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We prove the consistency and asymptotic normality of the Laplacian Quasi-Maximum Likelihood Estimator (QMLE) for a general class of causal time series including ARMA, AR(∞), GARCH, ARCH(∞), ARMA-GARCH, APARCH, ARMA-APARCH,..., processes. We notably exhibit the advantages (moment order and robustness) of this estimator compared to the classical Gaussian QMLE. Numerical simulations confirms the accuracy of this estimator.

Introduction

This paper is devoted to establish the consistency and the asymptotic normality of a parametric estimator for a general class of time series. This class was already defined and studied in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF], [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF] and [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF]. Hence, we will consider an observed sample (X 1 , • • • , X n ) where (X t ) t∈Z is a solution of the following equation:

X t = M θ0 (X t-1 , X t-2 , • • • ) ζ t + f θ0 (X t-1 , X t-2 , • • • ), t ∈ Z, (1.1) 
where

• θ 0 ∈ Θ ⊂ R d , d ∈ N *
, is an unknown vector of parameters, also called the "true" parameters;

• (ζ t ) t∈Z is a sequence of centred independent identically distributed random variables (i.i.d.r.v.) with symmetric probability distribution, i.e. ζ 0

L = -ζ 0 , satisfying E[|ζ 0 | r ] < ∞ with r ≥ 1 and E[|ζ 0 |] = 1. If r ≥ 2, denote σ 2 ζ = Var(ζ 0 ); • (θ, (x n ) n∈N ) → M θ ((x n ) n∈N ) ∈ (0, ∞) and (θ, (x n ) n∈N ) → f θ ((x n ) n∈N ) ∈ R are two known applications. For instance, if M θ0 (X t-1 , X t-2 , • • • ) = 1 and f θ0 (X t-1 , X t-2 , • • • ) = α 0 X t-1 with |α 0 | < 1 then (X t
) is a causal AR(1) process. In [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] and [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF], it was proved that all the most famous stationary time series used in econometrics, such as ARMA, AR(∞), GARCH, ARCH(∞), TARCH, ARMA-GARCH processes can be written as a causal stationary solution of (1.1). In [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF], it was also established that under several conditions on M θ , f θ and if E[|ζ 0 | r ] with r ≥ 2, the usual Gaussian Quasi-Maximum Likelihood Estimator (QMLE) of θ is strongly consistent and when r ≥ 4 it is asymptotically normal. This estimator was first defined by [START_REF] Weiss | Asymptotic theory for ARCH models estimation and testing[END_REF] for ARCH processes, and the asymptotic study of this estimator was first obtained by [START_REF] Lumsdaine | Consistency and asymptotic normality of the quasi-maximum likelihood in IGARCH(1, 1) and covariance stationary GARCH(1, 1) models[END_REF] for GARCH(1, 1) processes, [START_REF] Berkes | GARCH processes: structure and estimation[END_REF] for GARCH(p, q) processes, [START_REF] Francq | Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes[END_REF] for ARMA-GARCH processes, [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF] for general heteroskedastic models, and [START_REF] Robinson | Pseudo-maximum likelihood estimation of ARCH(∞) models[END_REF] for ARCH(∞) processes. The results of [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF] devoted to processes satisfying almost everywhere (1.1) as well as its multivariate generalisation, provide a general and unified framework for studying the asymptotic properties of the Gaussian QMLE. However, the definition of the Gaussian QMLE is explicitly obtained with the assumption that (ζ t ) is a Gaussian sequence and even if it could be applied when the probability distribution of (ζ t ) is non-Gaussian, it keeps some drawbacks of this initial assumption. Indeed, the computation of this estimators requires the minimization of a least squares contrast (typically

n t=1 M -2 θ (X t -f θ ) 2
) and this induces that r = 2 is required for the consistency and r = 4 for the asymptotic normality (and therefore confidence intervals or tests). For numerous real data such requirement with f t θ := f θ (X t-1 , . . . , X 1 , u) and M t θ := M θ (X t-1 , . . . , X 1 , u) , where u = (u n ) n∈N is a finitely non-zero sequence (u n ) n∈N . The choice of (u n ) n∈N does not have any consequences on the asymptotic behaviour of L n , and (u n ) could typically be chosen as a sequence of zeros. Finally, if it exists, a Quasi-Maximum Likelihood Estimator (QMLE) is defined by:

θ n := Argmax θ∈Θ log QL θ (X 1 , • • • , X n ) .
Usually, the "instrumental" probability density h is the Gaussian density, i.e.

h(x) = 1 √ 2π e -1 2 x 2 for x ∈ R
and this provides the Gaussian-QMLE of θ.

Here, we chose as instrumental probability density the Laplacian density, i.e., h(x) = 1 2 e -|x| for x ∈ R, (2.1) and this implies E |ζ 0 | = 1. Therefore, we respectively define the Laplacian-likelihood and Laplacian-quasi-likelihood by:

L n (Θ) = - n t=1 q t (Θ) with q t (Θ) = log |M t θ | + |M t θ | -1 |X t -f t θ | (2.2) L n (θ) = - n t=1 q t (θ) with q t (θ) := log | M t θ | + | M t θ | -1 |X t -f t θ |.
(2.3) Hence, if it exists, a Laplacian-QMLE θ n is a maximizer of L n :

θ n := arg max θ∈Θ L n (θ).
We restrict the set Θ in such a way that a stationary solution (X t ) of order 1 or 2 of (1.1) exists. Additional conditions are also required for insuring the consistency and the asymptotic normality of θ n . More details are given now.

Existence and stationarity

As it was already done in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] and [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF], several Lipschitztype inequalities on f θ and M θ are required for obtaining the existence and r-order stationary ergodic causal solution of (1.1). First, denote g θ Θ = sup θ∈Θ g θ with m ∈ N * and • the usual Euclidean norm (for vectors or matrix). Now, let us introduce the generic symbol K for any of the functions f or M . For k = 0, 1, 2 and some subset Θ of R d , define a Lipschitz assumption on function K θ :

Assumption (A k (K, Θ)) ∀x ∈ R ∞ , θ ∈ Θ → K θ (x) ∈ C k (Θ) and ∂ k θ K θ satisfies ∂ k θ K θ (0) Θ < ∞ and there exists a sequence α (k) j (K, Θ) j of nonnegative numbers such that ∀x, y ∈ R N ∂ k θ K θ (x) -∂ k θ K θ (y) Θ ≤ ∞ j=1 α (k) j (K, Θ)|x j -y j |, with ∞ j=1 α (k) j (K, Θ) < ∞
For ensuring a stationary r-order solution of (1.1), for r ≥ 1, define the set

