∈ M+(D
−) and (6.5) holds, then µ is Θ-admissible, every function in KΘ has radial limits

µ|T-almost everywhere on T, and ‖f‖µ . ‖f‖m for every f ∈ KΘ.

Carleson measures for KΘ were discussed in the papers of Cohn [13] and Treil and Volberg [54].

Their theorem is stated in terms of

(6.6) Ω(Θ, ε) := {z ∈ D : |Θ(z)| < ε}, 0 < ε < 1,

the sub-level sets for Θ. Note that boundary spectrum σ(Θ) is contained in the closure of any

Ω(Θ, ε), 0 < ε < 1.

Theorem 6.7. Suppose µ ∈ M+(D
−) and define the following conditions:

(i) µ(SI) . |I| for all arcs I ⊂ T for which SI ∩ Ω(Θ, ε) 6= ∅;

(ii) µ is a Carleson measure for KΘ;

(iii) µ is Θ-admissible and ‖kΘ
λ ‖µ . ‖kΘ

λ ‖m holds for every λ ∈ D.

Then (i) =⇒ (ii) =⇒ (iii). Moreover, if for some ε ∈ (0, 1), the sub-level set Ω(Θ, ε) is

connected, then (i) ⇐⇒ (ii) ⇐⇒ (iii).

The condition that Ω(Θ, ε) is connected for some ε ∈ (0, 1) is often called the connected level

set condition (CLS). Cohn [13] proved that if Ω(Θ, ε) is connected and δ ∈ (ε, 1), then Ω(Θ, δ)
is also connected. Any finite Blaschke product, the atomic inner function

Θ(z) = exp

(
z + 1

z − 1

)
,

and the infinite Blaschke product whose zeros are {1 − rn}n>1, where 0 < r < 1, satisfy this

connected level set condition.

The sufficient condition appearing in assertion (i) of Theorem 6.7 is, in general, not necessary.

More precisely, Treil and Volberg [54] proved that this condition is necessary for the embedding

of KΘ into L2(µ) if and only if Θ ∈ (CLS). Nazarov–Volberg [38] proved that the RKT (repro-

ducing kernel thesis) for Carleson embeddings for KΘ is, in general, not true. In [3], Baranov

obtained a significant extension of the Cohn and Volberg–Treil results, introducing a new point

of view based on certain Bernstein-type inequalities. Quite recently, in answering a question

posed by Sarason [51], Baranov–Besonnov–Kapustin [5] clarified a nice link between Carleson

measures for KΘ and an interesting class of operators – the truncated Toeplitz operators – which

have received much attention in the last few years [51].

We now state the main reverse embedding results for model spaces from [7]. The first result is

a reverse embedding theorem along the lines of Treil-Volberg for which we need the following
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notation: given an arc I ⊂ T and a number n > 0, we define the amplified arc nI as the arc with

the same center as I but with length n×m(I).

Theorem 6.8. Let Θ be inner, µ ∈ M+(D
−), and ε ∈ (0, 1). There exists an N = N(Θ, ε) > 1

such that if

(6.9) µ(SI) & m(I)

for all arcs I ⊂ T satisfying

SNI ∩ Ω(Θ, ε) 6= ∅,

then

(6.10) ‖f‖m . ‖f‖µ ∀f ∈ KΘ ∩ C(D−).

This theorem is a more general version than the one appearing in [7, Theorem 2.1] and does not

require the (direct) Carleson condition. Indeed, it can be checked that the Carleson condition

is not really needed in the proof. It was initially proved in [7] for (CLS)-inner function using

a perturbation argument from [4, Corollary 1.3 and the proof of Theorem 1.1], but Baranov

provided a proof (found in [7]) based on Bernstein inequalities and which does not require the

CLS condition.

Corollary 6.11. Under the hypotheses of Theorem 6.8, and if, moreover, the measure µ is as-

sumed to be Θ-admissible, then (6.10) extends to all of KΘ.

