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ABSTRACT
5G has loudly ambitioned to achieve extremely low la-
tency in mobile networks. To this aim, we have recently
introduced two novel latency-aware caching heuristics,
LAC and LAC+ and we showed through simulations in
Information-Centric Networks their good performance
figures. In this paper, we present an insight on their
operations: a mathematical analysis of these caching
systems led us to novel results that we validate in sim-
ulation. The advantages of these algorithms come (i) on
one side from the fact they are distributed and lightweight
and (ii) from the ability to quickly adapt to content
popularity and network congestion, with no signaling
nor explicit coordination between the network nodes.
In this paper we provide analytical bounds of latency
aware caching policies and evaluate their performance
by network simulations. The proposed mechanisms can
halve the mean and standard deviation of content de-
livery time with respect to approximations of LFU as
leave a copy probabilistically.

CCS Concepts
•Networks → Network performance analysis;

Keywords
Information-Centric Networks; stochastic modeling;
caching

1. INTRODUCTION
Latency reduction objectives, currently emphasized

as 5G requirements, imply to solve a number of tech-
nical challenges requiring novel solutions in the whole
communication network: the physical layer, the MAC

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT CCDWN, December 01-04, 2015, Heidelberg, Germany

as well as the network backhaul and core. In this paper
we focus on one specific aspect of the communication
path, i.e. caching systems.

Information-Centric Networking (ICN) is a network
architecture that embeds caching functions natively. We
focus on the Named-data networking architecture and
we summarize its characteristics here. A detailed de-
scription of the system can be found in [17].

Users retrieve named Data using a pull flow control
protocol based on subsequent packet queries, triggering
Data packets delivery. Name-based routing and for-
warding guarantee that queries are properly routed to-
wards a repository, where a permanent copy of the con-
tent is stored, following one or multiple paths. Network
nodes maintain three major data structures: Content
Store (CS), Pending Interest Table (PIT), and Forward-
ing Information Base (FIB). The CS caches Data pack-
ets received, which can be potentially useful to satisfy
future Interest packets. The PIT stores Interests that
have been forwarded and waiting for matching Data
packets to return. The FIB is similar to IP routing
table and is maintained by a name-based routing pro-
tocol. A strategy module defines the policy for output
interface(s) selection at each FIB entry. For each ar-
riving Data packet, a router finds the entry in the PIT
that matches the data name and forwards the data to
all downstream interfaces listed in the PIT entry. It
then removes that PIT entry, and caches the Data in
the CS. Indeed, Data may come from the repository,
or from any intermediate cache along the path with a
temporary copy of the Data packet. Packets of the same
content can therefore be retrieved in a multi-path fash-
ion. This means that data packet follow the reverse path
build by the queries. This allows fine-grained monitor-
ing of the response delay at any intermediate node in
the communication path.

Intrinsic to ICN design are content authentication,
multipath forwarding, affordable multicast and ubiq-
uitous caching. Caches must store some valuable ob-
jects and evict some others by optimizing some objec-
tive in a scalable and fast way. Several content evic-
tion policies have been designed in many technical ar-
eas as First-In-First-Out (FIFO), Random, (evict the)
Least-Frequently-Used (LFU) and several (evict the)



Least-Recently-Used (LRU) derivatives like ARC [13]
and CAR [2]. policy optimizes a specific objective and
most maximize the average hit ratio.

In our work, we consider low network latency objec-
tives that can be met with the help of two novel LRU
derivatives, LAC and LAC+. LAC, and its improved
version LAC+, are designed on the simple idea that
upon content arrival, the larger the retrieval latency, the
more favorable the caching decision. Latency includes
processing, queuing, transmission and propagation de-
lays.

In this paper, we characterize their miss ratio. Then
a quantitative evaluation to corroborate the analysis is
provided by means of ICN simulations. Quite impres-
sive results are highlighted in terms of latency reduction
under the assumption of a simple, fully distributed ap-
proach that self-adapts to varying network conditions.
More precisely, we show that our solution outperforms
state-of-the-art proposals by achieving significant re-
duction of average content delivery time and standard
deviation up to 50%, along with a very fast convergence
to these figures.

2. RELATED WORK
There is a huge literature on caching systems as a

means to accelerate the data path of computing sys-
tems like ARC [13] and CAR [2]. Some more recent
literature has considered web caching to reduce access
latency and scale content distribution [11]. In this work
we focus on ICN systems like Named-data networking
[17] that embeds caching in the data plane of a network
layer where congestion and latency are experienced by
the transport protocol managing content retrieval. In
particular we focus on algorithms that are distributed
and lightweight so as to have a feasible implementation
at high speed.