Θ(r) := θ ∈ R d , (A 0 (f, {θ})) and (A 0 (M, {θ})) hold, ∞ j=1 α (0) j (f, {θ}) + (E[|ζ 0 | r ]) 1/r ∞ j=1 α (0) j (M, {θ}) < 1 .
Then, from [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF], we obtain:

Proposition 2.1. If θ 0 ∈ Θ(r) for some r ≥ 1, then there exists a unique causal (X t is independent of (ζ i ) i>t for t ∈ Z) solution X of (1.1), which is stationary, ergodic and satisfies

E |X 0 | r < ∞ .
The following lemma insures that if a process X satisfies Proposition 2.1, a causal predictable ARMA process with X as innovation also satisfies Proposition 2.1. We first provide the classical following notion for a sequence (u n ) n∈N of real numbers:

(u n ) n∈N is an exponentially decreasing sequence (EDS) ⇐⇒ there exists ρ ∈ [0, 1[ such as u n = O(ρ n ) when n → ∞.
Lemma 2.1. Let X be a.s. a causal stationary solution of (1.1) for θ 0 ∈ R d . Let X be such as

X t = Λ β (L) X t for t ∈ Z with Λ β0 (L) = P -1 β0 (L) Q β0 (L)
where (P β0 , Q β0 ) are the coprime polynomials of a causal invertible ARMA(p, q) processes with a vector of parameters

β 0 ∈ R p+q . Denote Λ -1 β0 (x) = Q -1 β0 (x) P β0 (x) = 1 + ∞ j=1 ψ j (β 0 )x j .
Then X is a.s. a causal stationary solution of the equation

X t = M θ0 ( X t-i ) i≥1 ζ t + f θ0 ( X t-i ) i≥1 ) for t ∈ Z,
where f θ0 and M θ0 are given in (5.1) and θ 0 = (θ 0 , β 0 ). Moreover, for i = 0, 1, 2 and with K = f or M and K = f or M ,

• if α (i) j (K, {θ 0 }) = O(j -β ) and β > 1, then α (i) j ( K, { θ 0 }) = O(j -β ); • if α (i) j (K, {θ 0 }) is EDS, then α (i) j ( K, { θ 0 }) is EDS.
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The Laplacian-QMLE could converge and be asymptotically Gaussian but this requires some additional assumptions on Θ and functions f θ and M θ :

• Condition C1 (Compactness) Θ is a compact set.

• Condition C2 (Lower bound of the conditional variance) There exists a deterministic constant M > 0 such that for all θ ∈ Θ and x ∈ R N , then M θ (x) > M . • Condition C3 (Identifiability) The functions M θ and f θ are such that: for all θ 1 , θ 2 ∈ Θ, then M θ1 = M θ2 and f θ1 = f θ2 implies that θ 1 = θ 2 .

3. Consistency and asymptotic normality of the estimator

Consistency and asymptotic normality

First we prove the strong consistency of a sequence of Laplacian-QMLE for a solution of (1.1). The proof of this theorem, is postponed in Section 5, as well as the other proofs.

Theorem 3.1. Assume Conditions C1, C2 and C3 hold and θ 0 ∈ Θ(r) ∩ Θ with r ≥ 1. Let X be the stationary solution of (1.1). If (A 0 (f, Θ)) and (A 0 (M, Θ)) hold with

α (0) j (f, Θ) + α (0) j (M, Θ) = O(j -ℓ ) for some ℓ > 2 min(r , 2) (3.1)
then a sequence of Laplacian-QMLE ( θ n ) n strongly converges, that is θ n a.s.

-→

n→∞ θ 0 .
Of course, the conditions required for this strong consistency of a sequence of Laplacian-QMLE are almost the same than the ones required for the strong consistency of a sequence of Gaussian-QMLE except that r ∈ [1, 2) is proved to be possible in Theorem 3.1 and not in case of Gaussian-QMLE (see [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]). Moreover, if r = 2, the condition (3.1) on Lipshitzian coefficients is weaker for Laplacian-QMLE than for Gaussian-QMLE. As we will see below, many usual time series can satisfy the assumptions of Theorem 3.1; for example, an AR(∞) process can be defined for satisfying the strong consistency of Laplacian-QMLE while the conditions given in [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF] do not ensure the strong consistency of Gaussian-QMLE. Now we state an extension of Theorem 1 established in [START_REF] Davis | Least Absolute Deviation Estimation for Regression with ARMA Errors[END_REF] which will be an essential step of the proof of the asymptotic normality of the estimator.

Theorem 3.2. Let (Z t ) t∈Z be a sequence of i.i.d.r.v such as Var

(Z 0 ) = σ 2 < ∞, with common distribution function which is symmetric (F (-x) = 1 -F (x) for x ∈ R) and is continuously differentiable in a neighborhood of 0 with derivative f (0) in 0. Denote F t = σ(Z t , Z t-1 , • • • ) for t ∈ Z and let (Y t ) t∈Z and (V t ) t∈Z two stationary processes adapted to (F t ) t and such as E Y 2 0 V 2 0 < ∞. Then n t=1 V t-1 |Z t -n -1/2 Y t-1 | -|Z t | D -→ n→∞ N f (0) E V 0 Y 2 0 , E V 2 0 Y 2 0 (3.2)
Then, the asymptotic normality of the Laplacian-QMLE can be established using additional assumptions:

Theorem 3.3. Assume that θ 0 ∈ • Θ ∩Θ(r)
where r ≥ 2 and

• Θ denotes the interior of Θ. Let X be the stationary solution of the equation (1.1). Assume that the conditions of Theorem 3.1 hold and for i = 1, 2, assume (A i (f, Θ)) and (A i (M, Θ)) hold. Then, if the cumulative probability function of ζ 0 is continuously differentiable in a neighborhood of 0 with derivative g(0) in 0 and if matrix Γ F or Γ M , defined in (5.21), are definite positive symmetric matrix, then As it was already proved for the median estimator (see [START_REF] Van Der Vaart | Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]) or for least absolute deviations estimator of ARMA process (see [START_REF] Davis | Least Absolute Deviation Estimation for Regression with ARMA Errors[END_REF]), it is not surprising that the probability density function g of the white noise (ζ i ) i impacts the asymptotic covariance of (3.3). However, when f θ = 0, this is not such the case and this is what happens for GARCH processes see [START_REF] Francq | Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE[END_REF] where the probability density g does not appear in the asymptotic covariance.