Our second reverse Carleson result involves the notion of a dominating set for KΘ, defined in

(1.5) and discussed earlier for the Bergman and Fock spaces.

Definition 6.12. A (Lebesgue) measurable subsetΣ ⊂ T, with m (Σ) < 1, is called a dominating

set for KΘ if ∫

T

|f |2dm .

∫

Σ

|f |2dm ∀f ∈ KΘ.

This is equivalent to saying that the measure dµ = χΣdm is a reverse Carleson measure for KΘ.

Here we list some observations concerning dominating sets for model spaces. We will use the

following notation for sets A, B and a point x:

d(A,B) := inf{|a− b| : a ∈ A, b ∈ B}, d(x,A) := d({x}, A).

Throughout the list below we will assume that Θ is inner and σ(Θ) is its boundary spectrum from

(6.1). All of these results can be found in [7, Section 5].

(i) If Σ is a dominating set for KΘ then, for every ζ ∈ σ(Θ), we have d(ζ,Σ) = 0.

(ii) If Σ is a dominating set for KΘ then d(Σ, σ(Θ)) = 0.

(iii) Let ζ ∈ σ(Θ) and Σ dominating. Then there exists an α > 0 such that for every sequence

λn → ζ with Θ(λn) → 0, there is an integer N with

m(Σ ∩ Iαλn
) & m(Iαλn

), n > N.
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In the above, Iαλ is the subarc of T centered at λ
|λ|

with length α(1− |λ|).

(iv) Every open subset Σ of T such that σ(Θ) ⊂ Σ and m(Σ) < 1 is a dominating set for KΘ.

(v) Let Θ be an inner function such that m(σ(Θ)) = 0. Then for every ε ∈ (0, 1) there is a

dominating set Σ for KΘ such that m(Σ) < ε. In particular, this is true for (CLS)-inner

functions.

(vi) If σ(Θ) = T and if Σ is a dominating set for KΘ then Σ is dense in T.

(vii) There exists a Blaschke product B with σ(B) = T and an open subset Σ ( T dominating

for KB .

(vi) Every model space admits a dominating set.

Theorem 6.8 shows, in the special case of the Paley-Wiener space, that when (5.2) is satisfied for

sufficiently small η, then E is a dominating set for PW .

For reverse Carleson measures there is the following result from [7].

Theorem 6.13. Let Θ be an inner function, Σ be a dominating set for KΘ, and µ ∈ M+(D
−).

Suppose that

inf
I

µ(SI)

m (I)
> 0,

where the above infimum is taken over all arcs I ⊂ T such that I ∩ Σ 6= ∅. Then

(6.14) ‖f‖m . ‖f‖µ ∀f ∈ KΘ ∩ C(D−).

Corollary 6.15. Under the hypotheses of Theorem 6.13, and if moreover the measure µ is as-

sumed to be Θ-admissible, then the inequality in (6.14) extends to all of KΘ.

For the Hardy space, the reverse Carleson measures were characterized by the reverse reproduc-

ing kernel thesis, i.e., ‖kλ‖m . ‖kλ‖µ for all λ ∈ D. For model spaces, however, the reverse

reproducing kernel thesis is a spectacular failure [22].

Theorem 6.16. Let Θ be an inner function that is not a finite Blaschke product. Then there

exists a measure µ ∈ M+(T) such that µ is a Carleson measure for KΘ, the reverse estimate on

reproducing kernels kΘ
λ ,

‖kΘ
λ ‖µ & ‖kΘ

λ ‖m ∀λ ∈ D,

is satisfied, but µ is not a reverse Carleson measure for KΘ.

Let us see this counterexample worked out in the special case of the Paley-Wiener space PW ,

which, recall from our earlier discussion, is isometrically isomorphic to the model space KΘ with

Θ(z) = exp
(
2π

z + 1

z − 1

)
.
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Consider the sequence S = {xn}n∈Z\{0}, where

xn =

{
n+ 1/8 if n is even

n− 1/8 if n is odd.

