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Abstract

The global sensitivity analysis is a set of methods aiming at quantifying the contribution of
an uncertain input parameter of the model (or combination of parameters) on the variability
of the response. We consider here the estimation of the Sobol indices of order 1 which
are commonly-used indicators based on a decomposition of the output’s variance. In a
deterministic framework, when the same inputs always give the same outputs, these indices
are usually estimated by replicated simulations of the model. In a stochastic framework,
when the response given a set of input parameters is not unique due to randomness in the
model, metamodels are often used to approximate the mean and dispersion of the response
by deterministic functions. We propose a new non-parametric estimator without the need
of defining a metamodel to estimate the Sobol indices of order 1. The estimator is based
on warped wavelets and is adaptive in the regularity of the model. The convergence of the
mean square error to zero, when the number of simulations of the model tend to infinity, is
computed and an elbow effect is shown, depending on the regularity of the model.

Keywords: Sensitivity analysis in a stochastic framework; Sobol indices of order 1; adaptive
non-parametric inference; warped wavelets; Nadaraya-Watson estimator; model selection; appli-
cations to epidemiology; SIR model; spread of the Hepatitis Virus C among drug users.
MSC2010: 49Q12; 62G08; 62P10.

1 Sobol indices

In a mathematical model where the output y ∈ R depends on a set of p ∈ N input parameters
x = (x1, ...xp) ∈ Rp through the relation y = f(x), there are various ways to measure the
influence of the input x`, for ` ∈ {1, . . . , p}, on y. In this article, we are interested in Sobol
indices [25], which are based on an ANOVA decomposition (see [24, 13, 14] for a review). These
indices have been proposed to take into account the uncertainty on the input parameters that
are here considered as a realisation of a set of independent random variables X = (X1, ...Xp),
with a known distribution. Denoting by Y = f(X) the random response, the first order Sobol
indices can be defined for ` ∈ {1, . . . , p} by

S` =
Var
(
E[Y | X`]

)
Var(Y )

. (1.1)
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This first order index S` correspond to the sensitivity of the model to X` alone. Higher order
indices can also be defined using ANOVA decomposition: considering (`, `′) ∈ {1, . . . , p}, we
can define the second order sensitivity, corresponding to the sensitivity of the model to the
interaction between X` and X`′ index by

S``′ =
Var
(
E[Y | X`, X`′ ]

)
Var(Y )

− S` − S`′ (1.2)

We can also define the total sensitivity indices by

ST` =
∑

L⊂{1,...,p} | `∈L

SL. (1.3)

As the estimation of the Sobol indices can be computer time consuming, a usual practice consists
in estimating the first order and total indices, to assess 1) the sensitivity of the model to each
parameter taking alone and 2) the possible interactions, which are quantified by the difference
between the total order and the first order index for each parameter. Several numerical proce-
dures to estimate the Sobol indices have been proposed, in particular by Jansen [16] (see also
[23, 24]). These estimators, that we recall in the sequel, are based on Monte-Carlo simulations
of (Y,X1 . . . Xp).

The literature focuses on deterministic relations between the input and output parameters.
In a stochastic framework where the model response Y is not unique for given input parameters,
few works have been done, randomness being usually limited to input variables. Assume that:

Y = f(X, ε), (1.4)

where X = (X1, . . . Xp) still denotes the random variables modelling the uncertainty of the input
parameters and where ε is a noise variable. When noise is added in the model, the classical es-
timators do not always work: Y can be chaotic regarding the value of ε. Moreover, this variable
is not always controllable by the user.

When the function f is linear, we can refer to [9]. In the literature, meta-models are used,
i.e. a deterministic function approximating the mean and the dispersion of the response by
deterministic functions allows to come back in the classical deterministic framework (e.g. Janon
et al. [15], Marrel et al. [20]). We study here another point of view, which is based on the
non-parametric statistical estimation of the term Var

(
E[Y | X`]

)
appearing in the numerator of

(1.1). Approaches based on the Nadaraya-Watson kernel estimator have been proposed by Da
Veiga and Gamboa [7] or Soĺıs [26]. We propose here a new approach based on warped wavelet
decompositions. An advantage of these non-parametric estimators is that their computation
requires less simulations of the model. For Jansen estimators, the number of calls of f required to
compute the sensitivity indices is n(p+1), where n is the number of independent random vectors
(Y i, Xi

1, . . . X
i
p) (i ∈ {1, . . . n}) that are sampled for the Monte-Carlo, making the estimation

of the sensitivity indices time-consuming for sophisticated models with many parameters. In
addition, for the non-parametric estimators, the convergence of the mean square error to zero
may be faster than for Monte-Carlo estimators, depending on the regularity of the model.

In Section 2, we present the non-parametric estimators of the Sobol indices of order 1 in the
case of the stochastic model (1.4) and study their convergence rates. The speed obtained is builds
on the approximation of Var

(
E[Y | X`]

)
. When the conditional expectation is estimated by a

Nadaraya-Watson kernel estimator, these results have been obtained by Soĺıs [26] and Da Veiga
and Gamboa [7]. The use of wavelets for estimating the conditional expectation in Sobol indices
is new to our knowledge. We derive the convergence rate for the estimator based on warped
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wavelets, using ideas due Laurent and Massart [18] who considered estimation of quadratic func-
tionals in a Gaussian setting. Because we are not necessarily in a Gaussian setting here, we rely
on empirical processes and use sophisticated technology developed by Castellan [3]. Contrarily
to the kernel estimators for which convergence rates rely on assumptions on the joint distribu-
tion of Y and of X1, . . . Xp, we have an upper-bound for the convergence rates that depend on
the regularity of the output Y with respect to the inputs X1, . . . Xp. Moreover, our estimator
is adaptive and the exact regularity does not need to be known to calibrate our non-parametric
wavelet estimator. Since we estimate covariance terms, we obtain elbow effects allowing to re-
cover convergence rates in 1/n when we have a lot of regularities. Further discussion is carried
in the body of the article. These estimators are then computed and compared for toy examples
introduced by Ishigami [12].
In Section 3, we then address models from Epidemiology for which non-parametric Sobol esti-
mators have never been used to our knowledge. First, the stochastic continuous-time SIR model
is considered, in which the population of size N is divided into three compartments: the sus-
ceptibles, infectious and removed individuals (see e.g. [1] for an introduction). Infections and
removals occur at random times whose laws depend on the composition of the population and
on the infection and removal parameters λ and µ as input variables. The output variable Y can
be the prevalence or the incidence at a given time T for instance. Y naturally depends on λ,
µ and on the randomness underlying the occurrence of random times. Second, we consider a
stochastic multi-level epidemic model for the transmission of Hepatitis C virus (HCV) among
people who inject drugs (PWID) that has been introduced by Cousien et al. [5, 6]. This model
describes an individual-based population of PWID that is structured by compartments showing
the state of individuals in the heath-care system and by a contact-graph indicating who inject
with whom. Additionally the advance of HCV in each patient is also taken into account. The
input variables are the different parameters of the model. Ouputs depend on these inputs, on
the randomness of event occurrences and on the randomness of the social graph. We compare
the sensitivity analysis performed by estimating the Sobol indices of order 1 with the naive sen-
sitivity analysis performed in [5, 6] by letting the parameters vary in an a priori chosen windows.

In the sequel, C denotes a constant that can vary from line to line.

2 A non-parametric estimator of the Sobol indices of order 1

Denoting by V` = E
(
E2(Y | X`)

)
, we have:

S` =
V` − E(Y )2

Var(Y )
, (2.1)

which can be approximated by

Ŝ` =
V̂` − Ȳ 2

σ̂2
Y

(2.2)

where

Ȳ =
1

n

n∑
j=1

Yj and σ̂2
Y =

1

n

n∑
j=1

(Yj − Ȳ )2

are the empirical mean and variance of Y . In this article, we propose 2 approximations V̂` of
V`, based on Nadaraya-Watson and on warped wavelet estimators. At an advanced stage of this
work, we learned that the Nadaraya-Watson-based estimator of Sobol indices of order 1 had also
been proposed and studied in the PhD of Soĺıs [26]. Using a result on estimation of covariances
by Loubes et al. [19], they obtain an elbow effect. However their estimation is not adaptative.
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For the warped wavelet estimator, we propose a model selection procedure based on a work by
Laurent and Massart [18] to make the estimator adaptative.

