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Université Paris-Saclay, 91405 Orsay cedex, France.

January 1, 2016

Keywords: Sweeping process, Optimal transportation, Wasserstein distance, Differential inclusion,
Subdifferential, Rotor Router Model.

Abstract

We propose and analyze a natural extension of the Moreau sweeping process: given a
family of moving convex sets (C(t))t, we look for the evolution of a probability density ρt,
constrained to be supported on C(t). We describe in detail three cases: in the first, particles
do not interact with each other and stay at rest unless pushed by the moving boundary; in the
second they interact via a maximal density constraint ρ ≤ 1, so that they are not only pushed
by the boundary, but also by the other particles; in the third case particles are submitted to
Brownian diffusion, reflected along the moving boundary. We prove existence, uniqueness and
approximation results by using techniques from optimal transport, and we provide numerical
illustrations.

1 Introduction

J.J. Moreau introduced in 1977 (see [32]) the so-called sweeping process, that describes the motion
of a point t 7→ q(t) in a Hilbert space subject to remain in a moving closed convex set C(t). The
point is assumed to move as little as possible: it stands still as far as it lies in the interior of the C,
and it is caught up by its moving boundary otherwise. The problem takes the form of a differential
inclusion:

q′(t) ∈ −∂IC(t)(q(t)), (1)

where IC is the indicator function of the set C (it vanishes for any q ∈ C, and takes the value +∞
for q /∈ C).

This model was initially motivated by applications in plasticity (see [31]), and it has since been
used in various domains, in particular granular materials and rigid body mechanics ([41, 27]), and
more recently crowd motion models ([22, 35]).

In this case, the following result, that we present here with strong regularity assumptions on the
prescribed motion, is well-known. The regularity of the motion of the convex set C(t) is expressed
in terms of the Hausdorff distance dH .
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Theorem 1.1. Suppose that (C(t))t is a family of compact convex sets in R
d with dH(C(t), C(s)) ≤

L|t − s|. Then, for every initial point q0 ∈ C(0), Equation (1) admits a unique locally absolutely
continuous solution t 7→ q(t). This solution

• satisfies |q′(t)| ≤ L;

• is obtained as a uniform limit as τ → 0 of the curves qτ obtained in the following way: first
define recursively qτk via {

qτ0 = q0,

qτk+1 = PC((k+1)τ)[q
τ
k ],

(2)

where PC denotes the projection on the compact convex set C, then define the curve qτ on
each interval [kτ, (k + 1)τ ] to be the affine interpolant between qτk and qτk+1.

The iterated projection scheme in Theorem 1.1 is the main tool to study this sweeping process
and is called catching up method. This seminal work has given rise to a huge literature, and the
process has been generalized to many situations. In particular, since the catching-up process needs
a well-defined projection only in a neighborhood of C, the convexity assumption can be relaxed,
and the result applies to so-called prox regular sets, for which the projection is well-defined in the
proximity of the set (see e.g. [42, 8, 12, 17]). The evolution problem with a forcing term has also
been considered, and associated control problems have been studied ([16]). Abstract extensions to
the non-Hilbertian situation have also been given ([6]).

In this paper we want to study similar problems in the class of probability measures on C(t). We
will look for evolutions ρ(t) ∈ P(C(t)) which are “pushed” by the movement of the boundary of
C(t).

We will look at three different cases.

The first is the easiest generalization of the sweeping process by Moreau: the measure ρ(t) repre-
sents a collection of particles, and each of them stays at rest except when pushed by the ∂C(t).
They are allowed to superpose and create concentration, and in general they create singular mea-
sures on the boundary. We will see that this motion can be considered as a superposition of several
sweeping processes, one for each particle.

Then, we move to a subject closer to the recent researches of the second and third author: we add a
density constraint. This means that each particle tries to stay at rest, but can be pushed either by
the boundary or by the other particles which are in between. Indeed, we impose a maximal density
constraint ρ(t, x) ≤ 1 (here we identify the probability measure ρ with its density) and it is possible
that particles which are not on ∂C(t) must move in order to comply with this density constraint.
No concentration of mass is allowed in this model, and the movement is ruled by a pressure, which
is part of the unknown, and plays the role of a Lagrange multiplier for the constraint ρ ≤ 1. We
will see that this model fits well the sweeping framework by Moreau, that it can be obtained by
iterated projections, and we will study the corresponding PDE in a moving domain.

Finally, we study a somehow different model, where particles instead of being passively pushed by
the motion of the convex set C(t) also have Brownian diffusion. Observe that there is no symmetry
between possible Brownian effects in the motion of the particles and of the sets (see for instance
[12]) and that here we are interested in the case where the movement of the convex set is smooth
(i.e., Lipschitz) and the Brownian motion in only present at the level of the particles. Moreover,
since we consider the global evolution of a large number of particles, these effects only translate into
a diffusion term in the equation, which becomes a heat equation on a moving domain with suitable
no-flux boundary conditions. From the point of view of the techniques, this model is no longer
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attacked by iterated projections. Yet, using the well-known approach by Jordan, Kinderlehrer and
Otto in [19], we can provide a scheme which is not so different, where instead of minimizing at
each time step the distance to the previous configuration we also add an entropy term.

All these equations can be interpreted as Moreau processes in the space of measures, with a set
K(t) of admissible measures which moves in time. In the first case we have

K(t) = {ρ ∈ P(Rd) : spt(ρ) ⊂ C(t)}, (3)

while in the second we have

K1(t) = {ρ ∈ P(Rd) : spt(ρ) ⊂ C(t), ρ ≤ 1} (4)

(in this second case we only use absolutely continuous measures, and we identify measures with
their densities). The third case is somehow different, because it corresponds to a forced Moreau
process (which would read as x′(t) ∈ −∂IC(t) + ft in the Euclidean case). The forcing corresponds
to the action of the diffusion.

2 Preliminaries and notations

2.1 Moving convex sets

Here we recall some intuitive facts about moving convex sets; for the interested reader we report the
proof of the main formula we will need, namely equation (6). Moreover we prove also a technical
fact (Corollary 2.6), that will be useful for some estimates in the sequel.

Lemma 2.1. Let C be a bounded convex domain. For every set A let us denote by (A)ε the
ε-neighbourhood of A, namely the set of points such that d(x,A) < ε. Then:

• the perimeter Per(C), equal to Hd−1(∂C), is finite;

• ε−1Ld|(∂C)ε ⇀ µ+Hd−1|∂C , where µ ≤ Hd−1|∂C .

Proof. The fact that C is a set of finite perimeter is well known and we omit its proof. For the
second part of the statement we split (∂C)ε = (∂C)+ε ∪ (∂C)−ε where (∂C)+ε = (∂C)ε \ C and
(∂C)−ε = (∂C)ε ∩ C. Given a smooth test function φ, we start from the following computation

∫

(∂C)+ε

φ(PC(x))dx = ε

∫

∂C

φ(x)dHd−1 + o(ε)

where PC is the projection onto C, and the o(ε) term is indeed a polynomial in ε (from Steiner’s

formula, it equals
∑d

j=2 ε
j
∫
∂C φdµj , where µj are the curvature measures of ∂C, see [40]). In

particular when φ = 1 we obtain |(∂C)+ε | = εPer(C) + o(ε). Then we go on with
∫

(∂C)+ε

φ(x)dx =
∫
(∂C)+ε

φ(PC(x))dx +
∫
(∂C)+ε

(φ(x) − φ(PC(x)))dx

= ε
∫
∂C φ(x)dH

d−1 + o(ε) + εLip(φ)|(∂C)+ε |. (5)

For the (∂C)−ε part, we consider φ ≥ 0 and we note that, for convex polyhedra Cj , for every
projection Pj on ∂Cj (the projection from the interior is no more unique), we have

∫

(∂Cj)
−

ε

φ(Pj(x)) dx ≤ ε

∫

∂Cj

φdHd−1;
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Again, since |Pj(x) − x| ≤ ε for x ∈ (∂Cj)
−
ε , we have

∫

(∂Cj)
−

ε

φ(x) dx ≤ ε

∫

∂Cj

φdHd−1 + Lip(φ)Per(Cj)ε
2.

Furthermore Pj is a 1-Lipschitz function on ∂C if Cj ⊆ C and so it is true that (Pj)♯H
d−1|∂C ≥

Hd−1|∂Cj
. In particular

∫
∂Cj

φdHd−1 ≤
∫
∂C(φ ◦ Pj)dH

d−1 and Per(Cj) ≤ Per(C). Hence we have

∫

(∂Cj)
−

ε

φ(x) dx ≤ ε

∫

∂C

φdHd−1 + Lip(φ)Per(Cj)ε
2 + ε

∫

∂C

(φ(Pj(x))− φ(x))dHd−1

≤ ε

∫

∂C

φdHd−1 + εPer(C)Lip(φ)(ε+ dH(C,Cj))

Thus, it is sufficient to approximate C in the Hausdorff sense from the interior with polyhedra (for
instance considering the convex hull of suitable finite sets of points Xj = {xji}i≤Ij ⊂ ∂C). Letting
j → ∞ we obtain ∫

(∂C)−ε

φ(x) dx ≤ ε

∫

∂C

φdHd−1 + ε2Per(C)Lip(φ)

which, together with (5), gives the claim.

Remark 2.2. We note that if ∂C is a C2 hyper-surface then it is of positive reach and so we
can apply directly Steiner formula to (∂C)ε as shown by Federer, obtaining in that case that µ =
Hd−1|∂C . Yet, for the sake of our proofs the inequality is enough, and is easier to prove.