By the Kadets-Ingham theorem [39, Theorem D4.1.2], S is a minimal sampling (or complete

interpolating) sequence if we include the point 0. Since S is not sampling, the discrete measure

µ :=
∑

n 6=0

δxn

does not satisfy the reverse inequality

‖f‖L2(R) . ‖f‖L2(µ) ∀f ∈ PW.

However, the L2(µ)-norm of the normalized reproducing kernels

Kλ(z) = cλ sinc(π(z − λ)) = cλ
sin(π(z − λ))

π(z − λ)
, c2λ ≃ (1 + | Imλ|)e−2π| Imλ|,

is uniformly bounded from below. Indeed, if λ is such that | Imλ| > 1 then

| sin(π(xn − λ))| ≃ eπ| Imλ|,

and hence
∫

C

|Kλ(x)|2dµ(x) =
∑

n 6=0

c2λ

∣∣∣∣
sin(π(xn − λ))

π(xn − λ)

∣∣∣∣
2

≃
∑

n 6=0

| Imλ|
|xn − λ|2 ≃ 1.

Thus it is enough to consider points λ ∈ C with | Im λ| 6 1. Let xn0
be the point of S closest to

λ. Then there is δ > 0, independent of λ, such that
∫

C

|Kλ(x)|2dµ(x) =
∑

n 6=0

|Kλ(xn)|2 >
∣∣∣∣
sin(π(xn0

− λ))

π(xn0
− λ)

∣∣∣∣
2

> δ.

It is interesting to point out that µ is a Carleson measure for PW since S is in a strip and

separated.

As was asked for the Paley-Wiener space PW , what are the µ ∈ M+(T) for which

‖f‖m ≍ ‖f‖µ ∀f ∈ KΘ?

In [53] Volberg generalized the previous results and gave a complete answer for general model

spaces and absolutely continuous measures dµ = wdm, where w ∈ L∞(T), w > 0. Let

ŵ(z) =

∫

T

w(ζ)
1− |z|2
|z − ζ |2 dm(ζ), z ∈ D,

be the Poisson integral of w and note that ŵ is harmonic (and positive) on D and has radial

boundary values equal to w m-almost everywhere [16].

Theorem 6.17. Let dµ = wdm, with w ∈ L∞(T), w > 0, and let Θ be an inner function. Then

the following assertions are equivalent:
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(i) ‖f‖m ≍ ‖f‖µ for all f ∈ KΘ;

(ii) if {λn}n>1 ⊂ D, then

lim
n→∞

ŵ(λn) = 0 =⇒ lim
n→∞

|Θ(λn)| = 1;

(iii) inf{ŵ(λ) + |Θ(λ)| : λ ∈ D} > 0.

In particular, this theorem applies to the special case when dµ = χΣdm, with Σ a Borel subset of

T. However the conditions obtained from Volberg’s theorem are not expressed directly in terms

of a density condition as was the case for PW (see Theorem 5.1). It is natural to ask if we can

obtain a characterization of dominating sets for KΘ in terms of a relative density. Dyakonov

answered this question in [18]. In the following result, H 2 is the Hardy space of the upper-half

plane {Im z > 0}, Ψ is an inner function on {Im z > 0}, and KΨ = (ΨH 2)⊥ is a model space

for the upper-half plane.

Theorem 6.18. For an inner function Ψ on {Im z > 0} the following are equivalent:

(i) Ψ′ ∈ L∞(R);

(ii) Every Lebesgue measurable set E ⊂ R for which these exists an δ > 0 and an η > 0
such that

|E ∩ [x− η, x+ η]| > δ ∀x ∈ R

is dominating for the model space KΨ.

In the case corresponding to the Paley-Wiener space PW , Ψ(z) = e2iπz and thus |Ψ′(x)| = 2π
on R. As was shown by Garnett [20], the condition Ψ′ ∈ L∞(R) is equivalent to one of the

following two conditions:

(i) ∃h > 0 such that

inf{|Ψ(z)| : 0 < Im(z) < h} > 0;

(ii) Ψ is invertible in the Douglas algebra [H∞, e−ix] (the algebra generated by H∞ and the

space of bounded uniformly continuous functions on R).

