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We show that a class of Poincaré-Wirtinger inequalities on bounded convex sets can be obtained by means of the dynamical formulation of Optimal Transport. This is a consequence of a more general result valid for convex sets, possibly unbounded.

In the particular case r = p, we will omit to indicate it and simply write W 1,p (Ω) and Ẅ1,p (Ω). The aim of this note is to prove some functional inequalities for the space Ẅ1,p r (Ω), by means of Optimal Transport techniques. The use of Optimal Transport to prove functional and geometric inequalities is nowadays classical. We are not concerned here with geometric inequalities, thus we only refer to Sections 2.5.3 and 7.4.2 of [22] for a brief discussion on the subject (in particular on the isoperimetric and the Brunn-Minkowski inequalities). As for functional inequalities obtained via Optimal Transport techniques, which is the main concern of this paper, after the fundamental paper [7] the literature on the subject is now quite rich. In addition to [7], we encourage the reader to look in details into the papers [3,[START_REF] Cordero-Erausquin | Some applications of mass transport to Gaussian type inequalities[END_REF]13,[START_REF] Maggi | Balls have the worst best Sobolev inequalities[END_REF] and [START_REF] Nazaret | Best constant in Sobolev trace inequalities on the half space[END_REF], for example.

However, it is useful to observe that most of these papers use the geometric properties of the optimal transport map as a tool to obtain a clever change-of-variable. This is indeed the case for the transport-based proof of the isoperimetric, Sobolev and Gagliardo-Nirenberg inequalities. We could say that they are based on the "statical" version of Optimal Transport problems.

On the contrary, the proof that we propose here is based on the "dynamical" counterpart of Optimal Transport (the so-called Benamou-Brenier formula, see [5]) and on displacement convexity considerations, see [17]. In this respect, it can be more suitably compared to the transport-based proof of the Brunn-Minkowski inequality.

It is also useful to remark that while the above cited papers deal with functional inequalities which are invariant for the trasformation φ → |φ|, such as Sobolev and Gagliardo-Nirenberg ones, this is not the case here. Indeed, if a function φ belongs to our space Ẅ1,p r (Ω), then |φ| ∈ Ẅ1,p r (Ω). Thus, in order to prove our main result (see Theorem 1.1 below), we can not reduce to the case of positive functions and then use an optimal transport to transform any positive function φ into an extremal of the relevant functional inequality, as in [7]. Roughly speaking, what we do is to perform an optimal transport between the positive and negative parts φ + and φ -(suitably renormalized).

Our proof has some points in common with the one presented by Rajala in [START_REF] Rajala | Local Poincaré inequalities from stable curvature conditions on metric spaces[END_REF], which is valid in general metric measure spaces under Ricci curvature conditions. Indeed, it is wellknown that Ricci curvature conditions are linked to the displacement convexity of suitable functionals (see for instance the work [START_REF] Lott | Weak curvature conditions and functional inequalities[END_REF] by Lott and Villani, to which [START_REF] Rajala | Local Poincaré inequalities from stable curvature conditions on metric spaces[END_REF] is inspired). However, even if the result of [START_REF] Rajala | Local Poincaré inequalities from stable curvature conditions on metric spaces[END_REF]Theorem 1.1] holds in a much more general setting, we stress that the tools used in [START_REF] Rajala | Local Poincaré inequalities from stable curvature conditions on metric spaces[END_REF] are not the same as ours. Moreover, the result of [START_REF] Rajala | Local Poincaré inequalities from stable curvature conditions on metric spaces[END_REF] only concerns with Poincaré inequalities on balls in the case q = 1 (with our notation below).

Main result.

In order to neatly present the main result, we first need to recall some basic definitions and notations.

We indicate by P(Ω) the set of all Borel probability measures over Ω. Then for 1 < m < ∞, we define

(1.1) P m (Ω) = µ ∈ P(Ω) : ˆΩ |x| m dµ < ∞ ,
i.e. the set of probability measure over Ω with finite moment of order m. For every µ, ν ∈ P m (Ω) their m-Wasserstein distance is defined through the optimal transport problem

W m (µ, ν) = min γ∈Π(µ,ν) ˆΩ×Ω |x -y| m dγ 1 m
.