Lemma 2.3. Let (C(t))t be a curve of convex sets, contained in a bounded convex set Ω ⊂ R
d,

that is L-Lipschitz with respect to the Hausdorff distance. Then for every φ ∈ H1(Rd) the map
t 7→

∫
Ct
φ is locally absolutely continuous and there exists a scalar field Vt : ∂C(t) → R such that

d

dt

∫

C(t)

φdx =

∫

∂C(t)

VtφdH
d−1 for a.e. t. (6)

Moreover |Vt| ≤ 2L.

Proof. Thanks to the assumption we know that C(t)∆C(t + h) ⊂ (∂C(t))−h ∪ (∂C(t + h))−h . In
particular |C(t)∆C(t+h)| ≤ κLh for some κ > 0 that depends on diam(Ω) only. Now we consider
a continuous function φ. Let us consider the linear functional Fφ(t) =

∫
C(t)

φdx. Since

|Fφ(t)− Fφ(s)| ≤
∫

C(t)∆C(s)

|φ| dx ≤ C‖φ‖∞|t− s|L,

we obtain that Fφ is Lipschitz and so in particular the derivative exists for a.e. time t; we call it
Lt(φ). Now the set of continuous functions in a bounded set is separable and so we can consider
a countable dense set and we have that for almost every t ∈ [0, T ] there exists Lt(φn) for every n.
Moreover it is obvious that Lt is linear and continuous and so we can extend it to the whole set of
continuous functions. In particular Lt can be represented by a finite measure µt. In order to have
an estimate we consider t, h > 0, and for every continuous function φ we have

lim sup
h→0

|Fφ(t+ h)− Fφ(t)|
h

≤ lim sup
h→0

1

h

∫

(∂C(t))Lh

|φ|dx ≤ 2L

∫

∂C

|φ| dHd−1

(for the last inequality we use the statement of Lemma 2.1)

In this way we obtain |µt| ≤ 2LHd−1, and so the thesis. The extension to H1 function can be done
in this way: we notice that the right hand side in (6) is a bounded linear functional in H1 thanks
to the trace inequality. Then the integral version of (6) is true by density. We observe that the
Lipschitz bound holds in the integral sense and so t 7→

∫
Ct
φ is really Lipschitz, which gives the

claim.
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Remark 2.4. For the sake of our proofs we only need an L∞ bound on Vt, and we gave 2L which
is easier to prove, but one actually expects the sharp bound to be L.

Lemma 2.5. Let C(t) be a family of convex sets such that inft |C(t)| = c > 0 and C(t) ⊂ Ω
where Ω is a fixed bounded domain. Then there exists a radius r such that for every t there exists
xt ∈ C(t) such that B(xt, r) ⊂ C(t).

Proof. It is sufficient to prove that the inradius of C(t) is bounded from below. We observe that
the diameter of the sets C(t) is bounded by some R > 0. Now we know by John’s Lemma (see for
instance [26]) that for every convex set C there exists an ellipsoid E such that up to translation
E ⊂ C ⊂ dE and in particular, denoting by λ1 ≤ . . . ≤ λd the lengths of the principal axis of E we
have that ωnn

nλ1 · · ·λd ≥ |C|, r ≥ λ1 and D ≥ 2λn where r and D are respectively the inradius
and the diameter of C. Using these inequalities together we find that

ωdd
dr(D/2)d−1 ≥ |C|.

But, from the lower bound |C(t)| ≥ c and D ≤ R, we find a bound from below on r.

Corollary 2.6. Let (C(t))t be a curve of bounded convex sets that is L-Lipschitz with respect to
the Hausdorff distance such that inft |C(t)| = c > 1. Then, for every t ∈ [0, T ] and every h > 0,
there exists a C1 map Ψ : C(t) → C(t+h) such that ||Ψ−id||L∞ ≤MLh and det(DΨ) ≥ 1−MLh,
for some constant M =M(c, d).

Proof. We are in the same hypothesis of Lemma 2.5, and so there exists r > 0 and xt ∈ C(t) such
that B(xt, r) ⊂ C(t). Now we claim that (1− Lh

r )C(t)+ Lh
r xt ⊆ C(t+h). If this was not the case,

then there would be a point x = (1− Lh
r )y+ Lh

r xt, with y ∈ C(t), such that x /∈ C(t+h). For every

z ∈ B(0, r) we would also have x+ Lh
r z = (1− Lh

r )y + Lh
r (xt + z) ∈ C(t). Yet, from x /∈ C(t+ h)

we deduce that there is an hyperplane separating x and C(t+ h), which means that if we choose
z in a suitable direction orthogonal to such an hyperplane, we get d(x + Lh

r z, C(t + h)) > Lh
r |z|.

Choosing |z| = r we get a contradiction to the Lipschitz behavior of C(t).

Now that we know (1− Lh
r )C(t) + Lh

r xt ⊆ C(t+ h) we can take Ψ(x) = (1− Lh
r )x+ Lh

r xt, which
satisfies all the required properties.

Sometimes in the paper we will need some functional inequalities with constants independent of
time. This proposition collects them all:

Proposition 2.7. Let Ω ⊂ R
d be a bounded domain and c > 1 be a real constant. Then there

exists a constant β such that for every convex set C ⊆ Ω such that |C| ≥ c we have

∫

∂C

u2 dHd−1 ≤ β

∫

C

(u2 + |∇u|2) dx ∀u ∈ H1(C)

∫

C

u2 dx ≤ β

∫

C

|∇u|2 dx ∀u ∈ H1(C) s.t. |{u = 0}| ≥ c− 1.

Proof. The first is the classical trace inequality while for the second one we refer to [10].
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2.2 Optimal transport and curves of measures

We recall here the main notion that we will use from the Monge-Kantorovich optimal transport
theory. We refer to [39] (Chapters 1, 5 and 7) and to [4, 44] for more details and complete proofs.

If two probabilities µ, ν ∈ P(Ω) are given on a domain Ω ⊂ R
d (that we take compact for simplicity),

we consider

min

{∫

Ω×Ω

1

2
|x− y|2 dγ : γ ∈ Π(µ, ν)

}
,

where Π(µ, ν) is the set of the so-called transport plans, i.e.

Π(µ, ν) = {γ ∈ P(Ω× Ω) : (px)♯γ = µ, (py)♯γ = ν, },

px and py being the two projections of Ω × Ω onto Ω. It is an extension of the Monge problem,
which is

inf

{∫
1

2
|x− T (x)|2dµ : T : Ω → Ω, T♯µ = ν

}

(in the sense that to any transport map T we can associate a transport plan γT by taking γT =
(id × T )♯µ, that the cost of T in the Monge problem is the same as that of γT in Kantorovich’s
one, and that, under some additional assumption on µ, the minimum over the transport plans is
realized by a plan of the form γT ).

For the above problem one can prove that the minimal value also equals the maximal value of a
dual problem

max

{∫
ϕdµ+

∫
ψ dν : ϕ(x) + ψ(y) ≤ 1

2
|x− y|2

}
, (7)

and that the optimal function ϕ (called Kantorovich potential) may be used to construct an opti-
mizer γ. Indeed, the optimal ϕ is locally lipschitz and semiconcave (in particular x 7→ 1

2 |x|2−ϕ(x)
is convex) on spt(µ) and differentiable µ−a.e. if µ≪ Ld; one can define a map T : Ω → Ω through
T(x) = x − ∇ϕ(x) and this map satisfies T♯µ = ν and γT := (id,T)♯µ (i.e. the image measure
of µ through the map x 7→ (x,T(x))) belongs to Π(µ, ν) and is optimal in the above problem.
Moreover, the map T is the gradient of the convex function u given by u(x) = 1

2 |x|2 −ϕ(x) and is
called the optimal transport map from µ to ν. The fact that the optimal transport map T exists,
is unique, and is the gradient of a convex function is known as Brenier Theorem (see [9]).

However, independently of the fact that the minimum is realized by a transport map or not, we can
use the minimal value of the above problem to define the distance W2(µ, ν) between two measures
µ and ν

W2(µ, ν) :=

√
min

{∫
|x− y|2 dγ : γ ∈ Π(µ, ν)

}
.

When Ω is compact, this quantity may be proven to be a distance over P(Ω) and to metrize the
weak-* convergence of probability measures. The space P(Ω) endowed with the distance W2 is
called Wasserstein space of order 2 and denoted in this paper by W2(Ω).

Another fact that we need to know concerning the Kantorovich potential φ and the Wasserstein
distance is the following: the function φ also plays the role of the derivative of 1

2W
2
2 (·, ν). Indeed,

we have,
d

dε

1

2
W 2

2 (µ+ εχ, ν)|ε=0 =

∫
ϕdχ

whenever µ + εχ ∈ P(Ω) and the Kantorovich potential ϕ in the transport from µ to ν is unique
up to additive constants. This will be useful whenever we need to write optimality conditions for
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minimization problems involving W 2
2 . It can be proven by using Monge-Kantorovich duality, and

details are, for instance, in Chapter 7 of [39].

With the help of the Wasserstein distance, we can also study the continuity and absolute continuity
of curves of measures. In particular, the following characterization has been proven in [4]: a curve
[0, T ] ∋ t 7→ ρt ∈ W2(Ω) is absolutely continuous if and only if there exists a family of vector fields

(vt)t with vt ∈ L2(ρt) and
∫ T

0
||vt||L2(ρt)dt < +∞ which solves the continuity equation

∂tρt +∇ · (ρtvt) = 0

in the sense of distribution on R
d. This means that t 7→ ρt is weakly continuous at t = 0 and t = T

and that, for every C1, bounded and compactly supported function on R
d × [0, T ], we have

∫ T

0

∫
∂tφ(t, x) dρt +

∫ T

0

∫
∇φ(t, x) · vt dρt = 0,

where the integrals in space are actually performed only on spt ρt ⊂ Ω, but the test functions are
not required to vanish on ∂Ω. Equivalently, we can use test functions only depending on x, and
write for a.e. t

d

dt

∫
φ(x) dρt =

∫
∇φ(x) · vt dρt.