For instance, the above conditions are satisfied when Ψ(z) = eiazB(z), where a > 0 and B
is an interpolating Blaschke product satisfying dist(B−1({0}),R) > 0 (e.g., the zeros of B are

{n+ i}n∈Z).

What happens if we were to replace the condition

‖f‖m ≍ ‖f‖µ ∀f ∈ KΘ

with the stronger condition

‖f‖m = ‖f‖µ ∀f ∈ KΘ.

Such “isometric measures” were characterized by Aleksandrov [1] (see also [7]).

Theorem 6.19. For µ ∈ M+(T) the following assertions are equivalent:
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(i) ‖f‖µ = ‖f‖m for all f ∈ KΘ;

(ii) Θ has non-tangential boundary values µ-almost everywhere on T and

∫

T

∣∣∣∣∣
1−Θ(z)Θ(ζ)

1− zζ

∣∣∣∣∣

2

dµ(ζ) =
1− |Θ(z)|2
1− |z|2 , z ∈ D;

(iii) there exists a ϕ ∈ H∞ such that ‖ϕ‖∞ 6 1 and
∫

T

1− |z|2
|ζ − z|2dµ(ζ) = Re

(
1 + ϕ(z)Θ(z)

1− ϕ(z)Θ(z)

)
, z ∈ D.(6.20)

The condition in (6.20) says that µ is one of the so-called Aleksandrov-Clark measures for b =
ϕΘ. It is known that the operator Vb : L

2(µ) −→ H (b) = KΘ ⊕ ΘH (ϕ) introduced in (7.4)

below is an onto partial isometry, which is isometric on H2(µ), the closure of the polynomials in

L2(µ) (see Section 7 for more on H (b)-spaces and Aleksandrov-Clark measures). By a result

of Poltoratski [44], Vbg = g µS-a.e. where µS is the singular part of µ with respect to m. In

particular, when ϕ is inner, then H (b) = KΘϕ = KΘ ⊕ΘKϕ and µ = µS is singular, and hence

for every f = Vbg ∈ KΘ, where g ∈ H2(µ), we have

‖f‖m = ‖Vbg‖m = ‖g‖µ = ‖f‖µ.
When ϕ is not inner, Aleksandrov proves Theorem 6.19 by using the above fact for inner func-

tions along with the fact that the isometric measures form a closed subset of the Borel measures

M(T) in the topology σ(M(T), C(T)).

L. de Branges [15] proved a version of Theorem 6.19 for meromorphic inner functions and Krein

[21] obtained a characterization of isometric measures for KΘ using more operator theoretic

langage.

7. DE BRANGES-ROVNYAK SPACES

These spaces are generalizations of the model spaces. Let

H∞
1 = {f ∈ H∞ : ‖f‖∞ 6 1}

be the closed unit ball in H∞. Recall that when Θ is inner, the model space KΘ is a closed

subspace of H2 with reproducing kernel function

kΘ
λ (z) =

1−Θ(λ)Θ(z)

1− λz
, λ, z ∈ D.

Using this as a guide, one can, for a given b ∈ H∞
1 , define the de Branges-Rovnyak space H (b)

to be the unique reproducing kernel Hilbert space of analytic functions on D for which

kb
λ(z) =

1− b(λ)b(z)

1− λz
, λ, z ∈ D,
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is the reproducing kernel [43]. Note that the function K(z, λ) := kb
λ(z) is positive semi-definite

on D, i.e.,
n∑

i,j=1

aiajK(λi, λj) > 0,

for all finite sets {λ1, . . . , λn} of points in D and all complex numbers a1, . . . , an. Hence, we can

associate to it a reproducing kernel Hilbert space and the above definition makes sense. There is

an equivalent definition of H (b) via defects of certain Toeplitz operators [48].

