
HAL Id: hal-01249441
https://hal.science/hal-01249441v1

Submitted on 1 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FOCAL: Forwarding and Caching with Latency
awareness in Information-Centric Networking

Giovanna Carofiglio, Leonce Mekinda, Luca Muscariello

To cite this version:
Giovanna Carofiglio, Leonce Mekinda, Luca Muscariello. FOCAL: Forwarding and Caching with
Latency awareness in Information-Centric Networking. GLOBECOM 2015 ICNS, Dec 2015, San
Diego, United States. �hal-01249441�

https://hal.science/hal-01249441v1
https://hal.archives-ouvertes.fr

FOCAL: Forwarding and Caching with Latency
awareness in Information-Centric Networking

Giovanna Carofiglio∗, Leonce Mekinda†, Luca Muscariello†
∗ Cisco Systems, † Orange Labs Networks,

gcarofig@cisco.com, firstname.lastname@orange.com

Abstract—Latency minimization is an important network op-
timization criterion which becomes an even more compelling
feature in 5G networks. Information-Centric Networking (ICN)
appears a promising candidate technology for building an agile
communication model that reduces latency via a fully distributed
and adaptive delivery approach coupling in-network caching
and forwarding. In the paper, we investigate the role of latency
awareness on ICN delivery performance and introduce FOCAL,
an approach combining novel caching and forwarding strategies
to jointly reduce end-user experienced latency with no network
signaling nor coordination between routers.

FOCAL gathers a latency-proportional probabilistic caching
policy, with a load-aware dynamic forwarding strategy, that
preferentially routes popular content requests through a single
path (set of caches), while globally achieving minimum network
load and user content delivery time, thus delay minimization. By
means of ICN simulations, we assess the superiority of FOCAL
over existing alternatives given by the combinations of known
caching policies and forwarding strategies: It results a reduced
end-user delivery performance coupled with faster convergence
to average/variance figure and higher self-adaptiveness to varying
traffic/network conditions.

I. INTRODUCTION

If latency minimization is already an important traffic en-
gineering criterion in current networks, it is anticipated as a
founding principle for the architectural design of 5G networks.
An efficient orchestration of edge caching, on-the-fly pro-
cessing and traffic load-balancing appears essential to relieve
congestion and to accommodate QoE (Quality of Experience)
requirements of latency-sensitive applications, like pervasive
video or tactile Internet.

Research on ICN (Information-Centric Networking), has
recently highlighted the benefits of content-centric over host-
centric communication in terms efficient data delivery, but also
optimized use of network resources, simplified management of
mobility and embedded security.

In ICN a tight coupling exists by definition between dis-
tributed forwarding and caching operations: the use of hop-
by-hop dynamic forwarding determines the arrival process at
in-network caches, where the persistence of content can be
locally optimized. To close the loop, the resulting hit/miss
performance affects link loads and forwarding decisions to
achieve overall performance optimization. Therefore, latency
reduction can be achieved, in ICN, via both in-network caching
and hop-by-hop distributed forwarding. The goal of this paper
is to investigate the impact of latency-awareness on caching
decisions alone, then to study the interaction with different

dynamic forwarding strategies and to propose a combined
approach. Previous study focused on the definition of ICN
caching and forwarding strategies with the aim of minimizing
a network cost function, very few considering latency. In this
paper, we investigate for the first time the role of latency
awareness on ICN data delivery performance under dynamic
bandwidth sharing and network congestion.

More precisely, we build upon an initial proposal of
Latency-Aware Caching (LAC) and enhance it to strengthen
latency dependency in probabilistic caching decisions (LAC+).
If the benefits brought by LAC+ are clear on a single cache or
a system of caches working under random request forwarding,
the interaction with smart forwarding strategies is the second
step for the definition of FOCAL. We consider as starting
point the optimal load-balancing (LB) solution derived in
[2] to achieve maximum load minimization by distributed
and dynamic monitoring of the residual round trip time be-
hind output interfaces. Intuitively, such content-agnostic fine-
granular forwarding strategy does not help differentiate the
arrival process at caches along different paths and hence
realize implicit latency-aware cache coordination. To this aim,
we introduce a novel load-balancing strategy, LB-Perf that
locally monitors more popular content requests and persists in
routing them through a single path, while applying the agnostic
LB approach to the aggregate of less popular requests. The
performance of FOCAL, given by the combination of LAC+
and LB-Perf, is further evaluated by means of ICN simulations
in various network scenarios, to show the benefits w.r.t existing
alternatives, namely combinations of known caching poli-
cies (LRU, probabilistic caching, Leave-a-Copy-Down) and
forwarding strategies (random, load-balancing, load-balancing
with persistent forwarding). Promising results are obtained in
terms of reduced end-user delivery performance coupled with
faster convergence to average/variance figure and higher self-
adaptiveness to varying traffic/network conditions.

