
HAL Id: hal-01249435
https://hal.science/hal-01249435v1

Submitted on 1 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LAC: Introducing Latency-Aware Caching in
Information-Centric Networks

Giovanna Carofiglio, Leonce Mekinda, Luca Muscariello

To cite this version:
Giovanna Carofiglio, Leonce Mekinda, Luca Muscariello. LAC: Introducing Latency-Aware Caching in
Information-Centric Networks. Local Computer Networks (LCN) 2015, Oct 2015, Clearwater Beach,
United States. �hal-01249435�

https://hal.science/hal-01249435v1
https://hal.archives-ouvertes.fr

LAC: Introducing Latency-Aware Caching in
Information-Centric Networks

Giovanna Carofiglio∗, Leonce Mekinda†, Luca Muscariello†
∗ Cisco Systems, † Orange Labs Networks,

gcarofig@cisco.com, firstname.lastname@orange.com

Abstract—Latency-minimization is recognized as one of the
pillars of 5G network architecture design. Information-Centric
Networking (ICN) appears a promising candidate technology
for building an agile communication model that reduces latency
through in-network caching. However, no proposal has developed
so far latency-aware cache management mechanisms for ICN.
In the paper, we investigate the role of latency awareness on
data delivery performance in ICN and introduce LAC, a new
simple, yet very effective, Latency-Aware Cache management
policy. The designed mechanism leverages in a distributed fashion
local latency observations to decide whether to store an object
in a network cache. The farther the object, latency-wise, the
more favorable the caching decision. By means of simulations,
show that LAC outperforms state of the art proposals and results
in a reduction of the content mean delivery time and standard
deviation by up to 50%, along with a very fast convergence to
these figures.

I. INTRODUCTION

Latency minimization, or building for virtual zero latency
as commonly referred to, is one of the pillars of 5G network
architecture design and is currently fostering important re-
search work in this space. Inserting cache memories across
the communication data path between different processing
elements has been already demonstrated to be a reliable way
of improving performance by caching - especially popular -
content at network edge and so, reducing retrieval latency.

Besides other advantageous architectural choices, the in-
troduction of in-network caching as a native building block
of the network design makes Information Centric Networking
(ICN) [5] a promising 5G network technology. In a nutshell,
every ICN router potentially manages a cache of previously
requested objects in order to improve object delivery by
reducing retrieval path length for frequently requested content.
In fact, if content is locally available in the cache, the router
sends it back directly to the requester, otherwise it forwards the
request (or Interest) for the object to the next hop according to
name-based routing criteria. When the requested object comes
back, it is stored in the local cache before sending it back
to the requester. Given cache size limitations, a replacement
policy is put in place to evict previously stored objects
for accommodating the newly available ones. To this aim,
various classical cache replacement policies, not specifically
ICN-based exist: to cite a few, Least-Recently-Used (LRU),
Least-Frequently-Used (LFU), First-In-First-Out (FIFO) and
Random (RND) [3]. Within the panoply of cache management
policies proposed in the literature, very few exploit object
retrieval latency to orchestrate cache decisions. Some requires

transport protocol modifications [13] or involve additional
computational complexity [15] without significant caching
performance increase.

Clearly, the constraints imposed by ICN in terms of high
speed packet processing exclude every complex cache man-
agement policy. Therefore, we focus in this paper on a simple,
hence feasible, cache management policy leveraging not only
the objects replacement, but the cache insertion criterion, that
we define based on monitored object latency.

The cache management mechanism we propose in this
paper, LAC, lies upon the following principle: every time
an object is received from the network, it is stored into the
cache with a probability proportional to its recently observed
retrieval latency. As such, it is an add-on laying on top of
any cache replacement policy and feeding it at a regulated
pace. In this way, LAC implicitly prioritizes long-to-retrieve
objects, instead of caching every object regardless. The under-
lying tradeoff such caching mechanism tackles is between a
limited cache size and delivery time minimization. As caching
intrinsically aims to relieve the fallouts of network distance or
traffic congestion, it must be aware of both delay factors to
efficiently handle the cache size / delivery time tradeoff. Data
retrieval latency is a simple, locally measurable and consistent
metric for revealing either haul distance or traffic congestion.