It is well known that though these spaces play an important role in understanding contraction

operators, the norms on these H (b) spaces, along with the elements contained in these spaces,

remain mysterious. When ‖b‖∞ < 1 (i.e., b belongs to the interior of H∞
1 ), then H (b) = H2

with an equivalent norm. When b is an inner function, then H (b) = Kb with the H2 norm.

For general b ∈ H∞
1 , H (b) is contractively contained in H2 and this space is often called a

“sub-Hardy Hilbert space” [48]. The analysis of these H (b) spaces naturally splits into two

distinct cases corresponding as to whether or not b is an extreme function for H∞
1 , equivalently,

log(1− |b|) 6∈ L1(m).

When b ∈ H∞
1 is non-extreme, there is a unique outer function a ∈ H∞

1 such that a(0) > 0 and

(7.1) |a(ξ)|2 + |b(ξ)|2 = 1 m-a.e. ξ ∈ T.

Such a is often called the Pythagorean mate for b and the pair (a, b) is called a Pythagorean pair.

There is the, now familiar, issue of boundary behavior of H (b) functions when defining the

integrals ‖f‖µ in the Carleson and reverse Carleson testing conditions. With the model spaces

(and with H2) there is a dense set of continuous functions for which one can sample in order

to test the Carleson (‖f‖µ . ‖f‖m) and reverse Carleson conditions (‖f‖m . ‖f‖µ). For a

general H (b) space however, it is not quite clear whether or not H (b) ∩ C(D−) is even non-

zero. In certain circumstances, for example when b is non-extreme or when b is an inner function,

H (b) ∩ C(D−) is actually dense in H (b). For general extreme b, this remains unknown. Thus

we are forced to make some definitions.

Definition 7.2. For µ ∈ M+(D
−) we say that an analytic function f on D is µ-admissible if

the non-tangential limits of f exist µ-almost everywhere on T. We let H (b)µ denote the set of

µ-admissible functions in H (b).

With this definition in mind, if f ∈ H (b)µ, then defining f on the carrier of µ|T via its non-

tangential boundary values, we see that ‖f‖µ is well defined with a value in [0,+∞].

Of course when µ is carried on D, i.e., µ(T) = 0, then H (b)µ = H (b). Hence Definition 7.2

only comes into play when µ has part of the unit circle T in its carrier. Note that H (b) = H (b)m
since H (b) ⊂ H2. However, there are often other µ, even ones with non-trivial singular parts on

T with respect to m, for which H (b) = H (b)µ. The Clark measures associated with an inner

function b have this property [7, 12].

Definition 7.3. A measure µ ∈ M+(D
−) is a Carleson measure for H (b) if H (b)µ = H (b)

and ‖f‖µ . ‖f‖b for all f ∈ H (b).
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When b ≡ 0, i.e., when H (b) = H2 then, as a consequence of Carleson’s theorem (see Theorem

2.2) for H2, we see that when µ satisfies µ(SI) . |I| for all arcs I , then µ|T ≪ m and so

H (b)µ = H (b). When b is an inner function, recall a discussion following (6.5) which says

that if the Carleson testing condition ‖f‖µ . ‖f‖m holds for all f ∈ H (b) ∩ C(D−), then

H (b)µ = H (b). So in these two particular cases, the delicate issue of defining the integrals in

‖f‖µ for f ∈ H (b) seems to sort itself out. For general b, we do not have this luxury.

Lacey et al. [29] solved the longstanding problem of characterizing the two-weight inequalities

for Cauchy transforms. Let us take a moment to indicate how their results can be used to discuss

Carleson measures for H (b). Let σ be the Aleksandrov-Clark measure associated with b, that is

the unique σ ∈ M+(T) satisfying

1− |b(z)|2
|1− b(z)|2 =

∫

T

1− |z|2
|z − ζ |2 dσ(ζ), z ∈ D.

