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FOURIER INTEGRAL OPERATORS ON LIE GROUPOIDS

JEAN-MARIE LESCURE, STÉPHANE VASSOUT (1)

Abstract. As announced in [36], we develop a calculus of Fourier integral G-operators on any Lie

groupoid G. For that purpose, we study Lagrangian conic submanifolds of the symplectic groupoid

T ∗G. This includes their product, transposition and inversion. We also study the relationship

between these Lagrangian submanifolds and the equivariant families of Lagrangian submanifolds

of T ∗Gx × T ∗Gx parametrized by the units x ∈ G(0) of G. This allows us to select a subclass

of Lagrangian distributions on any Lie groupoid G that deserve the name of Fourier integral G-

operators (G-FIOs). By construction, the class of G-FIOs contains the class of equivariant families

of ordinary Fourier integral operators on the manifolds Gx, x ∈ G(0). We then develop for G-FIOs

the first stages of the calculus in the spirit of Hormander’s work. Finally, we illustrate this calculus

in the case of manifolds with boundary.
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1. Introduction

Pseudodifferential operators play a central role in the modern theory of Partial Differential Equa-

tions and were initially developed for their efficacy in handling this type of problem, particularly

in constructing parametrices for differential operators. It quickly appeared that they would also

play an important role in various other mathematical fields, such as index theory, Riemannian and

differential geometry, spectral theory, quantization, and so on.

Many generalisations of this calculus have been developed, particularly to handle situations

where the space is no longer a smooth compact manifold. For pseudodifferential operators, the

theory has been successfully developed by a direct analytic approach for manifolds with boundary

[6, 41, 44, 10, 13] or fibred boundaries [40, 33], manifolds with corners [43, 42, 45], manifolds with

conical singularities [35, 38, 37, 60, 26, 61], stratified spaces [50], families of operators [5], invariant

ΨDOs on Lie groups [62], and the Heisenberg calculus [27, 9], among others.

In the case of longitudinal operators on the leaves of a regular foliation, Connes developped a

strategy of desingularization by considering operators acting on a bigger smooth manifold (the holo-

nomy groupoid of the foliation) which are equivariant under some action (the groupoid action). This

strategy opened a new systematic approach to the question of defining a pseudodifferential calculus

adapted to a geometric situation: following the seminal work of Connes [14, 15], Monthubert-Pierrot

[49] and Nistor-Weinstein-Xu [54] developed in full generality the G -invariant pseudodifferential

calculus on a Lie groupoid. This general abstract calculus allows to define a ΨDO calculus for a

given geometric situation (singular spaces, families, coverings, foliations, deformation groupoids,

etc) provided this geometric situation can be geometrically encoded by a Lie groupoid.

This approach has been successful to recover the ΨDO calculus (at least up to smoothing opera-

tors) for many geometric situations where the calculus had been previously developed using analysis

adapted to each particular situation, for example for manifolds with boundary [47, 54], manifolds

with corners [48], invariant ΨDOs on Lie groups [54], and the Heisenberg calculus [63, 56, 57].

The main idea is to change viewpoint and to transfer, if possible, all analytic particularities of

a geometric situation to the geometric encoding by the Lie groupoid. This approach also allowed

extension of the pseudodifferential calculus to new geometric situations, for example, manifolds

with a Lie structure at infinity [2], singular foliations [4, 3]. For manifolds with iterated fibred

corners, the calculus was recently defined by a combination of the direct analytic approach, and

the groupoid approach [24].



FIO ON LIE GROUPOIDS 3

Turning back to the case of ordinary manifolds, in seeking solutions of non elliptic PDEs, a

broader calculus containing the pseudodifferential calculus was introduced by Hörmander: the

Fourier Integral Operator calculus, based on the notion of Lagrangian distributions. This calculus

proved to be a powerful tool for solving, for examples hyperbolic equations, as well as to reduce

PDE problems to simpler ones via Egorov’s theorem. They appeared also to have an important

role to play in spectral theory, index theory, and quantization theory, [32, 68, 69, 71, 28, 29, 34].

Fourier Integral Operators have been extended beyond the case of ordinary manifolds, and using

refined analysis, for manifolds with boundary [41], invariant operators on Lie groups [53], manifolds

with cylindrical ends [18, 17], manifolds with conical singularities [51, 67, 52], and recently for the

Boutet de Monvel calculus on singular manifolds [7, 8, 12, 11].

Having at hand all the previously cited examples of groupoids encoding singular spaces, foliations,

among other examples, a natural goal is to develop the calculus of Fourier Integral Operators on

arbitrary Lie groupoids, in order to have a conceptual and unified approach to the existing examples,

as well as calculi in new situations. This paper contains the realization of this program. The calculus

of Fourier Integral Operators that we are going to define is not only a generalization of known

constructions; it also explains and illuminates the geometrical aspects of the existing calculi. The

composition theorem that we give for FIOs on groupoids supports this point. Moreover, another

strong motivation for writing down a calculus for FIO on groupoids is to get the appropriate tools

to generalize the results about the spectral asymptotics [32, Chapter 29] to situations like stratified

spaces (using the groupoids defined in [24]) or measured foliations (using holonomy groupoids). We

wish to present our construction of the calculus of FIOs on groupoids in a paper as comprehensive

as possible, and this leads us to a long paper. Therefore, the applications to spectral asymptotics

are postponed to a forthcoming paper, in which we will begin by studying hyperbolic problems on

groupoids.

Our calculus of FIOs on groupoids recovers some of the existing ones. The original calculus on

a manifold M is immediately recovered by looking at the pair groupoid M ×M . Moreover, the

present work recovers and significantly extends the results of [53] for invariant FIOs on a Lie group.

Finally, using the b-groupoid of a manifold with boundary, we recover and slightly extend the class

of FIOs defined by R. Melrose in [41]: the end of the paper is devoted to the comparison of both

constructions.

To define FIOs on general Lie groupoids, pseudodifferential operators [49, 54] (G-ΨDOs) pro-

vide a stimulating example: they are exactly the G-operators given by equivariant C∞ families

of pseudodifferential operators acting in the r or s-fibers of G. Importantly, G-ΨDOs are not

pseudodifferential operators on the manifold G itself, but they actually coincide with Lagrangian

distributions on G subordinate to A∗G = N∗(G(0)) ⊂ T ∗G, that is, to the dual of the normal

bundle of the embedding G(0) ↪→ G.

Another inspiration for the definition of FIOs comes from the paper [36] in which distributions

on Lie groupoids are studied (see also [25]). On one hand, distributions on a Lie groupoid G that

yield G-operators are characterized and natural sufficient conditions on their wave front sets are

given. On the other hand, still in [36], the convolution product of distributions on a Lie groupoid

G is analyzed and sufficient conditions for that product to be defined are again given in terms

of wave front sets. For the understanding of the present work, it is relevant to note that all the

conditions mentioned above, as well as the formula for the wave front set of a convolution product

of distributions, have an algebraic nature involving the symplectic groupoid T ∗G.
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The least we can require is that a Fourier Integral Operator should be an element of I(G,Λ)

[32, Section 25.1] for some conic Lagrangian submanifold Λ of T ∗G, and should be an adjointable

G-operator. The article [36] already gives a way to fulfill this constraint: if the conic Lagrangian

submanifold Λ ⊂ T ∗G does not intersect the kernel of the source and target maps of T ∗G⇒ A∗G,

then the elements of I(G,Λ) provide adjointable G-operators. Note that this is a purely algebraic

condition, very simple to check in practice, which boils down to the so-called “no zeros” condition

[32, 41] in the case of the pair groupoid G = X ×X. We call the conic Lagrangian submanifolds

of T ∗G fulfilling this condition G-relations, in reference to the classical term “canonical relations”,

and we abbreviate the corresponding Lagrangian distributions as G-FIOs.

A first natural question arises: given a G-relation Λ and a G-FIO u ∈ I(G,Λ), we have at hand

a (C∞, equivariant) family of distributions ux ∈ D′(Gx ×Gx), x ∈ G(0), and so it is natural to ask

whether these distributions are Lagrangian, that is, are ordinary Fourier integral operators on the

manifold Gx.

The answer is no in general. Actually, the distributions ux are still given by oscillatory integrals,

but we provide an example where some of them are not Lagrangian distributions. This unstable

behavior is fixed by imposing that the underlying G-relation Λ ⊂ T ∗G have a projection in G

transversal to the canonical (singular) foliation of G. Indeed, this transversality condition implies

that Λ gives a (C∞, equivariant) family of canonical relations Λx ∈ T ∗(Gx×Gx), x ∈ G(0), and each

ux, being expressed as an appropriate pull-back distribution, is then an element of I(Gx×Gx,Λx).

We call the G-relations enjoying this transversality condition family G-relations and we abbreviate

the corresponding Lagrangian distributions as G-FFIOs. Note that the transversality property

characterizing family G-relations among the general ones is geometric and still very simple to check

in practice.

Thus, by construction, G-FFIOs provide C∞ equivariant families of Lagrangian distributions ux,

x ∈ G(0) and the next natural goal is to obtain a converse statement. This is achieved after proving

that a C∞ equivariant family of canonical relations Λx ∈ T ∗(Gx × Gx), x ∈ G(0), enjoying some

minimal transversality condition, can be “glued” into a single family G-relation Λ ⊂ T ∗G. This

requires some preliminary work on families of Lagrangian submanifolds in the cotangent spaces of

the fibers of an arbitrary submersion.

To summarize the previous discussion, G-FIOs provide a class of distributions on G desserving

the name of Fourier integral operators on G, and among them we know how to characterize in a

simple geometric way those which correspond to C∞ equivariant families of ordinary FIOs in the

s or r fibers of G.

The next natural point is to develop a calculus for G-FIOs. We explore the following issues, as

in the classical case:

• existence of an adjoint,

• principal symbol,

• composition,

• module structure over the algebra of pseudodifferential operators,

• Egorov’s Theorem,

• C∗ continuity (the replacement for ordinary L2 continuity).

For some of these issues, we could have restricted ourselves to the sub-class of G-FFIOs in order

to export all the results available on manifolds to Lie groupoids via the point of view of families.

Instead, we have chosen to treat G-FFIOs as single distributions on G to develop the calculus: the
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statements are simpler, more conceptual, and the central role of the symplectic groupoid T ∗G is

illuminated. Moreover, most of the results hold for G-FIOs and not just for G-FFIOs.

More precisely, we prove that adjoints of G-FIOs are G-FIOs, and that adjunction replaces

the corresponding Lagrangian submanifold by its image under the inverse map of the groupoid

T ∗G⇒ A∗G. Next, we work out a natural composability assumption on G-relations in order that

their product in T ∗G is again a G-relation. Then, when Λ1 and Λ2 are composable, we prove that

the convolution of any distributions uj ∈ I(G,Λj) (that is, the composition of the corresponding G-

operators), is a G-FIO subordinate to the product G-relation Λ1.Λ2. We observe that the product

of family G-relations is not always a family G-relation, and likewise the composition of G-FFIOs

need not always be a G-FFIO: we explain how to strengthen the composability assumption on

G-relations to fix this problem.

The previous adjunction and composition theorems have direct applications. Firstly, the compo-

sition ofG-FIOs (resp.G-FFIOs) with pseudodifferential operators areG-FIOs (resp.G-FFIOs), the

corresponding Lagrangian submanifold being unchanged. Secondly, for any composable G-relations

Λ1,Λ2 whose product is contained in the unit space of T ∗G⇒ A∗G, that is, Λ1.Λ2 ⊂ A∗G, we get

a statement generalizing Egorov’s Theorem.

The assumption made in our version of Egorov’s Theorem can be viewed as a weak invertibility

property for G-relations. Actually, for any G-relation Λ1, we prove that the existence of a compos-

able G-relation Λ2 such that Λ1 ∗Λ2 = rΓ(Λ1) and Λ2 ∗Λ1 = sΓ(Λ1) (here sΓ, rΓ denote the source

and target maps of T ∗G ⇒ A∗G) is equivalent to Λ1 being a Lagrangian bisection. We call these

invertible G-relations.

It then follows that for any invertible G-relation Λ, the G-relation Λ? = iΓ(Λ) (where iΓ is

the inversion of T ∗G) is an inverse, and by the composition result it also follows that uu∗ is a

pseudodifferential operator as soon as u ∈ I(G,Λ). Hence, using known C∗-continuity results for

pseudodifferential operators, which rely on the classical Hörmander trick to prove L2-continuity,

we obtain C∗-continuity results for G-FIOs subordinate to invertible G-relations. This also holds

for locally invertible G-relations, that is, for G-relations onto which the source and target maps of

T ∗G are only local diffeomophisms, also known as Lagrangian local bisections [3].

For the sake of clarity in this introduction, we have ignored a technical point about the regularity

of G-relations. More precisely, as sets, G-relations are submanifolds, but all the statements above

are true for local G-relations, that is, those based on immersed submanifolds (ranges of immersions).

As in the classical case, we can not avoid the introduction of immersed submanifolds since the

product of two G-relations is the image of some submanifold by a C∞ map of constant rank. Such

images are not in general true submanifolds but are always images of some not necessarily injective

immersion: we call them local submanifolds, following the (implicit) suggestion of [32, Prop. C.3.3].

Local submanifolds are countable unions of true submanifolds of the same dimension and it is very

convenient for our purposes to handle them in this way.

The paper is organized as follows.

In Section 2, we recall notations and properties for Lie groupoids, provide examples and recall

the construction of the cotangent groupoid of Coste-Dazord-Weinstein.

In Section 3, we introduce the notion of local Lagrangian submanifolds, which is needed, as

explained before, because the product of two Lagrangian submanifolds is not in general a sub-

manifold. We then recall the local parametrization of Lagrangian manifolds by phase functions.

Next we explain a “pushforward” procedure for Lagrangian submanifolds, which is one of the main

tools used for the composition of G-FIOs. We end this section by analysing families of Lagrangian
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submanifolds subordinate to a submersion. In particular we show how such families of Lagrangian

submanifolds can be “glued” in a single Lagrangian submanifold, and how a single Lagrangian sub-

manifold can be “sliced” into a family of Lagrangian submanifolds, provided some transversality

condition is fulfilled.

Section 4 is devoted to Lagrangian distributions. We begin by recalling the classical definitions

and properties, and then we analyse the effect of the aforementioned “pushforward” operation and

the family aspect at the level of Lagrangian distributions.

Apart from the family aspect, most of the content of these sections comes from classical results

in symplectic geometry and FIO theory, being presented perhaps in a not completely classical way

to fit our later use of these results.

The truly new part of this work comes in Sections 5 and 6. In Section 5, we study operations

on Lagrangian submanifolds of the symplectic groupoid T ∗G. This includes the study of their

product, transposition and invertibility property. The notion of G-relation is also introduced and

the relationship with equivariant families of Lagrangians is clarified. The G-FIOs are introduced in

section 6. Similarly to G-relations, the parallel with equivariant families of FIOs is fully analysed.

Furthmermore, we extend the basic calculus of FIOs to G-FIOs, which includes a formula for the

product of principal symbols. Section 7 is devoted to the comparison between the calculus we get

in the case of the groupoid of the b-calculus and previous constructions by R. Melrose [41].

Acknowledgments and credits. We are grateful to Daniel Bennequin for the extremely stimu-

lating mathematical discussion he offered to us. We would like to thank Dominique Manchon for

his constant encouragement. Also, we would like to thank Claire Debord and Robert Yuncken for

their interest in this project and for improving several parts of the paper.

2. The cotangent groupoid

2.1. Main notations. We will first recall the basic definitions related to Lie groupoids in order to

fix our notation. For a complete course on the subject, the unfamiliar reader is invited to consult

for instance [39, 46] and references therein.

A Lie groupoid is a pair of manifolds (G,G(0)) provided with the following C∞ maps:

– a source map s : G ⇒ G(0) and a target map r : G ⇒ G(0), both required to be surjective

submersions;

– an inclusion of units u : G(0) −→ G;

– an inversion map ι : G −→ G;

– a multiplication map m : G(2) = {(γ1, γ2) ∈ G2 ; s(γ1) = r(γ2)} −→ G.

All these structural maps are required to satisfy the following relations, whenever they make sense:

r(u(x)) = x and s(u(x)) = x ; s(ι(γ)) = r(γ) and r(ι(γ)) = s(γ);

r(γ)γ = γ and γs(γ) = γ ; r(γ1γ2) = r(γ1) and s(γ1γ2) = s(γ2);

γγ−1 = r(γ) and γ−1γ = s(γ) ; (γ1γ2)γ3 = γ1(γ2γ3).

Above, we have simplified the presentation by writing γ1γ2 = m(γ1, γ2), γ−1 = ι(γ) and by identi-

fying G(0) with u(G(0)) ⊂ G.

It follows from this definition that ι is an involution, that m is a surjective submersion and that

for any γ ∈ G, the element γ−1 is the unique solution α of γα = r(γ), αγ = s(γ). These assertions
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need a proof, and the unfamiliar reader is invited to consult for instance [39, 46] and references

therein.

Elements of G are usually called arrows, elements of G(0) units and elements of G(2) composable

pairs. We will note Gx = s−1(x), Gx = r−1(x) and Gyx = Gx ∩ Gy for any x, y ∈ G(0). These

subsets of G are submanifolds and Gxx is a Lie group for any x ∈ G(0). We will also write mx for

the restriction of the multiplication map m to the submanifold Gx ×Gx ⊂ G(2).

We will also consider, right and left multiplication maps by an element γ in G. Precisely we set

Rγ : Gr(γ) → Gs(γ), γ1 7→ γ1γ and Lγ : Gs(γ) → Gr(γ), γ2 7→ γγ2.

The Lie algebroid AG of the Lie groupoid G is the normal bundle of G(0) in G, that is

(1) AG = TG(0)G/TG(0) = NG(0).