Using general notions from analysis in metric spaces (see for instance [5]), we define the metric
derivative

|ρ′|(t) := lim
h→0

W2(ρt, ρt+h)

|h|
whenever the limit exists (and it exists for a.e. t if the curve is absolutely continuous). Then, the
characterization above can be strengthened in the following way: for every family (vt)t solving the
continuity equation, we have ||vt||L2(ρt) ≥ |ρ′|(t) for a.e. t, and moreover there exists a (unique)
“minimal” one, such that we have the equality ||vt||L2(ρt) = |ρ′|(t). This vector field is called
velocity field of the curve (ρt)t.

A useful tool (see [4] or [39]) in the study of evolution PDEs in the form of continuity equations

is the following. Let (ρ
(i)
t , v

(i)
t ) for i = 1, 2 be two solutions of the continuity equation ∂tρ

(i)
t +∇ ·

(v
(i)
t ρ

(i)
t ) = 0 on a compact domain Ω and suppose that ρ

(i)
t ≪ Ld for every t and that ̺(i) are

absolutely continuous curves in W2(Ω). Then we have,

d

dt

(
1

2
W 2

2 (ρ
(1)
t , ρ

(2)
t )

)
=

∫
∇ϕt · v(1)t ρ

(1)
t dx +

∫
∇ψt · v(2)t ρ

(2)
t dx (8)

for a.e. t, where (ϕt, ψt) is any pair of Kantorovich potentials in the transport between ρ
(1)
t and

ρ
(2)
t for the cost 1

2 |x− y|2.

Among the curves in the metric space W2(Ω), the geodesics in this space play an important role in
the theory of optimal transport. If µ, ν ∈ P(Ω) and µ≪ Ld, we define ρt := ((1−t)id+tT )♯µ, where
T is the optimal trnasport from µ to ν. This curve ρt happens to be a constant speed geodesic for
the distance W2 connecting µ to ν (in case neither µ nor ν are absolutely continuous, it is possible
to produce a geodesic by taking ρt := (πt)♯γ where πt(x, y) = (1− t)x+ ty and γ is optimal in the
Kantorovich problem, which gives the same result if γ = γT ). The velocity field corresponding to
this curves (in the absolutely continuous case) is given by vt = (T − id) ◦ ((1 − t)id+ tT )−1.
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2.3 General construction for evolution problems in W2(Ω)

We recall here the construction used to provide, via a time-discretization, a solution to many
evolution equations in the Wasserstein space W2(Ω). We refer to [23] and to Chapter 8 in [39]
for more technical details about this procedure, which has mainly been used for equations with
a variational structure (gradient flows), but can be presented in general as we do here below.
Equivalently, the reader can refer to [4], which presents a more abstract framework.

In many equations, we need to produce a curve (ρt)t which is a solution of a PDE (in the distribu-
tional sense on R

d) of the form ∂tρt +∇ · (ρtvt) = 0, where we require vt ∈ A(t, ρt), the set A(t, ρ)
being the set of vector fields which satisfy a certain compatibility condition with the density ρ.
For instance, for the linear heat equation we take A(t, ρ) = {−∇ρ/ρ} and for the linear continuity
equation with given advection field u we take A(t, ρ) = {ut}. In the crowd motion model studied
in [23] we have A(t, ρ) = {ut −∇p : p ≥ 0, p(1− ρ) = 0}. Note that, to provide a meaning to the
above continuity equation, we need at least to require that E = ρv is a finite measure over Ω×[0, T ]
(the variable E is called momentum), acting on functions φ via 〈E, φ〉 :=

∫
dt

∫
φ(t, x) ·vt dρt. This

condition is equivalent to
∫ T

0
||vt||L1(ρt)dt < +∞.

The method that we present consists in a time-discretization of the interval [0, T ]. For each τ > 0,
we build a sequence (ρτk)k. We also define a sequence of velocities vτk = (id − T)/τ , taking as T
the optimal transport from ρτk to ρτk−1. We need to choose the sequence (ρτk)k so that we have, at
least in some approximate sense, vτk ∈ A(kτ, ρτk).

Then, we build at least two interesting curves in the space of measures:

• first we can define some piecewise constant curves, i.e. ρτt := ρτk+1 for t ∈]kτ, (k + 1)τ ];
associated to this curve we also define the velocities vτt = vτk+1 for t ∈]kτ, (k + 1)τ ] and the

momentum variable E
τ
= ρτvτ ;

• then, we can also consider the densities ρ̂τt that interpolate the discrete values (ρτk)k along
geodesics:

ρ̂τt =
(
id− (kτ − t)vτk

)
♯
ρτk, for t ∈](k − 1)τ, kτ [; (9)

the velocities v̂τt are defined so that (ρ̂τ , v̂τ ) satisfy the continuity equation, taking

v̂τt = vτt ◦
(
id− (kτ − t)vτk

)−1
;

as before, we define: Êτ = ρ̂τ v̂τ .

After these definitions we look for a priori bounds on the curves and the velocities that we defined.
In many cases it is possible to obtain

∑

k

τ

(
W2(ρ

τ
k, ρ

τ
k−1)

τ

)2

≤ C, (10)

which is the discrete version of an H1 estimate. As for ρ̂τt , it is an absolutely continuous curve
in the Wasserstein space and its velocity on the time interval [(k − 1)τ, kτ ] is given by the ratio
W2(ρ

τ
k−1, ρ

τ
k)/τ . Hence, the L

2 norm of its velocity on [0, T ] is given by

∫ T

0

|(ρ̂τ )′|2(t)dt =
∑

k

W 2
2 (ρ

τ
k, ρ

τ
k−1)

τ
, (11)
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and, thanks to (10), it admits a uniform bound independent of τ . In our case, thanks to results
on the continuity equation and the Wasserstein metric, this metric derivative is also equal to
||v̂τt ||L2(ρ̂τ

t )
. This gives compactness of the curves ρ̂τ , as well as an Hölder estimate on their

variations (since H1 ⊂ C0,1/2). The characterization of the velocities vτ and v̂τ allows to deduce
bounds on these vector fields from the bounds on W2(ρ

τ
k−1, ρ

τ
k)/τ .

Considering all these facts, one obtains the following situation.

• The norm
∫
||vτt ||2L2(ρτ

t )
dt is τ -uniformly bounded.

• In particular, the bound is valid in L1 as well, which implies that E
τ
is bounded in the space

of measures over [0, T ]× Ω.

• The very same estimates are true for v̂τ and Êτ .

• The curves ρ̂τ are bounded in H1([0, T ],W2(Ω)) and hence compact in C0([0, T ],W2(Ω)).

• Up to a subsequence, one has ρ̂τ → ρ, as τ → 0, uniformly according to the W2 distance.

• From the estimate W2(ρ
τ
t , ρ̂

τ
t ) ≤ Cτ1/2 one gets that ρτ converges to the same limit ρ in the

same sense.

• If we denote by E a weak limit of Êτ , since (ρ̂τ , Êτ ) solves the continuity equation, by
linearity, passing to the weak limit, also (ρ,E) solves the same equation.

• It is possible to prove (see [23] Section 3.2, Step 1, or Chapter 8 in [39]) that the weak limits

of Êτ and E
τ
are the same.

• From the bounds in L2 one gets that also the measure E is absolutely continuous w.r.t. ρ
and has an L2 density, so that we have for a.e. time t a measure Et of the form ρtvt.

• It is only left to prove that one has vt ∈ A(t, ρt) for a.e. t. This is done by passing to the
limit in a suitable sense as τ → 0. It is crucial in this step to consider the limit of (ρτ , E

τ
)

instead of (ρ̂τ , Êτ ) and exploit the properties of ρτk and vτk .

Summarizing, it is possible to produce a solution of the PDE

∂tρt +∇ · (ρtvt) = 0, with vt ∈ A(t, ρt)

whenever we have a discrete sequence (ρτk) with velocities vτk obtained as above such that

• we have
∑

k τ
(

W2(ρ
τ
k,ρ

τ
k−1)

τ

)2

≤ C

• we have, at least in some approximate sense, vτk ∈ A(kτ, ρτk)

• we can prove at the limit vt ∈ A(t, ρt) for a.e. t.

In every concrete PDE example, these are the conditions that we need to check.

We notice that the above scheme, with the choice vτk = (id− T)/τ , is only able to produce vector
fields vt which have a gradient structure, since T(x) = x − ∇φ(x) is always a gradient. This
is enough for the scopes of this paper, but different choices are possible. Indeed, if one takes a
different transport map T with T♯(ρ

τ
k) = ρτk−1, the same scheme can be performed but we need to

check ∑

k

τ ||vτk ||2L2(ρτ
k
) ≤ C

instead of the estimate with the Wasserstein distances.
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3 Sweeping of a measure

We are interested in this section in the movement of a collection of particles “pushed” by the
moving domain C(t). We require that all particles are contained, at every instant of time, in the
closed domain C(t) (they can possibly be on the boundary). Then, the velocity v(t, x) of a particle
located at x ∈ C(t) at time t is required to satisfy v(t, x) ∈ −∂IC(t)(x), which implies in particular
v(t, x) = 0 whenever x is in the interior of C(t).