II. RELATED WORK

In the context of ICN research, previous work have con-
sidered the enhancement of cache mechanisms with the
aim of reducing caching redundancy over a delivery path.
We can distinguish two categories of related work: those
leveraging content placement (e.g. [17], [8]) as opposed to
those proposing caching mechanisms based on selective inser-
tion/replacement in cache (e.g. [13], [1], [4], [9]). The first
class of approaches has a limited applicability to controlled
environments like a CDN (Content Delivery Network), where
topology and content catalog are known a priori. Both [17]
and [8] deal with video streaming in ICN and orchestrate
caching and scheduling of requests to caches in order to
create a cluster of caches with a certain number of guaranteed
replicas ([8]). Unlike these approaches, our work belongs to
the second class of caching solutions and aims at defining
a decentralized caching solution that automatically adapts
to changes in content popularity, network variations etc. by
leveraging content insertion/replacement operations in cache.
We share the same objective as [1], where authors propose

a congestion-aware caching mechanism for ICN based on
estimation of local congestion, of popularity and of position
with regard to the bottleneck. The congestion estimate in this
work does not allow to differentiate content items in terms
of latency like in our work. A similar consideration holds
for other related approaches: the ProbCache work in [13],
which utilizes the same cache probability for every content
item at a given node and the cooperative caching mechanism
in [4]- [9] exploiting overall popularity and distance-to-server.
Clearly, the rationale is the same, but the distance-to-server
metric does not reflects the differences in terms of latency,
distance to bottleneck on a per-flow basis that our approach
takes into account. Beyond ICN, caching literature is vast
[12] and our review here does not attempt to be exhaustive,
while rather to position our contribution with regard to closest
classical caching approaches. Starobinski et al. [14] and later
Jelenković et al. [6] describe a cache management mechanisms
to optimize the storage of variable size documents. In their
work, the whole Move-To-Front rule is symmetric, i.e. applied
in both hit and miss events (as for LRU, LFU etc.) while
our approach, instead, may be denoted as asymmetric, since it
restricts the stochastic decision of MTF to cache miss events,
leaving object replacement subject to deterministic LRU.

III. PROBLEM FORMULATION AND DESIGN CHOICES

The problem of improving end-user delivery performance
can be formulated as the minimization of the overall average
delivery time E[T] for all users in the network and over all
requested objects.

min
∑
u∈U

∑
k∈K

∑
r∈Ru,k

qk,uwk,r,uE[Tk,r,u] (1)

∑
k

qk,u = 1, ∀u (2)∑
r

wk,r,u = 1, ∀k, u (3)

0 6 qk,u 6 1 ∀k, u (4)
0 6 wk,r,u 6 1 ∀k, r, u (5)

where qk,u is the normalized request rate of object k from user
u (namely, the popularity function at user u), and wk,r,u is the
probability to download object k from route r and E[Tk,r,u]
is the average latency to retrieve object k on route r. The set
of routes available at user u is identified by Ru,k.

In this paper we look for a distributed algorithm that tries
to minimize this objective by obtaining wk,r,u without any
coordination among the nodes and no signaling. The optimal
objective expressed in Eq.(1) can be heuristically generalized
to every node n in the network by substituting qk,u with the
local residual popularity qk(n) at node n and E[Tk,r,u] with
the local virtual residual round trip time for object k on route
r, denoted by E[VRTTk,r(n)]. Hence we set the probability
to store an object k at a given node n, proportional to the
popularity and latency locally observed at node n. It is left to
future work to prove that this distributed heuristic is actually
optimal. The intuition behind Eq.(1) is that user u downloads

an object k from a remote path r inversely proportional to its
popularity and retrieval latency. A globally optimal strategy
performed in each node would heuristically prefer to locally
cache popular content and with high retrieval latency.