Since TG(0)G = ker ds⊕ TG(0) = ker dr ⊕ TG(0), the bundle AG is canonically isomorphic to (and

if sometimes identified with) ker ds|G(0) and ker dr|G(0) . The dual Lie algebroid A∗G, that is, the

conormal space of G(0) in G, will play an important role in this paper.

Finally, the projection maps G2 → G, G(2) → G are denoted respectively by prj , pr(j), j =

1, 2 and if E,F are vector bundles over G, we will use the shorthand notation E � F to denote

pr(1)
∗(E)⊗ pr(2)

∗(F )→ G(2).

2.2. Examples. Many examples of Lie groupoids appear in the litterature [72, 58, 16, 54, 49, 20,

47, 23, 21, 64, 65, 24]. We just give below a few basic examples of these objects.

(1) The pair groupoid of a manifold X is given by G = X × X, G(0) = X, the maps r and

s being respectively the first and second projections, the multiplication being given by

(x, y)(y, z) = (x, z) and the inversion by (x, y)−1 = (y, x). This is a simple but fundamental

example, for theG-ΨDOs, and theG-FIOs that will be defined in this paper, are respectively

in that case the usual ΨDOs and FIOs on the manifold X.

(2) A Lie group G is obviously a Lie groupoid: with G ⇒ {e}, where e denotes the neutral

element.

(3) Let X be a manifold with boundary ∂X = Y and let x be a defining function for Y . The

b-groupoid is the following subgroupoid of X2 × R∗+ ⇒ X:

(2) Gb = {(p, q, t) ∈ X2 × R∗+ ; x(q) = tx(p)}.

We will come back to this example in the last section of this paper.

(4) A fibre bundle, a fibration or a foliation also give rise to natural Lie groupoids. For a regular

foliated manifold (M,F), the holonomy groupoid is the quotient of the fundamental group

of F (the paths in the manifold F up to homotopy) by the relation “having the same

holonomy”, which means that the germs of diffeomorphisms on the transversal part defined

by parallel transport along the paths are the same (see [20] for the case of singular foliations).

(5) Deformation groupoids like adiabatic groupoids or non commutative tangent spaces are

groupoids naturally arising in index theory [22].

2.3. Associated foliations. It will be useful for our purpose to consider some natural (singular)

foliations associated to groupoids.

Let G be a Lie groupoid and consider the equivalence relation on G(0)

(3) x ∼G(0) y if Gxy 6= ∅.
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The equivalence class of x ∈ G(0), also called the orbit of x is denoted by Ox. We obviously have

(4) Ox = r(s−1(x)) = s(r−1(x)) ⊂ G(0).

It is true that the Ox are all immersed submanifolds [39, Theorem 1.5.11], see also [58, 46]. This

defines a singular Stefan foliation FG(0) (see [39, Section 1.8, p.51]) that will simply be called the

canonical foliation of G(0).

The leaves of FG(0) can be lifted to G using r and this gives rise to another singular Stefan

foliation FG that we call the canonical foliation of G. Using s instead of r gives the same foliation.

The leaves of FG are immersed submanifolds and coincide with the equivalence classes of the

equivalence relation on G given by

(5) γ1 ∼G γ2 if G
s(γ1)
r(γ2) 6= ∅.

2.4. The cotangent groupoid. Given a Lie groupoid G, the cotangent manifold Γ = T ∗G has a

non trivial groupoid structure whose space of units is Γ(0) = A∗G [19]. This cotangent groupoid is

of crucial importance in this paper and we recall its definition [19].

The product in Γ is defined as follows. Given (γ1, ξ1) ∈ T ∗G and (γ2, ξ2) ∈ T ∗G, then

(6) (γ1, ξ1).(γ2, ξ2) = (γ1.γ2, ξ1 ⊕ ξ2)

where the linear form ξ1 ⊕ ξ2 ∈ T ∗γ1.γ2
G is defined by

(7) ξ1 ⊕ ξ2(dm(t1, t2)) = ξ1(t1) + ξ2(t2), ∀(t1, t2) ∈ T(γ1,γ2)G
(2).

For this to make sense, one just needs to assume first that γ1 and γ2 are composable in G and then

that the linear form (ξ1, ξ2) ∈ T ∗(γ1,γ2)G
2 vanishes on ker dm, that is

(8) (ξ1, ξ2) ∈ (ker dm(γ1,γ2))
⊥,

where the orthogonal is taken in T ∗G2. In other words, the subset of composable pairs in Γ is given

by:

Γ(2) = (ker dm)⊥T∗G2

and the multiplication map mΓ, defined by (6) and (7), reads

mΓ(γ1, ξ1, γ2, ξ2) = (m(γ1, γ2), (tdm(γ1,γ2))
−1(ρ(ξ1, ξ2)),

where ρ denotes the canonical restriction map

(9) ρ : T ∗
G(2)G

2 −→ T ∗(G(2)).

One can show that there exists a unique Lie groupoid structure on Γ whose multiplication is indeed

given as above (see [19, 39, 59, 36] for details). The remaining structural maps of Γ are the following:

• sΓ(γ, ξ) = (s(γ), s(ξ)) with s(ξ) = td(Lγ)s(γ)(ξ) ∈ A∗s(γ)G = (Ts(γ)G/Ts(γ)G
(0))∗;

• rΓ(γ, ξ) = (r(γ), r(ξ)) with r(ξ) = td(Rγ)r(γ)(ξ) ∈ A∗r(γ)G = (Tr(γ)G/Tr(γ)G
(0))∗ ;

• ιΓ(γ, ξ) = (γ−1,−(tdιγ)−1(ξ)).

Note that all structural maps of Γ are vector bundles homomorphisms. If we denote by

p : Γ −→ G ; p2 : Γ2 −→ G2 ; p(2) : Γ(2) −→ G(2) ; p(0) : Γ(0) −→ G(0),
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the natural vector bundle projection maps, we get the following exact sequences:

(10) 0 // N∗(G(2)) //

p(2)

��

Γ(2)
mΓ //

p(2)

��

Γ //

p

��

0

G(2) = // G(2) m // G,

(11) 0 // (ker dr)⊥ //

p

��

Γ
sΓ //

p

��

Γ(0) //

p(0)

��

0

G
= // G

s // G(0),

and

(12) 0 // (ker ds)⊥ //

p

��

Γ
rΓ //

p

��

Γ(0) //

p(0)

��

0

G
= // G

r // G(0).

Using again the canonical map ρ : T ∗
G(2)G

2 → T ∗G(2), we get ρ(Γ(2)) = (ker dm)
⊥
T∗(G(2)) . Setting

(13) Γ̃(2) = (ker dm)
⊥
T∗(G(2)) and m̃Γ = (m, (tdm)−1),

we get an additional exact sequence of vector bundles:

(14) 0 // kermΓ
//

(m,0)

��

Γ(2)
ρ
//

mΓ

��

Γ̃(2) //

m̃Γ

��

0

0 // G× {0} ↪→ // Γ
= // Γ // 0.

The kernels of the structural maps mΓ, rΓ, sΓ will play an important role later on.

Recall that any distribution on G with wave front set WF(u) satisfying

(15) WF(u)∩ ker rΓ = WF(u)∩ ker sΓ = ∅

gives rise to a convolution operator f 7→ u ∗ f mapping C∞c (G) into C∞(G) and whose adjoint

enjoys the same mapping property [36]. Therefore, Condition (15) is an analog for groupoids of

the classical “no-zeros” condition:

(16) WF(u) ⊂ (T ∗X \ 0)× (T ∗Y \ 0)

on a distibution u ∈ D′(X×Y ), which implies that u defines continuous linear operators C∞c (Y )→
C∞(X) and C∞c (X)→ C∞(Y ) through the Schwartz kernel Theorem. Above, we have set, for any

manifold M ,

T ∗M \ 0 = {(x, ξ) ∈ T ∗M ; ξ 6= 0}.

This leads us to introduce the following open subset of T ∗G:

(17)
.
T ∗G = T ∗G \ (ker rΓ ∪ ker sΓ),

which is obviously a subgroupoid for rΓ ◦mΓ = rΓ ◦ pr1, sΓ ◦mΓ = sΓ ◦ pr2 and rΓ ◦ ιΓ = sΓ.
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The previous analogy can be made more concrete as follows. Let W be any subset in G and

consider the family of sets Wx parametrized by x ∈ G(0) and defined by pulling-back W by the

maps mx, that is:

(18)

Wx = m∗xW = {(γ1, ξ1, γ2, ξ2) ∈ T ∗Gx × T ∗Gx ; ∃(γ, ξ) ∈W, γ1γ2 = γ, t(dmx)γ1,γ2(ξ) = (ξ1, ξ2)}.

Alternatively, these sets are also given by:

(19) Wx = ρx(m−1
Γ (W ) ∩ T ∗Gx×GxG×G) ⊂ T ∗Gx × T ∗Gx,

where ρx denotes the restriction map T ∗Gx×GxG×G→ T ∗Gx × T ∗Gx. Then,

Proposition 1. For any subset W ⊂ T ∗G, the following assertions are equivalent:

(1) W is included in
.
T ∗G;

(2) For any x ∈ G(0), Wx ⊂ (T ∗Gx \ 0)× (T ∗Gx \ 0).

A subset of T ∗G included in
.
T ∗G will be said to be admissible.

Proof. Differentiating mx, we get

d(mx)(γ1,γ2)(t1, t2) = (dRγ2)γ1(t1) + (dLγ1)γ2(t2), for all t1 ∈ Tγ1Gx, t2 ∈ Tγ2G
x

and then

td(mx)(γ1,γ2)(ξ) = (tdRγ2(ξ), tdLγ1(ξ)) = (tdRγ−1
1

(r(ξ)), tdLγ−1
2

(s(ξ))) ∈ T ∗γ1
Gx × T ∗γ2

Gx.

It follows that

Wx =
{(
γ1,

tdRγ−1
1

(r(ξ)), γ2,
tdLγ−1

2
(s(ξ))

)
; (γ1, γ2) ∈ Gx ×Gx, (γ1γ2, ξ) ∈W

}
.

Since tdRγ−1
i

and tdLγ−1
2

are bijective, the result follows. �

Moreover, given any subset W ⊂ T ∗G, the family (m∗x(W ))x∈G(0) is equivariant, which means:

(20) ∀x, y ∈ G(0), ∀(γ1, γ2, ξ1, ξ2) ∈Wx, ∀γ ∈ Gxy , (γ1γ, γ
−1γ2,

t(dRγ−1)(ξ1), t(dLγ)(ξ2)) ∈Wy.

Indeed, if γ ∈ Gxy and cγ : Gx × Gx −→ Gy × Gy denotes the map defined by cγ(γ1, γ2) =

(γ1γ, γ
−1γ2), then the commutative diagram

(21) Gx ×Gx

cγ

��

mx // G

Gy ×Gy
my

77

yields the equality (cγ)∗(Wy) = Wx and then the property (20).

3. Lagrangian submanifolds

In the rest of this paper, all manifolds are C∞, σ-compact and with connected components of

the same dimension. All maps are C∞ and submanifold means C∞ submanifold.
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3.1. Local submanifolds, families of submanifolds. As observed in [32, Chapter 21], immersed

Lagrangrian submanifolds are the natural objects parametrized by nondegenerate phase functions.

By definition, immersed submanifolds are ranges of (not necessarily injective) immersions, so they

can be quite far from being submanifolds. Moreover, immersed submanifolds sometimes arise not

as images of immersions, but as images of maps of constant rank.

As it is not always relevant to introduce the appropriate immersions to study immersed subman-

ifolds, we propose the following elementary reformulation of the notion of immersed submanifold,

which is, in our interpretation, suggested in [32, Proposition C.3.3].

Definition 1. A local submanifold of a manifold is a subset consisting of a countable union of

submanifolds all of the same dimension.

The following companion terminology will be used:

Definition 2. A patch in a p-dimensional local submanifold Z is a p-dimensional submanifold

included in Z.

A parametrization of a local submanifold is a diffeomorphism of a manifold onto a patch.

For instance, the union of the coordinates axes in R2 is a 1-dimensional local submanifold and

each axis is a patch.

Local and immersed submanifolds refer to the same objects. Indeed, let Z be a local submanifold

of X and let (Zj)j be a countable family of patches such that Z = ∪jZj . The disjoint union

Y = tjZj is a manifold and the obvious map f : Y → X is an immersion satisfying f(Y ) = Z.

Conversely, if f : Y → X is an immersion then one can cover Y by a countable family (Uj) of

open subsets such that f : Uj → f(Uj) is a diffeomorphism. Thus the image Z = f(Y ) = ∪f(Uj)

is a local submanifold of dimension dimY .

Actually, ranges of maps f : Y → X of constant rank are also local submanifolds. Indeed, by

[32, Proposition C.3.3]) there exists countable families of local coordinate systems (Uj)j covering

Y and (Vj)j covering X such that f(Uj) ⊂ Vj and f is given in these coordinates by

(22) f(y1, . . . , ym) = (y1, . . . , yp, 0, . . . , 0) ∀(y1, . . . , ym) ∈ Uj .

Set Yj = {y ∈ Uj ; yp+1 = · · · = ym = 0} and consider the manifold Ỹ = tjYj . The natural map

(23) Ỹ 3 y 7−→ f(y)

is an immersion with range Z.

We recall that two submanifolds Z1, Z2 of X have a clean intersection if Z1∩Z2 is a submanifold

and at any point z ∈ Z1 ∩ Z2,

(24) Tz(Z1 ∩ Z2) = TzZ1 ∩ TzZ2.

The excess of the intersection is the number e = codim(TzZ1+TzZ2). The intersection is transversal

if e = 0 and the transversality of Z1, Z2 is denoted by Z1 t Z2. This adapts to local submanifolds

as follows.

Definition 3. The intersection Z1 ∩ Z2 of two local submanifolds Z1, Z2 of a manifold X is clean

(resp. transversal) if there exists covers (Z1j) and (Z2k) of Z1 and Z2 by countably many patches

such that Z1j ∩ Z2k is clean with the same excess (resp. transversal) for all j, k .

In the following definitions, we consider a surjective submersion π : X −→ B between manifolds.

The fiber of π at the point b is noted Xb.
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Definition 4. A local submanifold Z of X is said to be transverse to π if it can be covered by a

countable family (Zi)i∈I of patches such that π|Zi : Zi → B is a submersion for any i ∈ I.

Definition 5. A C∞ family of local submanifolds subordinate to π is a family (Zb)b∈U where U

is an open subset of B and Zb is a subset of Xb for any b, such that ∪b∈UZb is a local submanifold

of X transverse to π.

Finally, patches and parametrizations of a family Z = (Zb)b∈U as above refer to the corresponding

object for the local submanifold Z = ∪b∈UZb; and a section of Z is a local section of π taking values

in a patch of Z.

3.2. Phases, clean and non-degenerate phases. Recall that a subset U of Rn × RN is conic

if (x, θ) ∈ U implies that (x, tθ) ∈ U for all t > 0. A map χ : U → V between conic subsets is

homogeneous if χ(x, tθ) = tχ(x, θ) for all t > 0.

Definition 6. [31, p.86][32, 21.1.8] A cone bundle consists of a surjective submersion p : C → X

and an action of R∗+ on C which respects the fibers of p and such that:

For all v ∈ C, there exists a conic neighborhood U of v in C and a homogeneous diffeomorphism

χ : U → V ⊂ Rn × (RN \ {0}) onto a conic open subset such that the following diagram commutes:

(25)

U V

U

χ

p

pr1

.

The triple (U ,V, χ) is then called a conic local trivialization of the cone bundle around v. When X

is a point, C is called a conic manifold.

Example 1. (1) If X is a manifold, T ∗X \ 0 is a conic manifold.

(2) Let π : Z → X be a submersion onto X, and set C = Z ×Rk \ 0 and p = π ◦ pr1. Then C,

with the obvious R+-action, is a cone bundle over X. Conic local trivializations are built

from local trivializations κ : p−1(U)
'→ U × Y × Rk \ 0 composed with

(x, y, θ) 7−→ (x, |θ|.y, θ) ∈ U × (RnZ−nX+k \ 0).

Definition 7. [32, Def. 21.2.15],[30, p. 154]. Let X be a manifold and U ⊂ X an open subset.

(1) A phase function over U consists of a cone bundle (p, C, U) and a C∞ homogeneous function

φ : C → R without critical points.

(2) Let φ : C → R be a phase function over U . Let us denote by φ′vert : C → (ker dp)∗ the

restriction of the differential of φ to the fibers of p : C → U . We say that φ is clean if the

set

(26) Cφ = {v ∈ C; φ′vert(v) = 0} = (φ′)−1(ker dp⊥)

is a submanifold of C with tangent space given by the equation dφ′vert = 0. The excess of

the clean phase φ is the number e = dimCφ − dimX = dim ker dp− rk(dφ′vert).

(3) The phase function φ is non degenerate if φ′vert is a submersion (that is, clean with e = 0).

Using tdp−1 : (ker dp)⊥ → T ∗X, the “horizontal” part of dφ is then well defined on Cφ by

φ′hor(v) = t(dpv)
−1(φ′(v)) ∈ T ∗p(v)X, that is

(27) φ′hor(v)(t) = φ′(v)(u), t ∈ p∗(TX)v, dp(u) = t.



FIO ON LIE GROUPOIDS 13

We introduce the map

Tφ : Cφ −→ T ∗X(28)

v 7−→ (p(v), φ′hor(v)
)

and we set

(29) Λφ = Tφ(Cφ) = {(p(v), φ′hor(v)) ; φ′vert(v) = 0}.