Here Π(µ, ν) ⊂ P(Ω × Ω) is the set of transport plans, i.e. the probability measures on the product space Ω × Ω such that

γ(A × Ω) = µ(A) γ(Ω × B) = ν(B), for every A, B ⊂ Ω Borel sets.
In what follows, we will note by L N the N -dimensional Lebesgue measaure. For a function f ∈ L 1 , the writing

µ = f • L N ,
will indicate the Radon measure which is absolutely continuous with respect to L N and whose Radon-Nikodym derivative is given by f . In this note we prove the following scaling invariant inequality, which is valid for general convex sets.

Theorem 1.1. Let 1 < p < ∞ and 1 < q < p. Let Ω ⊂ R N be an open convex set. For every φ ∈ Ẅ1,p q-1 (Ω) such that ˆΩ |x| p p-q |φ| q-1 dx < ∞,
we define the two probability measures ρ 0 , ρ 1 ∈ P p/(p-q) (Ω)

ρ 0 = |φ| q-2 φ + ˆΩ |φ| q-2 φ + dx • L N and ρ 1 = |φ| q-2 φ - ˆΩ |φ| q-2 φ -dx • L N .
Then there holds

(1.2) ˆΩ |φ| q dx p-q+1 ≤ W p p-q (ρ 0 , ρ 1 ) p 2 p-1 ˆΩ |∇φ| p dx ˆΩ |φ| q-1 dx p-q .
The proof of this result is postponed to Section 3. We point out that inequality (1.2) in turn implies a handful of Poincaré-type inequalities with explicit constants. The reader is invited to jump directly to Section 4 in order to discover them. In particular, as a corollary we can obtain a lower bound for the first non-trivial Neumann eigenvalue of the p-Laplacian, see Corollary 4.5. This can be seen as a weak version of the Payne-Weinberger inequality (see [4,[START_REF] Ferone | A remark on optimal weighted Poincaré inequalities for convex domains[END_REF][START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF]): though the explicit constant we get is not optimal, we believe the method of proof to be of independent interest. Remark 1.2. We point out that the hypothesis φ ∈ L q (Ω) is not needed in Theorem 1.1. Rather, inequality (1.2) permits to show that on a convex set, functions in Ẅ1,p q-1 (Ω) and with finite moment of order p/(p -q) are automatically in L q (Ω).
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Preliminaries

2.1. An embedding result. We will need a couple of basic inequality for Sobolev spaces in bounded sets. The proofs are standard, but we give it for the reader's convenience. The values of the constants appearing in the inequalities below will have no bearing in what follows.

Lemma 2.1. Let 1 < p < ∞ and let Ω ⊂ R N be an open connected and bounded set, with Lipschitz boundary. Then for every φ ∈ W 1,p (Ω) we have

(2.1) ˆΩ |φ| p dx ≤ C |Ω| |A φ | ˆΩ |∇φ| p dx, A φ := {x ∈ Ω : |φ(x)| = 0}, for some C = C(N, p, Ω) > 0.
Proof. The proof is an adaptation of that of [START_REF] Giusti | Direct Methods in the Calculus of Variations[END_REF]Theorem 3.16]. We first observe that if we indicate by φ Ω the mean of φ over Ω, then

|A φ | |φ Ω | p = ˆAφ |φ Ω | p dx = ˆAφ |φ -φ Ω | p dx ≤ ˆΩ |φ -φ Ω | p dx.
By using this information, with elementary manipulations we then get

ˆΩ |φ| p dx ≤ 2 p-1 ˆΩ |φ -φ Ω | p dx + 2 p-1 |Ω| |A φ | ˆΩ |φ -φ Ω | p dx.
We can conclude by applying Poincaré inequality for functions with vanishing mean, see for example [START_REF] Giusti | Direct Methods in the Calculus of Variations[END_REF]Theorem 3.14].

The next interpolation inequality for the Sobolev space W 1,p r (Ω) will be useful.

Lemma 2.2. Let 1 < p < ∞ and 0 < r < p. Let Ω ⊂ R N be a open connected and bounded set with Lipschitz boundary. Then W 1,p r (Ω) ⊂ L p (Ω). More precisely, for every φ ∈ W 1,p r (Ω) we have

ˆΩ |φ| p dx ≤ C ˆΩ |∇φ| p dx + C ˆΩ |φ| r dx p r , for some C = C(N, p, Ω) > 0.
Proof. Given φ ∈ W 1,p r (Ω), for every t > 0 and M > 0 we define

φ t (x) = (|φ(x)| -t) + and φ t,M (x) = min{φ t (x), M }.
The function φ t,M belongs to W 1,p (Ω) and by Chebyshev's inequality