2.1 Definitions

Assume that we have n independent couples (Y i, Xi
1, . . . X

i
p) in R × Rp, for i ∈ {1, . . . , n},

generated by (1.4). Let us start with the kernel-based estimator:

Definition 2.1. Let K : R 7→ R be a kernel such that
∫
RK(u)du = 1 and ..... Let h > 0 be a

window and let us denote Kh(x) = K(x/h)/h. An estimator of S` for ` ∈ {1, . . . p} is:

Ŝ
(NW )
` =

1
n

∑n
i=1

(∑n
j=1 YjKh(Xj

`−X
i
`)∑n

j=1Kh(Xj
`−X

i
`)

)2
− Ȳ 2

σ̂2
Y

. (2.3)

This estimator is based on the Nadaraya-Watson estimator of E(Y |X` = x) given by (e.g.
[29]) ∑n

j=1 YjKh(Xj
` − x)∑n

j=1Kh(Xj
` − x)

.

Replacing this expression in (2.2) provides Ŝ
(NW )
` . At an advanced stage of this work, we be-

came informed that Soĺıs [26] had established rates of convergence for this estimator. We refer
to his work for proofs and focus on our second estimator.

Our second estimator is based on a warped wavelet decomposition of E(Y |X` = x). For
introduction to such decomposition, refer to [4, 17]. Let us denote by G` the cumulative distri-
bution function of X`.

Let (ψjk)j≥−1,k∈Z be a Hilbert wavelet basis of L2. In the sequel, we denote by 〈f, g〉 =∫
R f(u)g(u)du, for f, g ∈ L2, the usual scalar product of L2. The wavelet ψ−10 is the father

wavelet, and for k ∈ Z, ψ−1k(x) = ψ−10(x− k). The wavelet ψ00 is the mother wavelet, and for
j ≥ 0, k ∈ Z, ψjk(x) = 2j/2ψ00(2jx− k).

Definition 2.2. Let us define for j ≥ −1, k ∈ Z,

β̂`jk =
1

n

n∑
i=1

Yiψjk(G`(X
i
`)). (2.4)

Then, we define the (block thresholding) estimator of Ŝ`, for Jn :=
[

log2

( √n
log(n)

)]
, as:

Ŝ
(WW )
` =

θ̂` − Ȳ 2

σ̂2
Y

, (2.5)

where θ̂` =

Jn∑
j=−1

[∑
k∈Z

(
β̂`jk
)2 − w(j)

]
1l∑

k∈Z

(
β̂`jk

)2
≥w(j)

(2.6)

with w(j) = K ′
(2j + log 2

n

)
so that pen(J ) =

∑
j∈J

w(j) = K
(2Jmax

n
+
xJ
n

)
(2.7)

where K and K ′ are positive constants, where Jmax := maxJ and where

xJ = Jmax log(2). (2.8)
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Notice for the proofs that for xJ as in (2.8),

lim sup
n→+∞

1

n

∑
J⊂{−1,...,Jn}

e−xJ 22Jmax < +∞. (2.9)

Indeed, for a given Jmax ≤ Jn there are 2Jmax+1 subsets J ⊂ {−1, . . . Jn} such that maxJ =
Jmax. Thus:

∑
J⊂{−1,...,Jn}

e−xJ 22Jmax = C + C ′
Jn∑

Jmax=0

2Jmax2−Jmax22Jmax = C22Jn = C
n

log2(n)
,

where C in the first equality corresponds to the case J = {−1}.

An expression of the constant K appears in the proofs of Section 5 (where the mean square
error is studied). However this constant is hard to compute in practice and depends on inequal-
ities that are maybe not optimal. Indeed, the proof is concentrated on the orders in n and
in the dimension of the model corresponding to J , not on obtaining the best constants. For
applications, the constant K appearing in the penalty pen(J ) can be chosen by a slope heuristic
approach (see e.g. [2]) explained at the end of the section.

Let us present the idea explaining the estimator proposed in Definition 2.2. Let us introduce
centered random variables η` such that

Y = f(X, ε) = E(Y |X`) + η`. (2.10)

Let g`(x) = E(Y |X` = x) and h`(u) = g` ◦G−1
` (u). h` is a function from [0, 1] 7→ R that belong

to L2 since Y ∈ L2. Then

h`(u) =
∑
j≥−1

∑
k∈Z

β`jkψjk(u), with β`jk =

∫ 1

0
h`(u)ψjk(u)du =

∫
R
g`(x)ψjk(G`(x))G`(dx).

(2.11)
Notice that the sum in k is finite because the function h` has compact support in [0, 1]. It is
then natural to estimate h`(u) by

ĥ` =
∑
j≥−1

∑
k∈Z

β̂`jkψjk(u), (2.12)

and we then have:

V` = E
(
E2(Y |X`)

)
=

∫
R
G`(dx)

( ∑
j≥−1

∑
k∈Z

β`jkψjk
(
G`(x)

))2
=

∫ 1

0

( ∑
j≥−1

∑
k∈Z

β`jkψjk(u)
)2

du

=
∑
j≥−1

∑
k∈Z

(
β`jk
)2

= ‖h`‖22. (2.13)

Adaptive estimation of ‖h`‖22 has been studied in [18], which provides the block thresholding

estimator θ̂` in the Definition 2.2. The idea is: 1) to sum the terms
(
β`jk
)2

, for j ≥ 0, by blocks
{(j, k), k ∈ Z} for j ∈ {−1, . . . , Jn} with a penalty w(j) for each block to avoid choosing too
large js, 2) to cut the blocks that do not sufficiently contribute to the sum, in order to obtain
statistical adaptation.
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Notice that

θ̂` = sup
J⊂{−1,0,...,Jn}

∑
j∈J

[∑
k∈N

(
β̂`jk
)2 − w(j)

]
= sup
J⊂{−1,0,...,Jn}

∑
j∈J

∑
k∈N

(
β̂`jk
)2 − pen(J ). (2.14)

In view of this identity, θ̂` can be seen as an estimator of V` resulting from a model selection
on the choice of the blocks {(j, k), k ∈ Z}, j ∈ {−1, . . . , Jn} that are kept, with the penalty
function pen(J ) =

∑
j∈J w(j), for J ⊂ {−1, . . . , Jn}.

For a given K appearing in the definition of the penalty function pen (2.7), let us denote
by JK the subset of indices j of {−1, . . . Jn} achieving the supremum in the r.h.s. of (2.14).
Plotting Card(JK) as a function of K, the slope heuristic tells us to choose K as value where
the curve has a sudden decrease.

2.2 Statistical properties

In this Section, we are interested in the rate of convergence to zero of the mean square error
(MSE) E

(
(S` − Ŝ`)2

)
. Let us consider the generic estimator Ŝ` defined in (2.2), where V̂` is

an estimator of V` = E(E2(Y | X`)). We first start with a Lemma stating that the MSE can
be obtained from the rate of convergence of V̂` to V`. Then, we recall the result of Soĺıs [26],
where an elbow effect for the MSE is shown when the regularity of the density of (X`, Y ) varies.
The case of the warped wavelet estimator is studied at the end of the section and the rate of
convergence is stated in Corollary 2.8.

Lemma 2.3. Consider the generic estimator Ŝ` defined in (2.2). Then there is a constant C
such that:

E
(
(S` − Ŝ`)2

)
≤ C

n
+

4

Var(Y )2
E
[(
V̂` − V`

)2]
. (2.15)

Proof. From (2.1) and (2.2),

E
(
(S` − Ŝ`)2

)
=E
[(V` − E(Y )2

Var(Y )
− V̂` − Ȳ 2

σ̂2
Y

)2]
≤2E

[( E(Y )2

Var(Y )
− Ȳ 2

σ̂2
Y

)2]
+ 2E

[( V`
Var(Y )

− V̂`
σ̂2
Y

)2]
. (2.16)

The first term in the right hand side (r.h.s.) is in C/n. For the second term in the right hand
side of (2.16):

E
[( V`

Var(Y )
− V̂`
σ̂2
Y

)2]
≤2E

[
V̂ 2
`

( 1

Var(Y )
− 1

σ̂2
Y

)2]
+

2

Var(Y )2
E
[(
V̂` − V`

)2]
. (2.17)

The first term in the r.h.s. is also in C/n, which concludes the proof. �

2.2.1 MSE for the Nadaraya-Watson estimator

Using the preceding Lemma, Loubes Marteau and Soĺıs prove an elbow effect for the estimator

Ŝ
(NW )
` . Let us introduceH(α,L), for α,L > 0, the set of functions φ of class [α], whose derivative
φ([α]) is α− [α] Hölder continuous with constant L.

Proposition 2.4 (Loubes Marteau and Soĺıs [26, 19]). Assume that E(X4
` ) < +∞, that the

joint density φ(x, y) of (X`, Y ) belongs to H(α,L), for α,L > 0 and that the marginal density
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of X`, φ` belongs to H(α′, L′) for α′ > α and L′ > 0. Then:
If α ≥ 2, there exists a constant C > 0 such that

E
(
(S` − Ŝ`)2

)
≤ C

n
.