√ n θ n -θ 0 D -→ n→∞ N d 0 , Γ M + 2g(0) Γ F -1 σ 2 ζ -1 Γ M + Γ F Γ M + 2g(0) Γ F -1 . ( 3 
3.2. Comments on these limit theorems

Essentially, these limit theorems could appear close or even very close to the results of 3 other references we chronologically list below but also from which we highlight the differences:

• The first related paper is [START_REF] Davis | Least Absolute Deviation Estimation for Regression with ARMA Errors[END_REF] which is cited many times. The framework of this paper is restricted to the LAD (similar to the Laplacian-QMLE) of the parameters of ARMA[p, q] process or residuals of least-square estimation with ARMA[p, q] errors. If the framework (1.1) is clearly more general since it includes for instance GARCH, ARMA-GARCH or APARCH process, the proof we used for establishing the asymptotic normality of the Laplacian estimator is clearly inspired by the one of [START_REF] Davis | Least Absolute Deviation Estimation for Regression with ARMA Errors[END_REF]. Thus our results could appear as extensions of this paper. • The second and certainly closest paper, [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]. The considered framework is exactly the same, i.e. general causal affine models and the estimation method is the same, i.e. the quasi-maximum likelihood estimation (QMLE). However in [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF] the QMLE is based on an "instrumental" Gaussian density instead of a Laplacian one. As it is such the case for instance by comparing quantile with least square regression, this implies three main differences:

1. The moment conditions r of both the limit theorems (strong consistency and asymptotic normality) are weaker with Laplacian QMLE than with the Gaussian one. Indeed, the absolute value of conditional log-density q t (θ) is bounded by an affine function of |X t | in the Laplacian case while it is bounded by a quadratic polynomial of X t in the Gaussian case. As a consequence, r = 1 (respectively r = 2) could be required for the strong consistency (resp. asymptotic normality) of the Laplacian QMLE while r = 2 (resp. r = 4) is required for the Gaussian QMLE. This gain on moment condition can be crucial for instance in an econometric framework where the Kurtosis of data is sometimes infinite.

2. The proof of Theorem 3.1 is simpler and sharper than the proof of strong consistency in [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]. Indeed, in our new proof, we use a condition of almost sure uniform consistency based on a general and powerful result established in [START_REF] Kounias | An inequality and almost sure convergence[END_REF] while a Feller-type condition was "only" used in [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]. This difference leads to a very sharp condition on the decreasing rate of the Lipshitzian coefficients (α

(0) k ) for Laplacian QMLE, ℓ > 1 in (3.1), while ℓ > 3/2 is required for Gaussian QMLE.
3. The proof of Theorem 3.3 is totally different to the one for Gaussian QMLE since the conditional logdensity is no more differentiable with respect to the parameters. A kind of proof similar to the one used for establishing the asymptotic normality of the median is required. Hence, in a first step we had to prove an extension of a central limit for adapted processes established in [START_REF] Davis | Least Absolute Deviation Estimation for Regression with ARMA Errors[END_REF], i.e. our Theorem 3.2, and we used it in a second step for establishing the asymptotic normality of the Laplacian QMLE. Note also that the conditions on the derivatives of functions f θ and M θ are clearly weaker with Laplacian than with Gaussian QMLE.

• The third related paper is [START_REF] Francq | Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE[END_REF]. The framework of this paper is restricted to linear causal models (X t = σ t (θ) ξ t ) in contrast with the affine causal models (X t = M t θ ξ t + f t θ ) considered in (1.1). Hence ARMA but also ARMA-GARCH or ARMA-APARCH processes are not considered in this framework. Moreover the required moment is r = 4 (instead of r = 2 in our conditions) and the condition on the approximation of σ t (θ), i.e. sup θ |σ t (θ)σt (θ)| ≤ C 1 ρ t is clearly weaker than our Lipshitzian condition (for instance ARCH(∞) processes with Riemanian decay of the coefficients could satisfy our conditions but not their conditions). In imsart-ejs ver. 2014/10/16 file: ArticleBBD4.tex date: February 20, 2017 [START_REF] Francq | Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE[END_REF], a large family of instrumental probability densities, i.e. generalized Gaussian densities, including Laplace density, but their proof of asymptotic normality mimics the proof using derivatives of Gaussian QMLE since the "shift" component f t θ typically present for ARMA processes, is not considered in their models. Note also that [START_REF] Francq | Risk-parameter estimation in volatility models[END_REF] also studies non-Gaussian QMLE but their assumption A9 implies that the Laplace density is not considered in their asymptotic normality of the QMLE.

Finally it appears that our results provide an original extension or counterpart of these three related references.

Examples

In this section, several examples of time series satisfying the conditions of previous results are considered. Like it could be boring to state the results for all sufficiently famous processes, we refer, mutatis mutandis, to [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF] and [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF] for ARCH(∞) and TARCH(∞).

1/ APARCH processes. APARCH(δ, p, q) model has been introduced (see [START_REF] Ding | A Long Memory Property of Stock Market Returns and a New Model[END_REF]) as the solution of equations

   X t = σ t ζ t , σ δ t = ω + p i=1 α i (|X t-i | -γ i X t-i ) δ + q j=1 β j σ δ t-j , (3.4) 
where δ ≥ 1, ω > 0, -1 < γ i < 1 and α i ≥ 0 for i = 1, . . . , p, β j ≥ 0 for j = 1, . . . , q with α p , β q strictly positive and q j=1 β j < 1. Hence, we denote here θ = δ, ω, α 1 , . . . , α p , γ 1 , . . . , γ p , β 1 , . . . , β q . Using L the usual backward operator such as LX t = X t-1 , 1 -q j=1 β j L j -1 exists and simple computations imply for t ∈ Z:

σ δ t = 1 - q j=1 β j L j -1 ω + p i=1 α i (1 -γ i ) δ (max(X t-i , 0)) δ + α i (1 + γ i ) δ (-min(X t-i , 0)) δ = b 0 + i≥1 b + i (max(X t-i , 0)) δ + i≥1 b - i (max(-X t-i , 0)) δ .
where b 0 = w(1 -q j=1 β j ) -1 and the coefficients (b + i , b - i ) i≥1 are defined by the recursion relations

   b + i = q k=1 β k b + i-k + α i (1 -γ i ) δ with α i (1 -γ i ) = 0 for i > p b - i = q k=1 β k b - i-k + α i (1 + γ i ) δ with α i (1 + γ i ) = 0 for i > p (3.5) with b + i = b - i = 0 for i ≤ 0. As a consequence, for APARCH model, f t θ ≡ 0 and M t θ = σ t . It is clear that α (0) j (f, Θ) = 0 and simple computations imply α (0) j (M, Θ) = sup θ∈Θ max |b + j (θ)| 1/δ , |b - j (θ)| 1/δ
. Therefore A 0 (f, Θ) holds and q j=1 β j < 1 implies that a sequence defined by u n = q k=1 β k u n-k for n large enough is such as (u n ) n∈N is an exponentially decreasing sequence and therefore A 0 (M, Θ) holds. Thus for r ≥ 1, the stationarity set Θ(r) is defined by

Θ(r) = θ ∈ R 2p+q+2 E |ζ 0 | r 1/r ∞ j=1 max |b + j | 1/δ , |b - j | 1/δ < 1 . (3.6)
Now the strong consistency and asymptotic normality of the Laplacian-QMLE for APARCH models can be established (see the proof in Section 5):

Proposition 3.1. Assume that X is a stationary solution of (3.4) with θ 0 ∈ Θ where Θ is a compact subset of Θ(r) defined in (3.6). Then,

1. If r = 1, then θ n a.s.
-→ n→∞ θ 0 .

2. If r = 2, and if Γ M defined in (5.21) is a definite positive symmetric matrix, then

√ n θ n -θ 0 D -→ n→∞ N 2p+q+2 0 , (σ 2 ζ -1) Γ -1 M .
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To our knowledge, this is the first statement the asymptotic properties of Laplacian-QMLE for APARCH processes.