(2.2) |A t,M | := {x ∈ Ω : φ t,M (x) = 0} ≤ 1 t r ˆΩ |φ| r dx.
From (2.1) we get

ˆΩ |φ t,M | p dx ≤ C |Ω| |Ω \ A t,M | ˆΩ |∇φ t,M | p dx,
and observe that from (2.2)

|Ω| |Ω \ A t,M | = |Ω| |Ω| -|A t,M | ≤ 1 2 , if we choose t = 2 |Ω| 1/r φ L r (Ω) .
We thus obtain

ˆΩ |φ t,M | p dx ≤ C 2 ˆΩ |∇φ| p dx.
It is now possible to take the limit as M goes to ∞, thus getting by Fatou's Lemma

ˆΩ |φ t | p dx ≤ C 2 ˆΩ |∇φ| p dx.
By recalling the choice of t and observing that |φ| ≤ t+φ t , we get the desired conclusion.

2.2. Some tools from Optimal Transport. We recall a couple of standard result in Optimal Transport, that will be needed for the proof of the main result. For more details, the reader is invited to refer to classical monographs such as [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measure[END_REF] or [START_REF] Villani | Topics in optimal transportation[END_REF], or to the more recent one [22].

Definition 2.3. The m-Wasserstein space over Ω is the set P m (Ω) defined in (1.1), equipped with Wasserstein the distance W m . This metric space will be denoted by W m (Ω).

The first important tool we need is a characterization of geodesics in the Wasserstein space. This is essentially a refined version of the celebrated Benamou-Brenier formula, firstly introduced in [5]. The proof can be found in [22, Theorem 5.14 & Proposition 5.30].

Proposition 2.4 (Wasserstein geodesics). Let 1 < m < ∞ and let Ω ⊂ R N be an open bounded convex set. Let ρ 0 , ρ 1 ∈ W m (Ω), then there exists an absolutely continuous curve (µ t ) t∈[0,1] in the Wasserstein space W m (Ω) and a vector field v t ∈ L m (Ω; µ t ) such that

• µ 0 = ρ 0 and µ 1 = ρ 1 ;

• the continuity equation

∂ t µ t + div(v t µ t ) = 0, in Ω, v t , ν Ω = 0, on ∂Ω holds in distributional sense, i.e. for every φ ∈ C 1 ([0, 1] × Ω) there holds ˆ1 0 ˆΩ ∂ t φ dµ t dt + ˆ1 0 ˆΩ ∇φ, v t dµ t dt = ˆΩ φ(1, •) dρ 1 -ˆΩ φ(0, •) dρ 0 ; • we have ˆ1 0 v t L m (Ω;µt) dt = W m (ρ 0 , ρ 1 ).
The other expedient result from Optimal Transport we need is the following convexity property of L q norms. For m = 2, the following one is a particular case of a result by McCann, see [17]. The proof can be found, for instance, in [22, Theorem 7.28].

Proposition 2.5 (Geodesic convexity of

L p norms). Let 1 < m < ∞ and let Ω ⊂ R N be an open bounded convex set. Let ρ 0 = f 0 • L N and ρ 1 = f 1 • L N be two probability measures on Ω, such that f 0 , f 1 ∈ L q (Ω) for some 1 ≤ q ≤ ∞. If (µ t ) t∈[0,1] ⊂ W m (Ω)
is the curve of Theorem 2.4, then we have

µ t = f t • L N and f t L q (Ω) ≤ (1 -t) f 0 q L q (Ω) + t f 1 q L q (Ω) 1 q , t ∈ [0, 1].
3. Proof of the main result 3.1. An expedient estimate. We first need the following preliminary result. The idea of the proof is similar to that of [11, Proposition 2.6] and [15, Lemma 3.5], though the final outcome is different. We also cite the short unpublished note [START_REF] Peyre | Non-asymptotic equivalence between W2 distance and H -1 norm[END_REF] containing interesting uniform estimates on these topics.