If α < 2, there exists a constant C > 0 such that

E
(
(S` − Ŝ`)2

)
≤ C

( log2 n

n

) 2α
α+2 .

For smooth functions (α ≥ 2), Loubes et al. recover a parametric rate, while they still have

a nonparametric one when α < 2. Their result is based on (2.15) and a bound for E
[(
V̂`−V`

)2]
given by [19, Th. 1], whose proof is technical. Since their result is not adaptive, they require the
knowledge of the window h for numerical implementation. Our purpose is to provide a similar
result for the warped wavelet adaptive estimator, with a shorter proof.

2.2.2 MSE for the warped wavelet estimator

Let us introduce first some additional notation. We define, for J ⊂ {−1, . . . , Jn}, the projection
hJ ,` of h on the subspace spanned by {ψjk, with j ∈ J , k ∈ Z} and its estimator ĥJ ,`:

hJ ,`(u) =
∑
j∈J

∑
k∈Z

β`jkψjk(u) (2.18)

ĥJ ,`(u) =
∑
j∈J

∑
k∈Z

β̂`jkψjk(u). (2.19)

We also introduce the estimator of V` for a fixed subset of resolutions J :

θ̂J ,` = ‖ĥJ ,`‖22 =
∑
j∈J

∑
k∈Z

(
β̂`jk
)2
. (2.20)

Note that θ̂J ,` is one possible estimator V̂` in Lemma 2.3.

The estimators β̂jk and θ̂J ,` have natural expressions in term of the empirical process γn(dx)
defined as follows:

Definition 2.5. The empirical measure associated with our problem is:

γn(dx) =
1

n

n∑
i=1

YiδG`(Xi
`)

(dx) (2.21)

where δa(dx) denotes the Dirac mass in a.
For a measurable function f , γn(f) = 1

n

∑n
i=1 Yif

(
G`(X

i
`)
)
. We also define the centered integral

of f with respect to γn(dx) as:

γ̄n(f) =γn(f)− E
(
γn(f)

)
(2.22)

=
1

n

n∑
i=1

(
Yif
(
G`(X

i
`)
)
− E

[
Yif
(
G`(X

i
`)
)])

. (2.23)

Using the empirical measure γn(dx), we have:

β̂`jk = γn
(
ψjk
)

= β`jk + γ̄n
(
ψjk
)
.
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Let us introduce the correction term

ζn =2γ̄n
(
h`
)

(2.24)

=2
[ 1

n

n∑
i=1

Yih`
(
G`(X

i
`)
)
− E

(
Y1h`

(
G`(X

1
` )
))]

=2
[ 1

n

n∑
i=1

h2
`

(
G`(X

i
`)
)
− ‖h`‖22

]
+

2

n

n∑
i=1

ηi`h`
(
G`(X

i
`)
)
. (2.25)

Theorem 2.6. Let us assume that the random variables Y are bounded by a constant M , and
let us choose a father and a mother wavelets ψ−10 and ψ00 that are continuous with compact
support (and thus bounded). The estimator θ̂` defined in (2.6) is almost surely finite, and:

E
[(
θ̂` − V` − ζn

)2] ≤ C inf
J⊂{−1,...,Jn}

(
‖h` − hJ ,`‖42 +

2Jmax

n2

)
+

C ′

n log2(n)
, (2.26)

for constants C and C ′ > 0.

We deduce the following corollary from the estimate obtained above. Let us consider the
Besov space B(α, 2,∞) of functions h =

∑
j≥−1

∑
k∈Z βjkψjk of L2 such that

|h|α,2,∞ :=
∑
j≥0

2jα

√
sup

0<v≤2−j

∫ 1−v

0
|h(u+ v)− h(u)|2du < +∞.

For a h ∈ B(α, 2,∞) and hJ its projection on Vect{ψjk, j ∈ J = {−1, . . . Jmax}, k ∈ Z},
we have the following approximation result from [11, Th. 9.4].

Proposition 2.7 (Härdle Kerkyacharian Picard and Tsybakov). Assume that the wavelet func-
tion ψ−10 has compact support and is of class CN for an integer N > 0. Then, if h ∈ B(α, 2,∞)
with α < N + 1,

sup
J⊂N∪{−1}

2αJmax‖h− hJ ‖2 = sup
J⊂N∪{−1}

2αJmax
( ∑
j≥Jmax

∑
k∈Z

β2
jk

)1/2
< +∞. (2.27)

Notice that Theorem 9.4 of [11] requires assumptions that are fulfilled when ψ−10 has compact
support and is smooth enough (see comment after the Corol. 8.2 of [11]).

Corollary 2.8. If ψ−10 has compact support and is of class CN for an integer N > 0 and if h`
belongs to a ball of radius R > 0 of B(α, 2,∞) for 0 < α < N + 1, then

sup
h∈B(α,2,∞)

E
[(
θ̂` − V`

)2] ≤C(n− 8α
4α+1 +

1

n

)
. (2.28)

As a consequence, we obtain the following elbow effect:
If α ≥ 1

4 , there exists a constant C > 0 such that

E
(
(S` − Ŝ`)2

)
≤ C

n
.

If α < 1
4 , there exists a constant C > 0 such that

E
(
(S` − Ŝ`)2

)
≤ Cn−

8α
4α+1 .
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The proof of Theorem 2.6 is postponed to Section 5. Let us remark that in comparison with
the result of Loubes et al. [19], the regularity assumption is on the function h` rather than on
the joint density φ(x, y) of (X`, Y ). The adaptivity of our estimator is then welcomed since the
function h` is a priori unknown. Remark that in application, the joint density φ(x, y) also has
to be estimated and hence has an unknown regularity.

When α < 1/4 and α→ 1/4, the exponent 8α/(4α+ 1)→ 1. In the case when α > 1/4, we
can show from the estimate of Th. 2.6 that:

lim
n→+∞

nE
[(
θ̂` − V` − ζn

)2]
= 0, (2.29)

which yields that
√
n
(
θ̂` − V` − ζn

)
converges to 0 in L2. Since

√
nζn converges in distribution

to N
(

0, 4Var
(
Y1h`(G`(X

1
` ))
))

by the central limit theorem, we obtain that:

lim
n→+∞

√
n
(
θ̂` − V`

)
= N

(
0, 4Var

(
Y1h`(G`(X

1
` ))
))
, (2.30)

in distribution.
The result of Corollary 2.8 is stated for functions h` belonging to B(α, 2,∞), but the gener-

alization to other Besov space might be possible.

2.3 Numerical tests on toy models

We start with considering toy models based on the Ishigami function, namely:

Y = f(X1, X2, X3) = sin(X1) + 7 sin(X2)2 + 0.1 X4
3 sin(X1) (2.31)

where Xi are independent uniform random variables in [−π, π] (see e.g. [12, 23]).

Case 1 : first, we consider this model with (X1, X2, X3) as input parameters and compute the
associated Sobol indices. For the Ishigami function, all the Sobol sensitivity indices are known.

S1 = 0.3139, S2 = 0.4424, S3 = 0.

Case 2 : following Marrel et al. [20], we consider the case where (X1, X2) are the input param-
eters and X3 a nuisance random parameter. The Sobol indices relative to X1 and X2 have the
same values as in the first case.
Case 3 : we also compared the estimators considering a function with a more oscillatory be-
havior: for this purpose, we used a modified version g of the Ishigami function, defined as
g(X1, X2, X3) = f(11 X1, X2, X3). As for Case 2, we consider X3 again as a nuisance parame-
ter. The Sobol indices for X1 and X2 are the same as in Case 1.

In the three cases, we compare the estimators of the Sobol indices of order 1 based on
the Nadaraya-Watson and the wavelet regressions with the Jansen estimator that is one of the
classical estimator found in the literature (see [16, 22] for Jansen and other estimatros). The

Jansen estimator is based on the mixing of two samples (X
(1),i
1 , ..., X

(1),i
p , i ∈ {1, . . . n}) and

(X
(2),i
1 , ..., X

(2),i
p , i ∈ {1, . . . n}) of i.i.d. p-uplets distributed as (X1, . . . Xp): for the first order

Sobol indices, ∀` ∈ 1, ..., p:

Ŝ` = 1− 1

2n σ̂2
Y

n∑
i=1

(
f(X

(2),i
1 , ..., X(2),i

p )− f(X
(1),i
1 , ..., X

(1),i
`−1 , X

(2),i
` , X

(1),i
`+1 , . . . , X

(1),i
p )

)2
. (2.32)
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Notice that the estimations using Jansen estimators require (p+1)n calls to f , which is in many
real cases the most expensive numerically
We compute the non-parametric estimators of the S`’s from samples of size n and (p + 1)n to
compare with the Jansen estimators obtained from the same number of simulations of the model.
We used n = 10, 000 and to obtain Monte-Carlo approximations of the estimators’ distributions,
we performed 1,000 replications from which we estimate the bias and MSE for each estimator.
For the Nadaraya-Watson estimator, we choose a window of h = 0.1. For the wavelet estimator,
we use the Daubechies 4 wavelet basis when implementing the wavelet estimator.

Table 1: Estimates of the bias and MSE for the parameters X1, X2 and X3 in the Ishigmami function,

for 1,000 replications and n = 10, 000

Method E[Ŝ1 − S1] E[(Ŝ1 − S1)2] E[Ŝ2 − S2] E[(Ŝ2 − S2)2 E[Ŝ3 − S3] E[(Ŝ3 − S3)2]

Jansen, n(p+ 1) 9.9e-4 1.8e-4 3.2e-5 1.0e-4 8.6e-4 5.6e-4
Nadaraya-Watson, n 2.2e-3 5.0e-5 -1.7e-3 6.4e-5 3.9e-3 1.7e-5
Nadaraya-Watson, n(p+ 1) 1.4e-4 1.1e-5 -3.0e-3 2.4e-5 9.6e-4 1.2e-6
Wavelets, n 9.7e-4 2.1e-4 3.5e-3 2.6e-4 3.1e-3 4.1e-5
Wavelets, n(p+ 1) -5.4e-3 7.4e-5 9.6e-4 5.9e-5 2.1e-4 5.0e-6

Table 2: Estimates of the bias and MSE for the parameters X1 and X2 in the Ishigmami function, when

X3 is considered as a pertubation parameter, for 1,000 replications and n = 10, 000

Method E[Ŝ1 − S1] E[(Ŝ1 − S1)2] E[Ŝ2 − S2] E[(Ŝ2 − S2)2

Jansen, n(p+ 1) -5.6e-4 2.0e-4 -7.8e-4 1.8e-4
Nadaraya-Watson, n 1.4e-3 4.6e-5 -1.4e-3 6.4e-5
Nadaraya-Watson, n(p+ 1) 2.0e-4 1.4e-5 -2.7e-3 2.9e-5
Wavelets, n 9.1e-5 2.0e-4 3.4e-3 2.6e-4
Wavelets, n(p+ 1) -4.7e-3 8.3e-5 9.9e-4 7.3e-5

Table 3: Estimates of the bias and MSE for the parameters X1 and X2 in the modified Ishigmami

function g, when X3 is considered as a pertubation parameter, for 1,000 replications and n = 10, 000

Method E[Ŝ1 − S1] E[(Ŝ1 − S1)2] E[Ŝ2 − S2] E[(Ŝ2 − S2)2

Jansen, n(p+ 1) -3.0e-4 2.2e-4 -3.0e-4 1.8e-4
Nadaraya-Watson, n -6.4e-2 4.1e-3 -1.0e-3 6.1e-5
Nadaraya-Watson, n(p+ 1) -6.5e-2 4.3e-3 -2.7e-3 2.8e-5
Wavelets, n -1.5e-3 3.6e-4 1.8e-3 2.5e-4
Wavelets, n(p+ 1) 2.7e-3 6.6e-5 1.6e-3 8.5e-5

Let us now discuss the results of the simulations. In the deterministic framework (i.e. Case
1, see Table 1), we can see that in term of bias, the results were variable. For X1, with the same
number of simulations (i.e. n(p+ 1)), the lowest bias was obtained with the Nadaraya-Watson
estimator (1.4e-4), the Jansen estimator for X2 (3.2e-5) and the wavelet estimator for X3 (2.1e-
4). However, at constant number of simulations n(p+ 1), the Nadaraya-Watson and the wavelet
estimators showed lower MSE than Jansen. Particularly, the lowest MSE are obtained for X1,
X2 and X3 with the Nadaraya-Watson regression estimator (1.1e-5, 2.4e-5 and 1.2e-6 respec-
tively). Compared with Jansen, the MSE still lower for Nadaraya-Watson even with times p+ 1
less simulations of the model available. The results are similar in the stochastic framework (i.e.
Case 2, see Table 2).
When we add higher frequencies (Case 3, see Table 3), the performances of the estimator for X1
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based on Nadaraya-Watson are reduced, leading to the biases of order 1e-2 and MSE of order
1e-3. In the same time, the wavelet estimator remains relatively stable and gives the lowest
MSE 6.6e-5.

Figure 1: Example of regression obtained using Nadaraya-Watson and wavelets with n(p+ 1) = 40, 000

simulations for the Ishigami function (left) and the modified Ishigami function (right).

Figure shows how the non-parametric regressions (Nadaraya-Watson and wavelets) estimate
conditional expectation appearing in the expressions of the Sobol indices. We can see that
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wavelet regression shows boundary effects as well as more noisy curves, but that it is more sta-
ble to treating higher frequencies.

These results suggest that the two proposed non-parametric estimators constitute an in-
teresting alternative to the Jansen estimator, showing less variability and potentially requiring
a lower number of simulations of the model, even in the deterministic setting of Case 1. In
addition, the estimator based on Nadaraya-Watson leads to the lowest MSE for the Ishigami
function, meanwhile the wavelet estimator seems to be more appropriate for functions showing
higher frequencies.

3 Sobol indices for epidemiological problems

We now consider two stochastic individual-based models of epidemiology in continuous time.
In both cases, the population is of size N and divided into compartments. Input parameters
are the rates describing the times that individuals stay in each compartment. These rates are
usually estimated from epidemiological studies or clinical trials, but there can be uncertainty
on their values due to various reasons. The restricted size of the sample in these studies brings
uncertainty on the estimates, which are given with uncertainty intervals (classically, a 95%
confidence interval). Different studies can provide different estimates for the same parameters.
The study populations can be subject to selection biases. In the case of clinical trials where the
efficacy of a treatment is estimated, the estimates can be optimistic compared with what will
be the effectiveness in real-life, due to the protocol of the trials. It is important to quantify how
theses uncertainties on the input parameters can impact the results and the conclusion of an
epidemiological modelling study.

3.1 SIR model and ODE metamodels

In the first model, we consider the usual SIR model, with three compartments: susceptibles,
infectious and removed (e.g. [1, 8]). We denote by SNt , INt and RNt the respective sizes of the
corresponding sub-populations at time t ≥ 0, with SNt + INt + RNt = N . At the population
level, infections occur at the rate λ

N S
N
t I

N
t and removals at the rate µINt . The idea is that to

each pair of susceptible-infectious individuals a random independent clock with parameter λ/N
is attached and to each infectious individual an independent clock with parameter µ is attached.
The input parameters are the rates λ and µ. The outpout parameter is the final size of the
epidemic, i.e. at a time T > 0 where INT = 0, Y = (INT +RNT )/N .

It is possible to describe the evolution of (SNt /N, I
N
t /N,R

N
t /N)t≥0 by a stochastic differential

equation (SDE) driven by Poisson point measures (see e.g. [28]) and it is known that when
N → +∞, this stochastic process converges in D(R+,R3) to the unique solution (st, it, rt)t≥0 of
the following system of ordinary differential equations (e.g. [1, 8, 28]):

ds
dt = −λstit
di
dt = λstit − µit
dr
dt = µit.

(3.1)

The fluctuations associated with this convergence have also been established. The limiting
equations provide a natural deterministic approximating meta-model (recall [20]) for which sen-
sitivity indices can be computed.

For the numerical experiment, we consider a close population of 1200 individuals, starting
with S1200

0 = 1190, I1200
0 = 10 and R1200

0 = 0. The parameters distributions are uniformly dis-
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tributed with λ/N ∈ [1/15000, 3/15000] and µ ∈ [1/15, 3/15]. Here the randomness associated
with the Poisson point measures is treated as the nuisance random factor in (1.4).
We compute the Jansen estimators of Sλ and Sµ for the deterministic meta-model (3.1), with
n = 30, 000 simulations. For the estimators of Sλ and Sµ in the SDE, we compute the Jansen
estimators with n = 10, 000 (i.e. n(p+ 1) = 30, 000 calls to the function f), and the estimators
based on Nadaraya-Watson and on wavelet regressions with n = 30, 000 simulations.

(a) (b)

Figure 2: Estimations of the first order Sobol indices, using Jansen estimators on the meta-model with

n = 10, 000 and the non-parametric estimations based on Nadaraya-Watson and wavelet regressions. (a):

the distributions of the estimators of Sλ and Sµ is approximated by Monte-carlo simulations. (b): the

distributions of E(Y | λ) and E(Y | µ) are approximated by Monte-Carlo simulations.

Let us comment on the results. First, the comparison of the different estimation methods is
presented in Fig. 2. Since the variances in the meta-model and in the stochastic model differ,
we start with comparing the distributions of E(Y | λ) and E(Y | µ) that are centered around the
same value, independently of whether the meta-model or the stochastic model is used. These
distributions are obtained from 1,000 Monte-carlo simulations. In Fig. 2(b), taking the meta-
model as a benchmark, we see that the wavelet estimator performs well for both λ and µ while
Nadaraya-Watson regression estimator performs well only for µ and exhibit biases for λ. Jansen
estimator on the stochastic model exhibit biases for both λ and µ.

In a second time, we focus on the estimation of the Sobol indices for the stochastic model.
The smoothed distributions of the estimators of Sλ and Sµ, for 1,000 Monte-Carlo replications,
are presented in Fig. 2 (a); the means and standard deviations of these distributions are given
in Table 4. Although there is no theoretical values for Sλ and Sµ, we can see (Table 4) that
the estimators of the Sobol indices with non-parametric regressions all give similar estimates
in expectation for µ. For λ, the estimators are relatively different, with the Nadaraya-Watson
showing the lower estimate. This is linked with the bias seen on Fig. 2 (b) and discussed below.
In term of variance, the Nadaraya-Watson estimator gives the tightest distribution, while the
wavelet estimator gives the highest variance.
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Jansen Nadaraya-Watson Wavelet

Ŝλ 0.39 0.38 0.40
s.d. (9.2e-3) (4.3e-3) (1.4e-2)

Ŝµ 0.44 0.42 0.42
s.d. (9.0e-3) (4.4e-3) (1.2e-2)

Table 4: Estimators of the Sobol indices for λ and µ and their standard deviations using n =10,000

Monte-Carlo replications of the stochastic SIR model.

Lambda/N
M

u

P
revalence (%

)

0.2

0.4

0.6

0.8

Figure 3: Prevalence (Y ) simulated from the n(p + 1) = 30, 000 simulations of λ and µ, for the SIR

model.

The advantage of using the estimators with wavelets lies in their robustness to the inclusion
of high frequencies and in the fact that they can overcome some smoothing biases that the
Nadaraya-Watson regressions exhibit (Fig. 2 (b)). This can be understood when looking at Fig.
3: the simulations can give very noisy Y ’s. For example, extinctions of the epidemics can be seen
in very short time in simulations, due to the initial randomness of the trajectories. This produces
distributions for Y ’s that are not unimodal or with peaks at 0, which makes the estimation of
E(Y | λ) or E(Y | µ) more difficult. The variance of the estimator with wavelets is however
the widest and in practice, finding the thresholding constants for the wavelet coefficients can be
somewhat tricky when the number of input parameters is large, as in the next section.

3.2 Application to the spread of HVC among drug users

Chronic hepatitis C is a major cause of liver failure in the world, responsible of approximately
500,000 deaths annually [30]. Hepatitis C is a bloodborne disease, and the transmission remains
high in people who inject drugs (PWID) due to injecting equipment sharing [27]. Until recently,
the main approaches to decrease HCV transmission among PWID in high income countries re-
lied on injection prevention and on risk reduction measures (access to sterile equipment, opioid
substitution therapies, etc.). The arrival of highly effective antiviral treatments offers the op-
portunity to use the treatment as a mean to prevent HCV transmission, by treating infected
PWID before they have transmitted the infection [10].
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In this context, a stochastic, individual-based dynamic model was used to assessed the impact
of the treatment on HCV transmission in PWID in Paris area [5]. This model included HCV
transmission on a random graph modelling PWID social network, the cascade of care of chronic
hepatitis C and the progression of the liver disease. A brief description of the model for HCV
infection and cascade of care is available in 4, for a detailed description and the values and
uncertainty intervals of the parameters, the reader can refer to [5]. These parameters are the
input of our model and we assume for them uniform distributions on their uncertainty intervals.
Here, Y is the prevalence after 10 years of simulation. We used n = 10, 000 simulations of the
model.

Figure 4: Diagram flow of infection and cascade of care modelling for HCV infection among PWID.

Greek letters refer to rates, pr and pSV R to probabilities and Ta and Tt to (deterministic) time before

leaving the compartment. β depends on the status of the PWID with respect to the risk reduction measures

(access to sterile injecting equipment, access to substitution therapies). ni denotes the number of infected

injecting partners of the PWID. δ depends on the status of the PWID with respect to injection: active or

inactive injector (i.e. before or after the cessation of injection). The liver disease progression is quantified

by a score (score Metavir for the fibrosis progression) between F0 and F4 (cirrhosis). “Complications”

refers to the two cirrhosis complications: decompensated cirrhosis and hepatocellular carcinoma

The parameter values used in this analysis were mainly provided by epidemiological studies
and were subject to uncertainty. This kind of model requires high computing time, and thus
the sensitivity analysis using Monte-Carlo estimators of Sobol indices is difficult, due to the
number of simulations needed. Following the conclusions of the previous section, we estimate
Sobol indices using the Nadaraya-Watson non-parametric estimator. For comparison, we also
represented the sensitivity using a Tornado diagram, classically used in epidemiology. To build
the Tornado diagram, we first fix all the parameters but one to their values used in the analysis
and we let the free parameter vary between the extremal values of its uncertainty interval. For
each set of parameters thus obtained, the output Y is computed. Then, the parameters are
sorted by decreasing variations of Y , and the deviation from the main analysis results is repre-
sented in a bar plot.

Results are presented Figure 5. With the Sobol indices, we obtained consistent results. Since
the Sobol indices can be interpreted as the contribution of each parameter to the variance of
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Figure 5: Tornado diagram (above), and Sobol indices (below). The bars on the Tornado diagram are

the variation intervals of Y when varying each parameter separately. Sobol indices have been estimated

using the Nadaraya-Watson estimator. Parameters have been sorted by decreasing values of their Sobol

indices. LTFU=loss to follow-up, HCC=Hepatocellular carcinoma, M=Male, F=Female. “Cessation”

refers to the cessation of the injections. “F0/F1 > F2/F3” refers to the transition rate from a fibrosis

score F0 or F1 to a fibrosis score F2 or F3 (and similarly for other rates).
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Y , we can thus see that a large part of the variance of Y is explained by the infection rate per
infected partner alone, with a Sobol index of 0.59, and by the transition rate from a fibrosis
score of F0/F1 to a score of F2/F3, with a Sobol index of 0.31. Other parameters contribute
only marginally, and particularly linkage to care/loss to follow-up rate, which represent only 4%
of the whole variance, according to these results.
With the Tornado diagram (obtained in [5]), the most sensitive parameters are the infection
rate per infected injecting partner, the transition rate from a fibrosis score of F0/F1 to a score
of F2/F3 and the combination of the linkage to care/loss to follow-up rate (which were varied
together to estimate the impact of the uncertainty about the linkage to care of PWID).

The Sobol indices and Tornado diagram indicate the same two first factors (infection rate per
partner and transition rate from F0/F1 to F2/F3) that can impact Y . The Tornado diagram,
which explores a much smaller region of the parameter space by the way it is constructed, detects
more noisy contributions for the other factors. The latter appear in the Tornado in groups that
corresponds to similar Sobol indices (linkage to care/LTFU rates, average time to diagnosis
and cessation, relative risk of infection, mortality, F2/F3>F4). The order of these groups is by
decreasing values of the Sobol indices.

4 Conclusions

Sensitivity analysis is a key step in modelling studies, in particular in epidemiology. Models
often have a high number of parameters, which are often seen as degrees of freedom to test
scenarii and take into account several interplaying phenomena and factors... The computation
of Sobol indices can indicate, among a long list of input parameters, which ones can have an
important impact on the outputs. The classical estimators, like the Jansen estimator, require a
large amount of requests to the function f that generates the output from the inputs. The reason
is that the Sobol indices are approximated, in these cases, by quantities involving imbricated
sums where parameters vary one by one.
The literature on sensitivity analysis focuses on outputs that depend deterministically on the
inputs. When there is randomness, it is natural to propose new approximations based on non-
parametric estimations that require a lower number of calls to f since information brought
by simulations with close input parameters can also be used. No meta-model is requested.
Numerical study on toy models show that these estimators can also be used in deterministic
settings too.
The two estimators that we study are based on two non-parametric regression models: Nadaraya-
Watson regression and wavelet decomposition. For both of them, we demonstrated that the
MSE shows an elbow effect. On numerical toy examples, we obtained a better MSE with
these estimators than with the Jansen estimator of same complexity. While the estimator using
Nadaraya-Watson seems easier to calibrate, the wavelet regressions are justified as soon as there
is a high frequency phenomenon in play. Moreover, when well-calibrated they can overcome some
smoothing biases that can appear when the output is very noisy, which is the case in epidemic
scenarii where there can be either large outbreaks or quick extinction due to stochasticity, for
example.

5 Proofs

5.1 Proof of Theorem 2.6

We follow the scheme of the proof of Theorem 1 in [18]. The main difficulty here is that we are
not in a Gaussian framework and that we use the empirical process γ̄n, which introduces much
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technical difficulties.
In the sequel, C denotes a constant that can vary from line to line.

Using Lemma 2.3, we concentrate on the MSE E
(
(θ̂` − V`)2

)
. First, we will prove that:

E
[(
θ̂` − V` − ζn

)2]
≤ inf
J⊂{−1,...,Jn}

E
[(
− θ̂J ,` + V` + ζn

)2

+

]
+

C

n log2(n)
, (5.1)

where θ̂J ,` has been defined in (2.20). Then, considering the first term in the r.h.s. of (5.1), we
prove:

E
[(
− θ̂J ,` + V` + ζn

)2

+

]
≤ C

(
‖h` − hJ ,`‖42 +

log2(n) + 2Jmax

n2

)
(5.2)

Step 1:
From (2.14), and letting AJ = θ̂J ,` − V` − ζn, we have:

θ̂` − V` − ζn = sup
J⊂{−1,...,Jn}

AJ .

Since ∣∣∣ sup
J
AJ

∣∣∣ ≤ max
[

sup
J

(
AJ
)

+
, inf
J

(
AJ
)
−

]
,

we have that

E
(

sup
J
A2
J

)
≤

∑
J⊂{−1,...,Jn}

E
((
AJ
)2

+

)
+ inf
J⊂{−1,...,Jn}

E
((
AJ
)2
−

)
≤

∑
J⊂{−1,...,Jn}

E
((
AJ
)2

+

)
+ inf
J⊂{−1,...,Jn}

E
((
V` − θ̂J ,` + ζn

)2
+

)
. (5.3)

The second term correspond to what appears in (5.1) and will be treated in Step 4. Let us
consider the first term of the r.h.s. We start by rewriting

AJ =θ̂J ,` − V` − ζn
=‖ĥJ ,`‖22 − pen(J )− ‖h`‖22 − ζn
=
(
‖ĥJ ,` − hJ ,`‖22 + ‖hJ ,`‖22 + 2〈ĥJ ,` − hJ ,`, hJ ,`〉

)
−
(
‖h` − hJ ,`‖22 + ‖hJ ,`‖22 + 2〈h` − hJ ,`, hJ ,`〉

)
− ζn − pen(J )

=‖ĥJ ,` − hJ ,`‖22 + 2〈ĥJ ,` − hJ ,`, hJ ,`〉 − ‖h` − hJ ,`‖22 − ζn − pen(J ), (5.4)

since 〈h`−hJ ,`, hJ ,`〉 = 0 by definition of hJ ,` as projection of h` on the subspace generated by
{ψjk, j ∈ J , k ∈ Z}.

Thus:

E
((
AJ
)2

+

)
≤ 2E

((
‖ĥJ ,` − hJ ,`‖22 − pen1(J )

)2)
+ 2E

((
2〈ĥJ ,` − hJ ,`, hJ ,`〉 − ‖h` − hJ ,`‖22 − ζn − pen2(J )

)2)
. (5.5)

where

pen1(J ) =
K2Jmax

n
, and pen2(J ) =

4M2xJ
n

+
4M2‖ϕJ ‖2∞x2

J
n2

. (5.6)
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Step 2: Upper bound of the first term in the r.h.s. of (5.5)

Reformulation of ‖ĥJ ,` − hJ ,`‖22

The first term in the r.h.s. of (5.4) is the approximation error of hJ by ĥJ ,` and equals

‖ĥJ ,` − hJ ,`‖22 =
∑
j∈J

∑
k∈Z

(
β̂jk − βjk

)2
=
∑
j∈J

∑
k∈Z

γ̄n
(
ψjk
)2
.

To control it, let us introduce, for coefficients a = (ajk, −1 ≤ j ≤ Jn, k ∈ Z), the set F1,J =
{
∑

j∈J
∑

k∈Z ajkψjk, ajk ∈ Q, ‖a‖2 ≤ 1}, which is countable and dense in the unit ball of

L2([0, 1]): (∑
j∈J

∑
k∈Z

γ̄n
(
ψjk
)2)1/2

= sup
‖a‖2≤1

∣∣∣∑
j∈J

∑
k∈Z

ajkγ̄n
(
ψjk
)∣∣∣

= sup
‖a‖2≤1

∣∣∣γ̄n(∑
j∈J

∑
k∈Z

ajkψjk

)∣∣∣
= sup
f∈F1,J

∣∣γ̄n(f)
∣∣ := χn(J ). (5.7)

Let us introduce, for ρ > 0,

ΩJ (ρ) =
{
∀j ∈ J ,

∑
k∈Z

∣∣γ̄n(ψjk)
∣∣ ≤ ρ2−j/2

}
. (5.8)

Then, to upper bound the first term in (5.5), we can write:

E
((
‖ĥJ ,` − hJ ,`‖22 − pen1(J )

)2) ≤ 2A1(J ) + 2A2(J ) (5.9)

where

A1(J ) = E
((
χ2
n(J )1lΩJ (ρ) − pen1(J )

)2)
, and A2(J ) = E

(
χ4
n(J )1lΩcJ (ρ)

)
. (5.10)

The upper bounds of A1(J ) and A2(J ) make the object of the remainder of Step 2. We use
ideas developed in [3]. To upper bound A1(J ), we use the identity

A1(J ) =

∫ +∞

0
t P
(
χ2
n(J )1lΩJ (ρ) − pen1(J ) > t

)
dt, (5.11)

and look for deviation inequalities of χ2
n(J )1lΩ(J )(ρ). Then, estimates of the probability of Ωc

J (ρ)
are studied to control A2(J ).

Deviation inequality for supa∈ΛJ

∣∣γ̄n(f)
∣∣

The supremum in (5.7) is obtained for

ājk =
γ̄n(ψjk)

χn(J )
. (5.12)

On the set ΩJ (ρ) ∩ {χn(J > z}, for a constant z > 0 that shall be fixed in the sequel, we have
for all j ∈ J , ∑

k∈Z

∣∣ājk∣∣ =

∑
k∈Z

∣∣γ̄n(ψjk)
∣∣

χn(J )
≤ ρ2−j/2

z
.
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As a consequence, on the set ΩJ (ρ) ∩ {χn(J ) > z}, we can restrict the research of the optima
to the set

ΛJ =
{
a = (ajk)j≥−1,k∈Z ∈ Q{−1,... }×Z, ajk = 0 if j /∈ J ,

∑
k∈Z

∣∣ajk∣∣ ≤ ρ2−j/2

z
if j ∈ J

}
,

which is countable.

We can then use Talagrand inequality (see [21, p.170]) to obtain that for all η > 0 and x > 0,

P
(

sup
a∈ΛJ

∣∣γ̄n(f)
∣∣ ≥ (1 + η)E

(
sup
a∈ΛJ

∣∣γ̄n(f)
∣∣)+

√
2νnx+

(1

3
+

1

η

)
bnx
)
≤ e−x, (5.13)

where E
(

supa∈ΛJ

∣∣γ̄n(f)
∣∣) and where νn and bn can be chosen respectively as νn = M2/n and

bn = 2M‖ψ‖∞ρCard(J )/nz. Indeed, νn is an upper bound of:

1

n
sup
a∈ΛJ

Var
(
Y1

∑
j∈J

∑
k∈Z

ajkψjk
(
G`(X

1
` )
))
≤ M2

n
sup
a∈ΛJ

∥∥∥∑
j∈J

∑
k∈Z

ajkψjk

∥∥∥2

2
≤ M2

n
, (5.14)

from the definition of ΛJ . As for the term bn, it can be obtained from:

1

n
sup
a∈ΛJ

sup
(u,y)∈[0,1]×R

∣∣∣y∑
j∈J

∑
k∈Z

ajkψjk(u)− E
(
Y1

∑
j∈J

∑
k∈Z

ajkψjk
(
G`(X

1
` )
))∣∣∣

≤2M

n

∑
j∈J

∑
k∈Z
|ajk|2j/2‖ψ‖∞ ≤

2M‖ψ‖∞
n

∑
j∈J

ρ2−j/2

z
2j/2 =

2M‖ψ‖∞ρ Card(J )

n z
. (5.15)

For the expectation in the r.h.s. in the probability, we have:

E
(

sup
a∈ΛJ

∣∣γ̄n(f)
∣∣) ≤ E

(
χn(J )

)
≤
√
E
(
χ2
n(J )

)
=

√∑
j∈J

∑
k∈Z

E
(
γ̄2
n(ψjk)

)
=

√∑
j∈J

∑
k∈Z

1

n
Var
(
Y1ψjk(G`(X

1
` ))
)
≤M

√
2Jmax

n
(5.16)

by using the Cauchy-Schwarz inequality and the fact that ‖ψjk‖22 = 1.