Mathematically, we look for a family of probability densities (ρt)t∈[0,T ], satisfying the continuity
equation 




∂tρt +∇ · (ρtvt) = 0,

vt(x) ∈ −∂IC(t)(x),

spt(ρt) ⊂ C(t).

(12)

We require a very mild regularity on the curve t 7→ ρt, i.e.
∫ T

0 ||vt||L1(ρt)dt < +∞, which is a
minimal requirement to give a meaning, as a measure, to the term inside the divergence.

We observe that this equation can be put in the framework of Section 2.3, considering as admissible
vector fields

A(t, ρ) = {v ∈ L1(C(t);Rd) : v(x) ∈ −∂IC(t)(x)}.
When we want to see this evolution as a Moreau process in the Wasserstein space, it corresponds
to the choice

K(t) = {ρ ∈ P(Ω) : spt ρ ⊂ C(t)}, (13)

where Ω denotes a large domain containing all the convex sets C(t) for t ∈ [0, T ].

We will prove the following result.

Theorem 3.1. Suppose that (C(t))t is a family of compact convex sets with dH(C(t), C(s)) ≤
L|t − s| and inf |C(t)| ≥ c > 0. Then, for every initial datum ρ0 ∈ P(C(0)) the solution to
Equation (12)

• exists;

• is unique (in the sense that ρt is uniquely defined, as a measure, for every t);

• satisfies |vt(x)| ≤ L for ρt-almost every x;

• is obtained as ρt := (Qt)♯ρ0, where Qt(x) denotes the value at time t of the solution q(t) of
the pointwise Moreau process (1) with q(0) = x;

• is obtained as a limit as τ → 0 of the curves ρ̂τ obtained in the following way: first define
recursively ρτk via {

ρτ0 = ρ0,

ρτk+1 = PK((k+1)τ)[ρ
τ
k],

where PK(t) denotes the projection, according to the Wasserstein distance W2, onto the set
K(t), then define the curve ρ̂τ on each interval [kτ, (k +1)τ ] to be the geodesic interpolation
between ρτk and ρτk+1.

Proof. First of all, we define the recursive sequence as in the last point of the claim, and we observe
that, whenever we take K = {ρ ∈ P(Ω) : spt ρ ⊂ C}, we have

PK [ρ] = (PC)♯ρ,

10



which means that projecting a probability ρ onto the set of probabilities supported on C is equiv-
alent to projecting onto C each particle of ρ, and taking the image measure. Moreover, PC is
obviously a transport map (it is indeed the optimal one) from ρ to PK [ρ], and hence we have

W2(ρ, PK [ρ]) ≤ ||PC − id||L2(ρ) ≤ dH(C, C̃),

whenever spt ρ ⊂ C̃. If we apply this estimate to the case ρ = ρτk, C̃ = C(kτ), C = C((k + 1)τ)
we get W2(ρ

τ
k+1, ρ

τ
k) ≤ Lτ .

We define a vector field vτk as

vτk+1(x) =
PC((k+1)τ)(x)− x

τ
∀x ∈ C(kτ),

and we observe that we have |vτk+1| ≤ L.

We can use (vτk )k and (ρτk)k to produce a piecewise constant pair (ρτt , v
τ
t ) defined as

(ρτt , v
τ
t ) = (ρτk+1, v

τ
k+1) if t ∈]kτ, (k + 1)τ ].

We also define another pair, by setting

Tt :=
(k + 1)τ − t

τ
id+

t− kτ

τ
PC((k+1)τ) for t ∈]kτ, (k + 1)τ ]

and taking
ρ̂τt = (Tt)♯ρ

τ
k; v̂

τ
t := vτk+1 ◦ (Tt)

−1.

We also set E
τ

t := ρτt v
τ and Êτ

t := ρ̂τt v̂
τ
t . The curve ρ̂τt is composed of geodesics in the space P(Ω)

(where Ω is a large compact set containing all the domains C(t)) endowed with the W2 distance,
and it is uniformly (w.r.t. τ) Lipschitz in this space. It solves the continuity equation together

with v̂τ , i.e. ∂tρ̂
τ
t + ∇ · Êτ

t = 0. The measures E
τ

t and Êτ
t are uniformly bounded in the space

of vector measures over [0, T ]× Ω (we have |Eτ

t | ≤ Lρτt and |Êτ
t | ≤ Lρ̂τt ). Hence, it is possible to

extract a subsequence (τj)j such that ρτt , ρ̂
τ
t , E

τ

t and Êτ
t have a limit as τ → 0.

As standard in this kind of proofs (see [23], Chapter 8 in [39] and Section 2.3 of this paper), we can

prove that the limit of ρτt and ρ̂τt are the same (we call it ρt), as those of E
τ

t and Êτ
t are the same

(we call it Et). The continuity equation obviously passes to the limit and we have ∂tρt+∇·Et = 0.
From |Eτ

t | ≤ Lρτt we infer |Et| ≤ Lρt and hence Et = ρtvt with |vt| ≤ L.

If we prove vt(x) ∈ −∂IC(t)(x) for a.e. t and ρt-a.e x we have found a solution of (12). In order
to prove this, we start from the characterization of vτt (x) in terms of the projection. For every
x ∈ C(kτ) and every y ∈ C((k + 1)τ) we have

(y − PC((k+1)τ)[x]) · vτk+1(x) ≥ 0. (14)

In particular, for every positive smooth function a : [0, T ]× Ω → R+ and every point y ∈ R
d we

have ∫ T

0

∫

Ω

a(t, x)(PC(Rτ (t))[y]− PC(Rτ (t))[x]) · dE
τ
(t, x) ≥ 0,

where Rτ is a rounding operator: Rτ (t) := (k+1)τ for every t ∈]kτ, (k+1)τ ]. Passing to the limit
as τ → 0, using E

τ

t → E := vtρt and the Lipschitz behaviour of C(t), so that PC(Rτ (t)) uniformly
converges to PC(t), we get

∫ T

0

∫

Ω

a(t, x)(PC(t)[y]− x) · v(t, x)dρt(x) ≥ 0.

11



From the arbitrariness of the function a we get that, for every y, the quantity (PC(t)[y]−x) ·v(t, x)
is positive for a.e. t and ρt−a.e. x. Using a dense and countable set of possible points y, we deduce
(z − x) · v(t, x) ≥ 0 for every z ∈ C(t), which is exactly the desired property.

What we showed so far proves the first, third and fifth points of the claim. We need now to discuss
the uniqueness of the solution and its connection with the pointwise Moreau process. In order to do
that, we recall the so-called superposition principle (see for example Theorem 12 in [3]), which gives

that every solution ρ of a continuity equation ∂tρt+∇· (vtρt) = 0 with
∫ T

0 ||vt||L1(ρt)dt < +∞ can
be written as ρt = (et)♯η where η is a probability measure onW 1,1([0, T ]; Ω), et :W

1,1([0, T ]) → Ω
is the evaluation map et(ω) = ω(t) and η can be taken concentrated on curves which solve the
ODE ω′(t) = vt(ω(t)) in the a.e. sense.

Here we use the fact that we know the behavior of the ODE ω′(t) = vt(ω(t)), when vt is such that
vt(x) ∈ −∂IC(t). For every initial point there is only one solution, which is the solution to the
Moreau sweeping process.

This provides at the same time uniqueness and ρt = (Qt)♯ρ0.

Note that in this model concentration of the measure, with creation of singular parts, can really
occur. This is due to the projection which tends to concentrate mass on the boundary. Yet, the
singular part of ρt is not limited to ∂C(t). Indeed, it is possible that some mass is created on
∂C(t) but, after the movement of C(t), the very same points of the support of this singular part
are no more on the boundary.

4 Maximal density constraint

In this section we want to consider the sweeping of a probability measure in the moving compact
convex set C(t) with the additional constraint that ρt is absolutely continuous with respect to the
Lebesgue measure and its density is less or equal to 1. So the set of probability measures we are
interested in is now

K1(t) = {ρ ∈ P(Ω) , spt ρ ⊂ C(t) : ρ ≤ 1}, (15)

where Ω is a large bounded domain containing all the C(t)′ s. In the spirit of the previous works
of the second and third author, given a measure ρ ∈ P(C) such that ρ ≤ 1, we can describe
heuristically a set of “admissible” velocities adm(ρ, C), saying that we require div(v) ≥ 0 on the
set {ρ = 1} in order to preserve the density constraint. Moreover, since we are moving the set
which contains the support of ρt one should also take care of the fact that, on the boundary, the
inward normal velocity of the particles must be at least that of the boundary: this sums up as
v · n ≤ v∂C · n where v∂C is the boundary velocity (we will denote V = v∂C · n). It is clear that
without any regularity assumption these conditions don’t make sense and so we have to weaken
our hypothesis by duality: we denote by Πρ the so-called set of admissible pressures:

Πρ(C) = {p ∈ H1(C) : p ≥ 0, p(1− ρ) = 0 a.e. on C}.

Then we consider the following formal computation, for p ∈ Πρ(C):
∫

C

v · ∇p dx = −
∫

C

div(v)p dx +

∫

∂C

p v · n dHd−1 ≤
∫

∂C

p V dHd−1;

this leads us to the following definition:

adm(ρ, C) =

{
v ∈ L2(C, ρ) :

∫

C

v · ∇p dx ≤
∫

∂C

p V dHd−1, ∀p ∈ Πρ(C)

}
.
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Now the evolution equation we want to solve becomes a continuity equation where the velocity has
to be admissible, and have minimal L2 norm:





∂tρt +∇ · (ρtvt) = 0,

vt = Padm(ρt,C(t))(0),

spt(ρt) ⊂ C(t), ρt ≤ 1.