Let Vb : L
2(σ) −→ H (b) be the operator defined by

(7.4) (Vbf)(z) = (1− b(z))

∫

T

f(ζ)

1− ζ̄z
dσ(ζ) = (1− b(z))(Cσf)(z),

where Cσ is the Cauchy transform

(Cσf)(z) =

∫

T

f(ζ)

1− ζz
dσ(ζ).

It is known [48] that Vb is a partial isometry from L2(σ) onto H (b) and

Ker Vb = KerCσ = (H2(σ))⊥.

Here H2(σ) denotes the closure of polynomials in L2(σ) and the ⊥ is in L2(σ). As a conse-

quence, since every function f ∈ H (b) can be written as f = Vbg for some g ∈ H2(σ), µ is a

Carleson measure for H (b) if and only if

‖Vbg‖µ = ‖f‖µ . ‖f‖b = ‖Vbg‖b = ‖g‖σ ∀g ∈ H2(σ).

Setting νb,µ := |1− b|2µ, we have

‖Vbg‖2µ =

∫

D−

|1− b|2|Cσg|2 dµ = ‖Cσg‖2νb,µ.

This yields the following:

Theorem 7.5. Let µ ∈ M+(D
−), b a µ-admissible function in H∞

1 , and νb,µ := |1 − b|2µ. Then

the following are equivalent:

(i) µ is a Carleson measure for H (b);

(ii) The Cauchy transform Cσ is a bounded operator from L2(σ) into L2(D−, νb,µ), where σ
is the Aleksandrov-Clark measure associated with b.
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We refer the reader to [29, Theorem 1.7] for a description of the boundedness of the Cauchy trans-

form operator Cσ. However, it should be noted that the characterization of Carleson measures

for H (b), obtained combining Theorem 7.5 and [29, Theorem 1.7], is not purely geometric.

The following result from [6], similar in flavor to Theorem 6.7, discusses the Carleson measures

for H (b).

Theorem 7.6. For b ∈ H∞
1 and ε ∈ (0, 1) define

Ω(b, ε) := {z ∈ D : |b(z)| < ε},

Σ(b) :=

{
ζ ∈ T : lim

z→ζ

|b(z)| < 1

}
,

Ω̃(b, ε) := Ω(b, ε) ∪ Σ(b).

Let µ ∈ M+(D
−) and define the following conditions:

(i) µ(SI) . |I| for all arcs I ⊂ T for which I ∩ Ω̃(b, ε) 6= ∅;

(ii) H (b)µ = H (b) and ‖f‖µ . ‖f‖b for all f ∈ H (b);

(iii) H (b)µ = H (b) and ‖kb
λ‖µ . ‖kb

λ‖b for all λ ∈ D.

Then (i) =⇒ (ii) =⇒ (iii). Moreover, suppose there exists an ε ∈ (0, 1) such that Ω(b, ε) is

connected and its closure contains Σ(b). Then (i) ⇐⇒ (ii) ⇐⇒ (iii).

It should be noted here that, contrary to the inner case, the containment Σ(b) ⊂ clos(Ω, ε) is

not, in general, automatic. Indeed, when b(z) = (1 + z)/2, one can easily check that the above

containment is not satisfied.

Here is a complete description of the Carleson measures for a very specific b [8]. Note that if b
is a non-extreme rational function (e.g., rational but not a Blaschke product), one can show that

the Pythagorean mate a from (7.1) is also a rational function.

Theorem 7.7. Let b ∈ H∞
1 be rational and non-extreme and let µ ∈ M+(D

−). Then the follow-

ing assertions are equivalent:

(1) µ is a Carleson measure for H (b);

(2) |a|2 dµ is a Carleson measure for H2.