If φ is clean, then for any v ∈ Cφ, there exists an open conic neighborhood V of v in C such

that Tφ(V ) is a C∞ conic Lagrangian submanifold of T ∗X \ 0 and Tφ : Cφ ∩ V −→ Tφ(V ) is a

fibration with fibers of dimension e and therefore Λφ is a conic Lagrangian local submanifold of

T ∗X \ 0 ([32, 30], see also Remark 3.3 below). Moreover, if the fibers of Tφ are connected and

compact then Λφ is a true submanifold and Tφ : Cφ −→ Λφ is a fibration. On the other hand, if φ

is non-degenerate, then Tφ is an immersion, but nothing is gained in terms of the regularity of Λφ,

which is still only a local submanifold.

Conversely, any conic Lagrangian local submanifold Λ of T ∗X \ 0 can be parametrized by non-

denegerate phase functions [32, 30]. This means that for any (x, ξ) ∈ Λ there exist an open conic

neighborhood W of (x, ξ) into T ∗X, an open conic subset V ⊂ X × RN \ 0 and a non-degenerate

phase function φ : V → R with Λφ = Λ ∩W .

3.3. “Pushforward” of Lagrangian submanifolds. The following statements are mainly re-

formulations of existing results [70, 32, 30]. Precisely, we discuss a procedure consisting firstly

of taking the intersection of a given Lagrangian submanifold with a coisotropic submanifold and

secondly of pushing forward this intersection to another symplectic manifold using a suitable map.

This procedure, which is not a simple pushforward (the first part is rather a pull back), is the main

step in the composition of Lagrangian submanifolds of cotangent groupoids.

Proposition 2. Let (S, ωS), (T, ωT ) be symplectic manifolds, H be a submanifold of S and µ :

H → T be a surjective submersion such that

(30) µ∗(ωT ) = ωS |H .

(1) The following assertions are equivalent:

(a) H is coisotropic;

(b) (ker dµ)⊥ωS = TH;

(c) the graph Grµ = {(x, µ(x)) ; x ∈ H} is a Lagrangian submanifold of S × (−T ).

(2) Assume that the previous assertions are true. If Λ̃ is a Lagrangian local submanifold of S

with clean intersection with H then

(31) Λ := µ(Λ̃ ∩H)

is a local Lagrangian submanifold of T . If moreover Λ̃ is a submanifold and the map

µ : Λ̃ ∩H → Λ has compact and connected fibers, then Λ is a submanifold.

Proof. (1) The condition (30) implies that for any x, ker dµx ⊂ (TxH)⊥ωS . Let us assume that

H is coisotropic, that is, that (TxH)⊥ωS ⊂ TxH for all x. Let u ∈ (TxH)⊥ωS . Then by

assumption

ωT (dµ(u), dµ(v)) = ωS(u, v) = 0 for all v ∈ TxH,

which by surjectivity of dµ proves that u ∈ ker dµx. This gives (a)⇒(b), and the converse

implication is trivial.
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Let (s, t) ∈ (T Grµ)⊥ω and choose u ∈ TxH with dµ(u) = t. Then ωT (dµ(u), dµ(s′)) =

ωS(s, s′) for all (s′, dµ(s′)) ∈ T Grµ. Using (30), this gives u − s ∈ (TH)⊥ω , and assuming

(b) this gives t = dµ(s), which proves that Grµ is coisotropic and thus (c) since (30) is

obviously equivalent to the isotropy of Grµ.

For (c)⇒(a) we apply the following elementary lemma.

Lemma 3. Let λ be a coisotropic linear subspace in a product of symplectic vector spaces

S1 × S2. Then prj(λ) is a coisotropic subspace of Sj, j = 1, 2.

(2) Using a decomposition of Λ̃ into patches, it is sufficient to assume that Λ̃ is a submanifold.

The result now follows from a symplectic reduction procedure: see [32, Proposition 21.2.13,

Theorem 21.2.14] or [70, page 12]. We outline the proof.

By assumption Λ̃ ∩H is a C∞ submanifold and at any point x ∈ Λ̃ ∩H,

(32) Tx(Λ̃ ∩H) = TxΛ̃ ∩ TxH.

Since ker dµx ⊂ (ker dµx)⊥ω = TxH, the symplectic reduction ([32, proposition 21.2.13])

applied to λ = TxΛ̃ asserts that

λ′ =
(
TxΛ̃ ∩H

)
/
(
Tx(Λ̃) ∩ ker dµx

)
is a Lagrangian subspace of the symplectic vector space S′ = TxH/ ker dµx ' Tµ(x)(T ).

Therefore, rank dµx = dimT/2 is independent of x and the image Λ = µ(Λ̃ ∩H) is a local

submanifold of T of dimension dimT/2. Assumption (30) implies that dµx(TxΛ̃ ∩ H) is

Lagrangian, so Λ is a Lagrangian local submanifold. If the fibers of µ|
Λ̃∩H are moreover

compact and connected, it follows by standard arguments of differential geometry that Λ

is actually a submanifold of T .

�

We now give a generic example in which Proposition 2 applies. This example also shows how,

and when, clean phase functions arise in the task of parametrizing Lagrangian submanifolds.

Proposition 4. Let X,Y be manifolds, Z ⊂ X a submanifold and f : Z → Y a submersion. Set

H = (ker df)⊥ ⊂ T ∗X and

µ : H 3 (x, ξ) 7−→ (f(x), tdf−1
x (ξ)) ∈ T ∗Y.

The following assertions hold.

(1) Grµ is a Lagrangian submanifold of T ∗X × (−T ∗Y ).

(2) Let Λ̃ be a conic Lagrangian local submanifold of T ∗X \0 intersecting H cleanly with excess

e and such that Λ̃ ∩N∗Z = ∅. Let (x, ξ) ∈ Λ̃ ∩H and let

φ̃ : U × RN −→ R (U open subset of X)

be a non-degenerate phase function parametrizing Λ̃ around (x, ξ). Setting V = U ∩ Z, the

restriction φ of φ̃ to V × RN is a phase function on the cone bundle

(33) f ◦ pr1 : C = V × (RN \ 0) −→ f(V ) ⊂ Y.

This phase function is clean with excess e and parametrizes Λ = µ(Λ̃∩H) around µ(x, ξ) =

(f(x), t(df−1(ξ))).
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Proof. (1) This is immediately checked using local coordinates (x′, x′′, x′′′) for X such that Z

is given by x′′′ = 0, x′ gives local coordinates for Y and f(x′, x′′) = x′. Then one has

H = {(x′, x′′, 0, ξ′, 0, ξ′′′)} so that H is coisotropic and one can apply the first part of

Proposition 2.

(2) All the assertions being local, we may assume that Λ̃ is C∞. It is obvious that φ is C∞ and

homogeneous in the fibers of the given conic manifold. Assume that dφ vanishes at a point

(x, θ) ∈ V × RN . This means that φ̃ satisfies

φ̃′x(x, θ)(t) = 0 ∀t ∈ TxZ, φ̃′θ(x, θ) = 0.

This implies that (x, φ̃′x(x, θ)) ∈ Λ̃ ∩N∗Z, which contradicts the assumptions. Thus φ is a

phase function.

To precise Cφ, we denote by y ∈ Y the space coordinate of φ and

ω = (z, θ), where z ∈ f−1(y) ⊂ Z,

the parameters. Then

Cφ = {(x, θ) ; φ′ω(x, θ) = 0}.(34)

Observe that φ′ω = (φ̃′z, φ̃
′
θ) = (φ′z, φ

′
θ). Thus

Cφ = {(x, θ) ∈ C
φ̃

; φ̃′z(x, θ) = 0}.(35)

Observe that φ̃′z(x, θ) = 0 means exactly that φ̃′x(x, θ) ∈ (ker df)⊥. Therefore

(36) (x, θ) ∈ Cφ ⇔ (x, φ̃′x(x, θ)) ∈ Λ̃ ∩H.

It follows that the local diffeomorphism T
φ̃

: C
φ̃
→ Λ̃ maps Cφ onto Λ̃ ∩H:

(37) Cφ 3 (x, θ)
T
φ̃7−→ (x, φ̃′x(x, θ)) ∈ Λ̃ ∩H.

This proves that Cφ is a C∞ submanifold of C
φ̃

since by assumption Λ̃ ∩ H is a C∞

submanifold. Recall that Cφ is given by the equations

(38) (x, θ) ∈ V × RN , φ̃′z(x, θ) = 0, φ̃′θ(x, θ) = 0.

The first one means that (x, φ̃′x(x, θ)) = T
φ̃
(x, θ) ∈ H and the second one that (x, φ̃′x(x, θ)) =

T
φ̃
(x, θ) ∈ Λ̃. Recall that H is given by the equation

(39) ρ(x, ξ) = (x, 0),

where ρ : T ∗ZX → (ker df)∗, (x, ξ) 7→ (x, ξz) is the submersion given by the restriction of

linear forms to ker df . Since by assumption we have

(40) T (Λ̃ ∩H) = T Λ̃ ∩ TH

and since T Λ̃ and TH are given respectively by the equations dφ′θ = 0 and dρ = 0, it

follows that (t, ζ) ∈ TZ × RN belongs to TCφ if and only if dT
φ̃
(t, ζ) ∈ T (Λ̃ ∩ H). The

latter condition is equivalent to

(41) dφ′θ(t, ζ) = 0 and dρdT
φ̃
(t, ζ) = 0.

Taking into account the definition of ρ and its linearity in the fibers, (41) is equivalent to

(42) dφ′θ(t, ζ) = 0 and dφ′z(t, ζ) = 0,

that is, to dφ′ω(t, ζ) = 0 and this proves that φ is a clean phase function.



16 JEAN-MARIE LESCURE, STÉPHANE VASSOUT (1)

Remember that φ is a phase function on the cone bundle V × RN f◦pr1→ Y , that is, the

space variable is y ∈ Y and the parameter variable is ω = (z, θ) with z ∈ f−1(y). The

differential φ′h(y, ω) ∈ T ∗y Y of φ in the “horizontal direction y” is well defined if and only if

the vertical differential φ′ω vanishes, and then

(43) φ′h(y, ω)(v) = dzφ(z, θ)(u) ∀u ∈ TzZ such that df(u) = v.

Since dφ(z,θ)(u) = dφ̃(z,θ)(u), it follows that, around µ(x, ξ),

Λφ = {(y, φ′h(y, ω)) ; (y, ω) = (z, θ) ∈ Cφ}

= {(f(z), tdf−1(φ′z(z, θ)) ; (z, θ) ∈ Cφ}(44)

= Λ.

We have dimH = nX + nY and dimCφ = dim Λ̃ ∩H. Then

e = (2nX − dim Λ̃) + (2nX − dimH)− (2nX − dim Λ̃ ∩H)

= nX + nX − nY − 2nX + dim Λ̃ ∩H = dim Λ̃ ∩H − dim Λ(45)

= dimCφ − dim Λ,

and the latter is by definition the excess e of φ.

�

Remark: Let φ be a phase function over Y , defined on the total space of a given cone bundle

p : C → Y . Then Λ̃ = Gr(φ′) is a Lagrangian submanifold of T ∗C and in the notations of the

previous proposition with Z = X = C, f = p, we get

Λ̃ ∩H is clean if and only if φ is a clean phase function,

and since µ(v, ξ) = (p(v), ξhor) for all (v, ξ) ∈ H = (ker dp)⊥, we also have

µ(Λ̃ ∩H) = Λφ,

where Λφ is defined in (29).

3.4. Families of Lagrangian submanifolds and submersions. Let π : M → B be a surjective

submersion, with fibers of dimension n and base of dimension q. The inclusion Mb ↪→M is denoted

by ib. We consider the vector bundle V ∗M = (ker dπ)∗ = ∪b∈BT ∗Mb over M and we denote by p

both the projection maps T ∗M → M and V ∗M → M . Similarly, the natural submersions maps

T ∗M → B and V ∗M → B are both denoted by σ, while the natural restriction map T ∗M → V ∗M

is denoted by ρ. The fibers of V ∗M → B are exactly the cotangent spaces T ∗Mb, b ∈ B. We have

a short exact sequence of vector bundles over M ,

(46) 0 −→ (ker dπ)⊥ −→ T ∗M
ρ−→ V ∗M −→ 0.

We are interested in C∞ families (Λb)b∈B of (local, Lagrangian, conic) submanifolds subordinate

to σ in the sense of Definition 5. By a slight abuse of vocabulary, we will say that they are

subordinate to π. Similarly, we will say that Λ ⊂ T ∗M is transverse to π if it is transverse to

σ = π ◦ p : T ∗M → B in the sense of Definition 5, which here is obviously equivalent to the

condition

(47) TxMb + dp(Tx,ξΛ) = TxM ∀b ∈ B, ∀x ∈Mb;
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that is, equivalent to the transversality of the maps ib : Mb →M and p|Λ : Λ→M for any b. The

next theorem is a straight adaptation of Theorem 21.2.16 in [32].

Theorem 5. Let L = (Λb)b∈B be a family of conic Lagrangian submanifolds subordinate to π and

L = ∪b∈BΛb ⊂ V ∗M \ 0 the associated transversal submanifold.

(1) For any (m0, ξ0) ∈ Λb0, there exist local trivializations of π around m0 such that in the

associated local coordinates (x, b, ξ) of V ∗M , the map

(48) L 3 (x, b, ξ) 7−→ (b, ξ)

is a local diffeomorphism. Such a local trivialization is called adapted to L (or L).

(2) In local trivializations adapted to L, there exist conic neighborhoods W of (b0, ξ0) ∈ Rq ×
(Rn \ 0) and V of (m0, ξ0) ∈ V ∗M \ 0 and a unique C∞ function H :W → R homogeneous

of degree 1 such that

(49) L ∩ V = {(H ′ξ(b, ξ), b, ξ) ; (b, ξ) ∈ W}.

In other words, the C∞ function φ(x, b, ξ) = 〈x, ξ〉 −H(b, ξ) provides a family labelled by b

of non-degenerate phase functions φ(·, b, ·) parametrizing Λb.

Using the notions of sections, transversality and parametrizations introduced in Paragraph 3.1,

we see that the conclusions of the theorem hold for families of conic Lagrangian local submanifolds

as well. We just need to replace L in (48) by a patch L′.

Thus, families of Lagrangian local submanifolds are parametrized by families of non-degenerate

phase functions defined in open cones of M × (Rn \ 0).

Proof. Let (y, z) be a local trivialisation around m0. Here, z = (z1, . . . , zq) gives local coordinates

of B at b0 and for fixed b, y = (y1, . . . , yn) gives local coordinates of Mb. Following the proof of

[32, Theorem 21.2.16], we can perform a change of variables x = x(y) so that, as submanifolds of

T ∗Mb, the space Λb0 is transversal to the horizontal subspace ξ = ξ0 at the point (m0, ξ0), and

then so that the map Λb0 3 (x, b0, ξ) → ξ has a bijective differential at (x0, b0, ξ0). Moreover, by

assumption, the map L 3 (x, b, ξ) 7→ b has a surjective differential at (x0, b0, ξ0). Therefore, the

differential of L 3 (x, b, ξ) 7→ (b, ξ) is surjective at (x0, b0, ξ0), hence bijective for dimL = n+ q.

We now turn to the second assertion which consists of routine computations (see for instance the

end of the proof of [32, Theorem 21.2.16]). By 1., there exists a neighborhood U = (U ×W ) × C
of (x0, b0, ξ0) ∈ Rn+q × (Rn \ 0) and a C∞ function x(b, ξ) defined on W × C such that

L ∩ U = {(x(b, ξ), b, ξ) ; b ∈W, ξ ∈ C}.

Since x is necessarily homogeneous of degree 0 in ξ, we can assume that C is a cone. Since the

canonical 1-form of T ∗Mb vanishes on Λb, we get∑
j

ξjdξxj(b, ξ) = 0.

In other words, the linear form u 7→ 〈x′ξ(b, ξ).u, ξ〉 vanishes. It follows that

(50) x(b, ξ) = H ′ξ(b, ξ), with H(b, ξ) = 〈x(b, ξ), ξ〉,

and that, by the Euler formula, this function H is unique among C∞ functions K(b, ξ) homogeneous

of degree 1 in ξ and satisfying K ′ξ = x. Finally, it is clear that for fixed b, the function φ(x, b, ξ) :=

〈x, ξ〉 −H(b, ξ) is a non-degenerate phase function parametrizing Λb. �
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Theorem 6. Let (Λb)b∈B be a family of conic Lagrangian local submanifolds subordinate to π.

There exists a unique conic Lagrangian local submanifold Λ ⊂ T ∗M transverse to π such that

(51) i∗bΛ = Λb, b ∈ B.

One says that Λ is the gluing of the family (Λb)b∈B.

Proof. We first assume that (Λb)b∈B is a family of submanifolds. Assume that Λ is a conic La-

grangian submanifold of T ∗M satisfying (51). Let κ : U → U ×W , κ(m) = (x, b), be an adapted

local trivialisation and H the corresponding function constructed in Theorem 5. By assumption,

we have in these coordinates

(52) κ∗(Λ ∩ T ∗U) ⊂ {(H ′ξ(b, ξ), b, ξ, τ); ξ ∈ C, (b, τ) ∈ T ∗W}.

The projection (x, b, ξ, τ) → (b, ξ) restricted to κ∗(Λ ∩ T ∗U) is still a local diffeomorphism since

dim Λ = n+q. Thus τ is a C∞ function of (b, ξ). Since Λ is conic and Lagrangian, the fundamental

one form of T ∗M vanishes identically on Λ, which yields

0 =
∑
j

ξjd(H ′ξj )(b, ξ) +
∑
l

τldbl

=
∑
i,j

ξjH
′′
ξiξj

(b, ξ)dξi +
∑
l,j

ξjH
′′
blξj

(b, ξ)dbl +
∑
l

τldbl

=
∑
l,j

ξjH
′′
blξj

(b, ξ)dbl +
∑
l

τldbl, since H ′ξi is homogeneous of degree 0 in ξ,

=
∑
l,j

H ′bl(b, ξ)dbl +
∑
l

τldbl, since H ′bl is homogeneous of degree 1 in ξ.