Among the fastest approximations of LFU we cite
leave a copy probabilistically (LCP) that keeps an ob-
ject in a node’s cache in a data path with probability p.
[3] analyzes the p-LRU (LCP + LRU replacement) pol-
icy under renewal traffic. The probability p, of keeping
an object in the cache after retrieval, is a positive con-
stant smaller than 1. Our contribution extends LCP to
dynamic cases, which simply refers to algorithms where
p follows a stochastic process.

Much closer to our work, [10] derives through math-
ematical arguments a dynamically randomized heuris-
tic for LRU caches. The objective was to optimize the
storage of variable size documents. A common imple-
mentation of LRU, referred to as Move-To-Front algo-
rithm (MTF) consists in moving the most recently used
object to the front of a FIFO memory. Though they
randomized that MTF rule according to the document
size and retrieval cost, they kept it symmetric i.e. trig-
gered with the same probability in both hit and miss
events. As they ended up providing mathematical jus-
tification for a mechanism priorly proposed in [16], we

refer to it as Starobinski-Tse-Jelenković-Radovanović’s
(STJR). On the contrary our approach may be denoted
by asymmetric as a MTF probability is only considered
when a document is freshly inserted into the cache i.e.
in case of a miss event. If the document was already in
the cache i.e. in case of a hit event, the MTF rule is
deterministic as it is applied almost surely.

3. LATENCY-AWARE HEURISTICS
In this work, we analyze two distributed algorithms,

LAC[7] and LAC+[6], that aim at minimizing the over-
all average delivery time in information-centric networks
without any coordination among the caches and no sig-
naling. Notice that, fine grained latency measurements
are available in ICN as requests sent across an inter-
face pull down data from the same interface. Network
wide this enables symmetric routing and latency mea-
surement of the upstream network.

Both work in the following way: When a client re-
quests at time t a rank-k object, k ∈ K, that object is
either in a cache along the way and consequently re-
turned to the requester, or that cache will download it,
then insert it in its local storage with probability p.k(t)
or not, with a probability 1 − p.k(t) and finally return
that object to the requester. We refer to p.k as decision
probabilities.

In LAC, the probability of sending the rank-k object
to cache at time t is:

pk(t) ≡ min

(
ε
Tk(t)β

T̄ (t)γ
, 1

)
. (1)

LAC+ decision probability p+k (t) combines two terms:

p+k (t) ≡ pk(t) + (1− pk(t))Θk(t) (2)

where Tk(t) refers to the monitored latency for content
k up to time t and T̄k(t), T̄ (t) to respectively the tem-
poral average for content k and for all cached contents
computed up to time t. Averages are estimated using
Exponential Moving Average (EWMA) filters. We sat-
isfactory configured the weight of filters past values to
0.9.
ε is a small positive real number. β and γ are intensity

parameters used in LAC to cleave probabilities between
low and high latency retrievals. Higher latency objects
will be picked early. Low latencies will get very low de-
cision probabilities but should be eventually picked if
the object is popular. For LAC+, since it has a sepa-
rated latency outlier tracking function Θk(·), we usually
set β and γ to 1.

Let µt and σt be the average and standard deviation
of all T̄i(t),∀i ∈ K, at a given node. The nth quantile
follows as:

Qn(t) = µt + nσt. (3)

This allows to unfold p+k ’s second term. Θk(t) is the
probability at time t that the rank-k object is a latency



outlier:

Θk(t) ≡ max

(
T̄k(t)−Qn(t)∨
i∈K T̄i(t)−Qn(t)

, 0

)
. (4)

We satisfactorily used the first quantile (n = 1) through-
out the rest of the paper.

To wrap up, LAC+ draws into the cache either highly
popular objects sampled using p+k (t)’s first term or out-

liers thanks to p+k (t)’s second term.

4. ANALYSIS
The dynamics of the networked system are complex

to capture in a simple model due to the tight coupling
between delivery performance and caching functions:
the former is certainly affected by network conditions,
while clearly network load is a result of caching perfor-
mance and vice-versa. This is why we focused on the
single cache case in developing analytically, some perfor-
mance bounds expressed in terms of cache miss ratio. In
a nutshell, we contribute in showing that the asymmet-
ric design embodied by LAC and LAC+ outperforms
known alternatives, typically STJR. LAC and LAC+
are of asym-LRU kind as opposed to alternative sys-
tems where insertion/replacement operations are sym-
metrically driven by the same probability (sym-LRU).
LCP is a special case of asymmetric mechanism where
the insertion into the cache is determined by a constant
probability p. Refer to Table 1 for the notation used
throughout the paper. Variables might be later tagged
with the current algorithm in superscript.