The remainder of the paper is organized as follows. Sec. II
describes related work. In Sec.III we introduce FOCAL by
presenting latency-aware caching and forwarding strategies in
this order. The evaluation results are gathered in Sec.IV, while
Sec.V concludes the paper.

II. RELATED WORK

In the context of ICN research, we identify two categories of
related work: proposals introducing enhancements of classical
cache management policies for a given cost function and

studies focusing on forwarding strategies to optimize request-
to-cache routing.

Latency-aware caching: Within the panoply of cache man-
agement proposals, some leverage content placement (e.g.
[15], [8]) while others deal with caching mechanisms based
on selective insertion and replacement in cache (e.g. [11],
[1], [6], [10]). The first class of approaches is appropriate
for small-scale controlled environments like a CDN (Content
Delivery Network), where topology and content catalog are
known a priori. Either [15] and [8] deals with video streaming
in ICN and orchestrate caching and scheduling of requests
to caches in order to create a cluster of caches with a
number of guaranteed replicas. Unlike these approaches, our
previous ([3]) and current work on latency-aware caching
belong to the second class of caching solutions by defining
a decentralized solution that automatically adapts to changes
in content popularity, network variations etc. by leveraging
content insertion in cache. We share the same objective as
in [1], where authors propose a congestion-aware caching
mechanism for ICN, based on estimation of local congestion,
of popularity and of bottleneck position. Differently from our
work, their congestion estimate does not differentiate content
items in terms of latency. Similar considerations hold for other
related approaches: the ProbCache work in [11], using the
same cache probability for every content item at a given node
and the cooperative caching mechanism in [6]-[10] exploiting
overall popularity and distance-to-server.

Caching and Forwarding Interaction: The search for an
optimal interplay between in-network caching and forwarding
has drained effort in ICN research, as driven by different
user or network performance objectives. The optimal cache
placement and forwarding problem applied to ICN was tackled
in [13]. Unlike our approach to forwarding, bandwidth sharing
is not taken into account by such formulation, leading to
results that are more appropriate for network dimensioning
purposes than for end-user latency minimization. Between
the contributions that focus on cache-aware forwarding strate-
gies, [4] proposes an Interests-to-neighbor forwarding aiming
at maximizing a difference of potentials, whose strength
decreases with the distance to the content location. Simi-
larly, in [12], authors suggest to forward Interests to the
neighboring node that advertised the highest hit probability
for the requested content object. A closer work to ours is
[14], where an optimization framework is defined to jointly
handle backpressure-based forwarding and LFU-like content
placement. The work designs a control plane that feeds the
actual chunk-level data plane with flow rates and queue sizes
in order to operate optimal content placement and request
forwarding. Nodes must update their neighbors about their
own queue states. Our solution differs in that it does not
require signaling and does fully-distributed and dynamic cache
insertion/replacement without requiring optimal content place-
ment a priori. The latter aspect is important to guarantee self-
adaptiveness to varying network/traffic conditions.

III. FOCAL

A. Latency-aware caching strategies

Taking into account latency awareness into cache man-
agement, can improve alone the delivery time of latency-
sensitive applications and on average the global delivery time
perceived by user, as shown in [3]. Before considering the joint
effect of latency-aware caching and forwarding, we present
a novel stochastic caching mechanism, exploiting monitored
latency information for cache insertion decisions and not
involving cache coordination. The novel latency-aware caching
policy is named LAC+ and builds upon the LAC proposal
in [3] that we summarize below. The enhancement of LAC+
consists in strengthening latency-dependency in probabilistic
cache decisions w.r.t. LAC, based on an online monitoring and
estimation of the second order moment of latency distribution.