This proves that τ(b, ξ) = −H ′b(b, ξ) and thus

(53) κ∗(Λ ∩ T ∗U) = {(H ′ξ(b, ξ), b, ξ,−H ′b(b, ξ)); ξ ∈ C, b ∈W} ⊂ (T ∗U × T ∗W ) \ 0.

This proves uniqueness and the transversality of Λ with respect to π as well. It also proves existence

in open subsets of the form T ∗U , U being the domain of an adapted local trivialisation. We note

for future reference that given (m, ξ) ∈ Λb, there is a unique (m, ζ) ∈ Λ such that ρ(m, ζ) = (m, ξ).

The existence follows from the local existence and uniqueness . Indeed, let (κj ,Uj), j = 1, 2,

be two adapted local trivialisations such that U1 ∩ U2 6= ∅ and Λ1,Λ2 the submanifolds of T ∗U1

and T ∗U2 defined by (53). The previous argument of uniqueness proves that over T ∗U1 ∩ U2 we

have Λ1 = Λ2. This allows us to define a solution Λ globally on T ∗M using a cover by adapted

trivialisations.

Now, let us consider the general case. Choose a countable cover of L = (Λb)b by families

Lj = (Λbj)b∈Uj , j ∈ J , of conic Lagrangian submanifolds. By the first part of the proof, there

exists for any j a unique Λj ⊂ T ∗M gluing Lj . Then Λ = ∪JΛj is a gluing of L and this

proves the existence. If Λ′1 is a patch contained in another solution Λ′, then ρ(Λ′1) is contained in

ρ(Λ′) = L = ∪BΛb. For any j ∈ J , the set Lj = ∪bΛbj is a patch of L and by the remark made

just after the proof of uniqueness in the submanifold case, we get that ρ−1(Lj)∩Λ′1 is contained in

the unique conic Lagrangian submanifold Λj gluing Lj . Therefore, Λ′1 ⊂ ∪JΛj = Λ and uniqueness

follows directly. �

Conversely, we have the following statement, which can be generalized to the local case.

Theorem 7. Let Λ ⊂ T ∗M \ 0 be a conic Lagrangian submanifold transverse to π. Then
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(1) Λ ∩ (ker dπ)⊥ = ∅.
(2) (i∗b(Λ))b∈B is a family of conic Lagrangian local submanifolds of T ∗Mb \ 0. In other words,

ρ(Λ) is a local submanifold of V ∗M transverse to π and for any b, the fiber

(54) Λb = i∗b(Λ) = ρ(Λ) ∩ T ∗Mb

is a conic Lagrangian local submanifold of T ∗Mb \ 0.

Proof. (1) On one hand, by dualizing the transversality condition (47), we get

(55) (ker dπ)⊥ ∩ (dp(TΛ))⊥ = M × {0} ⊂ T ∗M.

On the other hand, the inclusion

(56) Λ ⊂ (dp(TΛ))⊥

holds. Indeed, by conicity of Λ, any (x, ξ) in Λ corresponds canonically to a vertical vector

in T(x,ξ)Λ, denoted by v(ξ). Since Λ is Lagrangian, we have with these notations

ξ(dp(Z)) = ω(v(ξ), Z) = 0, ∀Z ∈ T(x,ξ)Λ,

where ω denotes the symplectic form of T ∗M . Therefore Λ ∩ (ker dπ)⊥ ⊂ {0} and since by

assumption Λ ⊂ T ∗M \ 0, the first assertion is proved.

(2) As observed in [30, Chap. 4, Par. 4], the transversality assumption (47) is actually equiva-

lent to the transversality of the intersection of the canonical relation

Λ(ib) = {(m,−ξ,m, ζ) ∈ T ∗Mb × T ∗M ; m ∈Mb, ζ|TmMb
= ξ}

with Λ, viewed as a canonical relation from T ∗M to a point. Therefore, Hormander’s

product of canonical relations applies [32, Theorem 21.2.14], that is, the map

ρb : Λ ∩ T ∗Mb
M −→ T ∗Mb \ 0 , (m, ζ) 7−→ (m, ζ|TmMb

)

is an immersion with range ρb(Λ) = Λb = i∗b(Λ) a conic Lagrangian local submanifold of

T ∗Mb \ 0, for any b. From now on, let (m0, ζ0) ∈ Λ, b0 = π(m0), (m0, ξ0) = ρ(m0, ζ0) and

choose a local trivialization κ(m) = (x, b) of π around m0. After applying, if necessary,

a diffeomorphism in the x variables independent of b, we can assume that κ is such that

in a neighborhood of (m0, ξ0) in T ∗Mb0 , the projection Λb0 3 (x, ξ) → ξ has a bijective

differential. Moreover, by assumption, the map (x, b, ζ) → b has a surjective differential

everywhere. It follows that the map

(57) Λ 3 (x, b, ξ, τ) 7−→ (b, ξ) ∈ Rq × Rn

has a surjective differential, and therefore is bijective for dimensional reasons. In particular,

this proves that the map ρ : Λ→ V ∗M is an immersion, and thus ρ(Λ) is a local submanifold.

It is also obvious from the same argument that ρ(Λ) is transverse to π, which proves that

(i∗(Λb))b∈B is a C∞ family of conic Lagrangian local submanifolds.

�



20 JEAN-MARIE LESCURE, STÉPHANE VASSOUT (1)

4. Lagrangian distributions

4.1. Lagrangian distributions on a manifold. Unless otherwise stated, we use the definitions

and notations of [32] for all the notions involved in the theory of Lagrangian distributions.

Let X be a C∞ manifold of dimension n, E a complex vector bundle over X, Λ a conic Lagrangian

submanifold of T ∗X \ 0 and m ∈ R. The set Im(X,Λ;E) consists of distributions belonging to

D′(X,E) which, modulo C∞(X,E), are locally finite sums of oscillatory integrals ([32, Section

25.1]):

(58) u =
∑
j∈J

(2π)−(n+2Nj)/4

∫
eiφj(x,θj)aj(x, θj)dθj mod C∞(X,E),

where for all j,

• (x, θj) ∈ Vj ⊂ Uj ×RNj with Uj a local coordinate patch of X and Vj an open conic subset;

• φj : Vj → R is a non degenerate phase function providing a local parametrization of Λ;

• aj(x, θj) ∈ Sm+(nX−2Nj)/4(Uj ×RNj , E) has support in the interior of a cone with compact

base and included in Vj .

Such distributions are called Lagrangian distributions associated with Λ, with values in E. When

Λ is the conormal bundle of a submanifold, they are called conormal distributions.

In the definition above, one can allow conic Lagrangian local submanifolds of T ∗X \ 0, and thus

the set Im(X,E) of all Lagrangian distributions with values in E is a vector space.

The principal symbol of an element in Im(X,Λ;E ⊗ Ω
1/2
X ) can be defined as an element of

Sm+n/4(Λ, IΛ⊗ Ê), well defined modulo Sm+n/4−1(Λ, IΛ⊗ Ê). Here IΛ is the tensor product of the

Maslov bundle with half densities over Λ and Ê is the pull back of E onto Λ. The principal symbol

map gives an isomorphism [32, Theorem 25.1.9]

(59) σ : I [m](X,Λ;E ⊗ Ω
1/2
X ) −→ S[m+n/4](Λ, IΛ ⊗ Ê),

with the conventions I [∗] = I∗/I∗−1, S[∗] = S∗/S∗−1.

Let X,Y, Z be C∞ manifolds and Λ1 ⊂ T ∗X \ 0 × T ∗Y \ 0 and Λ2 ⊂ (T ∗Y \ 0) × (T ∗Z \ 0)

be conic Lagrangian submanifolds closed in T ∗X × (T ∗Y \ 0) and T ∗Y × (T ∗Z \ 0) respectively.

It is understood that the symplectic structures of T ∗X × T ∗Y and T ∗Y × T ∗Z are the product

ones. Assume that the intersection of Λ1 × Λ2 with T ∗X ×N∗(∆Y )× T ∗Z is clean with excess e,

where N∗(∆Y ) is the conormal space of the diagonal ∆Y in Y 2. If A1 ∈ Im1(X × Y,Λ1; Ω
1/2
X×Y )

and A2 ∈ Im2(Y × Z,Λ2; Ω
1/2
Y×Z) are properly supported, then [32, Theorem 25.2.3]

(60) A = A1 ◦A2 ∈ Im1+m2+e/2(X × Z,Λ,Ω1/2
X×Z).

Here A1 ◦ A2 is defined through the Schwartz kernel theorem and Λ is the conic Lagrangian local

submanifold defined by the composition of Λ1 and Λ2:

(61) Λ = Λ1 ◦ Λ2 = {(x, ξ, z, ζ) ; ∃(y, η) ∈ T ∗Y, (x, ξ, y,−η, y, η, z, ζ) ∈ Λ1 × Λ2}.

Under the same assumptions on Λi, i = 1, 2, there is thus a well defined product of principal

symbols:

(62) S[m1+(nX+nY )/4](Λ1, IΛ1)× S[m2+(nY +nZ)/4](Λ2, IΛ2)
◦−→ S[m1+m2+e/2+(nX+nZ)/4](Λ, IΛ)

which is defined abstractly by

(63) a = a1 ◦ a2 = σ(σ−1(a1) ◦ σ−1(a2))
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and computed concretely through the integral

(64) a(γ) =

∫
Cγ

a1 × a2

where a1, a2, a are representatives in S∗ of the given classes in S[∗], γ ∈ Λ1 ◦ Λ2, the manifold Cγ

is the fiber of the projection map

(65) p : Λ̃ := Λ1 × Λ2 ∩ T ∗X ×N∗(∆Y )× T ∗Z −→ Λ1 ◦ Λ2

and a1×a2 is the density on Cγ with values in IΛ resulting from the natural bundle homomorphism

(66)

IΛ1 ⊗ IΛ2 p∗(IΛ)⊗ Ω(ker dp)⊗ Ω−1/2(T ∗Y )

Λ̃

p

and from the trivialization of Ω−1/2(T ∗Y ) using the canonical density of T ∗Y (see [32, Theorems

21.6.6, 25.2.3]).

4.2. “Pushforward” of Lagrangian distributions. In this paragraph, we describe a procedure

of “restriction and pushforward” for Lagrangian distributions parallel to the one described for

Lagrangian submanifolds in Paragraph 3.3. This is the main step in the composition of Fourier

Integral Operators on groupoids.

Proposition 8. We use the notations and assumptions of Proposition 4: let X,Y be manifolds,

Z ⊂ X a submanifold and f : Z → Y a submersion. Set H = (ker df)⊥ ⊂ T ∗X and

µ : H 3 (x, ξ) 7−→ (f(x), tdf−1
x (ξ)) ∈ T ∗Y.

Suppose that Λ̃ is a conic Lagrangian local submanifold of T ∗X \0 intersecting cleanly H with excess

e and such that Λ̃ ∩N∗Z = ∅, and set Λ = µ(Λ̃ ∩H).

Let then Ω be any line bundle over X extending the density bundle ΩZ over Z. We denote by

i∗ : E ′
Λ̃

(X,Ω) −→ E ′
i∗Λ̃

(Z,ΩZ)

the restriction to Z of distributions on X and by

f∗ : E ′
i∗Λ̃

(Z,ΩZ) −→ E ′Λ(Y,ΩY ),

the push-forward along f . The map

f# : Imc (X, Λ̃; Ω) −→ Im+e/2+(nX−2nZ+nY )/4
c (Y,Λ)

u 7−→ f∗(i
∗u)

is well defined.

For non compactly supported distributions, we get the same result by taking care of supports

for the push-forward operation. For instance, given any ϕ ∈ C∞(Z) such that f : supp(ϕ)→ Y is

proper, the conclusion of the lemma holds true with

u 7−→ f∗(ϕi
∗u).

Proposition 8 could be deduced from [32, Theorem 25.2.3], but the direct proof below is instruc-

tive.
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Proof. Let

A(x) =

∫
eiφ̃(x,θ)a(x, θ)dθ ∈ Im(X, Λ̃).

Here φ̃ : U×RN → R is a non-degenerate phase function parametrizing Λ̃ and a ∈ Sm+(nX−2N)/4(U×
RN ). Since WF(A) ⊂ Λ̃ and, by assumption, Λ̃ ∩ N∗Z = ∅, the distribution i∗(A) is well-defined

([30, Chp. 6, Section 1]) and given by the oscillatory integral

(67) i∗(A)(z) =

∫
eiφ(z,θ)a(z, θ)dθ ∈ Im+(nX−nZ)/4(Z, i∗Λ̃)

where we recall that i∗Λ̃ = p(Λ̃ ∩ T ∗X|Z) with p : T ∗X|Z → T ∗Z being the canonical projection,

since applying the previous proposition to the case when Y = Z gives exactly that φ = φ̃|(U∩Z)×RN

is a non-degenerate phase function parametrizing i∗Λ̃ = p(Λ̃ ∩ T ∗X|Z).

The next step consists in pushing i∗(A) forward by f . This amounts to integrating the Lagrangian

distribution i∗A along the fibers of f , which gives:

(68) f#A(y) =

∫
f−1(y)×RN

eiφ(z,θ)a(z, θ)dzdθ,

where the integral is understood in the distributional sense. We already know by the previous

proposition that φ is a clean phase function over W = f(U ∩ Z) subordinate to the cone bundle

(U ∩ Z)× RN → W, (z, θ) 7→ f(z). To conclude, it just remains to pay attention to the fact that

the fiber part of the variable z is not homogeneous and thus, strictly speaking, a is not a symbol

on W . Working in local coordinates, we can write

(69) a(x, θ) = a(y, z′, θ) ∈ Sm+(nX−2N)/4(RnY × RnZ−nY × RN ).

Setting ω(z′, θ) = (|θ|.z′, θ); ψ(y, ω) = φ(y, z′, θ) and b(y, ω) = a(y, z′, θ)|det(ω−1)|, we get |det(ω−1)| =
|θ|nY −nZ and thus b ∈ Sm+(nX−2N)/4+nY −nZ (RnY × RnZ−nY +N ). It follows that

(70) f#A(y) =

∫
f−1(y)×RN

eiψ(y,ω)b(y, ω)dω

belongs to Im
′
(Y,Λ) where

m′ − e/2 + (nY − 2(nZ − nY +N))/4 = m+ (nX − 2N)/4 + nY − nZ

that is m′ = m+ e/2 + (nX − nY )/4− (nZ − nY )/2 = m+ e/2 + (nX − 2nZ + nY )/4 . �

4.3. Families of Lagrangian distributions and submersions.

Definition 8. Let π : M −→ B be a C∞ submersion of a manifold M of dimension nM onto a

manifold B of dimension nB. A C∞ family of Lagrangian distributions of order m relative to π

is a family ub ∈ Im(π−1(b),Λb,Ω
1/2
π ), b ∈ B, such that (Λb)b∈B is a C∞ family and in any local

trivialization κ : U → U ×W of π, we have

κ∗(u|U ) =

∫
eiφ(x,b,θ)a(x, b, θ)dθ,

with a ∈ Sm+(nM−nB−2N)/4(U × W × RN ) and where (x, b, θ) 7→ φ(x, b, θ) is C∞ and a non-

degenerate phase function in (x, θ) which parametrizes Λb locally, for all b.

Proposition 9. Let B 3 b 7→ ub ∈ Im(π−1(b),Λb,Ω
1/2
π ) be a C∞ family. The formula

(71) 〈ũ, f〉 =

∫
B
〈ub, f〉, f ∈ C∞c (M,Ω1/2

π ⊗ π∗(ΩB))
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defines a Lagrangian distribution

(72) ũ ∈ Im−nB/4(M,Λ),

where Λ is the gluing of the family (Λb)b. The map (ub)b∈B 7→ ũ is bijective.

Proof. Let ub ∈ Im(π−1(b),Λb,Ω
1/2
π ) be a C∞ family. In sufficently small local trivializations, we

have

(73) ub(x) =

∫
eiφ(b,x,θ)a(b, x, θ)dθ

for some C∞ family of non-degenerate phases functions (φ(b, ·, ·))b parametrizing the family (Λb)b

and some symbol a ∈ Sm+(nM−nB−2N)/4(U ×W × RN ).

Since (x, θ) 7→ φ(b, x, θ) is a non-degenerate phase function for any b, the function (b, x, θ) 7→
φ(b, x, θ) is actually a non-degenerate phase function. We have Λφ = Λ locally, because on one hand

i∗b(Λφ) = Λb for any b and on the other hand Λ is the unique Lagrangian satisfying this condition.

It follows that ũ is given locally by the oscillatory integral:

ũ(b, x) =

∫
eiφ(b,x,θ)a(b, x, θ)dθ,

which proves that ũ ∈ Im−nB/4(M,Λ). Conversely, if v ∈ Im−nB/4(M,Λ) then locally

(74) v(x) =

∫
eiφ(b,x,θ)a(b, x, θ)dθ

for some non-degenerate phase function φ parametrizing Λ and some symbol Sm−nB/4+(nM−2N)/4(U×
W ×RN ). Since Λ is transverse to π, the restriction vb of v to Mb is allowed and given by the C∞

family b 7→ vb(x) =
∫
eiφ(b,x,θ)a(b, x, θ)dθ where φ is regarded as a non degenerate phase function

in (x, θ) for fixed b. This proves that u 7→ ũ is bijective. �

5. Lagrangian submanifolds of symplectic groupoids

Let G be a Lie groupoid. The cotangent groupoid T ∗G⇒ A∗G plays a fundamental role in the

convolution of distributions on G [36]. The point is that T ∗G is a symplectic groupoid. We recall

that a Lie groupoid Γ is symplectic if it is provided with a symplectic structure for which the graph

of the multiplication

(75) Gr(mΓ) = {(γ1, γ2, γ) ∈ Γ3 ; γ = γ1γ2}

is a Lagrangian submanifold of Γ× Γ× (−Γ) [19, 39, 59].