4.1 Assumptions
We consider the smallest set of assumptions to have

a simple and feasible analytic representation.
Zipf-like popularity: We assume that object popular-

ity follows a generalized Zipf law. Thus ∀k ∈ K, qk =
c
kα with 1

c =
∑
i∈K

i−α and skewness α > 0. This assump-

tion is widely accepted in the literature [4] [14].
Poisson requests: We assume that clients request ob-

jects according to a Poisson process of intensity λ > 0,
similarly to [5] [1].

Independent Reference Model: Temporal correlation
between object requests, though neglected here like in
[16] and [9], is foreseen in future extensions of this work.

LRU replacement policy: we focus on the widely adopted
LRU replacement policy whose common implementa-
tion consists in moving the most recently served object
to the front of a list. This allows to study Move-To-
Front algorithm as an LRU scheme [10].

Same object size: For the sake of simplicity, we as-
sume that, like in [8], all retrieved objects have the same
size. The model will later be improved to encompass
more fine-grained features such as variable object size.

VRTTk,t,∀t ∈ T are independent and strictly posi-
tive.

The characteristic time (“Che”) approximation [8] as
extended by [9] is a key tool in this work. It states

t ∈ T Instant a retrieval occurs. T ⊆
R+ denotes the totally ordered
set of these times.

x Local cache size in number of ob-
jects.

τx Characteristic time threshold for
filling a cache of size x.

λk Request rate of the rank-k ob-
ject, k ∈ K.

qk Popularity of the rank-k object.
qk = λkλ

−1.
ϕk,τ Probability of receiving at least

one request for the rank-k object
during τ seconds.

Mk Asymptotic miss ratio for the
rank-k object.

{VRTTk,t}t∈T Stochastic process modeling the
retrieval latency of the rank-k
object, as observed from the lo-
cal cache.

{pk,t}t∈T Caching decision process of the
rank-k object.

{πk,t}t∈T Miss probability process for the
rank-k object.

{Mk,t}t∈T Miss counting process for the
rank-k object. It is expected
to increase every 1

mk
cycle with

mk = E[πk,t] ∀t ∈ T.

Table 1: Notation.

that for LRU caches, the object eviction time is well
approximated by a unique constant τx.

4.2 Miss ratio
Let πk,t be the rank-k object miss probability at time

t and ϕk,τ be the probability of receiving at least one
request for a rank-k object during τ seconds.

Proposition 1. If we restrict to a countable set of
caching decision probabilities, the miss ratio, Masym

k ,
of asymmetric algorithms such as LAC and LAC+, for
the rank-k object approximates to:

Masym
k =

∑
u

P[pk,t = u]
1− ϕk,τx

1− ϕk,τx(1− u)
, ∀t ∈ T.

(5)
Holding from the Che approximation,

τx is the root of
∑
k∈K

(1−Masym
k ) = x. (6)

Note that ϕk,τx , 1 − e−λkτx under Poisson object
arrivals. However, accounting for all values of pk,t in
Eq.(6) might not be computationally tractable. The
following proposition shows that under i.i.d. conditions,
values of pk,t can be effectively replaced by a unique
expected value.

Proposition 2. Assuming that VRTTk,t,∀t are i.i.d.
and assuming Poisson object arrivals, the cache miss ra-
tio Masym

k is well approximated using the expected value



E[p] of a unique decision probability p when E[p] is very
small or when the object popularity is either very small
or large as the cache:

Masym
k ≈ 1− ϕk,τx

1− ϕk,τx(1− E[p])
. (7)

Note that this approximation still holds for non-Poisson
processes when E[p] is very small. This result is impor-
tant as it establishes achievable conditions for asymp-
totic equivalence between the use of a variable decision
probability p and the use of its expected value p = E[p].
However, the operational drawback of a constant and
small p is that it postpones considerably the time pop-
ular objects are first stored in the cache. LCP suffers
from this phenomenon because the expected time to en-
ter the cache is 1

λkp
. Consequently, LCP overall object

delivery time converges slowly. LAC+ brings a solu-
tion in adequately varying p in order to cache valuable
objects earlier.