Lemma 3.1. Let 1 < q < p < ∞ and let Ω ⊂ R N be an open and bounded convex set. For every φ ∈ W 1,p (Ω) and every

f 0 , f 1 ∈ L q ′ (Ω) such that ˆΩ f 0 dx = ˆΩ f 1 dx = 1, f 0 , f 1 ≥ 0, we have ˆΩ φ (f 1 -f 0 ) dx ≤ W p p-q (ρ 0 , ρ 1 ) ∇φ L p (Ω)    f 0 q ′ L q ′ (Ω) + f 1 q ′ L q ′ (Ω) 2    q-1 p , (3.1)
where ρ i = f i • L N , i = 0, 1,
Proof. Let us first suppose that φ ∈ C 1 (Ω). In this case we clearly have C 1 (Ω) ⊂ W 1,p (Ω). Then, by using Propositions 2.4 and 2.5 with ρ 0 = f 0 •L N and ρ 1 = f 1 •L N and observing that φ does not depend on t, with the previous notation we can infer

ˆΩ φ (f 1 -f 0 ) dx = ˆ1 0 ˆΩ ∇φ, v t f t dx dt ≤ ˆ1 0 ˆΩ |∇φ| p q f t dx dt q p ˆ1 0 ˆΩ |v t | r f t dx dt 1 r ≤ ˆ1 0 ˆΩ |∇φ| p dx dt 1 p ˆ1 0 f t q ′ L q ′ (Ω) dt q-1 p W r (ρ 0 , ρ 1 ),
where for notational simplicity we set r := p/(p -q). Observe that the last term is finite, since f t ∈ L q ′ (Ω) and its L q ′ norm is integrable in time, thanks to Proposition 2.5. Since φ does not depend on t, from the previous estimate we get in particular

ˆΩ φ (f 1 -f 0 ) dx ≤ W r (ρ 0 , ρ 1 ) ∇φ L p (Ω) ˆ1 0 f t q ′ L q ′ (Ω) dt q-1 p
.

We now observe that by Proposition 2.5

ˆ1 0 f t q ′ L q ′ (Ω) dt ≤ ˆ1 0 f 0 q ′ L q ′ (Ω) + t f 1 q ′ L q ′ (Ω) -f 0 q ′ L q ′ (Ω) dt = f 0 q ′ L q ′ (Ω) + f 1 q ′ L q ′ (Ω)
2 .

thus we obtain the desired estimate (3.1), for Ω bounded and φ ∈ C 1 (Ω). we get the general case by using the density of

C 1 (Ω) in W 1,p (Ω), see [16, Theorem 1, Section 1.1.6].
3.2. Proof of Theorem 1.1. We divide the proof in two steps: we first prove the inequality for bounded convex sets and then consider the general case. For the sake of simplicity, we set again r := p/(p -q).

Bounded convex sets. Let φ ∈ Ẅ1,p q-1 (Ω) \ {0}, the hypothesis ´Ω |φ| p-2 φ = 0 implies (3.2) ˆΩ |φ| q-1 dx = 2 ˆΩ |φ| q-2 φ + dx = 2 ˆΩ |φ| q-2 φ -dx.
By Lemma 2.2, we have φ ∈ W 1,p (Ω) as well, thus we can now apply (3.1) with the choices

ρ 1 = f 1 • L N := |φ| q-2 φ + ˆΩ |φ| q-2 φ + dx • L N and ρ 0 = f 0 • L N = |φ| q-2 φ - ˆΩ |φ| q-2 φ -dx • L N .
For the left-hand side of (3.1), by using (3.2) we get

ˆΩ φ (f 1 -f 0 ) dx = 2 ˆΩ |φ| q dx ˆΩ |φ| q-1 dx .
For the right-hand side of (3.1), we observe that again by (3.2) and using that

|φ| q-2 φ + = φ q-1 + , |φ| q-2 φ -= φ q-1 -,
we get

f 0 q ′ L q ′ (Ω) + f 1 q ′ L q ′ (Ω) = ˆΩ |φ| q-2 φ - q q-1 dx ˆΩ |φ| q-2 φ -dx q q-1 + ˆΩ |φ| q-2 φ + q q-1 dx ˆΩ |φ| q-2 φ + dx q q-1 = 2 q q-1 ˆΩ |φ| q dx ˆΩ |φ| q-1 dx q q-1 .
Then from (3.1) we finally obtain

ˆΩ |φ| q dx ˆΩ |φ| q-1 dx ≤ W r (ρ 0 , ρ 1 ) 2 p-1 p ˆΩ |∇φ| p dx 1 p ˆΩ |φ| q dx q-1 p ˆΩ |φ| q-1 dx q p .
After a simplification, this proves the desired inequality (1.2) when Ω is a bounded set.

General convex sets.

Let us now assume that Ω is a generic open convex set and φ ∈ Ẅ1,p q-1 (Ω). We can suppose that the origin belongs to Ω, then for k ∈ N \ {0} we define

Ω k = {x ∈ Ω : |x| < k} and δ k =      ˆΩk |φ + | q-1 dx ˆΩk |φ -| q-1 dx      1/(q-1)
.