Since, in the sequel, we want to develop a calculus for G-operators associated with Lagrangian

distributions on G, it is necessary to investigate the behavior of Lagrangian submanifolds of the

symplectic groupoid T ∗G. Actually, we can state most of the results in the case of an arbitrary

symplectic groupoid.

5.1. Product and adjunction. Let Γ be a symplectic groupoid. We may apply Proposition 2

with S = Γ2, T = Γ, H = Γ(2) and µ = mΓ. This gives:

Corollary 10. Let Γ be a symplectic groupoid with multiplication map mΓ. Let Λ̃ be a Lagrangian

local submanifold of Γ2. If Λ̃ ∩ Γ(2) is clean then

(76) Λ := mΓ(Λ̃ ∩ Γ(2))

is a Lagrangian local submanifold of Γ.
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We have in mind, of course, the following example. If Λ1,Λ2 are two Lagrangian local subman-

ifolds of Γ such that Λ̃ = Λ1 × Λ2 satisifies the assumption of the previous corollary, then their

product in Γ,

Λ1.Λ2 = mΓ((Λ1 × Λ2) ∩ Γ(2)),

is a Lagrangian local submanifold.

Definition 9. Two Lagrangian local submanifolds Λ1,Λ2 of the symplectic groupoid Γ are cleanly

(resp. transversally) composable if the intersection (Λ1 × Λ2) ∩ Γ(2) is clean (resp. transversal).

When Γ is the cotangent groupoid of a given Lie groupoid G and Λ1,Λ2 are moreover conic, then

the product Λ = Λ1Λ2 is also conic. Using Proposition 4 (applied with X = G2, Y = G, Z = G(2)

and f = mG), we see how non-degenerate phase functions of Λ1 and Λ2 combine to produce clean

phase functions parametrizing the product Λ.

Corollary 11. Let Λ1,Λ2 be local conic Lagrangian submanifolds of T ∗G \ 0. We assume that Λ1

and Λ2 are cleanly composable with excess e and satisfy

(77) (Λ1 × Λ2) ∩N∗(G(2)) = ∅.

Let (γ0
1 , ξ

0
1 , γ

0
2 , ξ

0
2) ∈ (Λ1 × Λ2) ∩ Γ(2) and φj : Uj × RNj −→ R be non-degenerate phase functions

parametrizing Λj around (γ0
j , ξ

0
j ) for j = 1, 2. Then the function defined by

(78) φ(γ1, γ2, θ1, θ2) = φ1(γ1, θ1) + φ2(γ2, θ2)

is a phase function over the product open set U = U1.U2 ⊂ G. Its associated cone bundle (see

Definition 7) is given by the map:

(79) (U1 × U2 ∩G(2))× (RN1 \ 0)× (RN2 \ 0) −→ U, (γ1, γ2, θ1, θ2) 7−→ γ1γ2.

This phase function is clean with excess e and parametrizes Λ1.Λ2 around (γ0
1γ

0
2 , ξ

0
1 ⊕ ξ0

2).

Another useful, although obvious, operation is adjunction. Precisely, if Λ is a local Lagrangian

submanifold of a symplectic groupoid Γ, then its adjoint, that is, the subset of Γ defined by

Λ? = ιΓ(Λ)

is again a local Lagrangian submanifold.

5.2. Invertibility. Let Γ be a symplectic groupoid.

Definition 10. (1) A Lagrangian submanifold Λ ⊂ Γ is invertible if there exists a Lagrangian

submanifold Λ′ ⊂ Γ cleanly composable with Λ and such that

(80) Λ.Λ′ = rΓ(Λ) and Λ′.Λ = sΓ(Λ).

Λ′ is in this case called an inverse of Λ.

(2) A Lagrangian local submanifold Λ is locally invertible if it can be covered by invertible

patches.

In that case, any local Lagrangian submanifold consisting of inverses of the corresponding

invertible patches is a local inverse of Λ.
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Theorem 12. Let Λ be a Lagrangian submanifold of Γ. Then Λ is locally invertible (resp. invert-

ible) if and only if the maps

(81) rΓ : Λ −→ Γ(0) and sΓ : Λ −→ Γ(0)

are local diffeomorphisms (resp. diffeomorphisms onto their ranges). In that case, Λ and Λ? are

transversally composable and Λ? is a local inverse (resp. an inverse) of Λ.

Proof. Assume that Λ is locally inversible. By restricting our attention to a sufficiently small

patch, we can assume that Λ is invertible. Let Λ′ be an inverse. Firstly, note that Λ.Λ′ is a local

submanifold of T ∗G contained in Γ0. Since Λ.Λ′ and Γ(0) are Lagrangian we have dimA∗G =

dim Λ.Λ′ and thus each patch of Λ.Λ′ is an open subset of Γ(0). It follows that Λ.Λ′ itself is an open

subset of Γ(0) and therefore a true submanifold. Now, by assumption,

(82) mΓ : (Λ× Λ′)(2) −→ Λ.Λ′ = rΓ(Λ)

is a surjective submersion. Since the map rΓ is equal to the identity map in restriction to Γ(0), we

have the equality of maps

(83) rΓ ◦ pr1 = rΓ ◦mΓ = mΓ : (Λ× Λ′)(2) −→ Λ.Λ′ ⊂ Γ(0).

It follows that

(84) rΓ ◦ pr1 : (Λ× Λ′)(2) −→ Λ.Λ′ = rΓ(Λ)

is a submersion. Observe also that

(85) pr1 : (Λ× Λ′)(2) → Λ

is surjective. Indeed, for any γ ∈ Λ, there exists, by surjectivity of the map (82), an element

(γ1, γ2) ∈ (Λ× Λ′)(2) such that γ1γ2 = rΓ(γ). In particular r(γ1) = r(γ) and γ−1
1 = γ2 ∈ Λ′. Thus

(γ−1
1 , γ) ∈ (Λ′ × Λ)(2) and the assumption Λ′.Λ ⊂ Γ(0) implies γ = γ1 = pr1(γ1, γ2).

Since the map (85) is surjective, we deduce from the surjectivity of the differential of (84) at any

point the surjectivity of the differential of rΓ : Λ→ Γ(0) everywhere too. By equality of dimension,

rΓ is then a local diffeomorphism. The same holds for sΓ.

Conversely, let us assume that rΓ, sΓ : Λ→ Γ(0) are local diffeomorphisms. Then the map

sΓ × rΓ|Λ×Λ? : Λ× Λ? −→ Γ(0) × Γ(0)

is also a local diffeomorphism. It follows that

(86) (Λ× Λ?)(2) = (sΓ × rΓ)−1
|Λ×Λ?(∆Γ(0)) = (sΓ × rΓ)−1(∆Γ(0)) ∩ Λ× Λ?

is a submanifold of dimension n of Γ2 with tangent space given by

T (Λ× Λ?)(2) = TΓ(2) ∩ T (Λ× Λ?).

Therefore the intersection Λ× Λ? ∩ Γ(2) is clean with excess satisfying

e = codim(Λ× Λ?) + codim(Γ(2))− codim((Λ× Λ?)(2)) = 2n+ n− 3n = 0.

In other words, we get (Λ × Λ?) t Γ(2). Moreover, for any δ ∈ Λ, there exists an open conic

neighborhood U of δ in Γ such that

rΓ, sΓ : ΛU = Λ ∩ U −→ Γ(0)

are diffeomorphisms onto their respective images. By the previous arguments, (ΛU × iΓ(ΛU ) t Γ(2),

and if η ∈ iΓ(ΛU ) is such that (δ, η) ∈ (ΛU × iΓ(ΛU ))(2) then by the injectivity of sΓ we get
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η = δ−1. It follows that ΛU .iΓ(ΛU ) = rΓ(ΛU ). This proves that Λ is locally invertible and since

iΓ(ΛU ) = (Λ?)U−1 , we conclude that Λ? is a local inverse.

Now assume that rΓ, sΓ are diffeomorphisms onto their ranges, that is, are injective local diffeo-

morphisms. If there exists δ ∈ Λ and η ∈ Λ? such that δη 6∈ Γ(0) then δ, η−1 ∈ Λ, δ 6= η−1 but

sΓ(δ) = sΓ(η−1) which contradicts the injectivity of sΓ. This gives the inclusion Λ.Λ? ⊂ Γ(0) and

then the equality Λ.Λ? = rΓ(Λ) follows from the definition of Λ?. We get the equality Λ?.Λ = sΓ(Λ)

using the injectivity of rΓ.

Conversely, assume that Λ′ is an inverse of Λ. Let u ∈ rΓ(Λ). Since Λ.Λ′ = rΓ(Λ), there exists

(δ1, δ
′
1) ∈ (Λ×Λ′)(2) such that δ1.δ

′
1 = u. Let δ ∈ Λ be such that r(δ) = u. Then (δ′1, δ) ∈ (Λ′×Λ)(2)

and thus δ′1.δ ∈ Γ(0). This gives

δ1 = δ′1
−1 = δ.

In other words, rΓ|Λ : Λ −→ Γ(0) is injective. The same holds for sΓ. �

Remark 13.

(1) We have proved that the (local) invertible Lagrangian submanifolds of Γ are precisely the

Lagrangian (local) bisections of Γ. Here we follow the terminology of [3] for bisections, while

in [19, see Paragraphs I.3 and II.1] bisections are required to project onto Γ(0): this is a

minor and technical distinction implying that the set Gr(Γ) is no longer a group here but a

groupoid with unit space given by the collection of open subspaces of Γ(0).

(2) In particular we recover results from [32] in the case where G = M ×M is the pair groupoid

on a manifold M . In that example, a conic Lagrangian submanifold of Γ = T ∗G is (lo-

cally) invertible if and only if it coincides (locally) with the graph of a partially defined

homogeneous canonical transformation [32, Sections 25.3 and 21.2], that is, the graph of a

homogeneous symplectomorphism from an open conic subset of T ∗M to another one.

5.3. G-relations and family G-relations. From now on, we consider a Lie groupoid G and its

symplectic cotangent groupoid Γ = T ∗G. As explained in the introduction (see also Paragraph

2.4), we need to strengthen the notion of conic Lagrangian submanifolds to allow a calculus for

Lagrangian distributions on G. Also, if we consider a G-operator P ([36]) such that Px is a classical

Fourier operator for any x ∈ G(0), we get an equivariant family of Lagrangian conic submanifolds

of T ∗Gx × T ∗Gx, x ∈ G(0). We are going to clarify the relationship between these equivariant

families and the conic Lagrangian submanifolds of T ∗G. In view of Paragraph 2.4, see also [36], it

is natural to begin with:

Definition 11. A (local) G-relation is a conic Lagrangian (local) submanifold of T ∗G contained

in
.
T ∗G = T ∗G \ (ker rΓ ∪ ker sΓ).

If Λ is a G-relation, then it is false in general that Λx is a Lagrangian submanifold for any

x ∈ G(0) (see Example 4 below). In the following theorem, we characterize in various ways the

G-relations enjoying this extra property. We will note p : T ∗G → G the vector bundle projection

map and q : G(2) → G(0) the submersion defined by q(γ1, γ2) = s(γ1) = r(γ2). By construction we

have m̃Γ
−1(Λ) = m∗(Λ) (the map m̃Γ is defined in (13)). Therefore, since the multiplication map

m is a submersion, we get that the set m̃Γ
−1(Λ) is always a Lagrangian submanifold of T ∗(G(2))

contained in T ∗(G(2)) \ 0 [30, Chp. 4, Proposition 4.1]. Then:

Theorem 14. Let Λ be a G-relation. Then the following assertions are equivalent:



FIO ON LIE GROUPOIDS 27

(1) The family (Λx)x∈G(0) is a family of Lagrangian submanifolds and is subordinate to the

submersion q.

(2) The submanifold m̃Γ
−1(Λ) ⊂ T ∗(G(2)) is Lagrangian and transverse to the submersion q.

(3) The transversality condition mx t p|Λ holds for all x ∈ G(0).

(4) The map p|Λ : Λ→ G is transversal to the foliation FG.

(5) For any leaf L ∈ FG, the transversality condition T ∗LG t Λ holds.

A G relation satisfying the above assumption is called a family G-relation.

Proof. The equivalence between (1) and (2) is provided by Theorems 6 and 7.

Next, Condition (3) means that for all x ∈ G(0), we have

(87) dm(Tγ1Gx × Tγ2G
x) + dp(T(γ,ξ)Λ) = TγG,

for all (γ, ξ) ∈ Λ and (γ1, γ2) ∈ Gx×Gx such that γ = γ1γ2. Using the equalities p ◦ m̃Γ = m ◦ p(2)

and TΛ = dm̃Γ(Tm̃Γ
−1(Λ)), we get

dp(T(γ,ξ)Λ) = dm(dp(2)(Tρ(γ1,ξ1,γ2,ξ2)m̃Γ
−1(Λ)))

for all (γ, ξ) ∈ Λ and (γ1, ξ1, γ2, ξ2) ∈ m−1
Γ (γ, ξ). Moreover, we have ker dm̃Γ ⊂ Tm̃Γ

−1(Λ) and

dp(2)(ker dm̃Γ) = ker dm. Therefore ker dm ⊂ dp(2)(Tm̃Γ
−1(Λ)) and Condition (87) is equivalent to

(88) Tγ1Gx × Tγ2G
x + dp(2)(Tρ(γ1,ξ1,γ2,ξ2)m̃Γ

−1(Λ)) = T(γ1,γ2)G
(2),

where γ, ξ, γi, ξi are as above. With the same notation, we have ker(dq)(γ1,γ2) = Tγ1Gx × Tγ2G
x,

and thus Condition (88) is equivalent to

(89) dqdp(2)(Tρ(γ1,ξ1,γ2,ξ2)m̃Γ
−1(Λ)) = TxG

(0)

for every γi, ξi as above, which is precisely Condition (2).

For the equivalence between (3) and (4), just observe that we have

(90) (dmx)(γ1,γ2)(Tγ1Gx × Tγ2G
x) = TγGs(γ) + TγG

r(γ) = TγFG;

for any (γ1, γ2) ∈ Gx × Gx such that γ1γ2 = γ. Here TγFG denotes the tangent space at γ of the

leaf of FG containing γ. With this observation, one gets that Condition (3) reads

(91) TγFG + dp(Tγ,ξΛ) = TγG, for all (γ, ξ) ∈ Λ,

which is exactly Condition (4). Furthermore, (91) is clearly equivalent to

(92) T(γ,ξ)(T
∗
LG) + T(γ,ξ)Λ = T(γ,ξ)T

∗G, for all (γ, ξ) ∈ Λ,

where L is the leaf of F containing γ. This gives the equivalence between (4) and (5). �

Remark 15. It follows immediately that a G-relation Λ is a family G-relation if and only if

∀(γ, ξ) ∈ Λ, dr(TγGs(γ)) + dr(dπTγ,ξΛ) = Tr(γ)G
(0) or ds(TγG

r(γ)) + ds(dπTγ,ξΛ) = Ts(γ)G
(0).

In particular, if Λ is a G-relation such that r ◦ π : Λ → G(0) or s ◦ π : Λ → G(0) is a submersion

then Λ is a family G-relation. The converse is false: consider G = X × X × Y with its natural

structure of groupoid (fibered pair groupoid) and Λ = N∗({(x0, x0)} × Y ) \ 0.

Example 2.

1) Λ0 = A∗G \ 0 is a family G-relation. It is of course self-composable and Λ0.Λ0 = Λ0 = Λ∗0.

2) If Λ is an invertible conic Lagrangian submanifold of T ∗G \ 0 then it is a G-relation. Indeed,

if there would exist (γ, ξ) ∈ Λ ∩ ker sΓ, we would get from the homogeneity of Λ that the vertical

vector associated with (γ, ξ) belongs to ker dsΓ, which would imply that Λ is not invertible.
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Remark 16. Theorem 14 can be stated and proved exactly in the same way for local G-relations.

We have seen that family G relations produce equivariant families of Lagrangian submanifolds

subordinate to q. The converse statement is the following:

Theorem 17. Let (Lx)x be a C∞ equivariant family of local conic Lagrangian submanifolds con-

tained in (T ∗Gx \ 0) × (T ∗Gx \ 0) and subordinate to q. Then there exists a unique local family

G-relation Λ such that

Λx = Lx, for all x ∈ G(0).

Proof. To prove existence, we can decompose the family into patches and then we can assume that

(Lx)x is a family of submanifolds. Let L̃ ⊂ T ∗(G(2)) \ 0 denote its gluing (Theorem 6). Recall

that it is the unique Lagrangian submanifold such that i∗xL̃ = Lx for all x. In an appropriate local

trivialization of q : G(2) → G(0), we have

(93) L̃ = {(γ1, γ2, ξ1, ξ2, τ) ∈ T ∗(G(2)) ; (γ1, γ2, ξ1, ξ2) ∈ Lx},

where τ is a C∞ function of ξ1, ξ2 and x = s(γ1) = r(γ2). It is understood that (ξ1, ξ2, τ) ∈
T ∗(γ1,γ2)G

(2) ' T ∗γ1
Gx×T ∗γ2

Gx×T ∗xG(0), where the decomposition comes from the local trivialisation

of q : G(2) → G(0).