2/ ARMA-GARCH processes. ARMA(p, q)-GARCH(p ′ , q ′ ) processes have been introduced by [START_REF] Ding | A Long Memory Property of Stock Market Returns and a New Model[END_REF] and [START_REF] Ling | Asymptotic theory for a vector ARMA-GARCH model[END_REF] as the solution of the system of equations

   P θ (L) X t = Q θ (L) ε t , ε t = σ t ζ t , with σ 2 t = c 0 + p ′ i=1 c i ε 2 t-i + q ′ i=1 d i σ 2 t-i (3.7)
where

• c 0 > 0, c i ≥ 0 for i = 1, . . . , p ′ , d i ≥ 0 for i = 1, . . . , q ′ , q ′ i=1 d i < 1 and c p ′ , d q ′ positive; • P θ (x) = 1 -a 1 x -• • • -a p x p and Q θ (x) = 1 -b 1 x -• • • -b q x q are coprime polynomials with p i=1 |a i | < 1 and p i=1 |b i | < 1. Let θ = (c 0 , c 1 , . . . , c p ′ , d 1 , . . . , d q ′ ,
a 1 , . . . , a p , b 1 , . . . , b q ). We are going to use Lemma 2.1. Since (ε t ) is supposed to be a GARCH(p ′ , q ′ ), then f ε θ = 0 and

M ε θ = 1 - q ′ j=1 d j L j -1 c 0 + c 1 ε 2 t-1 + • • • + c p ′ ε 2 t-p ′
1/2 and direct computations imply that the Lipshitz coefficients of (ε t ) are such as α (0) [START_REF] Berkes | The efficiency of the estimators of the parameters in GARCH processes[END_REF]). Thus (A 0 (f ε , {θ 0 })) and (A 0 (M ε , {θ 0 })) hold. Considering the ARMA part and denoting (ψ j ) such as 1

j (f ε , {θ 0 }) = 0 and α (0) j (M ε , {θ 0 }) = |β j | with 1 + ∞ j=1 β j x j 1 - q ′ j=1 d j x j = p ′ j=0 c j x j . Therefore (α (0) j (f ε , {θ 0 })) j and (α (0) j (M ε , {θ 0 })) j are EDS (see for instance
+ ∞ j=1 ψ j x j 1 - ∞ j=1 a j x j = 1 - ∞ j=1 b j x j ,
then from Lemma 2.1 we deduce that:

α (0) j (f, {θ 0 }) = |ψ j | α (0) j (M, {θ 0 }) ≤ j k=1 |ψ k | × |β j-k | .
Then we deduce that (α (0) j (f, {θ 0 })) j and (α (0) j (M, {θ 0 })) j are EDS, (A 0 (f, {θ 0 })) and (A 0 (M, {θ 0 })) hold, and X is a.s. a solution of (1.1) for θ included in the r-order stationarity set Θ(r) defined by

Θ(r) = θ ∈ R p+q+p ′ +q ′ +1 ∞ i=1 |ψ i (θ)| + E |ζ 0 | r 1/r ∞ j=1 j k=1 |ψ k | × |β j-k | < 1 .
(3.8)

Now the strong consistency and asymptotic normality of the Laplacian-QMLE for ARMA-GARCH processes can be established:

Proposition 3.2. Assume that X is a stationary solution of (3.7) with θ 0 ∈ Θ where Θ is a compact subset of Θ(r) defined in (3.8). Then,

1. If r = 1, then θ n a.s.
-→ n→∞ θ 0 .

2. If r = 2, and if Γ f and Γ M defined in (5.21) are definite positive symmetric matrix, then the asymptotic normality

(3.3) of θ n holds.
This result is a new one and extends the previous results already obtained with Gaussian-QMLE for such processes (see for instance, [START_REF] Ling | Asymptotic theory for a vector ARMA-GARCH model[END_REF] and [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]).

3/ ARMA-ARCH(∞) processes. ARMA(p, q)-ARCH(∞) processes are a natural extension of ARMA-GARCH processes. They are the solution of the system of equations

   P θ (L) X t = Q θ (L) ε t , ε t = σ t ζ t , with σ 2 t = c 0 + ∞ i=1 c i ε 2 t-i (3.9)
where

• c 0 > 0, c i ≥ 0 for i ≥ 1;
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• P θ (x) = 1 -a 1 x -• • • -a p x p and Q θ (x) = 1 -b 1 x -• • • -b q x q
are coprime polynomials with p i=1 |a i | < 1 and p i=1 |b i | < 1. ARCH(∞) processes were introduced by [START_REF] Robinson | Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression[END_REF] and the asymptotic properties of Gaussian-QMLE were studied in [START_REF] Robinson | Pseudo-maximum likelihood estimation of ARCH(∞) models[END_REF], [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF] or [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]. Hence, we assume that there exists β = (β 1 , • • • , β m ) such as for all i ∈ N, c i = c(i, β), with c(•) a known function. Let θ = (β, a 1 , . . . , a p , b 1 , . . . , b q ). We are going to use Lemma 2.1. Since (ε t ) is supposed to be an ARCH(∞), then

f ε θ = 0 and M ε θ = c(0, β) + ∞ i=1 c(i, β)ε 2 t-i
1/2 and direct computations imply that the Lipshitz coefficients of (ε t ) are such as α (0)

j (f ε , {θ 0 }) = 0 and α (0) j (M ε , {θ 0 }) = c(j, β 0
). Therefore we assume that there exists ℓ > 1 such as c(j, β 0 ) = O j -ℓ ) when j → ∞.

(3.10)

Thus (A 0 (f ε , {θ 0 })) and (A 0 (M ε , {θ 0 })) hold.
Considering the ARMA part and denoting (ψ j ) such as 1

+ ∞ j=1 ψ j x j 1 - ∞ j=1 a j x j = 1 - ∞ j=1 b j x j
, then from Lemma 2.1 we deduce that:

α (0) j (f, {θ 0 }) = |ψ j | α (0) j (M, {θ 0 }) ≤ j k=1 |ψ k | × c(j, β 0 ) .
Then we deduce that (α

(0) j (f, {θ 0 })) j is EDS and (α (0) j (M, {θ 0 })) j = O j -ℓ ). Then (A 0 (f, {θ 0 })) and (A 0 (M, {θ 0 }))
hold, and X is a.s. a solution of (1.1) for θ included in the r-order stationarity set Θ(r) defined by

Θ(r) = θ ∈ R p+q+m ∞ i=1 |ψ i (θ)| + E |ζ 0 | r 1/r ∞ j=1 j k=1 |ψ k | × c(j, β 0 ) < 1 . (3.11)
Now the strong consistency and asymptotic normality of the Laplacian-QMLE for ARMA-ARCH(∞) processes can be established:

Proposition 3.3. Assume that X is a stationary solution of (3.9) where (3.10) holds and with θ 0 ∈ Θ where Θ is a compact subset of Θ(r) defined in (3.11). Then, 1. If r ≥ 1 and ℓ ≥ 2/ min(r, 2), then θ n a.s.

-→ n→∞ θ 0 .

2. If r = 2, ℓ > 1 and if ∂ i β c(j, β) = O j -ℓ for i = 1, 2, and if Γ f and Γ M defined in (5.21) are definite positive symmetric matrix, then the asymptotic normality (3.3) of θ n holds. This result is a new one. Note that ℓ > 1 and r = 2 is required for the asymptotic normality of Laplacian-QMLE while r = 4 and ℓ > 2 is required for Gaussian-QMLE for such processes (see for instance [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]). This confers a clear advantage to Laplacian-QMLE.

4/ ARMA-APARCH processes. The ARMA(p, q)-APARCH(p ′ , q ′ ) processes have been also introduced by [START_REF] Ding | A Long Memory Property of Stock Market Returns and a New Model[END_REF] as the solutions of the equations

   P θ (L) X t = Q θ (L) ε t , ε t = σ t ζ t , with σ δ t = ω + p ′ i=1 α i (|ε t-i | -γ i ε t-i ) δ + q ′ j=1 β j σ δ t-j
(3.12)

where:

• δ ≥ 1, ω > 0, -1 < γ i < 1 and α i ≥ 0 for i = 1, . . . , p ′ -1, β j ≥ 0 for j = 1, . . . , q ′ -1, α p ′ , β q ′ positive real numbers and p ′ j=1 α j < 1;

• P θ (x) = 1 -a 1 x -• • • -a p x p and Ψ θ (x) = 1 -b 1 x -• • • -b q x q are coprime polynomials with p i=1 |a i | < 1 and q i=1 |b i | < 1 .
Let θ = (δ, ω, α 1 , . . . , α p ′ , γ 1 , . . . , γ p ′ , β 1 , . . . , β q ′ , a 1 , . . . , a p , b 1 , . . . , b q ). Then, as for ARMA-GARCH processes, we are going to use Lemma 2.1. Thanks to the computations realized for APARCH processes, we obtain α 

(0) j (M ε , {θ 0 }) = max(|b + j | 1/δ , |b - j | 1/δ ) with (b + i , b - i ) i≥1 defined in (3.5). Then, we have α (0) j (f, {θ 0 }) ≤ |ψ j | α (0) j (M, {θ 0 }) ≤ j k=1 |ψ k | × max |b + j-k | 1/δ , |b - j-k | 1/δ . (ψ j ) such as 1 + ∞ j=1 ψ j x j 1 - ∞ j=1 a j x j = 1 - ∞ j=1 b j x j .
From Lemma 2.1, (A 0 (f, Θ)) and (A 0 (M, Θ)) hold since (α (0) j (f ε , {θ 0 })) j = 0 and (α (0) j (M ε , {θ 0 })) j are EDS. As a consequence, for r ≥ 1, the stationarity set Θ(r) is defined by

Θ(r) = θ ∈ R p+q+p ′ +q ′ +2 ∞ j=1 |ψ j | + E ζ 0 | r 1/r ∞ j=1 j k=1 |ψ k | × max |b + j-k | 1/δ , |b - j-k | 1/δ < 1 .
Now, we are able to provide the asymptotic properties of QMLE for ARMA-APARCH models.

Proposition 3.4. Assume that X is a stationary solution of (3.12) with θ 0 ∈ Θ where Θ is a compact subset of Θ(r) defined in (3.8). Then,

1. If r = 1, then θ n a.s.
-→ n→∞ θ 0 .

2. If r = 2, and if Γ f and Γ M defined in (5.21) are definite positive symmetric matrix, then the asymptotic normality (3.3) of θ n holds.

This result is stated for the first time for Laplacian-QMLE. The case of Gaussian-QMLE for ARMA-APARCH could be also obtained following the previous decomposition and the paper [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]. Once again, the asymptotic normality of Laplacian-QMLE only requires r = 2 while this requires r = 4 for Gaussian-QMLE.

Numerical Results

To illustrate the asymptotic results stated previously, we realized Monte-Carlo experiments on the bevarior of Laplacian-QMLE (denoted θ LQL n ) for several time series models, sample sizes and probability distributions. A comparison with the results obtained by Gaussian QMLE (denoted θ GQL n ) is also proposed. More precisely, the considered probability distributions of (ζ t ) are:

• Centred Gaussian distribution denoted N ; • Centred Laplacian distribution denoted L; • Centred Uniform distribution denoted U; • Centred Student distribution with 3 freedom degrees, denoted t 3 ; • Normalized centred Gaussian mixture with probability distribution 0.05 * N (-2, 0.16)+N (0, 1)+0.05 * N (2, 0.16) and denoted M.

All these probability distributions are normalized such as E[|ζ 0 |] = 1, required for Laplacian-QMLE. For using Gaussian-QMLE requiring σ 2 ζ = 1, it is necessary to consider the model with

M ′ θ = E[|ζ0|] σ ζ M θ instead of M θ .
Several models of time series satisfying (1.1) and the assumptions of Theorem 3.1 and 3.3 are considered:

• a ARMA(1, 1) process defined by X t = φ X t-1 + ζ t + θζ t-1 with φ = 0.4 and θ = 0.6;

• a ARCH(1) process defined by X t = ζ t ω + αX 2 t-1
with ω = 0.4 and α = 0.2;

• a GARCH(1, 1) process defined by X t = ζ t σ t where σ 2 t = α 0 + α 1 X 2 t-1 + βσ 2 t-1 with α 0 = 0.2, α 1 = 0.4 and β = 0.2; • a ARMA(1, 1)-GARCH(1, 1) process defined by X t = φX t-1 + ε t + θε t-1 where ε t = ζ t σ t and σ 2 t = α 0 + α 1 ε 2 t-1 + βσ 2 t-1 with φ = 0.4, θ = 0.6, α 0 = 0.2, α 1 = 0.4 and β = 0.1; • a ARMA(1, 1)-APARCH(1, 1) process defined by X t = φX t-1 + ε t + θε t-1 where ε t = ζ t σ t and σ δ t = α 0 + α 1 |ε t-1 |γε t-1 δ + βσ δ t-1 and φ = 0.4, θ = 0.6, α 0 = 0.2, α 1 = 0.4, γ = 0.5, β = 0.1 and δ = 1.2. for ARMA(1, 1), ARCH(1) and GARCH(1, 1) processes. Hence we computed the root-mean-square error (RMSE) from 1000 independent replications of θ LQL n and θ LQL n for those processes and the results are presented in Table 1 on page 10 and 2 on page 11.

L N t 3 U M n θ GQL n θ LQL n θ GQL n θ LQL n θ GQL n θ LQL n θ GQL n θ LQL n θ GQL n θ LQL n ARMA(1,

Conclusion of the numerical results:

On the one hand, it is clear that the RMSE decreases as the sample size increases, which validates the theoretical results (consistency of the estimators). On the other hand, Table 1 and2 show that the Laplacian-QMLE provides more accurate estimation than the Gaussian-QMLE for several types of noise, except of course in the case of a Gaussian distribution (even in this case the RSME of both the estimators are almost the same).

Proofs

Proof of Lemma 2.1. First, as X is a stationary process and the ARMA(p, q) process is causal invertible then X is also a stationary process (the coefficients of Λ β0 are EDS). Moreover, it is well known that (ψ j (β 0 )) j∈N is EDS. Then we have: for ARMA(1, 1)-GARCH(1, 1) and ARMA(1, 1)-APARCH(1, 1) processes. Finally, for i = 0,

X t = Λ β0 (L) M θ0 (X t-i ) i≥1 ζ t + f θ0 (X t-i ) i≥1 X t + ∞ j=1 ψ j (β 0 ) X t-j = M θ0 (Λ -1 β0 (L) X t-i ) i≥1 ζ t + f θ0 (Λ -1 β0 (L) X t-i ) i≥1 X t = M θ0 ( X t-i ) i≥1 ζ t + f θ0 ( X t-i ) i≥1 with M θ0 (x t-i ) i≥1 = M θ0 (Λ -1 β0 (L)x t-i ) i≥1 f θ0 (x t-i ) i≥1 = f θ0 (Λ -1 β0 (L)x t-i ) i≥1 - ∞ j=1 ψ j (β 0 )x t-j . ( 5 
L N t 3 U M n θ GQL n θ LQL n θ GQL n θ LQL n θ GQL n θ LQL n θ GQL n θ LQL n θ GQL n θ LQL n ARMA(1,
f θ0 (x t-i ) i≥1 -f θ0 (y t-i ) i≥1 ≤ ∞ j=1 α (0) j (f, {θ 0 }) (Λ -1 β0 (L)x t-j-i ) i≥1 -(Λ -1 β0 (L)y t-j-i ) i≥1 +|ψ j (β 0 )| |x t-j -y t-j | ≤ ∞ j=1 α (0) j (f, {θ 0 }) ∞ k=0 |ψ k (β 0 )| |x t-k-j -y t-k-j + |ψ j (β 0 )| |x t-j -y t-j | ≤ ∞ j=1 |ψ j (β 0 )| + j k=1 α (0) k (f, {θ 0 })ψ j-k (β 0 ) |x t-j -y t-j =⇒ α (0) j ( f , { θ 0 }) ≤ |ψ j (β 0 )| + j k=1 α (0) k (f, {θ 0 }) ψ j-k (β 0 ) . (5.2)
Moreover, we also have:

M θ0 (x t-i ) i≥1 -M θ0 (y t-i ) i≥1 ≤ ∞ j=1 α (0) j (M, {θ 0 }) (Λ -1 β0 (L)x t-j-i ) i≥1 -(Λ -1 β0 (L)y t-j-i ) i≥1 =⇒ α (0) j ( M , { θ 0 }) ≤ j k=1 α (0) k (M, {θ 0 }) ψ j-k .
(5.

3)

The same kinds of computations could also be done by considering the first and second derivatives of f and M with respect to θ. Note, and this is important, that the first and second derivatives of Λ -1 β with respect to θ are also EDS. Finally,

• if when j → ∞, α (0) j (K, {θ 0 }) = O(j -β
) with β > 1 and ψ j = O(ρ j ) with 0 ≤ ρ < 1, then there exists C > 0 such as

j k=1 α (0) k (K, {θ 0 }) ψ j-k ≤ C j k=1 k -β ρ j-k ∼ -C(log ρ) -1 j -β and therefore α (0) j ( K, { θ 0 }) = O(j -β ).
• if when j → ∞, α (0) j (K, {θ 0 }) = O(r j ) with 0 ≤ r < 1 and ψ j = O(ρ j ) with 0 ≤ ρ < 1, then there exists C > 0 such as

j k=1 α (0) k (K, {θ 0 }) ψ j-k ≤ C j k=1 r -k ρ j-k = O(j max(r, ρ) j ) and therefore α (O) j ( K, { θ 0 }) is EDS.
The same kind of computation can be also done for (α (i) j ( K, { θ 0 })) j since the derivatives and second-derivatives of Λ -1 β0 with respect to β and therefore to θ are also EDS. Now we remind two lemmas already proved in [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]:

Lemma 5.1. Assume that θ 0 ∈ Θ(r) for r ≥ 1 and X is the causal stationary solution of the equation (1.1).

If (A 0 (K, Θ)) holds (with K = f or K = M ) then K t θ ∈ L r (C(Θ, R m ))
and there exists C > 0 not depending on t such that

E K t θ -K t θ r Θ ≤ C E |X 0 | r j≥t α j (K, Θ)
r for all t ∈ N * .

(5.4) Lemma 5.2. Let D (2) (Θ) denote the Banach space of 2 times continuously differentiable functions on Θ equipped with the uniform norm

h 2,Θ = h Θ + ∂h ∂θ Θ + ∂ 2 h ∂θ∂θ ′ Θ .
Let θ 0 ∈ Θ(r) (r ≥ 1) and assume that for i = 0, 1, 2, (A i (f, Θ)) and

(A i (M, Θ)) hold. Then f t θ ∈ L r D (2) (Θ) and M t θ ∈ L r D (2) (Θ) .
Now, we begin with the proofs of Theorem 3.1, 3.2 and 3.3.