Note that, at least for k large, δ k is well-defined, since

lim k→∞ ˆΩk |φ -| q-1 dx = ˆΩ |φ -| q-1 dx,
and the last quantity is strictly positive, unless φ = 0 (in this case there would be nothing to prove). The function

φ k = φ + -δ k φ -belongs to Ẅ1,p q-1 (Ω k ), by construction. Moreover, since φ ∈ Ẅ1,p q-1 (Ω), we have (3.3) lim k→∞ δ k = 1.
We also set

ρ 1,k := |φ k | q-2 (φ k ) + ˆΩk |φ k | q-2 (φ k ) + dx • L N = |φ| q-2 φ + ˆΩk |φ| q-2 φ + dx • L N and ρ 0,k := |φ k | q-2 (φ k ) - ˆΩk |φ k | q-2 (φ k ) -dx • L N = |φ| q-2 φ - ˆΩk |φ| q-2 φ -dx • L N .
Since Ω k is bounded, from the previous step we obtain (3.4)

ˆΩk |φ k | q dx p-q+1 ≤ (W r (ρ 0,k , ρ 1,k )) p 2 p-1 ˆΩk |∇φ k | p dx ˆΩk |φ k | q-1 dx p-q
.

We now observe that

lim k→∞ W r (ρ 0,k , ρ 1,k ) = W r (ρ 0 , ρ 1 ).
Indeed, it is enough to remark that we have ρ i,k → ρ i in W r (Ω) for i = 0, 1. This follows from the fact that the convergence in W r is equivalent to the weak convergence plus the convergence of the moments of order r (see for instance [22, Theorem 5.11]). Both conditions are easily seen to hold true here. Moreover, by construction we have

|φ k | q-1 • 1 Ω k ≤ (max{1, δ k }) q-1 |φ| q-1 • 1 Ω ,
and

|∇φ k | p • 1 Ω k ≤ (max{1, δ k }) p |∇φ| p • 1 Ω .
If we use (3.3), we can pass to the limit as k goes to ∞ in (3.4), by using the Dominated Convergence Theorem on the right-hand side and Fatou's Lemma on the left-hand side. This finally gives (1.2) for a generic function φ ∈ Ẅ1,p q-1 (Ω).

Some consequences

In this section, we discuss some functional inequalities which are contained in nuce in Theorem 1.1. 4.1. General convex sets. We start with the following inequality, valid for general convex sets. We observe again that it is not necessary to assume φ ∈ L q (Ω).

Corollary 4.1. Let 1 < p < ∞ and 1 < q < p. Let Ω ⊂ R N be an open convex set. For every φ ∈ Ẅ1,p q-1 (Ω) such that

ˆΩ |x| p p-q |φ| q-1 dx < ∞,
we have

(4.1) ˆΩ |φ| q dx p-q+1 ≤ 2 inf x 0 ∈Ω ˆΩ |x -x 0 | p p-q |φ| q-1 dx p-q ˆΩ |∇φ| p dx.
Proof. Let φ be a function as in the statement. We use the notations of Theorem 1.1 and take γ opt ∈ Π(ρ 0 , ρ 1 ) an optimal transport plan for W r (ρ 0 , ρ 1 ) (where, as usual, r = p/(p -q)). By using the triangle inequality we get

W r (ρ 0 , ρ 1 ) ≤ ˆΩ×Ω |x -x 0 | r dγ opt 1/r + ˆΩ×Ω |y -x 0 | r dγ opt 1/r = ˆ|x -x 0 | r dρ 0 1/r + ˆ|y -x 0 | r dρ 1 1/r
, for every x 0 ∈ Ω. By using concavity of the map τ → τ 1/r , this in turn gives

W r (ρ 0 , ρ 1 ) ≤ 2 q p ˆΩ |x -x 0 | r (dρ 0 + dρ 1 ) 1/r = 2 ˆΩ |x -x 0 | r |φ| q-1 dx 1/r ˆΩ |φ| q-1 dx q-p p , ( 4.2) 
where we used again (3.2), by assumption. By using (4.2) in (1.2) and using the arbitrariness of x 0 ∈ Ω, we get the desired result.

4.2. Bounded convex sets. In this case, Theorem 1.1 implies some known inequalities, with explicit constants depending on simple geometric quantities and p only.