Let λ̃ = (δ, ξ) ∈ L̃ with δ = (γ1, γ2) and ξ = (ξ1, ξ2, τ). Let u = (u1, u2) ∈ ker dmγ1,γ2 and choose

a C∞ path t 7→ γ(t) in G such that γ(0) = x, d
dtγ1γ(t)|t=0 = u1, d

dtγ(t)−1γ2|t=0 = u2. It gives rise

to a C∞ path in (ker dq)∗ defined by

(94) λt = (γ1γ(t), γ(t)−1γ2,
t(dRγ(t)−1)(ξ1), t(dLγ(t))(ξ2)).

Thanks to equivariance, we have

(95) λt ∈ Ls(γ(t)) for all t.

Thus, we get a C∞ path in L̃ as well:

(96) λ̃(t) = (γ1γ(t), γ(t)−1γ2,
t(dRγ(t)−1)(ξ1), t(dLγ(t))(ξ2), τ(t)) = (δ(t), ξ(t)).

Since L̃ is conic and Lagrangian, the canonical 1-form α = ξdδ vanishes identically on it, and in

particular we get, for all t,

(97) (λ̃)∗α(t) = 〈ξ(t), δ′(t)〉 = 0.

For t = 0, this gives 〈ξ, u〉 = 0, and therefore

(98) L̃ ⊂ (ker dm)⊥ = ρ(T ∗G)(2) ⊂ ρ(T ∗G2).

Note that, for every Lagrangian submanifold L̃ of T ∗(G(2)), the set L = ρ−1(L̃) is a Lagrangian

submanifold of T ∗G2 (it is the push-forward of L̃ by the natural immersion G(2) → G2, see [30,

Prop 4.2]). We can then apply Corollary 10 to L. Indeed, by construction, L ⊂ (T ∗G)(2) and thus

the clean intersection assumption of Corollary 10 is trivially satisfied. It follows that the range

Λ = mΓ(L) is a local G-relation such that m∗(Λ) = L̃. Hence it is a local family G-relation such

that Λx = Lx for any x by Theorem 6.

Let Λ,Λ′ be two local family G-relations such that Λx = Λ′x = Lx, ∀x ∈ G(0) and set Λ̃ = m∗(Λ)

and Λ̃′ = m∗(Λ′). By Theorem 6 and the equalities

(99) i∗xΛ̃ = i∗xΛ̃′, ∀x,
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we get Λ̃ = Λ̃′. Since m̃Γ is surjective, we conclude

(100) Λ = m̃Γ(Λ̃) = m̃Γ(Λ̃′) = Λ′.

�

5.4. Operations on (family) G-relations. It is obvious that for any G-relations Λ1,Λ2 that are

cleanly composable, their product is still a G-relation, for

rΓ(Λ1Λ2) ⊂ rΓ(Λ1) and sΓ(Λ1Λ2) ⊂ sΓ(Λ2).

Unfortunately, it is not always true that the product of family G-relations is a family G-relation.

Here is a conterexample.

Example 3. Set X = Z = R×R and consider the fibred pair groupoid G = X ×X ×Z ⇒ X ×Z.

Let us define the maps x1, x2 : R2 → R2 by:

x1(z) = z and x2(z′, z′′) = (z′,−z′′).

Introduce the submanifolds of G

Vj = {(xj(z), z, z) ; z ∈ Z}, j = 1, 2

and the conic Lagrangian submanifolds of T ∗G \ 0

Λj = {(xj(z), ξ, z, η, z,−tdxj(ξ)− η) ; z ∈ Z, ξ, η ∈ R2 \ 0} ⊂ N∗Vj .

Clearly, Λ1 and Λ2 are G-relations, which moreover satisfy Condition (4) of Theorem 14, and thus

they are family G-relations. With the choices made, the intersection

Λ1 × Λ2 ∩ (T ∗G)(2) = {(z′, ξ1, z
′, η1, z

′,−ξ1 − η1, z
′,−η1, z

′, η2, z
′, tdx2(η1)− η2) ;

z′ ∈ R× {0}, ξ1, η1, η2 ∈ R2 \ 0}

is clean. We obtain

Λ1Λ2 = {(z′, ξ, z′, η, z′,−ξ − η − η′′) ; z′ ∈ R× {0}, ξ, η ∈ R2 \ 0, η′′ ∈ {0} × R}.

Here, Λ = Λ1Λ2 is a G-relation but not a family G-relation. Indeed, TFG = TX ×TX × (Z ×{0})
and dp(TΛ) ⊂ TX × TX × (Z × R× {0}), which contradicts Condition (4) of Theorem 14.

Actually, starting with any composable G-relations Λ1,Λ2, whether the product Λ1.Λ2 is a family

G-relation or not depends upon the position of the Cartesian product Λ1×Λ2 with respect to Γ(2)

and not on extra transversality conditions added to each factor separately. Precisely, we obtain:

Theorem 18. Let Λ1,Λ2 be composable G-relations. Then their product Λ1.Λ2 is a local family

G-relation if and only if

(101) (Tγ1FG × Tγ2FG) ∩ TG(2) + dp2(T(γ1,ξ1,γ2,ξ2)(Λ1 × Λ2) ∩ Γ(2)) = T(γ1,γ2)G
(2)

for all (γ1, ξ1, γ2, ξ2) ∈ (Λ1 × Λ2) ∩ Γ(2).

Remark 19. The conclusions of the theorem are identical if we start with local submanifolds.

The clean composability assumption together with Condition (101) will be called complete com-

posability. The proof of the theorem uses an elementary fact about Lie groupoids.

Lemma 20. For any (γ1, γ2) ∈ G(2), we have

(102) (Tγ1FG × Tγ2FG) ∩ TG(2) = (dm(γ1,γ2))
−1(Tγ1γ2FG).
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Proof of the lemma. Let T be a Lie groupoid and FT its canonical foliation. If (δ1, δ2) ∈ T (2) then

δ1, δ2 and δ = δ1δ2 are in the same leaf L. From the very definition of the leaves of FT , we get

(103) (L× L) ∩ T (2) = m−1
T (L).

We apply this to T = TG, together with the observation FTG = {TL ; L ∈ FG}. The lemma

follows. �

Proof of the theorem. Using the equalities

(104) dm.dp2(T ((Λ1 × Λ2) ∩ Γ(2))) = dp.dmΓ(T ((Λ1 × Λ2) ∩ Γ(2))) = dp(TΛ)

as well as Lemma 20 and the fact that ker(dm) ⊂ (TFG × TFG) ∩ TG(2), we get the equivalence

TFG + dp(TΛ) = TG⇔ (TFG × TFG) ∩ TG(2) + dp2(T (Λ1 × Λ2) ∩ Γ(2)) = TG(2),

where the suitable base points are understood. �

Remark 21. Condition (101) means that the composable part of Λ1 × Λ2 has a projection into

G(0) transversal to the canonical foliation of FG(0). Indeed, we easily get that Condition (101) is

equivalent to

(105) d(q ◦ p2)(T(γ1,ξ1,γ2,ξ2)(Λ1 × Λ2) ∩ Γ(2)) + TOx = TxG
(0),

for all (γ1, ξ1, γ2, ξ2) ∈ (Λ1 × Λ2) ∩ Γ(2) and x = s(γ1) = r(γ2).

We finish by explaining the behavior of (family) G-relations with respect to restriction to suitable

subgroupoids of Γ.

Proposition 22. Let Λ be a G-relation and Y ⊂ G(0) be a saturated submanifold. We denote by

H = GYY the associated Lie subgroupoid and by iH : H ↪→ G the inclusion map. Then,

(1) if T ∗HG and Λ are transversal, then i∗HΛ is a local H-relation.

(2) if Λ is a family G-relation, then T ∗HG t Λ and i∗HΛ is a local family H-relation.

Proof. (1) The assumption already implies that the set i∗HΛ is a local Lagrangian submanifold.

Let us consider the canonical map ρH : T ∗HG −→ T ∗H. Obviously, the equality i∗HΛ =

ρH(Λ ∩ T ∗HG) holds. Since Y is saturated, we have Gx = Hx and Gx = Hx for all x ∈ Y ,

which implies A∗YG = A∗H and the commutativity of the diagram

T ∗HG T ∗H

A∗YG A∗H .

ρH

sΓrΓ sT∗HrT∗H

=

In particular kerσT ∗H = ρH(kerσΓ ∩ T ∗HG), σ = s, r and

ρH(Λ ∩ T ∗HG) ∩ kerσT ∗H = ρH(Λ ∩ kerσΓ) = ∅,

where the first equality follows from ker ρH ⊂ kerσΓ and the second from the assumption

Λ ∩ kerσΓ = ∅.
(2) By assumption on Λ, we have

(106) TγFG + dp(T(γ,ξ)Λ) = TγG, ∀(γ, ξ) ∈ Λ ∩ T ∗HG.

Since Y is saturated, we also have FH = {L ∈ FG ; L ∩ H 6= ∅}, in particular TγFG =

TγFH ⊂ TγH for any γ ∈ H. Therefore we can replace TγFG by TγH in (106), which proves
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the transversality iH t p|Λ, or equivalently the transversality of submanifolds: T ∗HG t Λ.

We also get from (106)

(107) TγH = (TγFG + dp(T(γ,ξ)Λ)) ∩ TγH = TγFH + dp(T(γ,ξ)Λ) ∩ TγH, ∀(γ, ξ) ∈ Λ ∩ T ∗HG.

Furthermore,

dp(T(γ,ξ)Λ) ∩ TγH = dp(T(γ,ξ)Λ ∩ T(γ,ξ)T
∗
HG) = dp(T(γ,ξ)(Λ ∩ T ∗HG)) since T ∗HG t Λ

= dpH ◦ dρH(T(γ,ξ)(Λ ∩ T ∗HG)) since p|H = pH ◦ ρH
= dpH(Ti∗HΛ) since ρH(Λ ∩ T ∗HG) = i∗HΛ.(108)

Using the result of this computation in (107) proves that i∗HΛ is a family H-relation.

�

6. Fourier integral operators on groupoids

6.1. Definitions. Following [32], we are led to

Definition 12. Let G be a Lie groupoid. Distributions belonging to I(G,Λ; Ω1/2), where Λ is any

(family) local G-relation, are called (family) Fourier integral G-operators.

We abbreviate Fourier integral G-operators as G-FIOs and family Fourier integral G-operators

as G-FFIOs. If Λ is a G-relation then we get from [36] the inclusion:

(109) I(G,Λ; Ω1/2) ⊂ D′r,s(G,Ω1/2).

In particular, any G-FIO u produces an equivariant C∞ family of operators ux : C∞c (Gx) →
C∞(Gx), x ∈ G(0), but each ux is not necessarily a Fourier integral operator on Gx. It is worth

giving an example.

Example 4. Consider the fibred pair groupoid G = X × X × Z ⇒ X × Z with X = Z = R.

Consider the open cone

(110) C = {(γ, θ) ∈ G× R2 \ 0 ; θ ∈ Cx1},

where γ = (x1, x2, x3) and θ ∈ Cx1 means

(111) 2x1θ2 + θ1 6= 0, θ1 6= 0.

The function

(112) φ : (γ, θ) 7−→ (x1 − x2).θ1 + (x2
1 − z).θ2

is a non-degenerate phase function with associated Lagrangian given by

(113) Λ = {(x, x, x2, θ1 + 2xθ2,−θ1,−θ2) ; x ∈ R, θ ∈ Cx} ⊂ T ∗G \ 0.

Note that Λ is a G-relation, but fails to be a family G-relation at the points where x = 0. Consider

the closed cone

(114) F = {(γ, θ) ∈ G× R2 ; |γ| ≤ 1, 2|θ2| ≤ |θ1|} ⊂ C ∪G× {0}

and choose even functions χ ∈ C∞c (R) and b ∈ C∞c (R3) such that χ(0) = χ′′(0) = 1, χ(t) = 0 if

|t| ≥ 1
2 , supp(b) ⊂ {γ, |γ| ≤ 1} and b(0) = 1. Choose a symbol a ∈ S1(G×R2), with support in F ,

such that a(γ, θ) = b(γ)χ(θ2/θ1)θ1 when |θ| ≥ 1. Then

(115) u(γ) =

∫
eiφ(γ,θ)a(γ, θ)dθ ∈ I∗(G,Λ),
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and we consider the distribution u0 = m∗(0,0)u on G(0,0) ×G(0,0) ' R2. It is given by

(116) u0(x1, x2) =

∫
ei((x1−x2).θ1+x2

1.θ2)a0(x1, x2, θ1, θ2)dθ1dθ2 ∈ D′(R2),

understood as a distribution where a0(x1, x2, θ1, θ2) = a(x1, x2, 0, θ1, θ2). Indeed, observe that

(117) φ0 : (x, θ) 7−→ (x1 − x2).θ1 + x2
1.θ2

is a phase function on C0 = {(x, θ) ∈ R2×R2 ; θ ∈ Cx1} and that a0 ∈ S∗(R2×R2) is supported in

(118) F0 = {(x, θ) ; |x| ≤ 1, 2|θ2| ≤ |θ1|} ⊂ C0 × R2 × {0}.

It follows that (116) is an oscillatory integral [32, Paragraph 7.8] and thus, by [32, Theorem 8.1.9],

(119) WF(u0) ⊂ Λ0 = {(0, 0, θ1,−θ1) ; θ1 6= 0}.

As expected, Λ0 fails to be a Lagrangian submanifold of T ∗R2 \ 0 (actually, it is a one dimensional

isotropic conic submanifold) and furthermore, there is no Lagrangian submanifold Λ′ of T ∗R2 \ 0

such that u0 ∈ I∗(R2,Λ′). Before proving this assertion, observe that (119) implies u0 ∈ C∞(R2\0)

and that for any x with x1 6= 0,

u0(x) = b0(x)

∫
ei((x1−x2).θ1+x2

1.θ2)χ(θ2/θ1)θ1dθ1dθ2 modulo C∞(R2)

= b0(x)

∫
ei((x1−x2).θ1+x2

1.θ1θ2)θ2
1χ(θ2)dθ1dθ2 = b0(x)

∫
ei(x1−x2).θ1χ̂(−x2

1θ1)θ2
1dθ1

= b0(x)x−6
1

∫
e
i
x2−x1
x2
1

.θ1
χ̂(θ1)θ2

1dθ1 = x−6
1 b0(x)χ′′(

x2 − x1

x2
1

).

Thus, u0 is not C∞ at (0, 0) and WF(u0) contains at least a half line in T ∗(0,0)R
2. Since u0 is

even, WF(u0) also contains the opposite half line. This proves the equality in (119). Now assume

that u0 ∈ Im(R2,Λ′) for some Lagrangian Λ′. If the principal symbol σ(u0) does not vanish at

some point (x0, ξ0) ∈ Λ′, then (x0, ξ0) ∈WF(u0). Thus σ(u0) must vanish on Λ′ \ Λ0. Since Λ0 is

one dimensional, it has empty interior in Λ′ and it follows that σ(u0) vanishes identically. Thus

u0 ∈ Im−1(R2,Λ′) and repeating the argument proves that u0 is C∞, which is a contradiction.

The phenomenon highlighted in this example disappears precisely for Fourier integralG-operators

associated with family G-relations. Indeed,

Theorem 23. Let Λ be a family G-relation and u ∈ D′(G,Ω1/2). Then u ∈ I(G,Λ; Ω1/2) if and

only if u is a G-operator and ux = m∗x(u) ∈ I(Gx ×Gx,m∗xΛ; Ω
1/2
Gx×Gx) for all x ∈ G(0).

Proof. Let us assume u ∈ I(G,Λ; Ω1/2). Then, as seen in (109), u is a G-operator and the pull-back

distribution by the submersion m gives

m∗(u) ∈ I(G(2),m∗Λ;m∗Ω1/2).

Since m∗Λ is transversal to π : G(2) → G(0), Proposition 9 gives the result for all the m∗x(u),

x ∈ G(0).

Conversely, Proposition 9 gives rise to distribution ũ ∈ I(G(2),m∗Λ;m∗Ω1/2) such that ũ|Gx×Gx =

ux and the result follows from Proposition 8 applied to X = Z = G(2), Y = G and f = m, which

yields u = m∗ũ ∈ I(G,Λ; Ω1/2). �
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6.2. Adjoint and composition. Now, we can consider G-FFIOs equivalently either as families

of ordinary Fourier integral operators acting on Gx × Gx or as single Lagrangian distributions on

G whose underlying Lagrangian submanifold Λ has suitable properties. The second choice leads to

simpler and more conceptual statements and also reveals the role played by the cotangent groupoid

T ∗G. Moreover, most of the statements hold true for the more general class of G-FIOs. The next

two theorems support this point of view.

Theorem 24. Let Λ be a G-relation and set Λ? = iΓΛ. If A ∈ Im(G,Λ) then A? ∈ Im(G,Λ?).

Proof. It is enough to consider the case A(γ) =
∫
eiφ(γ,θ)a(γ, θ)dθ with φ a non-degenerate phase

function parametrizing Λ locally. Then

(120) A?(γ) =

∫
e−iφ(γ−1,θ)a(γ−1, θ)dθ.

The function b(γ, ξ) = a(γ−1, θ) is a symbol of the same order as a. The function ψ(γ, θ) =

−φ(γ−1, θ) is also a non-degenerate phase function and

(121) Λψ = {(γ, ξ) ∈ T ∗G ; (γ−1,−t(diγ)(ξ)) ∈ Λφ}.

Since iΓ(γ, ξ) = (γ−1,−t(diγ)(ξ)), we get the result. �

Note that if Λ is moreover a family, then so is Λ?, and the adjoint of a G-FFIO u ∈ I(G,Λ) is

given by the family of adjoints of each Fourier integral operator ux on Gx.

Theorem 25. Let Λ1,Λ2 be closed G-relations which are cleanly composable with excess e. If

A1 ∈ Im1
c (G,Λ1) and A2 ∈ Im2

c (G,Λ2) then

(122) A1.A2 ∈ Im1+m2+e/2+n(0)/2−n/4(G,Λ1.Λ2).