1) LAC: In ICN, when a requested content object is not
available in cache, a cache miss event occurs and the Interest is
forwarded up to the first hitting cache where the corresponding
Data is retrieved and sent downstream to the client. On the
reverse path to the client, every cache decides whether or not
storing the object, at the cost of triggering the eviction of
another object due to finite storage space constraints.

According to LAC, at time t, the decision to store object k is
positive with a given probability pk(t) and negative otherwise
(with probability 1 − pk(t)). As a special case of a prior
proposal from [3], we characterize pk(t) as

pk(t) ≡ min

(
ε
Tk(t)

T̄ (t)
, 1

)
(1)

where Tk(t) refers to content k monitored latency at time t,
T̄k(t), T̄ (t) respectively to the temporal averages for content
k and for all cached contents computed up to time t. T̄ (t)
and T̄k(t) are estimated using Exponentially Weighted Moving
Averages (EWMA), with a weight associated to the historical
value of average latency set to α = 0.9. The cache insertion
probability, pk(t) results from the product of a small factor,
ε, modulated by the ratio of its retrieval latency over the
average latency of cached objects. A first assessment of LAC
performance suggested that further benefits may result from
strengthening the latency-awareness contribution by highlight-
ing second order moment characteristics of monitored latency.
This is the rationale behind LAC+ proposal.

2) LAC+: LAC may suffer from the slow convergence of
any other probabilistic approach (see e.g. [11]), due to the
small ε factor. In simulations, we observe a non negligible
time for even very popular objects to be persistently cached.
We recall that the ideal behavior of a cache should be to
capture the most valuable objects (according to a defined
cost function), while avoiding unnecessary replication across
network of caches. Unnecessary replication is typically object
replication below a bottleneck or the lack of implicit coor-
dination between neighboring caches. LAC+ achieves such
objective by supplementing LAC with an outlier tracking
function, meant to estimate second order moment of observed
latency distribution. The outlier tracking function, denoted as

Θk, significantly increases cache insertion probability for those
exhibiting an exceptionally high deviation in comparison the
other content objects. Such outliers correspond to significantly
higher-than-average latency items, that is important to cache
even when not very popular. According to LAC+, at time t, the
decision to store object k is positive with a given probability
p+k (t) and negative otherwise (with probability 1−p+k (t)). We
define p+k (t) as the linear combination of two terms:

p+k (t) ≡ pk(t) + (1− pk(t))Θk(t) (2)

Let µt and σt be the average and standard deviation of all
T̄i(t),∀i ∈ K, at a given node. The nth quantile being
Qn(t) = µt + nσt, it follows that

Θk(t) ≡ max

(
T̄k(t)−Qn(t)∨
i∈K T̄i(t)−Qn(t)

, 0

)
(3)

p+k (t) inherits its first term from LAC. Its added value dwells
in the second term, that allows to account for objects with a
sensibly higher-than-average latency, in order to cache them
even when not very popular (namely, when not selected by
the filtering embedded in the first term). Its purpose is to
strengthen the latency dependency of the caching decision to
favor, by means of Θk, a positive caching decision for those
objects whose retrieval can be very costly: e.g. long distance
to the hitting cache, upstream congestion or severe bandwidth
limitations. Θk(t) is defined as the probability that object k
average latency at time t is an outlier.

B. Latency-aware Forwarding strategies

Latency reduction can be also achieved via smart hop-
by-hop request forwarding strategies trying to minimize i)
distance to the first hitting cache, ii) congestion status of
the network. To such extent, the presence of multiple paths
is clearly essential. Using as baseline for comparison the
uniform random forwarding approach that blindly selects with
equal probability output interfaces in FIB, our focus is on
the family of distributed, dynamic load-balancing approaches
whose objective is to split content requests over time and
through the available output interfaces such as to minimize
i)-ii) on average. In [2], a load balancing scheme is derived
from a joint optimization of end-user rate/congestion control
and multipath forwarding under the objective of minimizing
the maximum link load network-wide. The minimization of the
maximum link load implicitly leads to a sensible reduction
of the overall average latency as it can be appreciated in
the simulated scenarii. Hereinafter we refer to such approach
simply as Load balancing (LB). LB selects available output
interfaces per FIB entry randomly according to computed
weights. At the beginning, each interface has the same weight
equal to one and the randomized forwarding process is uniform
over available output interfaces. This allows to probe all
available interfaces and to monitor the average number of
outstanding Pending Interests (PI) per FIB entry and per
interface. Such metric reflects the residual latency due to
first hitting cache distance and congestion status. After such
initial phase, the computation of the weights driving interface