Corollary 4.2 (Nash-type inequality). Let 1 < p < ∞ and 1 < q < p. Let Ω ⊂ R N be an open and bounded convex set. Then for every φ ∈ Ẅ1,p q-1 (Ω)

(4.3) ˆΩ |φ| q dx p-q+1 ≤ diam(Ω) p 2 p-1 ˆΩ |∇φ| p dx ˆΩ |φ| q-1 dx p-q .
Proof. In order to prove (4.3), it is sufficient to observe that for a bounded set we have W r (ρ 0 , ρ 1 ) ≤ diam(Ω).

If we spend this information in (1.2), we can then conclude.

Corollary 4.3 (Poincaré-Wirtinger inequality). Let 1 < p < ∞ and 1 < q < p. Let Ω ⊂ R N be an open and bounded convex set. Then for every φ ∈ W 1,p q-1 (Ω), there holds

(4.4) min t∈R ˆΩ |φ -t| q dx p q ≤ diam(Ω) p 2 p-1 |Ω| p q -1 ˆΩ |∇φ| p dx .
Proof. Let φ ∈ W 1,p q-1 (Ω), by Lemma 2.2 we know in particular that φ ∈ L q (Ω). Then we can define t q the unique minimizer of t → ˆΩ |φ -t| q dx p q .

By minimality, we have ˆΩ |φ -t q | q-2 (φ -t q ) dx = 0.

Thus the function φ -t q belongs to Ẅ1,p q-1 (Ω). We just need to observe that since φ -t q ∈ L q (Ω), then

ˆΩ |φ -t q | q-1 dx p-q ≤ |Ω| p-q q
ˆΩ |φ -t q | q dx p-q q (q-1)

.

By using this in (4.3) for the function φ -t q , we get the conclusion.

Remark 4.4. Observe that the constant in (4.4) degenerates to 0 as the measure |Ω| gets smaller and smaller. This behaviour is optimal, as one may easily verify. Indeed, by taking n ∈ N \ {0} and

(4.5) Ω n = [0, 1] × 0, 1 n × • • • × 0, 1 n and φ(x) = x 1 , we have ˆΩn |φ| q dx p q ˆΩn |∇φ| p dx ≃ 1 n (N -1) p-q q = |Ω n | p-q q .
We conclude this list with an application to spectral problems. Let 1 < p < ∞, for every Ω ⊂ R N open and bounded set we introduce its first non-trivial Neumann eigenvalue of the p-Laplacian, i.e.

µ(Ω; p)

:= inf φ∈W 1,p (Ω)\{0}        ˆΩ |∇φ| p dx ˆΩ |φ| p dx : ˆΩ |φ| p-2 φ dx = 0        .
The terminology is justified by the fact that for a connected set with Lipschitz boundary, the costant µ(Ω; p) is the smallest number different from 0 such that the Neumann boundary value problem

   -div(|∇u| p-2 ∇u) = µ |u| p-2 u,
in Ω, ∂u ∂ν Ω = 0, on ∂Ω admits non-trivial weak solutions. We then have the following result, which corresponds to the limit case q = p of Theorem 1.1. For 1 < q < p, we take t q ∈ R to be the unique minimizer of t → ˆΩ |φ -t| q dx p q

.

By minimality of t q and Minkowski inequality, we have

t q |Ω| 1 q -ˆΩ |φ| q dx 1 q ≤ ˆΩ |φ -t q | q dx 1 q ≤ ˆΩ |φ| q dx 1 q
.

This shows that {t q } q<p is bounded, thus if we take the limit as q goes to p, then t q converges (up to a subsequence) to some t. By passing to the limit in (4.4) we get [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF] for p = 2 (see also [4]). The general case p = 2 has been proved in [8,[START_REF] Ferone | A remark on optimal weighted Poincaré inequalities for convex domains[END_REF]. We recall that (4.8) is sharp in the following sense: for every convex set Ω the inequality in (4.8) is strict and it becomes asymptotically an equality along the sequence (4.5).

ˆΩ
In the limit case p = 1, a related result can be found in [START_REF] Acosta | An optimal Poincaré inequality in L 1 for convex domains[END_REF].
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  |φ -t| p dx ≤ diam(Ω) p 2 p-1 ˆΩ |∇φ| p dx.By keeping into account (4.7), we get the desired conclusion. As mentioned in the Introduction, the constant appearing in the left-hand side of (4.6) is not sharp. Indeed, the sharp lower bound is known to be

	Remark 4.6. (4.8)	π p diam(Ω)	p	< µ(Ω; p),	where π p = 2 π	1 p p sin π (p -1)

p , as proved by Payne and Weinberger in