(16)

In particular we see that this problem fits in the general construction done in Section 2.3 with the
choice A(t, ρ) = {Padm(ρ,C(t))(0)}. In order to understand better the equation, we want to present
a simple lemma that will be useful in the sequel, where we characterize the element of minimal
norm in adm(ρ, C):

Lemma 4.1. Let C be a bounded domain with Lipschitz boundary and ρ be a probability density
on C such that ρ ≤ 1. Then we have

Padm(ρ,C)(0) = argmin

{∫

C

|v|2 dx : v ∈ adm(ρ, C)

}
= −∇p,

where p ∈ Πρ(C) is the unique pressure that satisfies the following conditions
∫

C

−∇p · ∇q dx ≥
∫

∂C

q V dHd−1 ∀q ∈ Πρ(C); (17)

∫

C

−|∇p|2 dx =

∫

∂C

p V dHd−1. (18)

Proof. Let us consider

p∗ = argmin

{
1

2

∫

C

|∇q|2 dx+

∫

∂C

q V dHd−1 : q ∈ Πρ(C)

}
;

the minimum exists thanks to the fact that Proposition 2.7 guarantees coercivity of this quadratic
functional. As Πρ(C) is a cone, the optimality conditions imply that p∗ satisfies (17) and (18).
Now, we notice that for every v ∈ adm(ρ, C) we have

∫
C v · ∇p∗ ≤

∫
∂C p

∗ V dHd−1 = −
∫
C |∇p∗|2

and so we can conclude that

∫

C

|v|2 =

∫

C

|v +∇p∗|2 dx−
∫

C

|∇p∗|2 dx− 2

∫

C

v · ∇p∗ dx

≥
∫

C

|∇p∗|2 dx+

∫

C

|v +∇p∗|2 dx

≥
∫

C

|∇p∗|2 dx.

Eventually we notice that all these inequalities are equalities when ∇p∗ = −v, and we have equality
only in this case (thanks to the last inequality). In order to conclude it is sufficient to observe that
(17) guarantees that −∇p∗ ∈ adm(ρ, C) and so we are finished.

Thanks to this lemma we can say that if we solve (16) then we can find also a solution to




∂tρt = ∆pt,

pt ∈ Πρt
(C(t))

spt(ρt) ⊂ C(t), ρt ≤ 1.

(19)
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Also this problem fits in the general construction with A(t, ρ) = {−∇p : p ∈ Πρ(C(t))}. Notice
that A(t, ρ) ⊆ A(t, ρ), but indeed at the end of this section we will show that every solution of
(19) is in fact a solution of (16). The main result is however existence and uniqueness for (16).

Theorem 4.2. Suppose that (C(t))t is a family of compact convex sets with dH(C(t), C(s)) ≤
L|t − s|, and inft |C(t)| = c > 1. Then, for every initial datum ρ0 ∈ P(C(0)) with ρ0 ≤ 1 the
solution to Equation (16)

• exists;

• is unique

• is obtained as a limit as τ → 0 of the curves ρ̂τ obtained in the following way: first define
recursively ρτk via {

ρτ0 = ρ0,

ρτk+1 = PK1((k+1)τ)[ρ
τ
k],

then define the curve ρ̂τ on each interval [kτ, (k+1)τ ] to be the geodesic interpolation between
ρτk and ρτk+1.

Lemma 4.3 (Wasserstein estimate). Let C(t) be a curve of convex sets that is L-Lipschitz with
respect to the Hausdorff distance, with inft |C(t)| = c > 1. Let K1(t) be the corresponding set of
measures defined in (4) and µ be a measure in K1(t). Then

inf {W2(µ, ρ) : ρ ∈ K1(t+ h)} ≤MLh

for some constant M =M(c, d).

Proof. First we use Corollary 2.6 which provides a transport map T : C(t) → C(t+h) such that the
density of T♯µ is bounded by (1−CLh)−1 and W2(µ, T♯µ) ≤ ||T − id||L2(µ) ≤ ||T − id||L∞ ≤MLh.
Then we use Theorem B.1 in [24] which associates to T♯µ a new measure ρ ∈ P(C(t + h)) with
ρ ≤ 1 and W2(ρ, T♯µ) ≤Mh.

Remark 4.4. This last lemma can be seen as a “lifting property” from R
d to W2(R

d): in fact we
are saying that there exists a constant C such that if dH(C(s), C(t)) ≤ r then dH(K1(s),K1(t)) ≤
Mr.

4.1 Main construction and existence

The main proposition here is the following, which provides us with a discrete version of the char-
acterization of the velocity as the negative gradient of an admissible pressure.

Proposition 4.5. Let Ω be a bounded domain of Rd, C ⊂ Ω a compact set, with |C| ≥ 1. For
every absolutely continuous ρ ∈ P(Ω) there exists a unique minimizer ρC = PK1 [ρ] to the problem

min
η∈K1

W2(ρ, η),

where K1 = {η ∈ P(Ω) , spt ρ ⊂ C , η ≤ 1}. Moreover the unique optimal transport map T
between ρC and ρ satisfies T (x) = x+∇pC(x) where pC ∈ ΠρC

(C).

Proof. The existence is obvious by compactness, while the uniqueness follows from the fact that
η 7→ W 2

2 (ρ, η) is strictly convex whenever ρ is absolutely continuous (see [13] for a proof of this
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fact, and of the uniqueness of the projection under more general assumptions). Now let us consider
the maximizer ρC , and an arbitrary competitor η ∈ K1. By considering perturbations ηε =
ρC + ε(η − ρC), we can write optimality conditions using the first variation of the functional
η 7→ 1

2W
2
2 (ρ, η), which involves the Kantorovich potentials (see Section 2.3). In this way we can

obtain that there exists a Kantorovich potential ϕ from ρC to ρ such that, for every η ∈ K1, we
have ∫

ϕdρC ≤
∫
ϕdη ∀η ∈ K1 (20)

(the reader may look at Lemma 3.1 and 3.3 in [23] for a rigorous treatment of this optimality
condition).

From this, it is easy to see that there exists a threshold l such that




ρC(x) = 1 if ϕ(x) < l

0 ≤ ρC ≤ 1 if ϕ(x) = l

ρC = 0 if ϕ(x) > l.

Now we can consider pC = (l−ϕ)+ and observe ∇ϕ = −∇pC ρC -a.e. Then, the optimal transport
between ρC and ρ is T(x) = x − ∇ϕ(x) = x +∇pC(x). Moreover, we observe that by definition
we have pC ≥ 0 and pC(1− ρC) = 0.

In order to construct a solution to our PDE, we make use of the general construction described in
2.3. Hence, we want to construct a discrete (in time) sequence, and we fix a time step τ > 0. We
will build a sequence of measures ρτk defined recursively as

{
ρτ0 = ρ0

ρτk+1 = PK1((k+1)τ)[ρ
τ
k]

Then we will consider two curves in the measure-momentum space as done in Section 2.3: the
piecewise constant (ρτt , E

τ

t ) and the geodesic one (ρ̂t, Ê
τ
t ). Thanks to Proposition 4.5 we have the

peculiar structure for vτk = −∇pτk, where pτk(1 − ρτk) = 0 in C(kτ). The main estimate is the fact
that thanks to Lemma 4.3 we have W2(ρ

τ
k, ρ

τ
k−1) ≤ Cτ and in particular we have the discrete H1

estimate
T/τ∑

k=1

τ

(
W2(ρ

τ
k, ρ

τ
k−1)

τ

)2

≤ TC.

So, thanks to the general strategy that we evoked, we have convergence of ρ̂τ and ρτ towards
the same continuous curve ρt (which in this case is also Lipschiz). We want to prove supp(ρt) ⊂
C(t) and this can be done using the information that supp(ρτk) ⊂ C(kτ). Indeed, we have that
supp(ρτt ) ⊂ (C(t))Lτ and so in the limit we get the thesis. Also the condition ρτt ≤ 1 easily passes
to the limit.

Lemma 4.6. We have Et = vtρt and moreover there exists p ∈ L∞([0, T ];H1(Rn)) such that
vt = −∇pt on C(t) and pt(1− ρt) = 0 on C(t), that is vt ∈ A(t, ρt).

Proof. We will proceed in a similar fashion as done in [23] and explained in Section 2.3. By the
lower semicontinuity of

∫∫
|E|2/ρ we know that Et = vtρt for some velocity field. First of all let

us extend the pressure functions pτk to a larger domain Ω containing all the sets C(t). Thanks to
Proposition 2.7 and the fact that |{pτk = 0}∩C(kτ)| ≥ c− 1 > 0 we can construct these extensions
in such a way that

‖pτk‖H1(Ω) ≤ C‖pτk‖H1(C(kτ)) ≤ C‖∇pτk‖L2(C(kτ)) = C
W2(ρ

τ
k−1, ρ

τ
k)

τ
≤ CL. (21)
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Let us consider the piecewise constant function pτt = pτk for t ∈](k − 1)τ, kτ ]. By equation (21) we
have that pτt is bounded in L∞([0, T ], H1(Ω)), and so there exists a subsequence weakly converging
to some p.

It is easy to check that E
τ

t = −1C(kτ)∇pτt ⇀ −1C(t)∇pt weakly as measures (because of the
weak convergence of ∇pτ and of the strong convergence of 1C((k+1)τ))) and in particular we have
Et = −1C(t)∇pt.