selection simply consists in taking the average number of PI
per FIB entry and per output interface normalized over the
total average number of PI per FIB entry (so that weights
are comprised between 0 and 1). Ideally, LB works on per-
content FIB entries enabling a fine granular load-balancing
at flow scale. However, a feasible approximation that keeps
limited FIB state replaces per-content with per-prefix entries
aggregating all content names behind the same prefix (FIB
lookup is assumed to be Longest-Prefix Match). Note that in
our simulations we adopt a per-content LB approach with the
objective to quantify its best performance.

Algorithm 1: The most popular content items are sampled
in PopularFiles. Create flow bundles, one per FIB entry,
based on observed interest volume and associate persistent
faces to popular content items.

At update time (every ∆T);
Faces are ranked every ∆Tf > ∆T ;
T+ = ∆T ;
IsPersistentDisabled = FALSE;
foreach FileName in PopularFiles do

prefix = GetFIBPrefix(FileName) ;
OuputFaces = GetOutputFaces(prefix) ;
FlowBundle = GetFlowBundle(prefix) ;
Face = OuputFaces.Begin();
Sort(FlowBundle by InterestCounter) ;
if (T >= ∆Tf) then

Sort(FaceRecord by weight) ;
T = 0 ;

end
CumSum = 0 ;
foreach (FlowRecord in FlowBundle) do

CumSum + = FlowRecord.InterestCounter ;
Weight = CumSum/FlowBundle.Norm ;
while (Face != OuputFaces.End()) do

if (Weight < Face.weight) then
FlowRecord.SetFace(Face);
break ;

else
CumSum = FlowRecord.InterestCounter ;
Weight = CumSum/FlowBundle.Norm ;
Face = OuputFaces.Next();

end
end

end
end

LB may achieve significant improvement of overall end-user
throughput/latency over uniform random forwarding via load-
aware utilization of multiple paths. However, it is not capable
of realizing implicit cache coordination for caches along differ-
ent paths, as a consequence of its randomized weighted split,
that load-balance Interest for the same content over all output
interfaces according to the weights. To understand this issue,
let us consider the case of three output interfaces available
for a given content k with associated weights, w1, w2, w3. At
each incoming request for content k, LB splits the Interest
arrival process over time into three output processes, with rate
respectively w1, w2, w3 of the total, without selecting the same
output interface for a given chunk request. As a result, the

Algorithm 2: Popularity based persistent face selection.
At Interest I arrival with name /p/file name/chunk name ;
I matches name prefix /p in the FIB ;
OuputFaces = GetOutputFaces(prefix = /p) ;
if (IsPersistentDisabled) then

LoadBalancing.Update(OuputFaces.weights) ;
FaceID = LoadBalancing.SelectFrom(OuputFaces) ;

else
PopularitySampler.Insert(I) ;
if (PopularitySampler.Find(FileName(I))) then

PopularFiles.ManageHit(I) ;
end
if (PopularFiles.IsPopular(FileName(I))) then

FlowRecord = FlowBundle.Find(FileName(I)) ;
FlowRecord.InterestCounter++ ;
FlowBundle.Norm++ ;
FaceID = FlowRecord.GetFace() ;
if (FaceID isEmpty) then

FaceID = LoadBalancing.GetFace(OuputFaces) ;
end

else
FaceID = LoadBalancing.GetFace(OuputFaces) ;

end
end
DoSendInterest(I, FaceID) ;

function ManageHit(Interest = I)
prefix = GetFIBPrefix(FileName(I)) ;
FlowBundle = GetFlowBundle(prefix) ;
if PopularitySampler.IsPopular(Filename(I)) then

FlowRecord = FlowBundle.Find(FileName(I)) ;
if FlowRecord isEmpty then

FlowBundle.Insert(FileName(I)) ;
end

end
end

arrival process at caches along the three paths has the same
characteristics (except for the rate) of the original one, leading
to caches operating independently and storing the same items.