Here n is the dimension of G and n(0) is the dimension of G(0).

If moreover, Λ1,Λ2 are family G-relations and are completely composable (i.e. condition (101) is

fulfilled), then A1.A2 is a family Fourier integral G-operator.

Proof. We wish to apply Proposition 8 to the following data: X = G2, Y = G, Z = G(2), f = mG

Λ̃ = Λ1 × Λ2 and φ̃ = φ1 + φ2 where φj : Uj × (RNj \ 0) → R are non-degenerate phase functions

parametrizing Λj in a conic neighborhood of points (γj , ξj) ∈ Λj , with the latter points satisfying

(γ1, ξ1, γ2, ξ2) ∈ Λ1 × Λ2 ∩ (T ∗G)(2). We may assume that

(123) Aj(γj) =

∫
eiφj(γj ,θj)aj(γj , θj)dθj ,

where aj ∈ Smj+(n−2Nj)/4(Uj × (RNj ).
The only technical (and common) obstruction is that

(124) a(γ1, γ2, θ1, θ2) = a1(γ1, θ1)a2(γ2, θ2)

is not a symbol in general. The condition of admissibility on Λj allows us to remove the regions in

(θ1, θ2) where the symbolic estimates for a fail.

Indeed, thanks to the admissibility assumptions on Λ1 and Λ2, we can reduce the problem to

the case where a1, a2 have support in compactly generated cones C1, C2 on which s̃(φ′1γ) and r̃(φ′2γ)

never vanish. Using the degree one homogeneity of s̃(φ′1γ), r̃(φ′2γ) with respect to θ1, θ2, we can

find constants C1, C2 such that

(125) if (γj , θj) ∈ Cj and s̃(φ′1γ(γ1, θ1)) = r̃(φ′2γ(γ2, θ2)) then C1|θ2| < |θ1| < C2|θ2|.
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We choose a homogeneous function χ(θ1, θ2) of degree 0 which is equal to 1 when C1|θ2|/2 < |θ1| <
2C2|θ2| and supported in C1|θ2|/3 < |θ1| < 3C2|θ2|. We set

(126) b(γ1, γ2, θ1, θ2) = χ(θ1, θ2)a(γ1, γ2, θ1, θ2)

and

(127) c(γ1, γ2, θ1, θ2) = (1− χ(θ1, θ2))a(γ1, γ2, θ1, θ2).

We have, by construction of χ,

(128) C1|θ2|/3 < |θ1| < 3C2|θ2| in supp(b).

which allows us to check that b ∈ Sm1+m2+(n−N1−N2)/2. Therefore we can apply the Proposition 8

to

B̃ =

∫
eiφ̃(γ1,γ2,θ1,θ2)b(γ1, γ2, θ1, θ2)dθ1dθ2,

and we get

(129)

B(γ) =

∫
m−1(γ)×RN1+N2

eiφ(γ,η,θ1,θ2)b(γ, η, θ1, θ2)dηdθ1dθ2 ∈ Im1+m2+e/2+n(0)/2−n/4(G,Λ1 ∗ Λ2).

Moreover, again using the degree one homogeneity of φ̃ with respect to (θ1, θ2) and using the

expression of φ′ω given in the proof of Proposition 4, we also get

(130) |θ1|+ |θ2| < C|φ′η(γ, η, θ1, θ2)| in supp(c),

where we have set γ = γ1γ2, η = (γ1, γ2) ∈ m−1(γ) and φ(γ, η, θ1, θ2) = φ̃(γ1, γ2, θ1, θ2). The

previous estimates show that

(131) C(γ) =

∫
m−1(γ)×RN1+N2

eiφ(γ,η,θ1,θ2)c(γ, η, θ1, θ2)dηdθ1dθ2

belongs to C∞(G), and we conclude that

(132) A1 ∗A2(γ) = B(γ) mod C∞(G),

which proves the theorem.

�

6.3. Principal symbol. By [32, Section 25.1], the principal symbol of A ∈ Im(G,Λ; Ω1/2) belongs

to S[m+n/4](Λ, IΛ ⊗ Ω̂1/2 ⊗ Ω̂
−1/2
G ) and the principal symbol map gives rise to an isomorphism

(133) σ : I [m](G,Λ; Ω1/2) −→ S[m+n/4](Λ, IΛ ⊗ Ω̂1/2 ⊗ Ω̂
−1/2
G ).

Here we have set Ê = (p|Λ)∗(E|Λ) for any bundle E → G. To understand the product formula of

symbols of G-FIOs, we analyse the auxiliary bundle

(134) Σα = Ω−αG ⊗ Ωα

involved in the right hand side of (133) with α = 1
2 . As we shall see, Σ̂ is strongly related to the

groupoid structure of T ∗G.

We need a simple statement about vector bundle epimorphisms.
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Lemma 26. Let f : X → Y be a submersion, p : E → X, q : F → Y be C∞ vector bundles and

g : E → F a C∞ epimorphism:

(135) 0 // ker g //

p

��

E
g
//

p

��

F //

q

��

0

X
= // X

f
// Y

Then the sequence

(136) 0 −→ p∗(ker g)
v−→ ker dg

dp−→ p∗ ker df −→ 0.

is exact. The map v is defined by

p∗(ker g)(x,e) 3 λ 7−→ v(λ) =
d

dt
(x, e+ tλ)|t=0 ∈ ker dg(x,e) ∩ ker dp(x,e).

Proof. Thanks to the diagram (135), we have dp(ker g) ⊂ ker df and the map

(137) ker dg 3 (e, u)
dp7−→ (e, dpe(u)) ∈ p∗ ker df

is well defined. To prove its surjectivity, we work in local coordinates on TE associated with local

coordinates on X and local trivializations of E, so that the map (137) corresponds to

(138) (x, e, t, u) 7−→ (x, e, t).

Writing g(x, e) = (f(x), g̃(x, e)), we compute

(dg)(x,e)(t, u) = (dfx(t), (dxg̃)(x,e)(t) + (deg̃)(x,e)(u))(139)

= (dfx(t), (dxg̃)(x,e)(t) + g̃(x, u)).(140)

Since g̃ is fiberwise linear and surjective, the linear equation (dxg̃)(x,e)(t) + g̃(x, u) = 0 for fixed

x, e and t has solutions in u. Let ux,e,t be such a solution. Then, for any t ∈ ker dfx, the element

(t, ux,e,t) belongs to ker dg(x,e).

Next, it follows from (137) and (139) that (x, e, t, u) ∈ ker dp ∩ ker dg if and only if t = 0 and

u ∈ ker g̃. Since, in these coordinates

(141) v : p∗(ker g) 3 (x, e, u) 7−→ (x, e, 0, u) ∈ ker dp ∩ ker dg,

we get that v(p∗(ker g)) is the kernel of the vector bundle epimorphism ker dg
dp−→ p∗ ker df . �

As claimed, we can interpret Σ in terms of density bundles associated with the groupoid structure

of T ∗G.

Proposition 27. We have canonical identifications

Σ̂1/2 ' Ω1/2(ker dsΓ) ' Ω1/2(ker drΓ),(142)

Ω(ker dmΓ) ' pr(1)
∗ Σ̂1/2 ⊗ pr(2)

∗ Σ̂1/2 ' m∗ΓΣ̂,(143)

Ω(ker dmΓ) ' (p2)∗(Ω(kermΓ)⊗ Ω(ker dm)).(144)

Proof. Applying the lemma to (11), (12) and (10), one gets the exact sequence

(145) 0 −→ p∗((ker dr)⊥) −→ ker dsΓ
dp−→ p∗ ker ds −→ 0,

(146) 0 −→ p∗((ker ds)⊥) −→ ker drΓ
dp−→ p∗ ker dr −→ 0.
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and

(147) 0 −→ (p2)∗ kermΓ −→ ker dmΓ
dp2

−→ (p2)∗ ker dm −→ 0.

To prove (142), observe that (145) gives

Ω1/2(ker dsΓ) ' p∗Ω1/2(ker ds)⊗ p∗Ω1/2((ker dr)⊥)

and that Ω1/2((ker dr)⊥) = Ω−1/2(TG/ ker dr) = Ω
−1/2
G ⊗ Ω1/2(ker dr). Next, observe that for any

Lie groupoid G, the maps

ker dm 3 (γ1, γ2, X1, X2) 7−→ (γ1, γ2, X2) ∈ pr(2)
∗(ker ds)

and

pr(1)
∗(ker ds) 3 (γ1, γ2, X1) 7−→ (γ1, γ2, (dRγ2)γ1(X1)) ∈ m∗(ker ds)

are isomorphisms of vector bundles overG(2). Similarly, ker dm ' pr(1)
∗(ker dr) and pr(2)

∗(ker dr) '
m∗(ker dr). These facts applied to the groupoid T ∗G give

Ω(ker dmΓ) ' Ω1/2(ker dmΓ)⊗ Ω1/2(ker dmΓ)(148)

' pr(1)
∗Ω1/2(ker drΓ)⊗ pr(2)

∗Ω1/2(ker dsΓ)(149)

' m∗Γ(Ω(ker dsΓ)) ' m∗Γ(Ω(ker drΓ)),(150)

where we have used (142) to pass from the second to the third line. This proves (143), and then

(144) follows directly from (147). �

Proposition 28. Let Λ1,Λ2 be closed G-relations which are cleanly composable. Let Λ = Λ1.Λ2.

We have a natural homomorphism of vector bundles over Λ1 × Λ2 ∩ Γ(2):

(151) (Σ̂1/2 ⊗ IΛ1)� (Σ̂1/2 ⊗ IΛ2) −→ m∗Γ(IΛ ⊗ Σ̂1/2)⊗ Ω(ker dmΓ ∩ T (Λ1 × Λ2)).

Proof. Applying [32, Theorem 21.6.6], we get

(152) IΛ1 � IΛ2 −→ m∗ΓIΛ ⊗ Ω−1/2(ker dmΓ)⊗ Ω(ker dmΓ ∩ T (Λ1 × Λ2)).

Contrary to what happens in the proof of [32, Theorem 21.6.7], the bundle ∆ = ker dmΓ is not

necessarily symplectic (actually, it may even be odd dimensional since the fibers are of dimension

n = dimG) and we cannot expect any natural trivialization of the corresponding density bundle.

This is where the bundle Σ is useful.

Using (143) in Corollary 27 we get

(153) (Σ̂1/2 ⊗ IΛ1)� (Σ̂1/2 ⊗ IΛ2) ' Ω(ker dmΓ)⊗ (IΛ1 � IΛ2) ' m∗Γ(Σ̂)⊗ (IΛ1 � IΛ2).

Using (143) again to get Ω(ker dmΓ)1/2 ' m∗Γ(Σ̂1/2) and combining (153) and (152), we obtain

(151).

�

These identifications of Maslov and density bundles allow us to apply the formula for the product

of principal symbols given in [32, Theorem 25.2.3]. In the present situation, it gives:

Corollary 29. Let Λ1,Λ2 be closed G-relations which are cleanly composable with excess e and set

Λ = Λ1.Λ2. Let Aj ∈ Imj (G,Λj ; Ω1/2) be compactly supported G-FIOs and aj ∈ Smj+n/4(Λj , Σ̂
1/2⊗

IΛj ) be representatives of the principal symbol of Aj. Let (a1� a2)γ,ξ be the density on the compact

manifold m−1
Γ (γ, ξ) ∩ Λ1 × Λ2 with values in Σ̂1/2 ⊗ IΛ, as given by (151). Then a1 ∗ a2 defined by

(154) (γ, ξ) ∈ Λ, a1 ∗ a2(γ, ξ) =

∫
m−1

Γ (γ,ξ)∩Λ1×Λ2

a1 � a2
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belongs Sm1+m2+e/2+n(0)/2(Λ, Σ̂1/2 ⊗ IΛ) and represents the principal symbol of A = A1 ∗A2.

We end with some direct consequences of the previous statements.

6.4. Composition with pseudodifferential operators.

We recall that the usual conventions for the order of conormal and Lagrangian distributions and

for the order of pseudodifferential operators on groupoids yield

(155) Ψm(G) = Im+(n−2n(0))/4(G,A∗G; Ω1/2).

Theorem 30. Any closed G-relation Λ is transversally composable with the unit G-relation A∗G

and the convolution product of distributions turns I(G,Λ; Ω1/2) into a Ψc(G,Ω
1/2)-bimodule:

Ψc(G; Ω1/2) ∗ I(G,Λ; Ω1/2) ⊂ I(G,Λ; Ω1/2) ; I(G,Λ; Ω1/2) ∗Ψc(G; Ω1/2) ⊂ I(G,Λ; Ω1/2).

When Λ = A∗G, we recover the fact that Ψc(G) is an algebra.

Proof. The G-relations Λ0 = A∗G and Λ are transversally composable if T (Λ0 ×Λ) + TΓ(2) = TΓ2

at any point (δ1, δ2) ∈ Λ0×Λ∩Γ(2). Passing to the symplectic orthocomplement, this is equivalent

to

(156) T(δ1,δ2)(Λ0 × Λ) ∩ ker(dmΓ)(δ1,δ2) = 0,

and the latter follow from general properties of Lie groupoids. Indeed, let Γ be any Lie groupoid

and consider γ ∈ Γ, r(γ) = x, s(γ) = y ∈ Γ(0), (t1, t2) ∈ Tx,γΓ(0) × Γ ∩ ker(dmΓ)(x,γ).

Since rΓ|Γ(0) = sΓ|Γ(0) = Id, we get dsΓ(t1) = drΓ(t1) = t1 and since rΓ ◦ mΓ = rΓ ◦ pr1,

sΓ ◦mΓ = sΓ ◦ pr2 we get from the assumption on (t1, t2) that

t1 = drΓ(t1) = drΓ ◦ dmΓ(t1, t2) = 0 and dsΓ(t2) = dsΓ ◦ dmΓ(t1, t2) = 0.

Also, we get 0 = dsΓ(t1) = drΓ(t2), therefore

(0, t2) ∈ ker(dmΓ)(x,γ), t2 ∈ TγΓxy .

Then

(0, d(Rγ−1)γ(t2)) ∈ ker(dmΓ)(x,x), d(Rγ−1)γ(t2) ∈ TxΓxx.

Since (dmΓ)(x,x)(u1, u2) = u1 + u2 if uj ∈ TxΓxx we also conclude that t2 = 0 and this proves that

Λ0 and Λ are transversally composable. This is obviously the same with Λ0 on the right. In both

cases, the fibers of the product Λ0.Λ = Λ.Λ0 = Λ are just points, hence the product is proper and

connected. Now Theorem 25 gives the conclusion. �

Combining Theorems 30 and 25, we obtain:

Theorem 31. (Egorov’s Theorem for groupoids). Let Λ,Λ′ ⊂ T ∗G \ 0 be composable closed G-

relations such that

(157) Λ.Λ′ ⊂ A∗G \ 0 and Λ′.Λ ⊂ A∗G \ 0.

Then

(158) Ic(G,Λ; Ω1/2) ∗Ψ(G; Ω1/2) ∗ Ic(G,Λ′; Ω1/2) ⊂ Ψ(G; Ω1/2).
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In [66], the second author introduced a class of generalized smoothing operators and a family

of Sobolev spaces for general Lie groupoids. Recall that C∗(G) denotes the C∗-algebra associated

with the groupoid G. The set of generalized smoothing operators Ψ−∞(G) (Definition 24, p77 in

[66]) is defined as the subset of C∗(G) of those elements R such that the closure of P1RP2 is again

in C∗(G) for any two compactly supported pseudodifferential G operators P1 and P2. For s > 0 the

Sobolev module Hs of rank s is defined as the C∗(G)-module dom(P ) endowed with scalar product

〈x , y〉s = 〈Px , Py〉+〈x , y〉, where P is any elliptic operator of order s. The corresponding Sobolev

module H−s is defined by duality.

Next we can give, using techniques coming from [49] and [66], a result on the continuity in the

spirit of Theorem 25.3.1 in [32].

Theorem 32. Let Λ be a locally invertible local G-relation and A ∈ Imc (G,Λ; Ω1/2).

(1) If m = (n − 2n(0))/4, then the associated Fourier integral G-operator, still denoted by A,

extends to an operator which is a bounded multiplier of C∗(G):

(159) A ∈M(C∗(G)).

(2) If m < (n− 2n(0))/4 then A extends to an element of C∗(G).

(3) In the general case, A can be extended to a morphism from Hs to Hs−m′ with

m′ = m− (n− 2n(0))/4.

Proof. By the definition of a G-FIO and the assumptions of the theorem, A can be decomposed

into a finite sum A =
∑
Ai where for each i, Ai ∈ Imc (G,Λi; Ω1/2) and Λi is an invertible patch of

Λ. Therefore, we may immediately assume that Λ is an invertible G-relation.

From [36], we know thatA is an adjointableG-operator, and Theorem 24 givesA∗ ∈ Imc (G,Λ?; Ω1/2).

Recall that, with 〈 , 〉 denoting the Hilbertian product of C∗(G) seen as a C∗(G)-Hilbert module,

the adjoint A∗ is characterized by

(160) 〈Au , v〉 = 〈u , A∗v〉 ∀u, v ∈ C∞c (G,Ω1/2).

Observe that, by the Cauchy-Schwarz inequality for Hilbert modules, we have

(161) ‖Au‖2 = ‖〈Au , Au〉‖ = ‖〈A∗Au , u〉‖ ≤ ‖A∗Au‖‖u‖ ∀u ∈ C∞c (G,Ω1/2),

and similarly for A∗. Since Λ is invertible, Theorems 25 and 12 give

A∗A ∈ Ψ
2m−n−2n(0)

2
c (G).