In this paper we design a heuristic based on the afore-
mentioned criterion. Thus, our general formulation of the
probability to cache a requested object k on node n at time i,

pk,r,i(n) ∝ min

(
(VRTTk,r,i(n))

β(
f
(
(VRTTt(n))t<i

))γ , 1
)

(6)

(VRTTt(n))t<i denotes all priorly encountered object re-
trieval latencies. Object retrieval latency includes processing,
queuing, transmission and propagation delays. f is a real-
valued function that might be, for example, a mean, the median
or the maximum of the encountered latencies. It embodies
the cache state in a single metric for confrontation with the
new object to store. β and γ are intensity parameters. They
aim at stressing the rejection of easy-to-retrieve objects. ∝
means “is proportional to”. The object retrieval latency and
the probability of caching it are, hereby, made proportional.
Note that the caching decision may cumulatively depend on
another fixed or dynamic factors (such as the outcome of
another random experiment).

IV. PERFORMANCE EVALUATION

We implement and test LAC by means of simulations
carried out with the packet-level NDN simulator CCNPL-Sim
(http://systemx.enst.fr/ccnpl-sim). LAC, our latency-aware
LRU, is tested against two other fully distributed caching
management mechanisms: LRU+Leave-Copy-Probabilistically
(LCP) and LRU [7] [16]. By fully distributed, we mean
mechanisms that do not require the exchange of any specific
signaling between caches. Similarly to [1] [11], the content
requests are assumed to follow a Poisson process with a 1
object/s rate. Objects are requested over a catalog of 20,000
Zipf-ranked objects with skewness α = 1.7. Previous works
have also modeled content popularity distribution as Zipf-like
[2] and infer identical skewness [10]. We evaluated LAC with
function f set to the mean latency of all ever-cached objects.

 Cache 3 Cache 2 Cache 1

Consumers

Producer

200Kbps 300Kbps 200Kbps 30Kbps

Poisson λ=1 file/s
1 file = 1 chunk = 10KB
 C3 = 8 files C2 = 8 files C1 = 8 files

20,000 files

Fig. 1: Simulated line topology.

1) Line topology network: First, we consider the setting in
Fig. 1, with three caching nodes in-line between the users and
the publishing server. The four links from the consumers up
to the publisher have capacities equal to 300Kbps, 200Kbps,
200Kbps and 30Kbps respectively. Cache sizes are equal to
80KBytes. Each object has an average size of 10KBytes,
that we also take as fixed packet size. LCP is parametrized
with the probability p = 0.1 and corresponds to the lowest

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

M
is

s
p

ro
b
ab

il
it

y

Object rank k

LRU 1
LRU 2
LRU 3
LCP 1
LCP 2
LCP 3

LRU overall
LCP overall

(a) LRU and LCP miss probability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

M
is

s
p

ro
b
ab

il
it

y

Object rank k

LAC 1
LAC 2
LAC 3

LAC overall

(b) LAC miss probability

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20

D
el

iv
er

y
 t

im
e

[s
]

Object rank k

LRU
LCP
LAC

(c) Delivery time vs content rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12

M
ea

n
 d

el
iv

er
y

 t
im

e
[s

]

Time [h]

LRU
LCP
LAC

(d) Evolution of the mean delivery time

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12

z 0
.0

2
5
 x

 D
el

iv
er

y
 t

im
e

S
td

d
ev

 [
s]

Time [h]

LRU
LCP
LAC

(e) Evolution of the delivery time stan-
dard deviation

Fig. 2: Line topology simulation: LAC decreases LRU delivery time by 50% and outperforms LCP on convergence.

mean latency-aware caching decision probability, Cache 3’s.
We configure LAC with β = γ = 5 to stress the rejection of
quickly delivered objects. Related results are reported in Fig.
2. The resulting link load ρ on downlinks from the repository
to the users is respectively : (0.5, 0.01, 0.03, 0.27) under LRU,
(0.27, 0.02, 0.02, 0.27) under LCP and (0.22, 0.04, 0.06, 0.27)
under LAC.