Intuitively such behavior advantages most popular objects
cached with high probability over all available paths, but
reduces overall caching benefits due to lack of cache co-
ordination. Instead, splitting Interests in a way to persist
the selection of one or few single output interfaces over
time on a per-content basis, (while keeping per-prefix load-
balancing according to LB weights) would differentiate the
arrival process at caches along the three paths, so realizing
implicit cache coordination and better overall performance.
Such idea inspires our proposal for an enhanced load bal-
ancing scheme, that we name LB-Perf (Load Balancing with
Persistent Forwarding).

In an initial phase, LB-Perf computes per-prefix weights to
associate to available output interfaces as in LB case. FOCAL
is also equipped by a popularity sampler which continuously
monitors the most popular objects and store their name locally.
The method to perform online popularity estimation is out of
scope of this paper, but in our simulation we have used the
a k-LRU filter [9]. In our simulations, we set each sub k-
LRU cache equal to 40 objects (in the first simple scenario)

or to 160 (in the other scenarii). Objects found in the last sub-
cache are considered high popularity and get every of their
chunk hit counted for precise flow sizing. In a more general
implementation of our mechanism, we do not suggest to use
k-LRU which, while being simple, requires k to be very large
when popularity is measured in terms of observed traffic and
not in terms of number of content item requests. However a
content item (object or file) request is difficult to be identified
in practice, as different clients can request the same object
using distinct permutation of the chunks sequence numbers.

For a given prefix, the samples most popular items are
grouped into flow bundles as reported in Algorithm 1. Each
bundle contains items with consecutive popularity up to the
face weight, hence size of each bundle depends on the face
weight as reported in Algorithm 1. Thus, for more popular
items a single output interface is persistently selected by
selecting less congested interfaces (with higher weights) first.
For all other items, face selection obeys to standard LB rule,
see Algorithm 2. Every ∆T seconds, the most popular items
are reassigned to flow bundles according to face weights which
are, on the other hand, updated independently.

IV. EVALUATION

In this section we assess the performance of FOCAL by
means of ICN simulations in three different scenarii and
against existing forwarding and caching alternatives given by
the combination of the following known caching policies:

• LRU, Least Recently Used: deterministic cache insertion
of every item arriving at the cache coupled with LRU
replacement,

• ε-LCP, Leave a Copy Probabilistically: a probabilistic
cache insertion with probability ε (ε = 10−3 where not
specified) coupled with LRU replacement,

• LCD, Leave a Copy Down: a content object retrieved at
l − th cache along a path is cached at (l − 1)-th cache
only, rather that in all caches from 1 to l − 1 ([7]),

Fig. 1. The face selection algorithm is depicted: Load balancing with
persistent face selection for popular content.

(a) Linear topology with forwarding branches.

(b) Fat tree with direct links to repositories.

(c) Abilene-like topology.

Fig. 2. Network topologies used in the evaluation.

• LAC, Latency-Aware Caching: the approach proposed in
[3],

• LAC+, enhanced LAC: our approach presented in
Sec.III-A2

and forwarding strategies:
• Uniform: uniform selection performed on nearly per-

packet basis of output interfaces stored in FIB entries
aggregated per-prefix;

• LB, Load-Balancing: load-aware selection performed on
per-packet basis of output interfaces stored in FIB entries
aggregated per-prefix, as in [2].

• LB-Perf, Load-Balancing with Persistent forwarding: our
approach presented in Sec.III-B. The approach combining
LB-Perf with LAC+ caching is denoted as FOCAL.

To this purpose, we implement FOCAL and its alterna-
tives in the packet-level NDN simulator CCNPL-Sim (http:
//systemx.enst.fr/ccnpl-sim). Three topologies are considered:

a linear topology with forwarding branches, a hierarchical
fat tree with direct access to content repositories and a non-
hierarchical meshed topology (Abilene-like).