Proof of Theorem 3.1. The proof of the theorem is divided into two parts and follows the same kind of procedure than in [START_REF] Jeantheau | Strong consistency of estimators for multivariate arch models[END_REF]. In (i), a uniform (on Θ) strong law of large numbers satisfied by 1 n L n (θ) converging to L(θ) := -E[q 0 (θ)] is established. In (ii), it is proved that L(θ) admits a unique maximum in θ 0 . Those two conditions lead to the strong consistency of θ n (from Jeantheau (1998)).

imsart-ejs ver. 2014/10/16 file: ArticleBBD4.tex date: February 20, 2017 (i) In the same way and for the same reason in the proof of Theorem 1 of [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF], the uniform strong law of large numbers satisfied by the sample mean of ( q t ) t∈N * (defined in (2.3)]) is implied by establishing E[ q t (θ) Θ ] < ∞. But new computations have to be done in case of Laplacian conditional log-density q t (θ). From Lemma 5.1, for all t ∈ Z,

|q t (θ)| = (M t θ ) -1 |X t -f t θ | + log(M t θ ) ≤ |X t -f t (θ)| M + log(M ) + M t θ =⇒ sup θ∈Θ |q t (θ)| ≤ 1 M |X t | + f t (θ) Θ + log(M ) + M t θ Θ . With r ≥ 1, we have ∀t ∈ Z, E[|X t |] < ∞ from Proposition 2.1 and E f t θ r Θ + M t θ r Θ < ∞ from Lemma 5.1, implying E f t θ Θ + M t θ Θ < ∞. As a consequence, for all t ∈ Z, E q t (θ) Θ < ∞.
Hence, the uniform strong law of large numbers for (q t (θ)) follows:

L n (θ) n -L(θ) Θ a.s.
-→ n→∞ 0.

(5.5)

Now, we are going to establish

1 n L n (θ) -L n (θ) Θ a.s.
-→

By Corollary 1 of [START_REF] Kounias | An inequality and almost sure convergence[END_REF], the proof is achieved if there exists s ∈ (0, 1] such as

t≥1 1 t s E q t (θ) -q t (θ) s Θ < ∞. (5.6) Let us prove (5.6) with s = r/2 when r ∈ [1, 2].
From Cauchy-Schwarz Inequality and assumptions A 0 (f, Θ) and A 0 (M, Θ),

E q t (θ) -q t (θ) r/2 Θ ≤ C E (1 + |X t | + f t θ Θ ) r 1 2 E ( M t θ -M t θ Θ + f t θ -f t θ Θ ) r 1 2 .
Using Lemma 5.1 and previous proved results implying E

[|X t | r ] < ∞, E[ f t θ r Θ + M t θ r Θ ] < ∞, we obtain E q t (θ) -q t (θ) r/2 Θ ≤ C j>t α (0) j (f, Θ) + α (0) j (M, Θ) r 2 ≤ C t -(ℓ-1)r 2 ,
where the last inequality is obtained from the condition (3.1) of Theorem 3.1. Hence, we have which is finite when r ℓ > 2. When r ≥ 2, it is sufficient to consider the case r = 2. As a consequence, we obtain

t≥1 1 t r/2 E | q t (θ) -q t (θ)| r/2 Θ ≤ A t≥1 t -r ℓ/
1 n n t=1 q t (θ) -q t (θ) Θ a.s. -→ n→∞ 0 and 1 n L n (θ) -L n (θ) Θ a.s.
-→ n→∞ 0, (5.7) and therefore, using (5.5),

1 n L n (θ) -L(θ) Θ a.s.
-→ n→∞ 0.

(5.8)

M t θ > 0 (> 0 is replaced by = 0 if M θ = M θ0
). This implies from Condition C3 (Identifiability) that L(θ 0 )-L(θ) > 0 almost surely for all θ ∈ Θ, θ = θ 0 . Hence a supremum of L(θ) is only reached for θ = θ 0 which is the unique maximum.

Proof of Theorem 3.2. We follow the same scheme of proof than in [START_REF] Davis | Least Absolute Deviation Estimation for Regression with ARMA Errors[END_REF]. Hence, denote

S n = n t=1 V t-1 |Z t -n -1/2 Y t-1 | -|Z t | = -n -1/2 n t=1 V t-1 Y t-1 sgn(Z t ) +2 n t=1 V t-1 (n -1/2 Y t-1 -Z t ) 1 0<Zt<n -1/2 Yt-1 -1 n -1/2 Yt-1<Zt<0 = A n + B n . Since E V t-1 Y t-1 sgn(Z t ) | F t-1 = E[sgn(Z t )] E V t-1 Y t-1 = 0 and E V 2 0 Y 2 0
< ∞, we can apply a central limit theorem for stationary martingale difference sequence (see [START_REF] Billingsley | Convergence of Probability Measures[END_REF]) and

A n D -→ n→∞ N 0 , E V 2 0 Y 2 0 .
(5.9) Then,

I 1 (v) = n -1/2 n t=1 (M t θ0 ) -1 v ′ ∂M t θ ∂θ θ0 |ζ t | -1 + 1 2n with θ t M in the segment [θ 0 , θ 0 + n -1/2 v].

First we have:

2/ Now, we consider the approximation W n (v) of W n (v) defined by:

W n (v) = - n t=1 q t (θ 0 + n -1/2 v) -q t (θ 0 ) for any v ∈ R d .
From the assumptions of Theorem 3.1 and (5.7) we have

1 n n t=1 q t (θ) -q t (θ) Θ a.s. -→ n→∞ 0. Then we have W n (v) = W n (v) + R n (v) with sup v∈R d |R n (v)| ≤ 2 n t=1 q t (θ) -q t (θ) Θ a.s.
-→ n→∞ 0 and then:

W n (v) D -→ n→∞ W (v) (5.22)
with W defined in (5.20).

3/ Now, from (5.22), the proof of Theorem 3.2 and the same arguments than in the proof of Theorem 2 of [START_REF] Davis | Least Absolute Deviation Estimation for Regression with ARMA Errors[END_REF], we deduce that finite distributions ( W n (v 1 ),

• • • , W n (v k )) converge to (W (v 1 ), • • • , W (v k )) for any (v 1 , • • • , v k ) ∈ (R d ) k
. Moreover, always following the proof of Theorem 2, (W n (v)) v converges to (W (v)) v as a process on the continuous function space C 0 . As a consequence, a maximum v of W n (v) satisfies:

v = Γ M + 2g(0) Γ F -1 N,
with N defined in (5.21) and this implies (3.3).