It remains to prove that pt(1 − ρt) = 0 for a.e. x ∈ C(t). This is done as in [24] paying attention
to the fact that we have moving domains: we know that pτt (1− ρτt ) = 0 in C(Rτ (t)) (here Rτ (t) =
τ⌊t/τ⌋+ τ). So we can write

1

|a− b|

∫ b

a

∫

(C(t))Lτ

pτt (1− ρτt ) dx dt =
1

|a− b|

∫ b

a

∫

(C(t))Lτ\C(Rτ (t))

pτt dx dt.

Now we have |(C(t))Lτ \ C(Rτ (t))| ≤ Cτ and so in particular, thanks to the uniform estimate on
‖pτt ‖L2(Ω), we have

1

|a− b|

∫ b

a

∫

(C(t))Lτ

pτt (1 − ρτt ) dx dt ≤ C
√
τ .

Now we can use the estimate |
∫
p dρ−

∫
p dη| ≤ ‖∇p‖2W2(ρ, η) that holds whenever ρ, η ≤ 1 and

p ∈ H1 (see [23] or Section 5.5.2 in [39], or even [21]), to obtain that
∫

(C(t))Lτ

pτt ρ
τ
t dx−

∫

(C(a))Lτ

pτt ρ
τ
a dx ≤ C‖∇pt‖2(|t− a|+ τ).

Summing up we obtain:

1

|a− b|

∫ b

a

∫

(C(a))Lτ

pτt (1− ρτa) dx dt ≤ C(
√
τ + 2|a− b|+ τ).

Now we can let τ → 0 and use the fact that ρτa → ρa weakly in L∞(Rd), pτ converges weakly to

p in L2([0, T ];H1(Rd)), and hence
∫ b

a
pτ →

∫ b

a
p strongly in L2(Rd). Then, letting also b → a for

weak Lebesgue point of pt, we obtain
∫
C(a) pa(1 − ρa) dx = 0 and since pa(1 − ρa) ≥ 0, we get

pt ∈ Πρt
(C(t)).

Now we proved that there exists a solution (ρt, pt) of (19). In order to check that this provides
also a solution to (16) we have to prove that for a.e. t we have −∇pt = Padm(ρt,C(t))(0). As we
already know that pt ∈ Πρt

(C(t)), thanks to Lemma 4.1 it is sufficient to prove that (17) and (18)
are satisfied. We will do this in the form of a general implication: (19) implies (16)

Proposition 4.7. Let (ρt, pt) be a solution of (19) with
∫∫

|∇pt|2 dxdt < ∞. Then (ρt,−∇pt) is
a solution of (16).

Proof. Fix a time t and then fix any admissible pressure q ∈ Πρt
(C(t)); we can extend q to the

whole Ω and, from ρs ≤ 1C(s), we have

∫

Ω

q dρs ≤
∫

C(s)

q dx ∀s ∈ (t− δ, t+ δ).

Since we have equality when s = t we obtain that the derivatives at time t of the left and right
hand sides above are equal. This gives

−
∫

C(t)

∇pt · ∇q dρt =
∫

∂C(t)

q · at dHd−1 ∀q ∈ Πρt
(C(t)), (22)
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where in the left-hand side we used the continuity equation ∂tρt = ∇ · (∇ptρt) and in the right
hand side we used Lemma 2.3. Once we have this equality we are done since this implies both (17)
and (18) and so −∇pt = Padm(ρt,Ct)(0) as we wanted to show.

Now there is a subtle point here since we have that for every q ∈ H1(Rd) these derivatives exist for
almost every time, but this negligible set can depend on q; in particular it can happen that for every
time t, for whatever q ∈ Πρt

(C(t)) the derivative at time t doesn’t exists. However we can show a
set of times where the derivative for the left hand side exists for every q ∈ H1(Ω): this can be taken
as the set of times where we have a L2-weak Lebesgue point of the momentum, i.e. for t such that we
have 1

s−t

∫ t

s
∇prρrdr ⇀ ∇ptρt weakly in L2 (it is sufficient to have convergence for a dense set and

then use the density and the bounds on the norms). For the right hand side a similar reasoning can

be applied taking in consideration points t where 1
s−t

∫ t

s arH
n−1|∂C(r)dr ⇀ atH

n−1|∂C(t) weakly

in duality with H1(Ω) (we recall that the trace inequality is uniform).

Now we can summarize the proof of the main theorem of the section:

Proof. (of Theorem 4.2) As for existence, it is sufficient to observe that the construction given by
the catching up algorithm provided a solution for (19) thanks to Lemma 4.6. Moreover Proposition
4.7 implies that this solution is also solution of (16). As for the uniqueness the very same reasoning

present in [14] can be applied: let us consider two solutions (ρ
(1)
t ,−∇p(1)t ), (ρ

(2)
t ,−∇p(2)t ) of (16)

with a minimal integrability property that is
∫
‖∇p(i)t ‖L2 dt < ∞. Then it is easy to see that ρ

(i)
t

are absolutely continuous curves in the Wasserstein space and so we can differentiate their distance
using (8):

d

dt

(
1

2
W 2

2 (ρ
(1)
t , ρ

(2)
t )

)
= −

∫

C(t)

∇ϕt · ∇p(1)t dx −
∫

C(t)

∇ψt · ∇p(2)t dx. (23)

Now it is sufficient to use a technical lemma (for example Lemma 2.1 in [14] or Lemma 4.3.13 in
[30], notice that we do not care about the fact that the sets C(t) are moving) that says that both
the terms in the right hand side are negative. We obtain that the equation leads to a contraction
in the Wasserstein space (as it happens also in the Hilbertian sweeping process of Moreau).

5 Diffusion

In this section we consider the motion of a collection of particles “pushed” by the moving domain
C(t), but also subject to Brownian diffusion. Compare to Section 3, where we considered the law
of a process satisfying dXt = vt(Xt)dt with X0 ∼ ρ0 and vt(x) ∈ −∂IC(t)(x): here we consider,
roughly speaking, the law of a process given by

dXt + ∂IC(t)(Xt) ∋ dBt

where Bt is a d-dimensional Brownian motion. In other words, we require dXt = vt(Xt)dt + dBt

where again vt ∈ −∂IC(t)(x). We refer to [7] for a precise description of this reflected Brownian
motion in a moving domain and we do not enter into extra details here. We observe that, due to
the diffusion, the density ρt will never develop singular parts and hence we will expect vt = 0 for
a.e. particles. The motion will hence be driven by the Brownian diffusion only, and the attachment
to the moving convex set only depends on the boundary conditions.

Without entering into details about the translation of this individual motion into a PDE, which is
however standard in stochastic analysis, we directly write the PDE that we want to solve.
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Precisely, we look for a family of probability densities (ρt)t∈[0,T ], satisfying the continuity equation





∂tρt −∆ρt = 0 in C(t),

−∇ρt · n = ρtVt on ∂C(t),

spt(ρt) ⊂ C(t),

(24)

where Vt is the normal velocity of the boundary. As usual, the above equation is to be intended
in a distributional sense on R

d, and the Neumann condition which accompanies it is just a formal
expression of the boundary conditions which express the fact that the equation is satisfied by a
density which is concentrated on a moving domain C(t). In case of smooth solutions, Lemma 2.3
allows to see that this fact exactly gives the boundary condition −∇ρt · n = ρtVt (where Vt is the
normal velocity of the boundary).

As we underlined in the introduction, this equation corresponds to a forced version of a Moreau
process in P(Ω) with a moving set K(t) := {ρ ∈ P(Ω) : spt ρ ⊂ C(t)}.

We will prove the following result, where we denote by E the logarithmic entropy defined via

E(ρ) :=

{∫
ρ(x) ln(ρ(x))dx if ρ≪ L

d,

+∞ otherwise.

Theorem 5.1. Suppose that (C(t))t is a family of compact convex sets with dH(C(t), C(s)) ≤
L|t−s|. Then, for every initial datum ρ0 ∈ P(C(0)) with E(ρ0) < +∞, the solution to Equation (24)

• exists;

• is unique;

• is obtained as a limit as τ → 0 of the curves ρ̂τ obtained in the following way: first define
recursively ρτk via

{
ρτ0 = ρ0,

ρτk+1 = argmin
{
E(ρ) +

W 2
2 (ρ,ρτ

k)
τ : ρ ∈ K((k + 1)τ)

}
,

then define the curve ρ̂τ on each interval [kτ, (k+1)τ ] to be the geodesic interpolation between
ρτk and ρτk+1.

Proof. The existence and the approximation will be done as detailed in Section 2.3. The optimality
conditions in the problem defining ρτk+1 read as ρτk+1 > 0 a.e. (see Chapter 8 in [39] for details,
for instance) and

ln(ρτk+1) +
ϕ

τ
= const.

Passing to the gradients, this gives

vτk =
∇ϕ
τ

= −
∇ρτk+1

ρτk+1

on C((k + 1)τ).

This may be written, in terms of the momentum variable, as Eτ
k = −∇ρτk1C(kτ). It is a linear

condition, and it is clear that it passes to the limit as τ → 0, since the first term converges weakly
while the second converges strongly. Hence, any limit of the discrete scheme will be a solution of

∂tρt −∇ · (∇ρt1C(t)) = 0,
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which exactly means (in a weak sense) ∂tρt = ∆ρt in C(t), with the boundary conditions coming
from the fact that, by construction, spt(ρt) ⊂ C(t) and from the derivative computed in Lemma
2.3.

Hence, we only need to estimate W 2
2 (ρ

τ
k+1, ρ

τ
k) to be able to show compactness and pass to the

limit.