A. Linear topology with forwarding branches

We simulate the simple topology in Fig.2(a) to show: i) the
improvement of latency-aware caching policies in presence
of random forwarding, i.e. without latency-awareness in link
selection; ii) the interaction with forwarding strategies and
overall superiority of FOCAL. The tests consist in a branched
network of ICN nodes capable of storing up to 10 content
items per cache. We simulate a 55-hour traffic involving a
single content producer that serves a catalog of 20,000 objects.
Popularity is Zipf-like distributed with parameter α = 0.9. It
implies that the ten most popular items weight 19% of the
traffic. Each content item is conveyed in chunks of 3kB and
has a total size of 2MB (the same size is used in all scenarios
presented in the paper). In all simulations reported in the
paper, data retrieval is managed by an implementation of the
transport protocol presented in [2]. Link capacities are limited
to C1=600Mbps, C2=60Mbps, C3=20Mbps, C4=100Mbps,
C5=30Mbps, C6=300Mbps, C7=50Mbps. The object request
process feeding node 1 is assumed to be Poisson with rate
parameter λ = 3 objects/s. The maximum long term link
load in the network does not exceed 50% of utilization. In
Fig.4(a), we neglect the impact of forwarding, by considering
a uniform selection of the three output interfaces at node
1. All caching policies aim in a more or less effective way
at caching the most popular items on the first cache, the
following ones in terms of more popular items at the second
level of caches (2,4,6). Except for LRU which under-performs,
the other policies show similar results. Clearly, the second
level caches work independently under uniform forwarding,
because they receive the same arrival process sampled at 1/3
of the total request rate. This still happens in presence of LB
forwarding (Fig.4(b)) due to the blind load-aware forwarding
of packets over the three interfaces. The benefits in terms
of latency reduction deriving from load distribution across
the three paths appear to be negligible compared to the lack
of implicit cache coordination. A significant reduction up to
40% in average delivery time over the entire catalog can

Fig. 3. Linear Topology with forwarding branches: Steady state values.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
 d

el
iv

er
y

 t
im

e
[s

]

Object rank k

LRU
LCP-0.001

LCD

LAC+
LAC

(a) Uniform.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30 35 40 45 50

Object rank k

LRU
LCP-0.001

LCD

LAC+
LAC

(b) Load Balanced (LB).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30 35 40 45 50

Object rank k

LRU
LCP-0.001

LCD

LAC+
LAC

(c) LB with Persistent Forwarding (LB-Perf).

Fig. 4. Linear Topology with forwarding branches: (a)-(c) Mean delivery time w.r.t content rank.

be observed under LB-Perf w.r.t. uniform forwarding and
particularly for FOCAL (LAC+ with LB-Perf) as shown in
Fig.4(c). Overall, the values reported in Tab.3 allow to quantify
in 92% the gains brought by caching alone (LAC+) in terms of
average delivery time reduction and in another 40% reduction
via LB-Perf. FOCAL also achieves the lowest variance with
good convergence time when compared to other approaches
(absolute values of convergence are due to the slow request
rate considered in simulations).

B. Fat tree with direct access to content repositories

We include this scenario to study FOCAL behavior in
hierarchical networks with several paths with or without in-
path caching opportunities. We consider the fat tree topology
in Fig.2(b), with caches in every node storing 40 objects each.
Content requests follow a Poisson process with intensity λ = 1
object/s. They uniformly address two repositories (Node 13
and 14 in Fig.2(b)), each one hosting a distinct catalog of
20, 000 objects, under the prefixes /Orange/ and /YouTube/,
ranked according to the same Zipf distribution. Two popularity
profiles are considered in independent simulation runs: Zipf’s
skewness α1 = 0.9 and α2 = 1.1. To appreciate the impact on
forwarding/caching, under Zipf’s α1 , the 400 most popular
content items account for 50% of the traffic. This number
drops to 30 with α2. The presence of 10Mbps direct links to
the repositories enriches the set of available paths, by making
caching opportunistic: a node may choose not to forward
Interests through the network of caches, rather to use the
auxiliary direct link. Such configuration permits to understand
whether and for which part of the catalog, in-network caching
can be important to reduce end-user latency.