Because supa∈AJ
∣∣γ̄n(f)

∣∣ ≥ χn(J )1lΩJ (ρ)∩{χn(J>z}, Equations (5.13)-(5.16) become:

P
(
χn(J )1lΩJ (ρ)∩{χn(J )>z} ≥ (1+η)M

√
2Jmax

n
+

√
2M2x

n
+
(1

3
+

1

η

)2M‖ψ‖∞ρ Card(J )

n z
x
)
≤ e−x.

Choosing z =
√

2x
n

(
1
3 + 1

η

)
‖ψ‖∞, we obtain:

P
(
χn(J )1lΩJ (ρ)∩{χn(J )>z} ≥ (1 + η)M

√
2Jmax

n
+ (1 + ρ)MCard(J )

√
2x

n

)
≤ e−x.

Choosing ρ =
(

1
3 + 1

η

)
‖ψ‖∞, we can get rid of the constraint {χn(J ) > z} to evaluate the above

probability and choosing x = xJ + ξ:

P
(
χ2
n(J )1lΩJ (ρ) −

1

n

[
(1 + η)2M22Jmax + 2(1 + ρ)2Card2(J )xJ

+ 2(1 + ρ)(1 + η)M22
Jmax+1

2 Card(J )
√
xJ
)]
≥ hJ (ξ)

)
≤ e−xJ e−ξ,
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where

hJ (ξ) =
2(1 + ρ)M2 Card(J )

n

[
(1 + ρ)Card(J )ξ + (1 + η)2

Jmax+1
2

√
ξ
]
. (5.17)

The square bracket in the l.h.s. inside the probability can be upper bounded by npen1(J ) =
K2Jmax , for a certain constant K that depends on xJ , since Card(J ) ≤ Jmax and since x2 ≤ 2x

for all integers x ≥ 1. Then:

P
(
χ2
n(J )1lΩJ (ρ) − pen1

(
J
)
≥ hJ (ξ)

)
≤ e−xJ e−ξ. (5.18)

From this and (5.11),

A1(J ) ≤
∫ +∞

0
te−xe−h

−1
J (t)dt.

To upper bound the r.h.s., we have to lower bound h−1
J (t) and hence upper bound hJ (t). The

square bracket in (5.17) can be upper bounded by
2
√

2(1 + η)2
Jmax

2
√
ξ if ξ ≤ 2

(
1+η
1+ρ

)2
2Jmax

Card2J

2(1 + ρ)CardJ ξ if ξ > 2
(

1+η
1+ρ

)2
2Jmax

Card2J
.

Then, for t ≥ 0:

h−1
J (t) ≥


n2t2

32(1+ρ)2M2Card2J (1+η)22Jmax
if t ≤ 8M2(1+η)22Jmax

n

nt

4(1+ρ)2M2Card2J
if t > 8M2(1+η)22Jmax

n .

As a consequence,

A1(J ) ≤
∫ 8M2(1+η)22Jmax

n

0
te−xJ exp

(
− n2t2

32(1 + ρ)2M2Card2J (1 + η)22Jmax

)
dt

+

∫ +∞

8M2(1+η)22Jmax
n

te−xJ exp
(
− nt

4(1 + ρ)2M2Card2J

)
dt

≤e−xJ 32(1 + ρ)2M2Card2J (1 + η)22Jmax

2n2

[
1− exp

(
− 2M2(1 + η)22Jmax

(1 + ρ)2Card2J

)]

+e−xJ
16(1 + ρ)2M4Card2J

(
2(1 + η)22Jmax + (1 + ρ)2Card2J

)
n2

exp
(
− 2(1 + η)22Jmax

(1 + ρ)2Card2J

)
≤C22Jmax

n2
e−xJ . (5.19)

The latter upper bound determines the choice of Jmax. From the choice of xJ (2.8), we deduce
that ∑

J⊂{−1,...,Jn}

A1(J ) ≤ C22Jn

n2
=

C

n log2(n)
. (5.20)

Upper bound of A2(J )

For the term A2(J ) of (5.9), noting that:

|γ̄n(ψjk)| ≤M2j/2‖ψ‖∞ +M2−j/2
∫
R
ψ(u)du,

21



we have for a constant C that depends only on the choice of ψ−10 and ψ00:

A2(J ) ≤
[
C
∑
j∈J

(
M2j/2‖ψ‖∞ +M2−j/2

∫
R
ψ(u)du

)2]2
× P

(
Ωc
J (η)

)
. (5.21)

Since:

n∑
i=1

E
[(Yiψjk(G`(Xi

`)
)
− E

(
Y1ψjk(G`(X

1
` ))
)

n

)2]
=

Var
(
Y1ψjk(G`(X

1
` ))
)

n
≤ M2

n
,

∣∣∣Yiψjk(G`(Xi
`)
)
− E

(
Y1ψjk(G`(X

1
` ))
)

n

∣∣∣ ≤ 2M2j/2‖ψ‖∞
n

a.s.

then we have by Bernstein’s inequality (e.g. [21]):

P
(∣∣γ̄n(ψjk)

∣∣ ≥ ρ2−j/2
)
≤ 2 exp

(
− nρ22−j

2
(
M2 + 2M‖ψ‖∞ρ

)).
As a consequence,∑

J⊂{−1,...Jn}

A2(J ) ≤
∑

J⊂{−1,...Jn}

22JmaxP
(
∃(j, k) ∈ J × Z,

∣∣γ̄n(ψjk)
∣∣ ≥ ρ2−j/2

)
≤C

∑
J⊂{−1,...Jn}

23Jmax exp
(
− nρ22−Jmax

2
(
M2 + 2M‖ψ‖∞ρ

)). (5.22)

which is smaller than C/n2 for sufficiently large n, as Jmax ≤ Jn = log2(
√
n).

Step 3: Upper bound of the second term in the r.h.s. of (5.5)

For the terms 2 to 4 of (5.4),

2〈ĥJ ,` − hJ ,`, hJ ,`〉 − ‖h` − hJ ,`‖22 − ζn − pen2(J )

=2
∑
j∈J

∑
k∈Z

γ̄n
(
ψjk
)
β`jk − ‖h` − hJ ,`‖22 − 2γ̄n

(
h`
)
− pen2(J )

=2γ̄n

(∑
j∈J

∑
k∈Z

β`jkψjk

)
− ‖h` − hJ ,`‖22 − 2γ̄n

(
h`
)
− pen2(J )

=2γ̄n
(
hJ ,` − h`

)
− ‖h` − hJ ,`‖22 − pen2(J ) (5.23)

≤
( γ̄n(hJ ,` − h`)
‖h` − hJ ,`‖2

)2
− pen2(J ) = γ̄2

n

( hJ ,` − h`
‖h` − hJ ,`‖2

)
− pen2(J ), (5.24)

by using the identity 2ab− b2 ≤ a2. Setting ϕJ =
hJ ,`−h`
‖h`−hJ ,`‖2 and using Bernstein’s formula (see

[21, p.25]), we have for all x > 0:

P
(
γ̄n
(
ϕJ
)
≥
√

2M2

n
x+

2M‖ϕJ ‖∞
n

x
)
≤ e−x. (5.25)

Setting xJ + ξ as x in the above inequality and using that (a+ b)2 ≤ 2a2 + 2b2, this implies that

P
(
γ̄2
n

(
ϕJ
)
− pen2(J ) ≥ rn(ξ)

)
≤ e−xJ e−ξ, (5.26)
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where pen2(J ) has been defined in (5.6) and

rn(x, ξ) =
4M2‖ϕJ ‖2∞ξ2

n2
+

4M2ξ

n
.