For this, we use Corollary 2.6 to produce a measure µ = T♯ρ
τ
k such that sptµ ⊂ C((k + 1)τ) and

E(µ) ≤ E(ρτk) + Ch and W2(µ, ρ
τ
k) ≤ Cτ . Indeed, every time that we have µ = T♯ρ for a C1

injective map T , we have (identifying absolutely continuous measures with their densities)

µ(T (x)) =
ρ(x)

det(DT (x))

hence

E(µ) =

∫
ln(µ(y))dµ(y) =

∫
ln(µ(T (x))dρ(x)

=

∫
ρ(x)[ln(ρ(x)) − ln(det(DT (x)))]dx ≤ E(ρ) + ||(ln(det(DT )))−||L∞ .

In the present case, from det(DT ) ≥ 1− CLh, we have E(µ) ≤ E(ρτk) + Ch.

Then, the optimality of ρτk+1 implies

E(ρτk+1) +
W 2

2 (ρ
τ
k+1, ρ

τ
k)

τ
≤ E(µ) +

W 2
2 (µ, ρ

τ
k)

τ
≤ E(ρτk) + Cτ.

This gives
W 2

2 (ρ
τ
k+1, ρ

τ
k)

τ
≤ E(ρτk)− E(ρτk+1) + Cτ,

which gives a converging series and provides the desired compactness, and hence existence.

We are only left with the uniqueness of the solution. Suppose that ρ(1) and ρ(2) are two solutions

starting from the same initial datum ρ0. We differentiate the quantity 1
2W

2
2 (ρ

(1)
t , ρ

(2)
t ) and obtain

d

dt

(
1

2
W 2

2 (ρ
(1)
t , ρ

(2)
t )

)
= −

∫

C(t)

(
∇ρ(1)t · ∇ϕt +∇ρ(2)t · ∇ψt

)
dx. (25)

The peculiar point, which is well-known and provides contractivity in W2(Ω) for the Heat equation,
is the fact that the right-hand side is always positive. This can be obtained in several ways, either
by using geodesic convexity of the entropy, or using the more general inequality proven in Section
3 of [13]. It is interesting to notice that this inequality holds on arbitrary convex domains, and the
fact that our convex domains C(t) are moving does not affect the proof.

We can observe that the assumption E(ρ0) < +∞ in the above Theorem can be dropped, at least as
far as existence and uniqueness are concerned. This is a standard procedure in gradient evolutions,
when there is contractivity (see [4]).

Theorem 5.2. Suppose that (C(t))t is a family of compact convex sets with dH(C(t), C(s)) ≤
L|t−s|. Then, for every initial datum ρ0 ∈ P(C(0)) there exists a unique solution to Equation (24).

Proof. In the proof of Theorem 5.1 we saw that the W2 distance between two arbitrary solutions of
(24) is decreasing in time. This provides uniqueness independently of the initial datum. Moreover,
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we can take a sequence (ρn0 )n of initial data supported on C(0), such that W2(ρ
n, ρ0) → 0, and

define the corresponding solutions ρnt . As we have W2(ρ
n
t , ρ

m
t ) ≤ W2(ρ

n
0 , ρ

m
0 ), for each time t

the sequence (ρnt )n is a Cauchy sequence in W2(Ω). Since the Wasserstein space on the compact
domain Ω is compact itself, and hence complete, these sequences converge. We have hence a limit
curve ρt with initial datum ρ0. This curve solves (24) because the PDE is linear and easily passes
to the limit. This provides the required existence result.

Unfortunately, it is not easy in Theorem 5.2 to add the convergence of the JKO scheme, as we did
in Theorem 5.1. This would require a double limit procedure, some sort of discrete contractivity,
or the choice of a suitable approximation ρn0 . Yet, the fact that the domain is moving makes it
difficult to prove any estimate of this kind, even if we believe that they are true. In particular, they
are quite easy once one proves a uniform bound on E(ρτk) on positive times, i.e. for kτ > t0 > 0.

6 Numerical illustrations

We propose here to illustrate the previous considerations by numerical approximations of the
measure sweeping process.

6.1 Numerical scheme for the sweeping process with diffusion

In the case with diffusion, we consider a smooth motion t 7−→ C(t) ⊂ R
2, and an initial measure

ρ0 supported in C(0). We want to solve





∂tρt − κ∆ρt = 0 in C(t)

κ
∂ρt
∂n

+ ρVt = 0 on ∂C(t)
(26)

The time discretization strategy is based on a splitting between catching-up and diffusion. More
precisely, for a given time step τ > 0, sucessive approximations ρ1, ρ2, . . . ρk (we omit the depen-
dence on τ , as in this numerical section we will take it as fixed; also, for simplicity we will write in
this section Ck for C(kτ) and Kk for K(kτ)) are built according to the following scheme.

1. The current density is projected (in the Wasserstein sense) on the set Kk+1 of measures
supported in Ck+1:

ρ̃k+1 = PKk+1
ρk.

2. A step of the discretized heat equation with homogeneous Neuman B.C.’s, and with initial
condition the projected measure, is then solved:





ρk+1 − ρ̃k+1

τ
− κ∆ρk+1 = 0 in Ck+1,

κ
∂ρk+1

∂n
= 0 on ∂Ck+1.

(27)

As for space discretization, the overall domain (a square in our case) is covered by a fixed cartesian
mesh, and a finite volume approach is considered: each density field is represented by a piecewise
constant function according to the underlying grid. Step 1 (catching-up) of the previous scheme
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∂C(kτ)

∂C((k + 1)τ)

Figure 1: Catching-up at the discrete level

is approximated as follows. Let xi be the center of a cell containing some mass at time kτ , while
lying outside of Ck+1. We denote by zi the projection of xi on Ck+1. The mass in cell i is then
translated by

zi − xi + h
zi − xi
|zi − xi|

,

where h is the mesh step size. The obtained square of mass is then distributed over the four cells
that it intersects (see Fig. 1). Thanks to the extra term above (the one that contains the mesh
step size h), in only affects cells that are contained in Ck+1.

Step 2 is solved by a standard finite volume discretization of the heat equation based on the
underlying cartesian grid. To account for the impervious condition on the boundary of the domain,
we simply consider that the diffusion vanishes between cells that share an edge that lies outside of
Ck+1.

6.2 Numerical scheme for the sweeping process with congestion

We propose again a splitting strategy. The first step consists in catching up the mass that is
outside of the domain, like in the diffusive case (see previous section). The obtained density is very
likely to violate the constraint, and the second step is meant to push it down to the constrained
space (i.e. with ρ ≤ 1). This second step consists in projecting a density to the set K1 of densities
supported in a given closed set C, and that are bounded by 1. Since the projection is meant in
the Wasserstein sense, it does not fit into standard numerical approaches. In [25], for a similar
problem (macroscopic crowd motion model) we proposed a stochastic algorithm to approximate this
projection. In the present context, the approach is based on the following stochastic interpretation
of the Poisson problem on a domain S (see Fig. 2, top)

−∆p = ν,

with homonegenous Neuman boundary conditions on a part of the boundary γn, and homogeneous
Dirichlet boundary conditions on γd, where ν is a probability measure (see Fig. 2). Now pick a
random point X0 in S according to the law defined by ν, run a Brownian motion Xt starting from
X0, with reflection on γn. Define t⋆ as the smallest time (that is almost surely finite) at which
Xt hits the Dirichlet part of the boundary. Consider then Xt⋆ as a random point with values in
γd: its law is the harmonic measure associated to ν, and its associated measure on γd is −∂p/∂n
(see e.g. [15]). Our numerical strategy is a straight transposition of this property at the discrete
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p = 0

S

γd

γn∂p
∂n = 0

Mass in excess

Saturated zone

Intermediate (0 < ρ < 1)

Empty zone

Figure 2: Stochastic algorithm
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t = 0

t = 24

t = 48

Figure 3: Moving disc

level. After the discrete catching-up that we previously described, we obtain a discrete measure
ρ̃ supported in the current set Ck+1. The cells contained in Ck+1 are of 4 different types: empty
(ρ̃ = 0), intermediate (ρ̃ ∈ (0, 1)), saturated (ρ̃ = 1), and over-saturated (ρ̃ > 1). If the latter cell
sub-population is empty, the density verifies the contraints, and no projection is needed. If not, for
each of those overweighted cells, we run the following procedure: denoting by m the local mass in
excess (that is ρ̃− 1 multiplied by the volume of the cell), we start a random walk from the given
cell, subject to jump on cells that are contained in Ck+1 only. As far as saturated or oversaturated
cells are visited, the walk goes on. When an intermediate (or empty) cell is met, then

1. If the space available is larger that (or equal to) m, the excess mass is put here, and the
random walk stops;

2. If the space available is smaller that m, the density is set to 1, the excess mass is reduced by
the corresponding amount, and the random walk continues, with a reduced amount of mass
to get rid of.

Actually, this stochastic approach is replaced here by a deterministic version of the random walk,
based on the Router Rotor Model (see e.g. [20]). It can be seen as a cellular automata algorithm:
an arrow, pointing to one of the four cardinal directions, is associated to each cell. The arrows are
initially distributed randomly. In the procedure decribed above, when a walk (that is no longer
random) is in a cell, it goes to the cell to which the current arrow is pointing. The arrow is then
rotated by 90◦.

The test case we propose is presented in Fig. 4: a rigid disc moves on a square at constant speed,
starting from the top-left corner, heading to the bottom-right corner, then it goes up along the
righd hand-side. We simulate the corresponding sweeping process in three situations: diffusive
case with κ = 0.1 (Fig. 4), diffusive case with κ = 1.e− 4 (Fig. 5), and congested case (Fig. 6).
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Figure 4: Catching up with diffusion, κ = 0.1, at times 1, 2, 3, 4, 5, 24, 26, 28, 30, 32.