Proof of Proposition 3.1. First, Condition C2 is satisfied since b 0 > 0. Other conditions on Lipschitz coefficients are also satisfied from Lemma 2.1 (see the arguments above). The identifiability condition C3 is also satisfied from the following which are divided into two parts. In (i) we proof that δ, b 0 , (b + i (θ), b - i (θ)) i≥1 (defined in (3.5)) are unique, thereafter in (ii) we proof that θ = ω, (α i ) 1≤i≤p , (γ i ) 1≤i≤p , (β i ) 1≤i≤q is also unique. (i) The proof of this result follow the same reasoning in [START_REF] Berkes | GARCH processes: structure and estimation[END_REF]. ). In one hand, since x ∈ (0, ∞) → x δ is a one-to-one map and since P(X t = ±1, ∀t ∈ Z) = 0, we have δ = δ ′ . In the other hand, by definition of m, we have 

(b + ′ m -b + m )(max(X t-i , 0)) δ + (b -′ m -b - m )(max(-X t-m , 0)) δ = b 0 -b ′ 0 + i≥m+1 (b + i -b + ′ i )(max(X t-i , 0)) δ + i≥m+1 (b - i -b -′ i )(max(-X t-i , 0 
+ ′ m -b + m )σ δ t-m ) -1 i≥m+1 (b + i -b + ′ i )(max(X t-i , 0)) δ when ζ t-m ≥ 0 or (-ζ t-m ) δ = ((b -′ m -b - m )σ δ t-m ) -1 i≥m+1 (b - i -b -′ i )(max(X t-i , 0)) δ when ζ t-m < 0
Since σ δ t-m > b 0 > 0, ζ δ t-m is well defined. Let F k be the F -algebra generated by (ζ i , i < k). The causal representation of tha APARCH(δ, p, q) shows that X j is F j -measurable and thus the right-hand side of the above equations (and imsart-ejs ver. 2014/10/16 file: ArticleBBD4.tex date: February 20, 2017 consequently also ζ δ t-m in the case ζ t-m ≥ 0 or the case ζ t-m < 0) is a real-valued random variable, measurable with respect to F t-m-1 . Since (ζ j ) is a sequence of independent random variables, this implies that ζ t-m is a.s. constant when ζ t-m ≥ 0 or when ζ t-m < 0, contradicting the hypothesis saying ζ δ 0 has a non-degenerate distribution. This achieves (i).

(ii) The representation (5.23) is the same as σ δ t = b 0 + Ψ + (L)(max(X t , 0)) δ + Ψ -(L)(max(-X t , 0)) δ .

with Ψ + = Υ -1 θ1 ∆ + θ2 , Ψ -= Υ -1 θ1 ∆ - θ2 and ∆ + θ2 (L) = p i=1 α i (1γ i )L i , ∆ - θ2 (L) = p i=1 α i (1 + γ i )L i and Υ θ1 (L) = q i=1 β i L i , where (∆ + θ2 , Υ θ1 ) and (∆ - θ2 , Υ θ1 ) respectively coprime and θ 1 = (β i ) 1≤i≤q , θ 2 = (α i ) 1≤i≤p , (γ i ) 1≤i≤p , then θ = (ω, θ 1 , θ 2 ). Suppose that there exist others polynomials ∆ +

θ ′ 2 = p i=1 α ′ i (1 -γ ′ i )L i , ∆ - θ ′ 2 = p i=1 α ′ i (1 + γ ′ i )L i , Υ θ ′ 2 = q i=1 β ′ i L i satisfying Ψ + = Υ -1

  ε , {θ 0 }) = 0 imsart-ejs ver. 2014/10/16 file: ArticleBBD4.tex date: February 20, 2017 and α

  First we haveσ δ t = b 0 (θ) + i≥1 b + i (θ)(max(X t-i , 0)) δ + i≥1 b - i (θ)(max(-X t-i , 0)) δ .(5.23)We prove the result by contradiction. Suppose that there exist two vectorsβ = δ, b 0 , (b + i ) i≥1 , (b - i ) i≥1 and β ′ = δ ′ , b ′ 0 , (b + ′ i ) i≥1 , (b -′ i ) i≥1 verifying (5.23). Let m > 0 be the smallest integer satisfying b + m = b + ′ m or b - m = b -′ m (if b + i = b + ′ i and b - i = b -′ i ∀i ≥ 1 then b 0 = b ′ 0

  we have X t-m = σ t-m ζ t-m , therefore (b + ′ mb + m )(max(X t-m , 0)) δ + (b -′ mb - m )(max(-X t-m , 0)) (-ζ t-m ) δ when ζ t-m <0 Moreover (5.24) and the fact that b + m = b + ′ m or b - m = b -′ m implies that at least one of the following equalities hold        ζ δ t-m = ((b

  Root Mean Square Error of the components of θ LQL
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Now, considering B n , define also W nt = V t-1 (n -1/2 Y t-1 -Z t ) 1 0<Zt<n -1/2 Yt-1 . Using the same arguments as in [START_REF] Davis | Least Absolute Deviation Estimation for Regression with ARMA Errors[END_REF], we also obtain

Then we deduce

(5.10)

The proof is achieved from (5.9) and (5.10).

Proof of Theorem 3.3. We follow a proof which is similar to the one of Theorem 2 in [START_REF] Davis | Least Absolute Deviation Estimation for Regression with ARMA Errors[END_REF] or [START_REF] Li | Least Absolute Deviation Estimation for Fractionally Integrated Autoregressive Moving Average Time Series Models with Conditional Heteroscedasticity[END_REF].

Then we are going to prove in 2/ that maximizing L n (θ) is equivalent to maximizing L n (θ) which is equivalent to maximizing

with respect to v. As a consequence, there exists a sequence (

. In 1/ we will provide a limit theorem satisfied by W n (v). Then we are going to prove in 3/ that (W n (•)) n converges as a process of C(R d ) (space of continuous functions on R d ) to a limit process W . Hence ( v n ) n converges to the maximizer of W .

1/ First, we are going to study the asymptotic behavior of W n (v). We have

We have:

Using Taylor expansions, we deduce that for each t ∈ {1, • • • , n}, there exists θ t 1 and θ t 2 in the segment [θ 0 , θ 0 +n -1/2 v] such as:

Thus, Condition C3 is established and the proof of proposition is achieved.

Proof of Proposition 3.2. Since we prove that Lemma 2.1 implies that conditions on Liptshitzian coefficients (α (i) j (f, Θ)) j and (α (i) j (M, Θ)) j , it remains to prove conditions C2 and C3. Condition C2 holds since c 0 is supposed to be a positive number. Finally, condition C3 also holds since f θ = f θ ′ implies ψ j (θ) = ψ j (θ ′ ) for all j ∈ Z. Therefore the parameters of the ARMA part of the process are identified and then the identification of the parameters GARCH can be deduced from the proof of Proposition 3.1.

Proof of Proposition 3.4. This proofs mimics exactly the proof of Proposition 3.2.