Clearly, the expensive traffic to the publisher decreases
significantly with LAC, while very little increase can be
observed on the other links. The tremendous gain in delivery
time (50% of LRU’s) can be appreciated in both its first
and second moments. Such a delivery time standard deviation
decrease plays a central role in stabilizing customers quality
of experience.

2) Tree topology network: The next results are those
achieved in the ICN setting in Fig. 3, spanning a binary tree
topology whose seven caching nodes are spread over three
network levels, between the users and the repository (publish-
ing server). In this configuration, cache sizes are 8MBytes.
Object size is taken equal to 1 MB. Downlink capacities from
the users up to the repository are 30Mbps-capable, except the
last one toward the repository, which is 9Mbps. Each packet
has an average size of 10KBytes, making every object equal
to 100 packets in size. Caches are equipped for LAC decision,
with β = γ = 3. Cache 4 is on the first layer (the closest to
the consumers), Cache 8 on the second layer and Cache 10
on the third (the farthest to the users). LCP’s p = 0.03. That
corresponds to LAC’s mean latency-aware caching decision
probability. We report the related charts in Fig. 4.

The observed link load ρ on downlinks from the repository
to the users is respectively: (0.7, 0.31, 0.18, 0.6) under LRU,
0.7, 0.07, 0.33, 0.6) under LCP and (0.7, 0.12, 0.23, 0.6) under
LAC. Again, our LAC mechanisms allows to lower maximum
and average link load over the network. So, even though LAC
reduces by half LRU’s load between layer 3 and layer 2 caches,

Cache 5

Producer
20,000 files

30Mbps

9Mbps

Poisson λ=1 file/s
1 file = 100 chunks = 1MB

Every cache capacity = 8 files
Cache 10

Consumers Consumers Consumers

Cache 6

Consumers

Cache 9

Cache 7

Cache 8

Cache 4

30Mbps

30Mbps

Fig. 3: Simulated tree topology

it still rely on caching delegation, which implies some inter-
cache traffic.

Finally, we observe as a general rule that implementing LAC
decreases the overall cache miss probability i.e. the probability
that all solicited caches fail to serve the requested object.
It also decreases and stabilizes the overall object delivery
time. Indeed, the mean delivery time and the 95% confidence
interval around the average, both decrease by up to 50%.
Note also that this overall improvement is not achieved to the
detriment of the convergence speed, unlike LCP. The latter,
indeed, exhibits tremendously slow convergence and extremely
high delivery time standard deviation.

V. CONCLUSION AND FUTURE WORK

In the paper, we showed the benefits of leveraging latency
for caching decisions in ICN and proposed LAC, a latency-
aware cache management policy that bases cache insertion

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

M
is

s
p

ro
b
ab

il
it

y

Object rank k

LRU 4
LRU 8

LRU 10
LCP 4
LCP 8

LCP 10
LRU overall
LCP overall

(a) LRU and LCP miss probability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

M
is

s
p

ro
b
ab

il
it

y

Object rank k

LAC 4
LAC 8

LAC 10
LAC overall

(b) LAC miss probability

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

D
el

iv
er

y
 t

im
e

[s
]

Object rank k

LRU
LAC

(c) Delivery time vs content rank (vs
LRU)

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

D
el

iv
er

y
 t

im
e

[s
]

Object rank k

LCP
LAC

(d) Delivery time vs content rank (vs
LCP)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12
M

ea
n

 d
el

iv
er

y
 t

im
e

[s
]

Time [h]

LRU
LCP
LAC

(e) Evolution of the mean delivery time

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12

z 0
.0

2
5
 x

 D
el

iv
er

y
 t

im
e

S
td

d
ev

 [
s]

Time [h]

LRU
LCP
LAC

(f) Evolution of the delivery time stan-
dard deviation

Fig. 4: Tree topology simulation: LAC decreases LRU delivery time by 30% and outperforms LCP on convergence.

decisions on measurements of residual latency over time on
a per-object basis. While keeping the same low complexity
as standard LRU with probabilistic cache insertion, it pro-
vides a finer-grained differentiation of content in terms of
expected residual latency. Two main advantages have been
demonstrated: (i) superior performance in terms of realized
delivery time at the end-user plus maximum and average
link load reduction, when compared to classical LRU and
probabilistic caching approaches; (ii) faster convergence with
regard to probabilistic caching approaches along with reduced
standard deviation.