Figure 5: Catching up with diffusion, κ = 1.e− 4, at times 1, 4, 6, 9, 12, 24, 26, 30, 34, 38.

Figure 6: Catching up with congestion, at times 1, 2, 3, 4, 5, 24, 26, 29, 32, 35.
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7 Extensions, perspectives, questions

7.1 Extensions

As in the Hilbertian case, some of the assumptions we made in order to prove our results could be
relaxed. In particular, the convexity assumption could be replaced by a uniform prox-regularity
assumption on the moving sets C(t). If some of the arguments we used could be easily adapted, we
point out that we repeatedly used convexity of the domain when establishing the main inequalities
that gave contractivity, and hence uniqueness. For instance, the fact that the right-hand sides of
(23) and (25) are negative used convexity of C(t). Concerning the estimates providing existence, we
used the convexity in the proof of Corollary 2.6, but this was just a technical issue: any reasonable
evolution of sets smooth enough allows to get the existence of a map T with those properties.

As for regularity in time, it is easy to generalize to an absolutely continuous curve of sets; it is
more difficult if we try to do it for a continuous BV curve of sets.

Finally, we studied separately congestion and diffusion, but they can be treated together (see [29]
for an evolution process merging diffusion and congestion, in the case of a fixed domain). Other
external forcing terms could be accounted for, like the desired velocity field U of a crowd represented
by the density ρt, subject to evolve in a moving environment (e.g. moving vehicles crossing a
crowded area).

7.2 Asymptotic limits

Some links can be established between the different problems that we presented, in terms of
asymptotic limits, but they are only informal observations for the moment.

Singular limit for the diffusive case. In the numerical section, we displayed an approximate
solution of Equation (24) in a simple moving domain together with the solution when we drastically
reduce the diffusion coefficient κ: this obviously provides a good approximation of the solution of
the problem without diffusion, i.e. a solution to Equation (12). The relative weights of diffusion and
sweeping can be quantified by a dimensionless number, commonly used in physics to characterize
advection-diffusion processes, namely the Péclet number. In the present context, a natural way to
define this number is

Pe =
Uℓ

κ
,

where U is the order of magnitude of the velocity of the boundary (e.g. the maximal of the metric
derivative for the Hausdorff distance over some time interval), ℓ is a typical lenght (e.g. the
maximum of the diameters of the convex sets), and κ the diffusion coefficient. When Pe goes to 0,
the diffusion dominates, and one can expect that the mass will tend to distribute uniformly over
the moving set, at each instant. When Pe goes to infinity, a singular limit appears: the problem
is expected to tend to the one without diffusion (i.e. pure sweeping, as addressed in Section 3).
Yet, a rigorous proof of these convergence results (especially in the singular limit Pe → ∞) goes
beyond the scope of this paper.

Non-linear diffusion. Another interesting limit result, that we present here as a conjecture, can
be formulated as follows. We could possibly replace the linear diffusion equation

∂tρt −∆ρt = 0
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by a non-linear diffusion equation, i.e. we consider the so-called porous medium equation (see [34])

∂tρt −∆(ρmt ) = 0.

Following [1], the solution of the congested problem (i.e. Equation (16)) can be expected to tend
to the solution of the congested problem (i.e. Equation (16)) when m → ∞ (in [1] there is also a
quantitative estimate of this convergence). This is due to the fact that the free energy, replacing
the entropy E, associated to the diffusion term ∆(ρmt ) is given by 1

m−1ρ
m. When m → ∞ this

energy tends to 0 if ρ ≤ 1 and to +∞ otherwise, which is exactly the constraint which is used in
Section 4.

7.3 Sweeping process in the Wasserstein space

The problems that we addressed in this paper can be seen as particular instances of a wider class
of problems, namely sweeping processes in the Wasserstein space. An archetypal problem of this
kind can be formulated as follows.

Given a family (K(t))t of sets in W2(R
d), an initial measure ρ0 ∈ K0, find t 7→ ρt ∈ K(t) together

with a family of velocity fields (vt)t, such that ρt is transported by vt, i.e.

∂tρt +∇ · (ρtvt) = 0

over Rd, with vt ∈ −∂W IK(t)(ρt) for a.e. t, where the subdifferential is defined in the Wasserstein
sense (see [4]). In the present situation, the W-subdifferential of an indicator function can be
written

∂W IK(ρ) = {v ∈ L2(ρ) ,

∫
(T(x) − x) · v(x) dρ(x) ≤ o(‖T− id‖L2(ρ)) , T ∈ A

K
ρ },

where AK
ρ is the set of admissible maps, i.e. of all those maps verifying T♯ρ ∈ K. All cases treated

in this paper fit formally in this framework with K(t) defined, respectively, by (13) for the pure
measure sweeping, and by (15) for the maximal density constraint. In the case with diffusion,
K(t) is again defined by (13), but the evolution inclusion is supplemented by a forcing term that
accounts for diffusion. The latter contribution can be integrated into the subdifferential: if E(ρ) is
the logarithmic entropy: E(ρ) =

∫
ρ ln ρ, the velocity is subject to

vt ∈ −∂W
(
IK(t) + E

)
(ρt).

One could also consider sweeping problems that are no longer related to a moving set in the
underlying Euclidean case. For instance, setting

K(t) =
{
ρ ∈ P(Rd) , ρ ≤ 1/t

}
,

is a natural way to formalize in the Wasserstein framework the Hele-Shaw problem (see e.g. [18]
and [1] for connections with crowd motion). One could replace the uniform threshold 1/t with a
more general f(t) (which involves no extra difficulties), or even f(t, x), which is more delicate.

As for the abstract problem described above, it is tempting to carry out the catching-up approach,
and to define approximate measures by transposing the scheme (2) in the Wasserstein setting:

{
ρτ0 = ρ0,

ρτk+1 = PK((k+1)τ)[ρ
τ
k],

. (28)

In a second step , define vτk+1 as

vτk+1 =
id− Tk+1

τ
,
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where Tk+1 transports ρτk+1 to ρτk in an optimal way. Then, use compactness to build limits ρt
and vt that verify the transport equation. And finally, show that vt lies in −∂W IK(t) for a.e. t.
To be carried out, such an approach requires two main ingredients. Firstly, the distance to K
has to be attained, in order to build the next density at each time of the catching-up algorithm.
This can be ensured be requiring standard closedness assumptions on K. Secondly, in order
to adapt the proofs we proposed, a Wasserstein counterpart of (14), that is some kind of dual
characterization of the outward normal cone, has to be established in the present context. It
requires in particular the existence of an optimal map (and not plan) from ρk+1 to ρk. This
can be ensured by requiring K to contain only measures that are absolutely continuous. Beyond
these considerations on technical assumptions that would have to be prescribed to obtain a general
abstract result, we also disregarded this fully abstract approach in the present paper because in
general there is no obvious way to apply it to particular situations, like the ones we studied.
Indeed, as already pointed out in [25], the W-subdifferential is commonly very difficult to identify
in a precise way, and the overall approach does not make much sense if one is unable in general to
describe this subdifferential, i.e. to translate vt ∈ −∂W IKt

(ρt) in terms of characterization of the
actual velocity, and finally obtain an evolution PDE.

7.3.1 Control issues, long-time behavior

Consider the pure sweeping process, with no congestion nor diffusion. It may happen that the
measure ρt becomes a Dirac mass δx(t) after a finite time. An interesting control problem that
could be investigated is how to move the convex set C(t) (under constraints on its deformation
and on its speed, for instance by translation only) so as to transform ρ0 into a Dirac mass as fast
as possible. It is also interesting to understand if, and in which sense, ρt generically becomes a
Dirac mass, and how long does it take to observe it.

Concerning the situation with congestion, it is common sense to expect that any initial measure
will be swept into a measure that saturates the constraints (i.e. the density ρt is the characteristic
function of a subset of the moving set C(t)) as soon as the set has entirely “swept itself”, i.e. every
point of the initial set C(0) has been visited by the moving boundary. It is also to be expected
that this feature will remain forever (patches stay patches). Yet, there is no obvious proof of these
properties. Note that in the discrete evolution, for fixed τ > 0, it is true that patches stay patches.
Indeed, it is well known that the projection of a saturated density is again a saturated density
(i.e taking only values in {0, 1}, see for instance [13]); the problem is the limit as τ → 0, since it
can destroy this property, which is not closed under weak convergence. A possible solution would
be to prove stronger bounds (e.g., BV bounds, again as in [13]), in order to obtain strong L1

convergence, but these estimates are complicated by the fact that the domain C(t) is moving. One
can produce easy examples where the perimeter of a patch increases by projection (think of a ball
which is pushed by the moving boundary, and cannot be a ball anymore). A natural conjecture
would be that the perimeter of a patch never goes beyond the sum of the perimeter of the initial
patch and of the perimeter of C(t), but this has to be proven.

Still in the context of congested measure sweeping, a natural problem is the following: given a
a “shaper” defined by a domain C0, and a goal shape (i.e. a given convex domain C̃ ⊂ C0), is
there a way to obtain C̃ as the support of a saturated density ρT , solution to Problem (16) with
a given initial density, and with a family (C(t)) obtained from C0 by a smooth familly of rigid
motions? Note that the realizable shapes may be very different from the shaper C0. In particular,
non convex shapes can be obtained with a convex shaper C0. If the task is achievable in finite time,
is there an optimal way to obtain the desirable shape, e.g. minimizing the time while prescribing
an upper bound to the metric derivative of the moving sets?
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