If b(z) = (1+ z)/2 then a(z) = (1− z)/2 and, if µ is the measure supported on (0, 1) defined by

dµ(t) = (1 − t)−βdt, for β ∈ (0, 1], we can use Theorem 7.7 to see that µ is Carleson measure

for H (b). However, µ is not a Carleson measure for H2. One can see this by considering the

arcs Iϑ = (e−iϑ, eiϑ), ϑ ∈ (0, π/2), and observing that

sup
ϑ

µ(S(Iϑ))

|Iϑ|
= ∞.
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If b is a µ-admissible function, then so are all of the reproducing kernels kb
λ (along with finite

linear combinations of them) and thus, with this admissibility assumption on b, H (b)µ is a dense

linear manifold in H (b). This motivates our definition of a reverse Carleson measure for H (b).

Definition 7.8. For µ ∈ M+(D
−) and b ∈ H∞

1 , we say that µ is a reverse Carleson measure for

H (b) if H (b)µ is dense in H (b) and ‖f‖b . ‖f‖µ for all f ∈ H (b)µ. In this definition, we

allow the possibility for the integral ‖f‖µ to be infinite.

Here is a reverse Carleson measure result from [8] which focuses on the case when b is non-

extreme.

Theorem 7.9. Let µ ∈ M+(D
−) and let b ∈ H∞

1 be non-extreme and µ-admissible. If h =
dµ|T/dm, then the following assertions are equivalent:

(i) µ is a reverse Carleson mesure for H (b);

(ii) ‖kb
λ‖b . ‖kb

λ‖µ for all λ ∈ D;

(iii) dν := (1− |b|)dµ satisfies

inf
I

ν (SI)

m(I)
> 0;

(iv) ess infT(1− |b|)h > 0.

The proof of this results is in the same spirit as Theorem 2.3. Also note that the condition (iv)
implies that (1 − |b|)−1 ∈ L1. As a consequence of this observation, we see that if b ∈ H∞

1 is

non-extreme and such that (1 − |b|)−1 6∈ L1, then there are no reverse Carleson measures for

H (b).

As was done with many of the other spaces discussed in this survey, one can say something about

the equivalent measures for H (b) [8].

Theorem 7.10. Let b ∈ H∞
1 be non-extreme and µ ∈ M+(D

−). Then the following are equiva-

lent:

(i) H (b)µ = H (b) and ‖f‖µ ≍ ‖f‖b for all f ∈ H (b);

(ii) The following conditions hold:

(a) a is µ-admissible,

(b) (a, b) is a corona pair, i.e.,

inf{|a(z)|+ |b(z)| : z ∈ D} > 0;

(c) |a|2 satisfies the Muckenhoupt (A2) condition, i.e.,

sup
I

(
1

m(I)

∫

I

|a|−2 dm

)(
1

m(I)

∫

I

|a|2 dm
)

< ∞,

where I runs over all subarcs of T;
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(d) dν := |a|2 dµ satisfies

0 < inf
I

ν (SI)

m(I)
6 sup

I

ν (SI)

m(I)
< ∞,

where the infimum and supremum above are taken over all open arcs I of T.

One should note that if (a, b) is a corona pair and |a|2 ∈ (A2), then H (b) = M (a), where

M (a) = aH2 equipped with the range norm, i.e., ‖ag‖M (a) = ‖g‖m, for any g ∈ H2 [49, IX-5].

Hence the above result says that it is possible to obtain an equivalent norm on H (b) expressed

in terms of an integral only when H (b) = M (a).

Surely an example is important here: Let a(z) := cα(1 − z)α, where α ∈ (0, 1/2) and cα is

suitable chosen so that a ∈ H∞
1 . When 0 < α < 1/2, one can show that |a|2 satisfies the (A2)

condition. Choose b to be the outer function in H∞
1 satisfying |a|2 + |b|2 = 1 on T. Standard

theory [24], using the fact that a is Hölder continuous on D−, will show that b is continuous on

D−. From here it follows that (a, b) is a corona pair. If σ ∈ M+(D
−) is any Carleson measure

for H2, then one can show that dµ := |a|−2dm+ dσ satisfies the conditions of Theorem 7.10.

For H (b) spaces when b non-extreme, the isometric measures: ‖f‖µ = ‖f‖b for all f ∈ H (b),
are not worth discussing as illustrated by the following result.