We leave for future work a thorough characterization of
LAC dynamics, especially in a network of caches, where
the coupling with hop-by-hop forwarding may be addressed
through a joint optimization. The sensitivity to variations
in network conditions and routing will also be investigated
to highlight the benefit in terms of self-adaptiveness of a
measurement-based approach with regard to classical latency-
insensitive approaches.

REFERENCES

[1] M. Badov, A. Seetharam, J. Kurose, V. Firoiu, and S. Nanda.
Congestion-aware caching and search in information-centric networks.
In Proceedings of the 1st International Conference on Information-
centric Networking, ICN ’14, pages 37–46, New York, NY, USA, 2014.
ACM.

[2] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker. Less pain, most of the gain:
Incrementally deployable icn. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, pages 147–158, New
York, NY, USA, 2013. ACM.

[3] M. Gallo, B. Kauffmann, L. Muscariello, A. Simonian, and C. Tanguy.
Performance evaluation of the random replacement policy for networks
of caches. CoRR, abs/1202.4880, 2012.

[4] A. Ioannou and S. Weber. Towards on-path caching alternatives in
information-centric networks. In Local Computer Networks, 2014 IEEE
International Conference on, 2014.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Networking named content. In Proceedings of the
5th International Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’09, pages 1–12, New York, NY, USA, 2009.
ACM.

[6] P. R. Jelenković and A. Radovanović. Optimizing lru caching for
variable document sizes. Comb. Probab. Comput., 13(4-5):627–643,
July 2004.

[7] N. Laoutaris, S. Syntila, and I. Stavrakakis. Meta algorithms for hierar-
chical web caches. In Performance, Computing, and Communications,
2004 IEEE International Conference on, pages 445–452, 2004.

[8] Z. Ming, X. Mingwei, and D. Wang. Time-shifted tv in content
centric networks: The case for cooperative in-network caching. In
Proceedings of the IEEE International Conference on Communications,
2011, ICC’11, 2011.

[9] Z. Ming, X. Mingwei, and D. Wang. Age-based cooperative caching in
information-centric networks. In Proceedings of the IEEE Nomen 2012,
Nomen’12, 2012.

[10] S. Mitra, M. Agrawal, A. Yadav, N. Carlsson, D. Eager, and A. Mahanti.
Characterizing web-based video sharing workloads. ACM Trans. Web,
5(2):8:1–8:27, May 2011.

[11] S. Oueslati, J. Roberts, and N. Sbihi. Flow-aware traffic control for a
content-centric network. In INFOCOM, 2012 Proceedings IEEE, pages
2417–2425, March 2012.

[12] S. Podlipnig and L. Böszörmenyi. A survey of web cache replacement
strategies. ACM Comput. Surv., 35(4):374–398, Dec. 2003.

[13] I. Psaras, W. K. Chai, and G. Pavlou. Probabilistic in-network caching
for information-centric networks. In Proceedings of the Second Edition
of the ICN Workshop on Information-centric Networking, ICN ’12, pages
55–60, New York, NY, USA, 2012. ACM.

[14] D. Starobinski and D. Tse. Probabilistic methods for web caching.
Perform. Eval., 46(2-3):125–137, Oct. 2001.

[15] J. Tong, G. Wang, and X. Liu. Latency-aware strategy for static list
caching in flash-based web search engines. In Proceedings of the
22Nd ACM International Conference on Information and Knowledge
Management, CIKM ’13, pages 1209–1212, New York, NY, USA, 2013.
ACM.

[16] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie. Optimal cache allocation
for content-centric networking. In IEEE Intl. Conference on Network
Protocols, 2013.

[17] Y.-T. Y. Yu, F. Bronzino, R. Fan, C. Westphal, and M. Gerla. Congestion-
aware edge caching for adaptive video streaming in information-centric
networking. In CCNC’15, 2015.