Now a fundamental result [49, Theorem 18], [66, Proposition 39] says that

(162) Ψ0
c(G) ⊂M(C∗(G)) and Ψm′

c (G) ⊂ C∗(G) for any m′ < 0,

and thus we can proceed as in [49],[66]:

(1) Assume m = (n − 2n(0))/4. Then A∗A ∈ Ψ0
c(G) and there exists C ≥ 0 such that, using

(161),

‖Au‖2 ≤ C‖u‖2 ∀u ∈ C∞c (G,Ω1/2),

and similarly for A∗. This allows us to extend the relation (160) by continuity to all

u, v ∈ C∗(G), which then proves that A ∈ L(C∗(G)) 'M(C∗(G)).

(2) Assume m < (n − 2n(0))/4. Then A ∈ M(C∗(G)) as before and by (162), A∗A ∈ C∗(G),

which implies that A ∈ C∗(G) as well, since C∗(G) is an ideal of M(C∗(G)) (see [55,

Chapter 1], for instance).
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(3) In the general case, we know from [66] that for all s there exists an invertible elliptic pseu-

dodifferential G-operator P (s) of order exactly s, of inverse P (−s), and that this operator

P (s) is an isomorphism of Hilbert modules between Hs and C∗(G).

Then P (s−m)AP (−s) is an element of I
(n−2n(0))/4
c (G,Λ; Ω1/2) and hence by the first result,

a bounded morphism of Hilbert modules between C∗(G) and itself, so the result follows by

multiplying on the left by P (m− s) an on the right by P (s).

�

7. Example: manifolds with boundary

Manifolds with corners, stratified spaces (through their desingularisations into manifolds with

iterated fibred corners [1, 24]) and foliations are examples of singular spaces for which there exist

Lie groupoids delivering suitable pseudodifferential calculi [14, 47, 49, 54, 24, 66]. Therefore, in

all these situations, our previous constructions provide a calculus of Fourier Integral Operators

extending the one for pseudodifferential operators. We illustrate this with the basic example of

manifolds with boundary. More sophisticated examples can be treated exactly in the same way but

are postponed to a future work into which we will also apply our calculus of FIOs to investigate

the properties of the unitary group (eitP ) (where P is a suitable first order elliptic operator) on

singular spaces. The case of manifolds with boundary also allows us to compare our constructions

with the existing ones [41].

7.1. The b-stretched product. Let X be a manifold with boundary ∂X = Y and let x be

a defining function for Y . The b-stretched product X2
b of X is by definition the C∞ manifold

obtained by blowing up the submanifold B = Y × Y in X2. As a set, X2
b is given by the disjoint

union X2
b = X2 \ B ∪ S+N(B) where S+N(B) denotes the inward pointing part of the spherical

normal bundle of B [44, Sections 4.1 and 4.2]. There is a natural blow-down map β : X2
b → X2

and several natural submanifolds are associated with X2
b :

• the front face ff = S+N(B),

• the left and right boundary faces, that is lb = β−1(Y × (X \ Y )) and rb = β−1((X \ Y )× Y ),

• the lifted diagonal β−1(∆ ◦
X

) = ∆b.

The space of vector fields tangent to the boundary is a finitely generated projective module over

C∞(X). The underlying vector bundle is called the b-tangent space and denoted by bTX. There

is a natural vector bundle homomorphism

(163) a : bTX −→ TX.

7.2. The b-groupoid.

7.2.1. Definition. The appropriate groupoid is then the following subgroupoid of X2 × R∗+ ⇒ X:

(164) Gb = {(p, q, t) ∈ X2 × R∗+ ; x(q) = tx(p)}.

It is a Lie groupoid (Gb and X are manifolds with boundary) and we have canonical diffeomorphisms

∂Gb ' Y 2 × R∗+ and
◦
Gb '

◦
X ×

◦
X,
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the second one being given by the inverse of the map (p, q) 7→ (p, q, x(p)/x(q)). If X2
b denotes the

b-stretched product described above then the map

(165)

Φ : Gb −→ X2
b

(p, q, t) 7−→

(p, q) if p ∈
◦
X

[(s, ts, p, q)s∈[0,ε]] if p ∈ Y.

gives a diffeomophism Gb ' X2
b \ (lb ∪ rb) where the left and right boundary faces lb, rb of X2

b are

given as above. For the map Φ defined above, it is understood that a collar neighborhood U of

Y is chosen, allowing us to write points in U in the form (x, p) with x ∈ [0,+∞) and p ∈ Y . For

completeness, let us mention that Φ maps the unit space G
(0)
b onto the lifted diagonal ∆b.

7.2.2. The Lie algebroid of the b-groupoid and the canonical foliation. The map Φ also provides a

vector bundle isomorphism between the Lie algebroid AGb and the stretched tangent bundle bTX.

Through the latter isomorphism, the anchor map dr : AGb −→ TX coincides with (163).

The canonical foliation FGb has exactly two leaves: Y 2 × R∗+ and
◦
X ×

◦
X.

7.2.3. Local coordinates near the boundary. Using a collar neighborhood identification U ' [0,∞)×
Y , we get a Lie groupoid isomorphism

(166) R+ oR∗+ × Y 2 ' (Gb)UU

given by

(167)

Ψ : R+ oR∗+ × Y 2 −→ (Gb)
U
U

(x, t, p, q) 7−→

(x, p, tx, q) if x > 0

(t, p, q) if x = 0.

The diffeomorphism Ψ is used to choose suitable local coordinates around ∂Gb.

7.3. The cotangent groupoid of the b-groupoid. The cotangent groupoid T ∗Gb splits into two

satured subgroupoids:

T ∗Gb = T ∗
(
◦
X×

◦
X)
Gb
⋃
T ∗∂GbGb.

The first one is the cotangent groupoid of the pair groupoid
◦
X ×

◦
X and its structural maps are

recalled in [36, Example 3]. The second one is the cotangent groupoid of Y 2 × R∗+, so it is the

cartesian product of the cotangent groupoid of Y × Y and of the cotangent groupoid of the Lie

group R∗+, whose structural maps are recalled in [36, Example 2]. Concretely, in the coordinates

induced by Ψ, the points in the unit space A∗Gb of T ∗Gb are the following ones:

(168) (x, 1, y, y, 0, ν,−ξ, ξ) ∈ T ∗
G

(0)
b

Gb.

The source and target maps are given by:

sΓ(x, t, p, q, τ, ν, ξ, η) = (xt, 1, p, p, 0, tν,−η, η)(169)

rΓ(x, t, p, q, τ, ν, ξ, η) = (x, 1, p, p, 0, tν − xτ, ξ,−ξ).(170)

To see that the multiplication is C∞ around T ∗∂GbGb, we express it in the coordinates above. It is

easy to see that δ1, δ2 ∈ T ∗Gb are composable if and only if they are of the following form:

δ1 = (x, t1, p1, q, τ1, xν1, ξ1, η) ; δ2 = (xt1, t2, q, p2, t2t
−1
1 ν2 − ν1, xν2,−η, ξ2),
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and then

mΓ(δ1, δ2) = δ1δ2 = (x, t1t2, p1, p2, τ1 + t2ν2 − t1ν1, t
−1
1 xν2, ξ1, ξ2).

Note that when x > 0, the expression of the product is much simpler in the natural coordinates of

X ×X and when x = 0, setting τ2 = t2t
−1
1 ν2 − ν1 in δ2, we recover the more familiar law:

δ1δ2 = (0, t1t2, p1, p2, τ1 + t1τ2, 0, ξ1, ξ2).

7.4. Gb family relations. Now, let Λ ⊂ T ∗Gb be a conic Lagrangian submanifold. Writing down

the source and target maps sΓ and rΓ of Γ = T ∗Gb, we get that Λ is a Gb-relation if and only if

(171) Λ ∩ T ∗(
◦
X ×

◦
X) ⊂ (T ∗

◦
X \ 0)× (T ∗

◦
X \ 0)

and

(172) Λ ∩ T ∗Y 2×R∗+
Gb ⊂ [T ∗Y 2 × (T ∗R∗+ \ 0)]

⋃
[(T ∗Y \ 0)× (T ∗Y \ 0)× (R∗+ × {0})].

Next, a Gb-relation Λ is a family Gb-relation if and only if

(173) Λ t T ∗Y 2×R∗+
Gb.

This is obvious using condition (5) of Theorem 14 and the fact that FGb has exactly two leaves:

Y 2 × R∗+ and
◦
X ×

◦
X, the second one bringing in an empty transversality condition.

7.5. Phase functions. Let us interpret Condition (173) locally in terms of phase functions. In-

troduce the submersion

b : Gb 3 (p, q, t) 7−→ x(p) ∈ R+.

Then Condition (173) is equivalent to the condition that b|Λ : Λ → R+ is a submersion near

x = 0. Thus, given a family Gb-relation Λ, the results of Paragraph 3.4 show that Λ is locally

parametrizable near the boundary by C∞ families (φx)x≥0 of phase functions on Y 2 × R∗+. More

precisely, this means that for any (γ0, ξ0) ∈ Λ with γ0 ∈ ∂Gb, using the local coordinates provided

by (167) and Y , we can find a phase function φ(x, t, p, q, θ) such that φx(t, p, q, θ) = φ(x, t, p, q, θ) is

a non-degenerate phase function parametrizing Λx = i∗x(Λ) for any non-negative real number x close

to 0 (see Paragraph 3.4 for the notation; in particular φ is also non-degenerate and parametrizes

Λ).

7.6. Indicial symbol and small b-calculus. Next, given a family Gb-relation Λ, Proposition 22

can be applied with the groupoid Gb and the saturated subgroupoid ∂Gb = (Gb)
Y
Y . Together with

Proposition 8, this yields an indicial symbol (or boundary symbol) map:

(174) Im(Gb,Λ) 3 u 7−→ I(u) = i∗∂Gb(u) = i∗0(u) ∈ Im+1/4(Y 2 × R∗+,Λ0).

Concretely, in local coordinates and with phases as above, if the Gb-FFIO u is given by the oscil-

latory integral

u =

∫
eiφx(t,p,p′,θ)a(x, t, p, p′, θ)dθ

for some symbol a and some family (φx) of phase functions as above, then the indicial symbol of u

is the ∂Gb-FFIO given by the oscillatory integral

I(u) =

∫
eiφ0(t,p,p′,θ)a(0, t, p, p′, θ)dθ.

Let us give some mapping properties of Gb-FFIOs. Let u ∈ Im(Gb,Λ) be a Gb-FFIO and consider

the equivariant family (Pp)p∈X of linear operator in the fibers. Using the equivariance condition
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and the obvious identifications (Gb)p ' (Gb)
p =

◦
X for any interior point p, we get that the

distributions Pp, p ∈
◦
X, do not depend on the base point and the common value P◦ satisfies

P◦ ∈ Im(
◦
X ×

◦
X,
◦
Λ),

where
◦
Λ = Λ∩T ∗(

◦
X×

◦
X) ⊂ (T ∗

◦
X \0)× (T ∗

◦
X \0), as a set, is defined using Λ and (18). Therefore

the distribution P◦ gives rise to a continuous linear operator denoted in the same way:

P◦ : C∞c (
◦
X) −→ C∞(

◦
X),

and whose formal adjoint enjoys the same mapping property (here and in what follows, the ap-

propriate density bundles are suppressed in the notation; see [36] for details). Actually, if u is

compactly supported, then P◦ can be extended into a continuous linear operator

u# : C∞(X) −→ C∞(X)

by the formula

(175) u#(ϕ)(p) = u ∗ (ϕ ◦ r)(p), ϕ ∈ C∞(X), p ∈ X.

This assertion is an easy consequence of the fact that r : (Gb)p −→
◦
X is a diffeomorphism for any

interior point p. Let Ċ∞lb∪rb(X2
b ) be the space of C∞ functions on X2

b vanishing to any order at

the boundary faces lb, rb. It is well known [44] that the pushforward of distributions gives, for any

f ∈ Ċ∞lb∪rb(X2
b ), a continuous linear operator f# : C∞(X) −→ C∞(X), which is again given by

(175).

Definition 13. Any linear operator C∞(X) −→ C∞(X) equal to u# for some u belonging to

I∗c (Gb,Λ) + Ċ∞lb∪rb(X2
b )

for some family Gb-relation Λ is called a b-FIO on X.

Remark 33. (1) Theorems 24, 25 and 32 extend immediately to the larger class of distributions

above. Following the classical terminology of R. Melrose, we can then call this package of

results a small calculus for b-FIOs.

(2) Small calculi for FIOs with other behaviors near the boundary (for instance, the cusp-

calculus, the φ-calculus, the fibred cusp calculus) are constructed in the same way using the

appropriate blow-up spaces and groupoids.

Obviously, the sub-family (Pp)p∈Y is the equivariant family associated with the ∂Gb-FFIO i∗0u.

Concretely, the operators Pp do not depend on p ∈ Y and their common value is the Fourier integral

operator

P∂ : C∞c (Y × R∗+) −→ C∞(Y × R∗+)

given by the natural action by convolution of I(u). In particular, P∂ commutes with dilations in

R∗+.
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7.7. Comparison with the FIOs defined in [41]. In [41], R. Melrose defined FIOs between

manifolds with boundary N,M as Lagrangian distributions on the appropriate b-stretched N×̂M
and subordinate to boundary canonical relations [41, chap III, Definition 2.19]. In the case N =

M = X, we are clearly dealing with the same space of distributions, and thus it just remains to

compare boundary canonical relations with (family) Gb-relations.

Let Λ be a boundary canonical relation on X2
b . This is a conic Lagrangian submanifold of T ∗X2

b

satisfying several additional conditions.

The first one, Condition (2.10) of [41, chap III, Definition 2.19], says that Λ does not intersect

the left and right boundary of the cotangent space. This means that Λ ⊂ T ∗
X2
b \(lb∪rb)

X2
b , and thus,

Λ is a conic Lagrangian submanifold of T ∗Gb through the identification given by Φ, which we fix

in what follows.

The second one, Condition (2.15) of [41, chap III, Definition 2.19], coincides with our admissibility

condition (“no zeros condition”) and this proves that Λ is a Gb-relation.

The third one, Condition (2.9) of [41, chap III, Definition 2.19], reads

(176) TΛ + TT ∗∂GbGb = TT ∗Gb.

This is again the transversality Condition (173). Therefore, Λ is a family Gb-relation.

We now analyse Condition (2.13) of [41, chap III]. We know that Λ∂ := i∗0(Λ) ⊂ T ∗∂Gb is a

family ∂Gb-relation. The fiber bundle considered in [41, chap III, (2.13)] is here

(177) F = {(p, q, t, ξ, η, ν) ∈ T ∗∂Gb ; ν = 0} −→ T ∗Y 2.

Thus the first part of Condition (2.13) consists in requiring that

(178) TF + TΛ0 = TT ∗∂Gb.

This is not a condition satisfied by arbitrary family Gb-relations. Let us give an example. We again

identify R+ × R∗+ × Y 2 and (Gb)
U
U via Ψ. Let us fix a point (p1, p2) ∈ Y 2, and consider the set

(179) V = {(x, t, p1, p2) ; x ∈ R+, t ∈ R∗+} ⊂ Gb.

Let C be the cone in T ∗Gb \ 0 defined by

(180) C = {(x, t, y1, y2, τ, ν, ξ1, ξ2) ∈ T ∗(R+ × R∗+ × Y 2) ; ε|ξ1| < |ξ2| < ε−1|ξ1|}

for some ε > 0. Then consider the intersection

(181) Λ = N∗V ∩ C = {(x, t, p1, p2, 0, 0, ξ1, ξ2) ; x ∈ R+, t ∈ R∗+, ε|ξ1| < |ξ2| < ε−1|ξ1|}.

Let us check that Λ is a family Gb-relation that does not satisfy (178). Firstly, Λ is obviously a

conic Lagrangian submanifold. Then, using the expression of sΓ and rΓ in (169), one gets that Λ

is a Gb-relation.

Next, for any boundary point γ ∈ ∂Gb, one has

(182) TγFGb = TγGb s(γ) + TγG
r(γ)
b = {0} × T (R∗+ × Y 2) ⊂ T∂GbGb.

Using the expression (181) we obtain immediately that

(183) dp(Tγ,ξΛ) + TγFGb = TγGb, ∀(γ, ξ) ∈ Λ such that γ ∈ ∂Gb.

Therefore, by Theorem 14 and the discussion following (173), we obtain that Λ is a family Gb-

relation. Now consider

(184) Λ0 = i∗∂GbΛ = {(t, p1, p2, 0, ξ1, ξ2) ; t ∈ R∗+, ε|ξ1| < |ξ2| < ε−1|ξ1|} ⊂ T ∗bf \ 0.
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We get

(185)

TΛ0 = {(t, p1, p2, 0, ξ1, ξ2;u, 0, 0, 0, ζ1, ζ2) ; t ∈ R∗+, ε|ξ1| < |ξ2| < ε−1|ξ1|, (ζ1, ζ2) ∈ T ∗(p1,p2)Y
2}.

Since

(186) TF = {(t, p, 0, ξ;u, v, 0, ζ) ; (t, u) ∈ TR∗+, (p, v) ∈ TY 2, ξ, ζ ∈ T ∗p Y 2},

we now see that TΛ0 + TF 6= T (T ∗∂Gb). Therefore Λ is not a boundary canonical relation in the

sense of [41, chap III, Definition 2.19].

In conclusion, the class of Lagrangian submanifolds accepted here in the calculus of FIOs is

slightly larger than the one obtained by boundary canonical relations. Moreover, the result on

composition of FIOs given in [41] applies only to boundary canonical relations that are invertible

in the terminology of the present paper. As we see in Theorem 25, this assumption can be ignored.
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symplectique et physique mathématique (Colloq. Internat. CNRS, No. 237, Aix-en-Provence, 1974), pages 289–
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