We report performance measures for this scenario in Fig.5.
In this setting, FOCAL proves to outperform all other mecha-
nisms under different metrics: it provides the best delivery time
in average and standard deviation, attained within few hours.
Such time scale is a typical busy period in access networks
where caching performance would be mostly solicited in
practice.

FOCAL is also robust to different workloads (here rep-
resented by two α factors) in contrast to other mechanisms
like ε-LCP that fail to provide an acceptable performance
bound. Indeed, when α = 1.1 the average delivery time of

ε-LCP converges two times slower to an almost two times
higher value than what achieved by FOCAL. When α = 0.9,
ε-LCP provides more than two times higher latency than
FOCAL, with very poor convergence time. On the other
hand, looking at the way content items are managed by the
different mechanisms, we observe a significant performance
improvement for highly popular items, attaining gaps of a
factor of five when α = 0.9 as reported in Fig.5(a).

C. US backbone-like scenario

A backbone-like topology is made of core nodes which
are access gateways to all clients attached to it (we build
upon Abilene topology). Routing is much less hierarchical
when compared to previous scenarios and Interest/Data traffic
can flow in any direction. In such setup, node cache size is
equal to 40 content objects. Links in the access are set to
500Mbps, and from 15Mbps to 100Mbps in the core. In this
scenario we use three content repositories, each containing
20, 000 objects. We give objects at Repository 4 the prefix
/Netflix/, Repository 8 the prefix /Orange/ and Repository
10 /YouTube/. Clients are equally interested in every catalog,
i.e. every client addresses every catalog with probability 1/3.
Client requests follow a Poisson process with intensity λ = 2
objects/s. Each repository (also referred to as producer) is
queried by clients following a Zipf-distributed workload with
skewness equal to 0.9. Fig.2(c) summarizes the details of
the network setup. While the content ranks have been so far
fixed for the whole simulation, in this set of simulations, we
confront the algorithms to a non-stationary content popularity
distribution to introduce time locality. This is obtained by
shuffling popularity rank every ten hours for every object in
a given catalog. Every content’s popularity rank changes over
time while ranks remain Zipf-distributed. Note that this is far
from being unrealistic. It widely pertains to real-world traffic
where per-time-slot content popularity prevails [5].

FOCAL clearly outperforms other algorithms with or with-
out temporal locality in the request workload. From Fig.6(b)
to 6(d), delivery time performance results demonstrate it
improves LCD and ε−LCP (ε = 10−3) almost as much as
they improved the basic LRU policy. More striking, FOCAL
reduces LB-Perf + LRU average delivery time by 50% and
stabilizes the delivery time in reducing its standard deviation

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
 d

el
iv

er
y
 t

im
e

[s
]

Object rank k

LRU
LCP-0.001

LCD
LAC+

LAC

(a) Mean vs Rank,α1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25

Time [h]

LRU
LCP-0.001

LCD

LAC+
LAC

(b) Mean vs Time, α1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Time [h]

LRU
LCP-0.001

LCD

LAC+
LAC

(c) Mean vs Time, α2.

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25

z 0
.0

2
5
 x

 D
el

iv
er

y
 t

im
e

S
td

d
ev

 [
s]

Time [h]

LRU
LCP-0.001

LCD

LAC+
LAC

(d) Stddev vs Time, α1.

Fig. 5. Fat tree topology, α1 = 0.9, α2 = 1.1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
 d

el
iv

er
y
 t

im
e

[s
]

Object rank k

LRU
LCP-0.001

LCD

LAC+
LAC

(a) Mean vs Rank, stationary.

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35 40 45 50

Object rank k

LRU
LCP-0.001

LCD

LAC+
LAC

(b) Mean vs Rank, non stationary.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25

Time [h]

LRU
LCP-0.001

LCD

LAC+
LAC

(c) Mean vs Time, non stationary.

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25

z 0
.0

2
5
 x

 D
el

iv
er

y
 t

im
e

S
td

d
ev

 [
s]

Time [h]

LRU
LCP-0.001

LCD

LAC+
LAC

(d) Stddev vs Time, non stationary.

Fig. 6. Abilene-like topology with stationary (s) and non-stationary (ns) workload.

by 60%. By comparing Fig.6(a) to Fig.6(b) we observe that
FOCAL catches temporal locality very well. This is due to the
fact that the mechanism adapts very fast to new conditions both
in terms of popularity and network congestion.