4.3 Lower bound
Providing a closed-form approximation for asym-LRU

miss ratio and its characteristic time τasymx is hard. In-
stead, we demonstrate its superiority over the analyt-
ically tractable sym-LRU mechanism. With some loss
of generality, α is assumed greater than one. Let us
consider the symmetric mechanism sym-LRU where the
MTF rules are conditioned by the same probability in
both hit and miss cases. By contrast in asym-LRU the
MTF decision is taken in case of miss only.

Proposition 3. Assuming VRTTk,t,∀k, t are i.i.d.
and large catalog and cache, the steady-state miss prob-
ability of symmetric LRU algorithms, for the rank-k ob-
ject, approximates to:

Msym
k = exp

{
− xα

kαΓ(1− 1
α )α

}
, (8)

where Γ(·) is the Gamma function.

The closed-form expression of Proposition 3 is intrin-
sically the same as LRU’s in [5]. This observation yields
the next corollary.

Corollary 3.1. Assuming VRTTk,t,∀k ∀t are i.i.d.

Msym
k = MLRU

k

i.e. sym-LRU behaves in stationary regime like LRU.

asym-LRU consequently outperforms sym-LRU thanks
to its convergence to the Least Frequently Used replace-
ment policy[12]. This leads to Proposition 4. Proposi-
tion 4 lies on ε-permanent accommodation, a notion to
be introduced first.

Definition 1. An object is ε-permanently accommo-
dated iff its miss ratio is less than a small value ε.

In that context, let ηmechanism be the number of most
popular objects ε- permanently accommodated thanks
to a caching mechanism.

Proposition 4. As decision probability’s expected value
goes small, asym-LRU allows to accommodate ε- per-
manently more of the most popular objects than sym-
LRU i.e.

ηasym ≥ ηsym.

Let LAasym denote LRU equipped for asymmetric
latency-aware stochastic caching decision (LAC and LAC+)
and let LAsym denote LRU modified for symmetric
latency-aware stochastic MTF decision (STJR).

Corollary 4.1. As decision probability’s expected value
goes small, ∃κ ≥ 1 : ηLAasym ≥ κηLAsym.

This typically means that the performance of LRU
caches equipped with LAC or LAC+ can exceed beyond
a given factor κ that of sym-LRU, then LRU studied
analytically and extensively in previous works [5]. Nu-
merous simulations backed these mathematical results,
where often κ > 2 unleashes tremendous content deliv-
ery time decreases.

5. PERFORMANCE EVALUATION
We evaluate LAC and LAC+ against three state-

of-the-art caching management mechanisms: LRU +
Leave-Copy-Everywhere (LRU), LRU + Leave-Copy-
Probabilistically (LCP) and LRU + Leave-Copy-Down
(LCD)[11]. This is carried out by means of the packet-
level NDN simulator CCNPL-Sim (the code of the sim-
ulator as well as the input files to run the scenarios pre-
sented in this paper can be found at http://systemx.
enst.fr/ccnpl-sim ) (i) on a single cache topology, (ii)
then on a complex network where core caches are lo-
cated along a ring. While in (i) the workload is IRM
and Zipf skewness α > 1, in (ii) we injected some time
locality and set α < 1 to investigate situations closer to
the real world.

5.1 Single cache topology
The following results are achieved in a simulated ICN

with a single caching node between the object consumers
and the publishing server. The whole simulation setup
is available online. Here are the main configuration pa-
rameters. Cache sizes are equal to 80kB. The Poisson
process for generating content requests is characterized
by a rate of 1 object/s. Objects are requested over a
catalog of 20,000 items, according to a Zipf-like popu-
larity distribution of parameter α = 1.7. This value of
α is still realistic [14]. The two FIFO links from the
consumers up to the content publisher have a capac-
ity of 200Kbps and of 30Kbps, respectively. The size
of every object conveyed through these links is 10kB,
that we also take as fixed packet size. About LAC pa-
rameters, ε = 1 while β = γ = 4.5 to pick latency
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Figure 1: Single cache: latency and decision probability distributions.
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Figure 2: Single cache: LAC decreases LRU delivery time by 30% and outperforms LCP on conver-
gence.

outliers and leave quickly delivered objects to popular-
ity sampling. The function f is the mean latency of all
ever-cached objects. LAC+ is configured with ε = 0.05
and β = γ = 1, relying on its adjunct outlier track-
ing function Θk(·). We report the simulation results in
Fig.2.