Then,

E
((

2〈ĥJ ,` − hJ ,`, hJ ,`〉 − ‖h` − hJ ,`‖22 − ζn − pen2(J )
)2

+

)
≤E
([
γ̄2
n

(
ϕJ
)
− pen2(J )

]2)
≤C

∫ +∞

0
t P
(∣∣γ̄2

n

(
ϕJ
)
− pen2(J )

∣∣ > t
)
dt

≤Ce−xJ
∫ +∞

0
t exp

(
− n

2‖ϕJ ‖2∞

(√
1 +

t‖ϕJ ‖2∞
M

− 1
))
dt ≤ Ce−xJ

n2
. (5.27)

The last inequality stems from the behaviour of the integrand when t is close to 0.

Gathering the results of Steps 1 to 3, we have by (5.9) and (5.5) that the first term in the
r.h.s. of (5.3) is smaller than C/(n log2(n)). This proves (5.1).

Step 4:

Let us now consider the term E
[(
− θ̂J ,` + V` + ζn

)2

+

]
in (5.1). From (5.4) and (5.23):

E
[(
− θ̂J ,` + V` + ζn

)2
+

]
=E
((
‖h` − hJ ,`‖22 − ‖ĥJ ,` − hJ ,`‖22 + 2γ̄n

(
h` − hJ ,`

)
+ pen(J )

)2
+

)
≤4
(
‖h` − hJ ,`‖42 + 4E

(
γ̄2
n

(
h` − hJ ,`

))
+ E

([
‖ĥJ ,` − hJ ,`‖22 − pen1(J )

]2

+

)
+ pen2

2(J )
)
,

(5.28)

where DJ has been defined in (5.2).

For the second term in the r.h.s. of (5.28), we have:

E
(
γ̄2
n

(
h` − hJ ,`

))
=Var

(
γ̄n
(
h` − hJ ,`

))
≤ 1

n
E
(
Y 2

1

(
h`(G`(X

1
` ))− hJ ,`(G`(X1

` ))
)2) ≤ M2‖h` − hJ ,`‖22

n

≤C
( 1

n2
+ ‖h` − hJ ,`‖42

)
(5.29)

by using that 2ab ≤ a2 + b2 for the last inequality.

The third term in the r.h.s. of (5.28) has been treated in (5.9) precedingly. We established
an upper bound in 2Jmax/n2. The fourth term, pen2

2(J ) is in x2
J /n

2 ≤ C log2(n)/n2 from (5.6).
Gathering these results, we obtain (5.2) and then (2.26).

5.2 Proof of Corollary 2.8

Plugging (5.2) in (5.1), and using that

E
(
ζ2
n

)
=

2

n
Var
(
Y1h`

(
G`(X

1
` )
))
≤ 2M2‖h`‖22

n
, (5.30)
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we obtain:

E
[(
θ̂` − V`

)2] ≤ C[ inf
J⊂{−1,...,Jn}

(
‖h` − hJ ,`‖42 +

2Jmax

n2

)
+

1 + ‖h`‖22
n

]
. (5.31)

If h` ∈ B(α, 2,∞), then from Proposition 2.7, we have for J = {−1, . . . , Jmax} that ‖h` −
hJ ,`‖42 ≤ 2−4α Jmax . Thus, for subsets J of the form considered, the infimum is attained when
choosing Jmax = 2

4α+1 log2(n), which yield an upper bound in n8α/(4α+1).

For h` in a ball of radius R, ‖h`‖22 ≤ R2, and we can find an upper bound that does not
depend on h. Because the last term in (5.31) is in 1/n, the elbow effect is obtained by comparing
the order of the first term in the r.h.s. (n8α/(4α+1)) with 1/n when α varies. 2

A Properties of β̂jk

Lemma A.1.
lim

n→+∞

√
n
(
β̂`jk − β`jk

)
= N

(
0,Var

(
Y ψjk

(
G`(X`)

)))
(A.1)

where
Var

(
Y ψjk

(
G`(X`)

))
= Var

(
g`(X`)ψjk

(
G`(X`)

))
+ E

(
η2
`ψ

2
jk(G`(X`))

)
.

Proof. Recall that Y i = g`(X
i
`) + ηi`. Then:

β̂`jk =
1

n

n∑
i=1

g`(X
i
`)ψjk

(
G`(X

i
`)
)

+
1

n

n∑
i=1

ηi`ψjk
(
G`(X

i
`)
)

=β`jk +
1

n

n∑
i=1

(
g`(X

i
`)ψjk

(
G`(X

i
`)
)
− E

(
g`(X`)ψjk(G`(X`))

))
+

1

n

n∑
i=1

ηi`ψjk
(
G`(X

i
`)
)
.

The second term in the r.h.s. is a biais term due to the approximation of β`jk, defined as an

integral, by a mean. The third term is due to the noise between Y i and g`(X
i
`). The third term

is centered as E(η` | X`) = 0. Since the observations are i.i.d., we have by the central limit
theorem that

lim
n→+∞

1√
n

n∑
i=1

(
g`(X

i
`)ψjk

(
G`(X

i
`)
)
− E

(
g`(X`)ψjk(G`(X`))

)
1
n

∑n
i=1 η

i
`ψjk

(
G`(X

i
`)
) )

= N (0,Σ) (A.2)

with

Σ =

(
Var
(
g`(X`)ψjk

(
G`(X`)

))
0

0 Var
(
η`ψjk

(
G`(X`)

) ) .
We have

Var
(
g`(X`)ψjk

(
G`(X`)

))
=E
(
g2
` (X`)ψ

2
jk

(
G`(X`)

))
− β2

jk

=

∫ 1

0

(∑
jk

βjkψjk(u)
)2
ψ2
jk(u)du− β2

jk,

and as E(η` | X`) = 0, we have

Var
(
η`ψjk(G`(X`))

)
=E
(
η2
`ψ

2
jk(G`(X`))

)
=

∫
R
E
(
η2
` | X` = G−1

` (2−j(v + k))
)
ψ2(v)dv.

Using the Slutsky lemma concludes the proof. �
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B Sobol indices

The Sobol indices are based on the following decomposition for f (see Sobol [25]). We recall the
formulas here, with the notation Xp+1 for the random variable ε:

Y = f(X1, . . . , Xp, ε) = f0 +

p+1∑
`=1

f`(X`) +
∑

1≤`1<`2≤p+1

f`1`2(X`1 , X`2) + · · ·+ f1,...,p+1(X1, . . . , Xp, ε)

(B.1)

where f0 = E[Y ], f`(X`) = E[Y |X`]− E[Y ],

f`1`2(X`1 , X`2) = E[Y |X`1 , X`2 ]− E[Y |X`1 ]− E[Y |X`2 ]− E[Y ], . . .

Then, the variance of Y can be written as:

Var(Y ) =

p+1∑
`=1

V` +
∑

1≤`1<`2≤p+1

V`1`2 + · · ·+ V1...p+1 (B.2)

where

V` = Var(E[Y |X`]), V`1`2 = Var(E[Y |X`1 , X`2 ])− V`1 − V`2 , . . .

V1...p+1 = Var(Y )−
p+1∑
`=1

V` −
∑

1≤`1<`2≤p+1

V`1`2 − · · · −
∑

1≤`1<···<`p≤p+1

V`1...`p (B.3)

The first order indices are then defined as:

S` = V`/Var(Y ) = Var(E[Y |X`])/Var(Y ) (B.4)

S` corresponds to the part of the variance that can be explained by the variance of Y due to the
variable X` alone. In the same manner, we define the second order indices, third order indices,
etc. by dividing the variance terms by Var(Y ).
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putational cluster supported by Université Lille 1, CPER Nord-Pas-de-Calais/FEDER, France
Grille, CNRS. We would like to thank the technical staff of the CRI-Lille 1 center.

References

[1] H. Anderson and T. Britton. Stochastic Epidemic models and Their Statiatical Analysis,
volume 151 of Lecture Notes in Statistics. Springer, New York, 2000.

[2] S. Arlot and P. Massart. Data-driven calibration of penalties for least-squares regression.
Journal of Machine Learning Research, 10:245–279, 2009.
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aléatoires sur la sortie d’un modèle mathématique. Pub. IRMA Lille, 71(III), 2011.

[15] A. Janon, M. Nodet, and C. Prieur. Uncertainties assessment in global sensitivity indices
estimation from metamodels. International Journal for Uncertainty Quantification, 4(1):21–
36, 2014.

[16] M.J.W. Jansen. Analysis of variance designs for model output. Computer Physics Com-
munications, 117:35–43, 1999.

[17] G. Kerkyacharian and D. Picard. Regression in random design and warped wavelets.
Bernoulli, 10(6):1053–1105, 2004.

[18] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selec-
tion. The Annals of Statistics, 28(5):1302–1338, 2000.
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