V. CONCLUSION AND FUTURE WORK

The paper explores ICN techniques for end-user delay min-
imization via latency-aware forwarding and caching strategies.
Based on the insights on latency-aware caching alone and on
the interplay with load balancing forwarding, we introduce
FOCAL, an approach combining novel caching and forward-
ing strategies to jointly reduce end-user experienced latency
with no network signaling nor coordination between routers.
FOCAL combines a latency-proportional probabilistic caching
policy, with a load-aware dynamic forwarding strategy, that
preferentially routes popular content requests through a single
path (set of caches), while globally achieving minimum load,
thus delay minimization. By means of ICN simulations, we
show that our proposal may achieve significant latency reduc-
tion (e.g. up to 60% average/variance delay reduction over
LRU with LB-Perf in Fat Tree scenario), coupled with faster
convergence w.r.t. solutions based on probabilistic caching
approaches. In presence on non-stationary phenomena, FO-
CAL outperforms all other approaches demonstrating high
self-adaptiveness to varying traffic/network conditions.

Such promising results encourage us to thoroughly char-
acterize its dynamics by means of analytical models in a
future work. Also, we plan to experiment with FOCAL in a
mobile network setting where mobility may impose additional
constraints on latency minimization.

REFERENCES

[1] M. Badov, A. Seetharam, J. Kurose, V. Firoiu, and S. Nanda.
Congestion-aware caching and search in information-centric networks.
In Proc. of ACM ICN, 2014.

[2] G. Carofiglio, M. Gallo, L. Muscariello, M. Papalini, and S. Wang.
Optimal Multipath Congestion Control and Request Forwarding in
Information-Centric Networks. In Proc. of IEEE ICNP, 2013.

[3] G. Carofiglio, L. Mekinda, and L. Muscariello. Lac: Introducing latency-
aware caching in information-centric networks. In Proc. of IEEE LCN,
Oct. 2015.

[4] S. Eum, K. Nakauchi, M. Murata, Y. Shoji, and N. Nishinaga. CATT:
Potential Based Routing with Content Caching for ICN. In Proc. of
ACM SIGCOM ICN Workshop, 2012.

[5] C. Imbrenda, L. Muscariello, and D. Rossi. Analyzing Cacheable Traffic
in ISP Access Networks for Micro CDN Applications via Content-
centric Networking. In Proc. of ACM ICN, 2014.

[6] A. Ioannou and S. Weber. Towards on-path caching alternatives in
information-centric networks. In Proc. of IEEE LCN (Poster), 2014.

[7] N. Laoutaris, H. Che, and I. Stavrakakis. The LCD interconnection of
LRU caches and its analysis. Elsevier Science, Performance Evaluation,
2006.

[8] Z. Li and G. Simon. Cooperative caching in a content centric network
for video stream delivery. Journal of Network and Systems Management,
23(3):445–473, 2015.

[9] V. Martina, M. Garetto, and E. Leonardi. A unified approach to the
performance analysis of caching systems. CoRR, abs/1307.6702, 2013.

[10] Z. Ming, M. Xu, and D. Wang. Age-based cooperative caching in
information-centric networks. In Proc. of IEEE INFOCOM NOMEN
Workshop, 2012.

[11] I. Psaras, W. K. Chai, and G. Pavlou. Probabilistic in-network caching
for information-centric networks. In Proc. of ACM SIGCOMM ICN
Workshop, 2012.

[12] V. Sourlas, P. Flegkas, and L. Tassiulas. A novel cache aware routing
scheme for information-centric networks. Elsevier Science, Computer
Networks, 59:44–61, Feb 2014.

[13] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie. Optimal cache allocation
for content-centric networking. In Proc. of IEEE ICNP, 2013.

[14] E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong. VIP: A
Framework for Joint Dynamic Forwarding and Caching in Named Data
Networks. In Proc. of ACM ICN, pages 117–126, 2014.

[15] Y.-T. Yu, F. Bronzino, R. Fan, C. Westphal, and M. Gerla. Congestion-
aware edge caching for adaptive video streaming in information-centric
networks. In Proc. of IEEE CCNC Conference, Jan 2015.