First, it appears clearly in Fig.1 that the decision
probability values are predominantly small. The mean
decision probability equals 0.1 for both LAC and LAC+.
This is what drives their joint popularity sampling / la-
tency screening capabilities. Secondly, we can observe
from the plots in Fig.2 that LAC and LAC+ converge
to the same steady state as LCP, which approximates
the optimal LFU behavior. LCP, LAC and LAC+ miss
probabilities coincide even though the former are based
on temporal measurements of residual latency, so adapt-
ing over time based on the sensed variations in terms
of experienced latency. Thirdly, we observe how much
LAC/LAC+ latency-aware technique reduces both de-
livery time mean and standard deviation. It is striking
to see how quickly they converge, compared to classical
LCP. Observe that LAC+ is so efficient that, even in its
symmetric implementation, it captured early the high-
est popular content and made the delivery time drop.
Conversely, the constant decision probability used in
LCP is the average of all latency-aware decision proba-
bilities (p = 0.1) and this impacts negatively the conver-
gence and the system reactivity to temporal variations
of latency, as opposed to our LAC and LAC+ propos-
als. Finally, we observe that LAsym and LRU miss ra-
tio curves coincide in steady state as predicted in [10].
A symmetric filtering of objects to put in and to move

to the cache front has the only effect of slowing down
convergence while not modifying the dynamics of the
underlying Markov chain.

5.2 Ring topology
In this section, we evaluate the consistency of our

algorithms in a network scenario where eleven intercon-
nected core nodes form a ring. Every link at the network
core offers a 80Mbps capacity. Among the core nodes,
three are content producers. Each offers 20, 000 Zipf-
ranked objects from its own catalog. Objects from the
producer at Node 4 are given the prefix /Netflix/, /Or-
ange/ for those from Node 8 and /Youtube/ for those
originating from Node 10. Each object is conveyed in
chunks of 3kB and has a total size of 2MB. Each node
cache can accomodate up to 40 objects. While the skew-
ness of the Zipf-like popularity distribution, α, remains
0.9 for the whole simulation, we inject some time lo-
cality in shuffling every object rank every ten hours.
Clients connect to their closest core node to send in-
terests and retrieve data over dedicated 500Mbps links.
Client requests reaching every core node follow a Pois-
son process with intensity λ = 2 objects/s. Clients are
equally interested in every catalog, so that any of them
addresses every catalog with probability 1/3. Routing is
single path. Fig.3(a) depicts the network setup. LAC+
and ε-LCP share a common value of ε = 0.001. LAC
exploits a different ε = 1 but keeps intensity parameters
β and γ equal to 1.

The striking results in Fig.3(b) show LAC+ decreas-
ing LRU mean delivery time by up to two orders of mag-
nitude. LAC+ clearly outperforms LAC and LCP in en-



(a) Ring topology
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Figure 3: Ring topology with non-stationary workload

suring a content delivery at least twice faster. Moreover,
as witnessed by Fig.2(c) and Fig.2(d), LRU equipped
with the Leave-Copy-Down algorithm denoted by LCD
is surpassed. LAC+ heuristic minimizes the highest link
load in a dynamic way (Fig.3(d)).Thanks to its reac-
tivity to congestion, LAC+ reduces by 30% the mean
delivery time inducted by LCD and by 50% the related
standard deviation.

6. CONCLUSION AND FUTURE WORK
Throughout the paper, we characterized, bounded

and evaluated the performance of latency-aware LRU
caches. The theoretical contribution extends the state-
of-the-art of probabilistic caching analysis. The novel
idea behind ubiquitous latency-awareness is simple, fully
distributed and demonstrated powerful by means of ex-
tensive simulations. By fully distributed, we highlight
the fact that latency-awareness blasting performance is
free of any form of signaling. Actually, making early
caching decisions based on the latency of retrieved ob-
jects will sound increasingly intuitive, especially in the
forthcoming 5G era. The task of accurately modeling
networks of such caches in order to capture their dy-
namics is still ongoing.
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APPENDIX
A. PROOF OF PROPOSITION 1

First, we characterize the arrival process to the front
the LRU cache. Given the insertion probability pk,t, the
Move-to-Front probability at time t, during the time
window τ , for object equals:
Fk(t, τ) = ((1− πk,t) + πk,tpk,t)ϕk,τ

= (1− (1− pk,t)πk,t)ϕk,τ .
That Move-to-Front probability leads to the cache

miss probability in the following way. Under the Che
approximation, the rank-k object miss probability for a
cache under stochastic caching decision satisfies:
Fk(t, τx) = 1− Pk,t[]MTF > x]

= (1− (1− pk,t)πk,t)ϕk,τx .
]MTF denotes the number of distinct objects moved

to the cache front. Upon the assumption that every
object gets eventually cached at least once over time,

Fk(t, τx) ≈ 1−πk,t. Hence, πk,t≈
1− ϕk,τx

1− ϕk,τx(1− pk,t)
.