Theorem 7.11. When b is non-constant and non-extreme, there are no positive isometric mea-

sures for H (b).

Also not worth discussing for general H (b) spaces is the notion of dominating sets [8]: E ⊂ T,

0 < m(E) < 1, for which

‖f‖2b .
∫

E

|f |2dm ∀f ∈ H (b).

Indeed, we have the following:

Theorem 7.12. Let b ∈ H∞
1 such that H (b) has a dominating set. Then either b is an inner

function or ‖b‖∞ < 1.

As one can see, the case for extreme b seems to be very much open. When b is inner, much has

been said about the Carleson and reverse Carleson measures for H (b) = Kb. When b is extreme

but not inner, there are a few things one can say [8] but there is much work to be done to complete

the picture.

8. HARMONICALLY WEIGHTED DIRICHLET SPACES

For µ ∈ M+(T) let

ϕµ(z) =

∫

T

1− |z|2
|ξ − z|2 dµ(ξ), z ∈ D,
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denote the Poisson integral of µ. The harmonically weighted Dirichlet space D(µ) [19, 45] is

the set of all analytic functions f on D for which
∫

D

|f ′|2ϕµdA < ∞,

where dA = dxdy/π is normalized planar measure on D. Notice that when µ = m, we have

ϕµ ≡ 1 and D(µ) becomes the classical Dirichlet space [19]. One can show that D(µ) ⊂ H2

[45, Lemma 3.1] and the norm ‖ · ‖D(µ) given by

‖f‖2D(µ) :=

∫

T

|f |2dm+

∫

D

|f ′|2ϕµdA

makes D(µ) into a reproducing kernel Hilbert space of analytic functions on D. It is known that

both the polynomials as well as the linear span of the Cauchy kernels form dense subsets of D(µ)
[45, Corollary 3.8].

When ζ ∈ T and dµ = δζ , a result from [50] shows that

D(δζ) = H (b),

where w0 = (3−
√
5)/2 and

(8.1) b(z) =
(1− w0)ζz

1− w0ζz
.

Furthermore, the norms on these spaces are the same. In fact, these are the only harmonically

weighted Dirichlet spaces which are equal to an H (b) space with equal norm [11]. In [14] it

was shown that if

(8.2) µ =

n∑

j=1

cjδζj , cj > 0, ζj ∈ T

is a finite linear combination of point masses on T and a is the unique polynomial with a(0) > 0
and with simple zeros at ζj (and no other zeros) and b is the Pythagorean mate for a (which

must also be a polynomial), then H (b) = D(µ) with equivalent norms. In this case we can use

Theorem 7.7 to obtain a characterization of the Carleson measures for D(µ):

Theorem 8.3. For µ as in (8.2) and ν ∈ M+(D
−), the following assertions are equivalent:

(i) ν is a Carleson measure for D(µ);

(ii)
∏n

i=1 |z − ζi|2 dν is a Carleson measure for H2.

This result appeared in [9] (see also [10]). In fact, Theorem 6.1 from [9] shows that the above

conditions are equivalent to

‖kD(µ)
λ ‖ν . ‖kD(µ)

λ ‖D(µ) ∀λ ∈ D.

In other words, at least when µ is a linear combination of point masses, the reproducing kernel

thesis characterizes the Carleson measures for D(µ).
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The discussion of reverse Carleson measures for D(µ) is dramatically simpler since they do not

exist! Indeed, suppose that ν ∈ M+(D
−) and ‖f‖µ . ‖f‖ν for all f ∈ D(µ). In particular, this

is true for the monomials zn, n > 0. But ‖zn‖ν . 1 and ‖zn‖2µ = 1 + nµ(T), which gives a

contradiction when n tends to ∞.

We point out some related results from [10] which discuss a type of reverse Carleson measure for

D(µ) spaces except that the definitions of “reverse Carleson measures” and “sets of domination”

(dominating sets) are quite different, and not equivalent, to ours.
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