If we assume that {pk,t}t∈T is ergodic,

E[πk,t] =

∫
[0,1]

1− ϕk,τx
1− ϕk,τx(1− u)

dP[pk,t ≤ u] (9)

=
1

ς(T)

∫
T
πk,u(ω)dς(u) for any outcome ω,

ς denotes the Lebesgue measure

= mk.

πk,t is an instantaneous miss probability that changes
every time a new object arrives to the cache. However,
only the miss ratio Mk i.e. long-term average of a miss
counter Mk,t can be effectively measured. Since the
cache is supposed much smaller than the catalog, 1

mk
is

finite. Thus, W.L. Smith’s elementary renewal theorem
for non-identically distributed variables holds [15] and
the asymptotic miss ratio for the rank-k object equals:
lim
t→∞

1
tMk,t(ω) = Mk = mk for any outcome ω �

B. PROOF OF PROPOSITION 2
Let p

d
= pk,t ∀k, ∀t. Given τx, the miss probabilities

are a convex function of the caching decision probabil-

ities as: ∂2

∂2pπk,t =
2(eλkτx−1)

2(
1+
(
eλkτx−1

)
p
)3 ≥ 0. By Jensen’s

inequality, E[πk,t] ≥ e−λkτx

1−(1−e−λkτx )(1−E[p]) .

Let D = E[πk,t]− e−λkτx

1−(1−e−λkτx )(1−E[p]) be the gap be-

tween the two sides of the inequality. It is easy to ver-
ify that lim

λkτx→∞
D = lim

λkτx→0
D = 0. Also, ∂

∂xτx > 0

holds from [12] Appendix A, which applies the implicit
function theorem over Eq.(6). Furthermore, as p is a
strictly positive random variable, Markov’s inequality
holds and lim

E[p]→0
D = lim

p→0
D = 0. Using the fact that D

is differentiable on its domain and non-negative, it gets
minimal as either λkτx ↑ ∞ or λkτx ↓ 0 or E[p] ↓ 0. All
imply that Eq.(7)’s underestimation of rank-k content
miss ratio shrinks as either the rank-k content request
rate or E[p] get very small, or cache size and rank-k
content request rate get very large �

C. PROOF OF PROPOSITION 3
Let p = E[pk,t],∀k ∈ K at steady state. Let ]k denote

the number of times a rank-k object is moved to the
cache front during a time interval. The mean number
of distinct objects moved to the front of the LRU cache
during τ , as |K| ↑ ∞ and τ ↑ ∞, is:∑

k

E
[
1{]k>0}

]
=
∑
k

(1− e−λkτp) ∼ (λτcp)
1
αΓ
(
1− 1

α

)
in virtue of Lemma 5 of [10]. Hence, the power of α-
magnified mean number of distinct objects moved to
the front of the LRU cache during characteristic time
τsymx :

xα = λτsymx cpΓ
(
1− 1

α

)α ⇒ τsymx = xα(λcp)−1Γ
(
1− 1

α

)−α
.

The rest follows by using the exponential inter-arrival
distribution for an object with rank k �

D. OPTIONAL PROOF OF PROP. 4
Let the miss ratio of all permanently stored objects

admit a sufficiently small value ε as upper bound. Then:

ηasym =
(λcτasymx )

1
α

(log(1 + 1
E[p] (

1
ε − 1)))

1
α

(10)

and

ηsym =
x

Γ(1− 1
α )(− log ε)

1
α

. (11)

Since a first-order Taylor series expansion of ε for
asym-LRU, when E[p]→ 0, yields:

ηasym ∼
E[p]→0

x

Γ(1− 1
α )E[p] log(1 + 1

E[p] (
1
ε − 1))

1
α

, the

ratio of both numbers satisfies:

lim
E[p]→0

ηasym
ηsym

≥ (− log ε)
1
α > 1 �


