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Abstract

The global sensitivity analysis is a set of methods aiming at quantifying the influence of
the uncertainty about the inputs parameters of a model on the variability of the responses.
In a deterministic framework, i.e. when the same inputs values give always the same outputs
values, the estimation of the Sobol indices is a commonly-used method. This method is based
on the variance decomposition aiming at estimating the contribution of each parameter (or
combination of parameters) on the variance of the response. We consider here the estimation
of the Sobol indices of order 1, which are usually estimated by replicated simulations of the
model. In the case of a stochastic framework, i.e. when the model response is not unique for
a same input parameter set due to random numbers generation in the model, metamodels
are often used to approximate the mean and the dispersion of the response by deterministic
functions thus allowing to recover the classical deterministic framework. We propose a new
non-parametric estimator without the need of defining a metamodel to estimate the Sobol
indices of order 1. The estimator is based on warped wavelets and it is adaptative in the
regularity of the model. The convergence of the mean square error to zero, when the number
of simulations of the model tend to infinity, is computed and an elbow effect is shown,
depending on the regularity of the model.

Keywords: Sensitivity analysis in a stochastic framework; Sobol indices of order 1; adaptive
non-parametric inference; warped wavelets; Nadaraya-Watson estimator; model selection; appli-
cations to epidemiology; SIR model; spread of the Hepatitis Virus C among drug users.
MSC2010: 49Q12; 62G08; 62P10.

1 Sobol indices

In a mathematical model where the output y ∈ R depends on a set of p ∈ N input parameters
x = (x1, ...xp) ∈ Rp through the relation y = f(x), there are various ways to measure the
influence of the input xℓ, for ℓ ∈ {1, . . . , p}, on y. In this article, we are interested in Sobol
indices [21], which are based on an ANOVA decomposition. These indices have been proposed
to take into account the uncertainty on the input parameters that are here considered as a
realisation of a set of independent random variables X = (X1, ...Xp), with a known distribution.
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Denoting by Y = f(X) the random response, the first order Sobol indices can be defined for
ℓ ∈ {1, . . . , p} by

Sℓ =
Var

(
E[Y | Xℓ]

)

Var(Y )
. (1.1)

This first order index Sℓ correspond to the sensitivity of the model to Xℓ alone. Higher order
indices can also be defined using ANOVA decomposition : considering (ℓ, ℓ′) ∈ {1, . . . , p}, we
can define the second order sensitivity, corresponding to the sensitivity of the model to the
interaction between Xℓ and Xℓ′ index by

Sℓℓ′ =
Var

(
E[Y | Xℓ,Xℓ′ ]

)

Var(Y )
− Sℓ − Sℓ′ (1.2)

We can also define the total sensitivity indices by

STℓ
=

∑

L⊂{1,...,p} | ℓ∈L
SL. (1.3)

As the estimation of the Sobol indices can be computer time consuming, a usual practice consists
in estimating the first order and total indices, to assess 1) the sensitivity of the model to each
parameter taking alone and 2) the possible interactions, which are quantified by the difference
between the total order and the first order index for each parameter. Several numerical proce-
dures to estimate the Sobol indices have been proposed, in particular by Jansen [13] (see also
[19, 20]). These estimators, that we recall in the sequel, are based on Monte-Carlo simulations
of (Y,X1 . . . Xp).

The literature focuses on deterministic relations between the input and output parameters.
In a stochastic framework where the model response Y is not unique for given input parameters,
few works have been done, randomness being usually limited to input variables. Assume that:

Y = f(X, ε), (1.4)

where X = (X1, . . . Xp) still denotes the random variables modelling the uncertainty of the input
parameters and where ε is a noise variable. When noise is added in the model, the classical es-
timators do not always work: Y can be chaotic regarding the value of ε. Moreover, this variable
is not always controllable by the user.

When the function f is linear, we can refer to [8]. For general cases, it is possible to add the
seed of the noise as an additional input parameter and compute classical estimators, or to propose
a meta-model, i.e. a deterministic function approximating the mean and the dispersion of the
response by deterministic functions allows to come back in the classical deterministic framework
(e.g. Janon et al. [12], Marrel et al. [17]). We study here another point of view, which is based on
the non-parametric statistical estimation of the term Var

(
E[Y | Xℓ]

)
appearing in the numerator

of (1.1). We propose here a new approach based on the Nadaraya-Watson kernel regression or
on wavelet decompositions. The kernel estimator presented in the sequel has been introduced
independently from us by Soĺıs [22]. An advantage of these non-parametric estimators is that
their computations requires less simulations of the model. For Jansen estimators, the number
of calls of f required to compute the sensitivity indices is n(p + 2), where n is the number of
independent random vectors (Y i,Xi

1, . . . X
i
p) (i ∈ {1, . . . n}) that are sampled for the Monte-

Carlo, making the estimation of the sensitivity indices time-consuming for sophisticated models
with many parameters. In addition, for the non-parametric estimators, the convergence of the
mean square error to zero may be faster than for Monte-Carlo estimators, depending on the
regularity of the model.
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In a first section, we present the non-parametric estimators of the Sobol indices of order
1 in the case of the stochastic model (1.4) and study their convergence rates. These estima-
tors are then computed and compared for toy examples introduced by Ishigami [11]. We then
address models from Epidemiology. First, the stochastic continuous-time SIR model is consid-
ered, in which the population of size N is divided into three compartments: the susceptibles,
infectious and removed individuals (see e.g. [1] for an introduction). Infections and removals
occur at random times whose laws depend on the composition of the population and on the
infection and removal parameters λ and µ as input variables. The output variable Y can be
the prevalence or the incidence at a given time T for instance. Y naturally depends on λ,
µ and on the randomness underlying the occurrence of random times. Then, we consider a
stochastic multi-level epidemic model for the transmission of Hepatitis C virus (HCV) among
people who inject drugs (PWID) that has been introduced by Cousien et al. [5, 6]. This model
describes an individual-based population of PWID that is structured by compartments showing
the state of individuals in the heath-care system and by a contact-graph indicating who inject
with whom. Additionally the advance of HCV in each patient is also taken into account. The
input variables are the different parameters of the model. Ouputs depend on these inputs, on
the randomness of event occurrences and on the randomness of the social graph. We compare
the sensitivity analysis performed by estimating the Sobol indices of order 1 with the naive sen-
sitivity analysis performed in [5, 6] by letting the parameters vary in an a priori chosen windows.

In the sequel, C denotes a constant that can vary from line to line.

2 A non-parametric estimator of the Sobol indices of order 1

Denoting by Vℓ = E
(
E2(Y | Xℓ)

)
, we have:

Sℓ =
Vℓ − E(Y )2

Var(Y )
, (2.1)

which can be approximated by

Ŝℓ =
V̂ℓ − Ȳ 2

σ̂2Y
(2.2)

where

Ȳ =
1

n

n∑

j=1

Yj and σ̂2Y =
1

n

n∑

j=1

(Yj − Ȳ )2

are the empirical mean and variance of Y . In this article, we propose 2 approximations V̂ℓ of
Vℓ, based on Nadaraya-Watson and on warped wavelet estimators. At an advanced stage of this
work, we learned that the Nadaraya-Watson-based estimator of Sobol indices of order 1 had also
been proposed and studied in the PhD of Soĺıs [22]. Using a result on estimation of covariances
by Loubes et al. [16], they obtain an elbow effect. However their estimation is not adaptative.
For the warped wavelet estimator, we propose a model selection procedure based on a work by
Laurent and Massart [15] to make the estimator adaptative.

2.1 Definitions

Assume that we have n independent couples (Y i,Xi
1, . . . X

i
p) in R × Rp, for i ∈ {1, . . . , n},

generated by (1.4). Let us start with the kernel-based estimator:
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Definition 2.1. Let K : R 7→ R be a kernel such that
∫
R
K(u)du = 1 and ..... Let h > 0 be a

window and let us denote Kh(x) = K(x/h)/h. An estimator of Sℓ for ℓ ∈ {1, . . . p} is:

Ŝ
(NW )
ℓ =

1
n

∑n
i=1

(∑n
j=1 YjKh(X

j
ℓ
−Xi

ℓ
)

∑n
j=1 Kh(X

j
ℓ
−Xi

ℓ
)

)2
− Ȳ 2

σ̂2Y
. (2.3)

This estimator is based on the Nadaraya-Watson estimator of E(Y |Xℓ = x) given by (e.g.
[25]) ∑n

j=1 YjKh(X
j
ℓ − x)

∑n
j=1Kh(X

j
ℓ − x)

.

Replacing this expression in (2.2) provides Ŝ
(NW )
ℓ . As mentioned before, this estimator has also

been proposed by Soĺıs [22].

Our second estimator is based on a warped wavelet decomposition of E(Y |Xℓ = x). For
introduction to such decomposition, refer to [4, 14]. Let us denote by Gℓ the cumulative distri-
bution function of Xℓ.

Let (ψjk)j≥−1,k∈Z be a Hilbert wavelet basis of L2. In the sequel, we denote by 〈f, g〉 =∫
R
f(u)g(u)du, for f, g ∈ L2, the usual scalar product of L2. The wavelet ψ−10 is the father

wavelet, and for k ∈ Z, ψ−1k(x) = ψ−10(x− k). The wavelet ψ00 is the mother wavelet, and for
j ≥ 0, k ∈ Z, ψjk(x) = 2j/2ψ00(2

jx− k).

Definition 2.2. Let us define for j ≥ −1, k ∈ Z,

β̂ℓjk =
1

n

n∑

i=1

Yiψjk(Gℓ(X
i
ℓ)). (2.4)

Then, we define the (block thresholding) estimator of Ŝℓ, for Jn :=
[
log2

( √
n

log(n)

)]
, as:

Ŝ
(WW )
ℓ =

θ̂ℓ − Ȳ 2

σ̂2Y
, (2.5)

where θ̂ℓ =
Jn∑

j=−1

[∑

k∈N

(
β̂ℓjk

)2 − w(j)
]
1l∑

k∈N

(
β̂ℓ
jk

)2
≥w(j)

(2.6)

with w(j) = K ′
(2j + log 2

n

)
so that pen(J ) =

∑

j∈J
w(j) = K

(2Jmax

n
+
xJ
n

)
(2.7)

where K and K ′ are positive constants, where Jmax := maxJ and where

xJ = Jmax log(2). (2.8)

Notice for the proofs that for xJ as in (2.8),

lim sup
n→+∞

1

n

∑

J⊂{−1,...,Jn}
e−xJ 22Jmax < +∞. (2.9)

Indeed, for a given Jmax ≤ Jn there are 2Jmax+1 subsets J ⊂ {−1, . . . Jn} such that maxJ =
Jmax. Thus:

∑

J⊂{−1,...,Jn}
e−xJ 22Jmax = C + C ′

Jn∑

Jmax=0

2Jmax2−Jmax22Jmax = C22Jn = C
n

log2(n)
,
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where C in the first equality corresponds to the case J = {−1}.

An expression of the constant K appears in the proofs of Section 4 (where the mean square
error is studied). However this constant is hard to compute in practice and depends on inequal-
ities that are maybe not optimal. Indeed, the proof is concentrated on the orders in n and
in the dimension of the model corresponding to J , not on obtaining the best constants. For
applications, the constant K appearing in the penalty pen(J ) can be chosen by a slope heuristic
approach (see e.g. [2]) explained at the end of the section.

Let us present the idea explaining the estimator proposed in Definition 2.2. Let us introduce
centered random variables ηℓ such that

Y = f(X, ε) = E(Y |Xℓ) + ηℓ. (2.10)

Let gℓ(x) = E(Y |Xℓ = x) and hℓ(u) = gℓ ◦G−1
ℓ (u). hℓ is a function from [0, 1] 7→ R that belong

to L2 since Y ∈ L2. Then

hℓ(u) =
∑

j≥−1

∑

k∈Z
βℓjkψjk(u), with βℓjk =

∫ 1

0
hℓ(u)ψjk(u)du =

∫

R

gℓ(x)ψjk(Gℓ(x))Gℓ(dx).

(2.11)
Notice that the sum in k is finite because the function hℓ has compact support in [0, 1]. It is
then natural to estimate hℓ(u) by

ĥℓ =
∑

j≥−1

∑

k∈Z
β̂ℓjkψjk(u), (2.12)

and we then have:

Vℓ = E
(
E2(Y |Xℓ)

)
=

∫

R

Gℓ(dx)
( ∑

j≥−1

∑

k∈Z
βℓjkψjk

(
Gℓ(x)

))2
=

∫ 1

0

( ∑

j≥−1

∑

k∈Z
βℓjkψjk(u)

)2
du

=
∑

j≥−1

∑

k∈Z

(
βℓjk

)2
= ‖hℓ‖22. (2.13)

Adaptive estimation of ‖hℓ‖22 has been studied in [15], which provides the block thresholding

estimator θ̂ℓ in the Definition 2.2. The idea is: 1) to sum the terms
(
βℓjk

)2
, for j ≥ 0, by blocks

{(j, k), k ∈ Z} for j ∈ {−1, . . . , Jn} with a penalty w(j) for each block to avoid choosing too
large js, 2) to cut the blocks that do not sufficiently contribute to the sum, in order to obtain
statistical adaptation.

Notice that

θ̂ℓ = sup
J⊂{−1,0,...,Jn}

∑

j∈J

[∑

k∈N

(
β̂ℓjk

)2 −w(j)
]
= sup

J⊂{−1,0,...,Jn}

∑

j∈J

∑

k∈N

(
β̂ℓjk

)2 − pen(J ). (2.14)

In view of this identity, θ̂ℓ can be seen as an estimator of Vℓ resulting from a model selection
on the choice of the blocks {(j, k), k ∈ Z}, j ∈ {−1, . . . , Jn} that are kept, with the penalty
function pen(J ) =

∑
j∈J w(j), for J ⊂ {−1, . . . , Jn}.

For a given K appearing in the definition of the penalty function pen (2.7), let us denote
by JK the subset of indices j of {−1, . . . Jn} achieving the supremum in the r.h.s. of (2.14).
Plotting Card(JK) as a function of K, the slope heuristic tells us to choose K as value where
the curve has a sudden decrease.
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2.2 Statistical properties

In this Section, we are interested in the rate of convergence to zero of the mean square error
(MSE) E

(
(Sℓ − Ŝℓ)

2
)
. Let us consider the generic estimator Ŝℓ defined in (2.2), where V̂ℓ is an

estimator of Vℓ = E(E2(Y | Xℓ)). We first start with a Lemma stating that the MSE can be
obtained from the rate of convergence of V̂ℓ to Vℓ. Then, we recall the result of Soĺıs [22], where
an elbow effect for the MSE is shown when the regularity of the density of (Xℓ, Y ) varies. The
case of the warped wavelet estimator is studied at the end of the section.

Lemma 2.3. Consider the generic estimator Ŝℓ defined in (2.2). Then there is a constant C
such that:

E
(
(Sℓ − Ŝℓ)

2
)
≤ C

n
+

4

Var(Y )2
E

[(
V̂ℓ − Vℓ

)2]
. (2.15)

Proof. From (2.1) and (2.2),

E
(
(Sℓ − Ŝℓ)

2
)
=E

[(Vℓ − E(Y )2

Var(Y )
− V̂ℓ − Ȳ 2

σ̂2Y

)2]

≤2E
[( E(Y )2

Var(Y )
− Ȳ 2

σ̂2Y

)2]
+ 2E

[( Vℓ
Var(Y )

− V̂ℓ
σ̂2Y

)2]
. (2.16)

The first term in the right hand side (r.h.s.) is in C/n. For the second term in the right hand
side of (2.16):

E

[( Vℓ
Var(Y )

− V̂ℓ
σ̂2Y

)2]
≤2E

[
V̂ 2
ℓ

( 1

Var(Y )
− 1

σ̂2Y

)2]
+

2

Var(Y )2
E

[(
V̂ℓ − Vℓ

)2]
. (2.17)

The first term in the r.h.s. is also in C/n, which concludes the proof. �

2.2.1 MSE for the Nadaraya-Watson estimator

Using the preceding Lemma, Loubes Marteau and Soĺıs prove an elbow effect for the estimator

Ŝ
(NW )
ℓ . Let us introduceH(α,L), for α,L > 0, the set of functions φ of class [α], whose derivative
φ([α]) is α− [α] Hölder continuous with constant L.

Proposition 2.4 (Loubes Marteau and Soĺıs [22, 16]). Assume that E(X4
ℓ ) < +∞, that the

joint density φ(x, y) of (Xℓ, Y ) belongs to H(α,L), for α,L > 0 and that the marginal density
of Xℓ, φℓ belongs to H(α′, L′) for α′ > α and L′ > 0. Then:
If α ≥ 2, there exists a constant C > 0 such that

E
(
(Sℓ − Ŝℓ)

2
)
≤ C

n
.

If α < 2, there exists a constant C > 0 such that

E
(
(Sℓ − Ŝℓ)

2
)
≤ C

( log2 n
n

) 2α
α+2 .

For smooth functions (α ≥ 2), Loubes et al. recover a parametric rate, while they still have

a nonparametric one when α < 2. Their result is based on (2.15) and a bound for E
[(
V̂ℓ−Vℓ

)2]

given by [16, Th. 1], whose proof is technical. Since their result is not adaptive, they require the
knowledge of the window h for numerical implementation. Our purpose is to provide a similar
result for the warped wavelet adaptive estimator, with a shorter proof.
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2.2.2 MSE for the warped wavelet estimator

Let us introduce first some additional notation. We define, for J ⊂ {−1, . . . , Jn}, the projection
hJ ,ℓ of h on the subspace spanned by {ψjk, with j ∈ J , k ∈ Z} and its estimator ĥJ ,ℓ:

hJ ,ℓ(u) =
∑

j∈J

∑

k∈Z
βℓjkψjk(u) (2.18)

ĥJ ,ℓ(u) =
∑

j∈J

∑

k∈Z
β̂ℓjkψjk(u). (2.19)

We also introduce the estimator of Vℓ for a fixed subset of resolutions J :

θ̂J ,ℓ = ‖ĥJ ,ℓ‖22 =
∑

j∈J

∑

k∈Z

(
β̂ℓjk

)2
. (2.20)

Note that θ̂J ,ℓ is one possible estimator V̂ℓ in Lemma 2.3.

The estimators β̂jk and θ̂J ,ℓ have natural expressions in term of the empirical process γn(dx)
defined as follows:

Definition 2.5. The empirical measure associated with our problem is:

γn(dx) =
1

n

n∑

i=1

YiδGℓ(X
i
ℓ
)(dx) (2.21)

where δa(dx) denotes the Dirac mass in a.
For a measurable function f , γn(f) =

1
n

∑n
i=1 Yif

(
Gℓ(X

i
ℓ)
)
. We also define the centered integral

of f with respect to γn(dx) as:

γ̄n(f) =γn(f)− E
(
γn(f)

)
(2.22)

=
1

n

n∑

i=1

(
Yif

(
Gℓ(X

i
ℓ)
)
− E

[
Yif

(
Gℓ(X

i
ℓ)
)])

. (2.23)

Using the empirical measure γn(dx), we have:

β̂ℓjk = γn
(
ψjk

)
= βℓjk + γ̄n

(
ψjk

)
.

Let us introduce the correction term

ζn =2γ̄n
(
hℓ
)

(2.24)

=2
[ 1
n

n∑

i=1

Yihℓ
(
Gℓ(X

i
ℓ)
)
− E

(
Y1hℓ

(
Gℓ(X

1
ℓ )
))]

=2
[ 1
n

n∑

i=1

h2ℓ
(
Gℓ(X

i
ℓ)
)
− ‖hℓ‖22

]
+

2

n

n∑

i=1

ηiℓhℓ
(
Gℓ(X

i
ℓ)
)
. (2.25)

Theorem 2.6. Let us assume that the random variables Y are bounded by a constant M , and
let us choose a father and a mother wavelets ψ−10 and ψ00 that are continuous with compact
support (and thus bounded). The estimator θ̂ℓ defined in (2.6) is almost surely finite, and:

E

[(
θ̂ℓ − Vℓ − ζn

)2] ≤ C inf
J⊂{−1,...,Jn}

(
‖hℓ − hJ ,ℓ‖42 +

2Jmax

n2

)
+

C ′

n log2(n)
, (2.26)

for constants C and C ′ > 0.
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We deduce the following corollary from the estimate obtained above. Let us consider the
Besov space B(α, 2,∞) of functions h =

∑
j≥−1

∑
k∈Z βjkψjk of L2 such that

|h|α,2,∞ :=
∑

j≥0

2jα

√
sup

0<v≤2−j

∫ 1−v

0
|h(u + v)− h(u)|2du < +∞.

For a h ∈ B(α, 2,∞) and hJ its projection on Vect{ψjk, j ∈ J = {−1, . . . Jmax}, k ∈ Z},
we have the following approximation result from [10, Th. 9.4].

Proposition 2.7 (Härdle Kerkyacharian Picard and Tsybakov). Assume that the wavelet func-
tion ψ−10 has compact support and is of class CN for an integer N > 0. Then, if h ∈ B(α, 2,∞)
with α < N + 1,

sup
J⊂N∪{−1}

2αJmax‖h− hJ ‖2 = sup
J⊂N∪{−1}

2αJmax

( ∑

j≥Jmax

∑

k∈Z
β2jk

)1/2
< +∞. (2.27)

Notice that Theorem 9.4 of [10] requires assumptions that are fulfilled when ψ−10 has compact
support and is smooth enough (see comment after the Corol. 8.2 of [10]).

Corollary 2.8. If ψ−10 has compact support and is of class CN for an integer N > 0 and if hℓ
belongs to a ball of radius R > 0 of B(α, 2,∞) for 0 < α < N + 1, then

sup
h∈B(α,2,∞)

E

[(
θ̂ℓ − Vℓ

)2] ≤C
(
n−

8α
4α+1 +

1

n

)
. (2.28)

As a consequence, we obtain the following elbow effect:
If α ≥ 1

4 , there exists a constant C > 0 such that

E
(
(Sℓ − Ŝℓ)

2
)
≤ C

n
.

If α < 1
4 , there exists a constant C > 0 such that

E
(
(Sℓ − Ŝℓ)

2
)
≤ Cn−

8α
4α+1 .

The proof of Theorem 2.6 is postponed to Section 4. Let us remark that in comparison with
the result of Loubes et al. [16], the regularity assumption is on the function hℓ rather than on
the joint density φ(x, y) of (Xℓ, Y ). The adaptivity of our estimator is then welcomed since the
function hℓ is a priori unknown. Remark that in application, the joint density φ(x, y) also has
to be estimated and hence has an unknown regularity. For very regular functions α→ +∞, we
recover a rate of convergence in n−2 in both cases.

Notice that in the case when α > 1/4, we can show from the estimate of Th. 2.6 that:

lim
n→+∞

nE
[(
θ̂ℓ − Vℓ − ζn

)2]
= 0, (2.29)

which yields that
√
n
(
θ̂ℓ − Vℓ − ζn

)
converges to 0 in L2. Since

√
nζn converges in distribution

to N
(
0, 4Var

(
Y1hℓ(Gℓ(X

1
ℓ ))

))
by the central limit theorem, we obtain that:

lim
n→+∞

√
n
(
θ̂ℓ − Vℓ

)
= N

(
0, 4Var

(
Y1hℓ(Gℓ(X

1
ℓ ))

))
, (2.30)

in distribution.
The result of Corollary 2.8 is stated for functions hℓ belonging to B(α, 2,∞), but the gener-

alization to other Besov space might be possible.
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2.3 Numerical tests on toy models

We start with considering a toy model called the Ishigami function and defined as:

Y = f(X1,X2,X3) = sin(X1) + 7 sin(X2)
2 + 0.1 X4

3 sin(X1) (2.31)

where Xi are independent uniform random variables in [−π, π] (see e.g. [11, 19]).

Firstly, we consider this model with (X1,X2,X3) as input parameters and compute the
associated Sobol indices. For the Ishigami function, all the Sobol sensitivity indices are known.

S1 = 0.3139, S2 = 0.4424, S3 = 0.

Secondly, following Marrel et al. [17], we consider the case where (X1,X2) are the input param-
eters and X3 a nuisance random parameter. However, the Sobol indices have the same values
as in the standard case.

In both cases, we compare the Nadaraya-Watson estimator of the Sobol indices of order 1
with the Jansen estimator [13] that is one of the classical estimator found in the literature (for the
case of outputs that are deterministic functions of the inputs). The numerical implementation
of the wavelet estimator is a work in progress. The Jansen estimator is based on the mixing of
two replications of the sample (Y,X1, . . . ,Xp), as described below.

Let us consider two samples (X
(1),i
1 , ...,X

(1),i
p , i ∈ {1, . . . n}) and (X

(2),i
1 , ...,X

(2),i
p , i ∈ {1, . . . n})

of i.i.d. p-uplets distributed as (X1, . . . Xp). The Jansen estimators for the first order Sobol
indices are, ∀ℓ ∈ 1, ..., p:

Ŝℓ = σ̂2Y − 1

2n

n∑

i=1

(
f(X

(2),i
1 , ...,X(2),i

p )− f(X
(1),i
1 , ...,X

(1),i
ℓ−1 ,X

(2),i
ℓ ,X

(1),i
ℓ+1 , . . . ,X

(1),i
p )

)2
(2.32)

The total order sensitivity indices are estimated by:

ŜTℓ
=

1

2n

n∑

i=1

(
f(X

(1),i
1 , ...,X(1),i

p )− f(X
(1),i
1 , ...,X

(1),i
ℓ−1 ,X

(2),i
ℓ ,X

(1),i
ℓ+1 , . . . ,X

(1),i
p )

)2
(2.33)

Notice that the estimation of the Sobol indices using Jansen estimators requires N(p+2) simu-
lations of the model. We computed the non-parametric estimators first from a sample of size n,
then from a sample of size (p + 2)n to have a similar number of simulations of the model. We
used n = 10, 000 and we performed 1,000 replications to estimate the bias and MSE for each
estimator. For the Nadaraya-Watson estimator, we choose h = 0.01. For the warped wavelet
estimator, simulations are due very soon!

Table 1: Estimates of the bias and MSE for the parameters X1, X2 and X3 in the Ishigmami function,

for 1,000 replications and n = 10, 000

Method E[Ŝ1 − S1] E[(Ŝ1 − S1)
2] E[Ŝ2 − S2] E[(Ŝ2 − S2)

2 E[Ŝ3 − S3] E[(Ŝ3 − S3)
2]

Jansen, n(p+ 1) 9.9e-4 1.8e-4 3.2e-5 1.0e-4 8.6e-4 5.6e-4
Nadaraya-Watson, n 6.6e-3 8.8e-5 4.4e-3 8.1e-5 9.5e-3 9.3e-5
Nadaraya-Watson, n(p+ 1) 1.5e-3 1.1e-5 3.4e-4 1.6e-5 2.0e-3 4.3e-6

We can see that in the deterministic framework results Table 1 that for the 3 indices, the mean
bias is higher for the Nadaraya-Watson estimator, even when the same number of simulation
were computed n(p+1). However, with the non-parametric estimator, the MSE was lower with
the Nadaraya-Watson, even with five times less simulations of the model available. The results
are similar in the stochastic framework Table 2, with the exception of the estimation of S2
for which, with the same number of model simulations, the bias is comparable for Jansen and
Nadaraya Watson (-7.8e-4 vs. 6.8e-4).
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Table 2: Estimates of the bias and MSE for the parameters X1 and X2 in the Ishigmami function, when

X3 is considered as a pertubation parameter, for 1,000 replications and n = 10, 000

Method E[Ŝ1 − S1] E[(Ŝ1 − S1)
2] E[Ŝ2 − S2] E[(Ŝ2 − S2)

2

Jansen, n(p+ 1) -5.6e-4 2.0e-4 -7.8e-4 1.8e-4
Nadaraya-Watson, n 5.8e-3 7.8e-5 4.7e-3 8.4e-5
Nadaraya-Watson, n(p+ 1) 1.6e-3 1.2e-5 6.8e-4 1.5e-5

3 Sobol indices for epidemiological problems

We now consider two stochastic individual-based models of epidemiology in continuous time. In
both cases, the population is of size N and divided into compartments. Input parameters are the
rates describing the times that individuals stay in each compartment. These rates are usually
estimated from epidemiological studies or clinical trials, but there can be uncertainty on their
values. The restricted size of the sample in these studies brings uncertainty on the estimates,
which are given with uncertainty intervals (classically, a 95% confidence interval). Different
studies can provide different estimates for the same parameters. The study populations can
be subject to selection biases. In the case of clinical trials where the efficacy of a treatment
is estimated, the estimates can be optimistic compared with what will be the effectiveness in
real-life, due to the protocol of the trials. It is important to quantify how theses uncertainty on
parameters estimations could impact the results and the conclusion of a modelling study.

3.1 SIR model and ODE metamodels

In the first model, we consider the usual SIR model, with three compartments: susceptibles,
infectious and removed (e.g. [1]). We denote by SN

t , INt and RN
t the respective sizes of the

corresponding sub-populations at time t ≥ 0, with SN
t + INt + RN

t = N . At the population
level, infections occur at the rate λ

N S
N
t I

N
t and removals at the rate µINt . The idea is that to

each pair of susceptible-infectious individuals a random independent clock with parameter λ/N
is attached and to each infectious individual an independent clock with parameter µ is attached.
The input parameters are the rates λ and µ. The outpout parameter is the final size of the
epidemic, i.e. at a time T > 0 where INT = 0, Y = (INT +RN

T )/N .

It is possible to describe the evolution of (SN
t /N, I

N
t /N,R

N
t /N)t≥0 by a stochastic differential

equation driven by Poisson point measures and it is known that when N → +∞, this stochastic
process converges in D(R+,R

3) to the unique solution (st, it, rt)t≥0 of the following system of
ordinary differential equations (e.g. [1, 24]):





ds
dt = −λstit
di
dt = λstit − µit
dr
dt = µit.

The fluctuations associated with this convergence have also been established. The limiting
equations provide a natural deterministic approximating meta-model (recall [17]) for which sen-
sitivity indices can be computed.

We applied the Jansen estimator and the Nadaraya-Watson estimator to the estimation of
the first order Sobol indices of Sλ and Sµ. We applied these estimators to the SIR stochastic
process and to SIR deterministic model (as a metamodel approximating the stochastic process)
described above.
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In a first example, we simulated a close population of 1200 individuals, with S1200
0 = 1190,

I12000 = 10 and R1200
0 = 0. We choose this high population size to ensure the convergence of

the simulations in the stochastic process to the solution of the ordinary differential equation
system. The parameters distribution were Beta(2,2) distributions renormalized to have λ/N ∈
[1/15000, 3/15000] and µ ∈ [1/15, 3/15].

In a second example, to increase the influence of ε on the output Y , we decreased the
population size to 120 individuals, with S120

0 = 119, I1200 = 1 and R120
0 = 0 and parameters drawn

from Beta(2,2) distributions renormalized to have λ/N ∈ [1/1500, 3/1500] and µ ∈ [1/15, 3/15].
The smoothed distributions of the first order Sobol indices are presented below, for 1,000

replications of the estimators and n = 10, 000 are presented Figures 1 and 2 .

For the determistic framework, the results are similar. The Jansen estimator for Sλ is

Ŝλ = 0.45 (standard deviation=8.1e-3) and Ŝ
(NW )
λ = 0.45 (6.9e-3); for Sµ, we have Ŝµ = 0.50

(7.7e-3) and Ŝ
(NW )
µ = 0.50 (7.2e-3). We can however underline that the estimation of the

Sobol indice with Jansen estimators required 40,000 simulations of the model vs. 10,000 for the
Nadaraya-Watson estimator.
For the stochastic model with N = 1, 200, we obtained similar results, but the Sobol indices were
lower, due to the contribution of the randomness of the model to the variance of Y : Ŝλ = 0.38

(9.6e-3) and Ŝ
(NW )
λ = 0.38 (7.6e-3); Ŝµ = 0.46 (8.6e-3) and Ŝ

(NW )
µ = 0.45 (7.8e-3).

However, when we increased the contribution of the randomness to the variance of Y by consid-
ering a smaller population (120 individuals), the results were different: for Jansen Ŝλ = 0.063

(0.022) and Ŝ
(NW )
λ = 0.087 (5.4e-3); Ŝµ = 0.12 (0.021) and Ŝ

(NW )
µ = 0.13 (7.3e-3). We can not

compare the two estimators in absence of theoritical values for the Sobol indices, but we can
see that for small values, the two estimators provide different values, with the Nadaraya-Watson
giving higher mean estimates but tighter distributions than the Jansen estimator.

3.2 Application to the spread of HVC among drug users

Chronic hepatitis C is a major cause of liver failure in the world, responsible of approximately
500,000 deaths annually [26]. Hepatitis C is a bloodborne disease, and the transmission remains
high in people whi inject drugs (PWID) due to injecting equipment sharing [23]. Until recently,
the main approaches to decrease HCV transmission among PWID in high income countries re-
lied on injection prevention and on risk reduction measures (access to sterile equipment, opioid
substitution therapies, etc.). The arrival of highly effective antiviral treatments offers the op-
portunity to use the treatment as a mean to prevent HCV transmission, by treating infected
PWID before they have transmitted the infection [9].

In this context, a stochastic, individual-based dynamic model was used to assessed the im-
pact of the treatment on HCV transmission in PWID in Paris area [7]. This model included
HCV transmission on a random graph modelling PWID social network, the cascade of care of
chronic hepatitis C and the progression of the liver disease. A brief description of the model for
HCV infection and cascade of care is available in 3, for a detailled description and the details of
the parameters values with their uncertainty intervals, the reader can refer to [7].

The parameter values used in this analysis were mainly provided by epidemiological studies
and were subject to uncertainty. This kind of model requires high computing time, and thus the
sensitivity analysis using Monte-Carlo estimators of Sobol indices is difficult, due to the number
of simulations needed. We estimated Sobol indices using the Nadaraya-Watson non-parametric
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Figure 1: Smoothed densities of the first order sensitivity indices estimates for λ/N and µ in a deter-

ministic (dotted lines) and in a stochastic (plain lines) SIR model, with N = 1, 200 individuals.
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Figure 2: Smoothed densities of the first order sensitivity indices estimates for λ/N and µ in a stochastic

(plain lines) SIR model, with N = 120 individuals.
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Figure 3: Diagram flow of infection and cascade of care modelling for HCV infection among PWID.

Greek letters refer to rates, pr and pSV R to probabilities and Ta and Tt to (deterministic) time before

leaving the compartment. β depends on the status of the PWID with respect to the risk reduction measures

(access to sterile injecting equipment, access to substitution therapies). ni denotes the number of infected

injecting partners of the PWUID. δ depends on the status of the PWID with respect to injection: active or

inactive injector (i.e. before or after the cessation of injection). The liver disease progression is quantified

by a score (score Metavir for the fibrosis progression) between F0 and F4 (cirrhosis). “Complications”

refers to the two cirrhosis complications: decompensated cirrhosis and hepatocellular carcinoma

estimator, and with Y the prevalence after 10 years of simulation, and with uniform distributions
on the uncertainty interval for each parameter. We used n = 10, 000 simulations of the model.
For comparison, we also represented the sensitivity using a Tornado diagram, classically used in
epidemiology. A Tornado diagram is built using the extremal values of the uncertainty interval
for each parameter. The model is simulated Y by changing the mean parameter value by the
extremal values, one at a time. The other parameters values are let at their mean value (i.e.
the value from the main analysis). Then, the parameters are sorted by decreasing width of the
interval of Y values, and the deviation from the main analysis result is represented in a bar plot.

Results are presented Figure 4 With the Tornado diagram, the most sensitive parameters
are the infection rate per infected injecting partner, the transition rate from a fibrosis score of
F0/F1 to a score of F2/F3 and the combination of the linkage to care/loss to follow-up rate
(which were varied together to estimate the impact of the uncertainty about the linkage to
care of PWID). With the Sobol indices, we obtained consistent results. However, as the Sobol
indices can be interpreted as the contribution of each parameter to this variance. We can thus
see that a large part of the variance of Y is explained by the infection rate per infected partner
alone, with a Sobol index of 0.59, and by the transition rate from a fibrosis score of F0/F1 to a
score of F2/F3, with a Sobol index of 0.31. Other parameters contribute only marginally, and
particularly linkage to care/loss to follow-up rate, wich represent only 4% of the whole variance,
according to these results. However, the sum of all the sensitivity indices estimated was 1.20,
which is > 1.

4 Proofs

4.1 Proof of Theorem 2.6

We follow the scheme of the proof of Theorem 1 in [15]. The main difficulty here is that we are
not in a Gaussian framework and that we use the empirical process γ̄n, which introduces much
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Figure 4: Tornado diagram (upper figure), and Sobol indices estimated using the Nadaraya-Watson

estimator and sorted by decreasing value (lower figure). The values represented on the Tornado dia-

gram are the extremal values of the uncertainty interval for each parameter. LTFU=loss to follow-up,

HCC=Hepatocellular carcinoma, M=Male, F=Female. “Cessation” refers to the cessation of the injec-

tions. “F0/F1 > F2/F3” refers to the transition rate from a fibrosis score F0 or F1 to a fibrosis score

F2 or F3 (and similarly for other rates).
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technical difficulties.
In the sequel, C denotes a constant that can vary from line to line.

Using Lemma 2.3, we concentrate on the MSE E
(
(θ̂ℓ − Vℓ)

2
)
. First, we will prove that:

E

[(
θ̂ℓ − Vℓ − ζn

)2]
≤ inf

J⊂{−1,...,Jn}
E

[(
− θ̂J ,ℓ + Vℓ + ζn

)2

+

]
+

C

n log2(n)
, (4.1)

where θ̂J ,ℓ has been defined in (2.14). Then, considering the first term in the r.h.s. of (4.1), we
prove:

E

[(
− θ̂J ,ℓ + Vℓ + ζn

)2

+

]
≤ C

(
‖hℓ − hJ ,ℓ‖42 +

log2(n) + 2Jmax

n2

)
(4.2)

Step 1:

From (2.14), and letting AJ = θ̂J ,ℓ − Vℓ − ζn, we have:

θ̂ℓ − Vℓ − ζn = sup
J⊂{−1,...,Jn}

AJ .

Since ∣∣∣ sup
J
AJ

∣∣∣ ≤ max
[
sup
J

(
AJ

)
+
, inf
J

(
AJ

)
−

]
,

we have that

E

(
sup
J
A2

J
)
≤

∑

J⊂{−1,...,Jn}
E

((
AJ

)2
+

)
+ inf

J⊂{−1,...,Jn}
E

((
AJ

)2
−

)

≤
∑

J⊂{−1,...,Jn}
E

((
AJ

)2
+

)
+ inf

J⊂{−1,...,Jn}
E

((
Vℓ − θ̂J ,ℓ + ζn

)2
+

)
. (4.3)

The second term correspond to what appears in (4.1) and will be treated in Step 4. Let us
consider the first term of the r.h.s. We start by rewriting

AJ =θ̂J ,ℓ − Vℓ − ζn

=‖ĥJ ,ℓ‖22 − pen(J )− ‖hℓ‖22 − ζn

=
(
‖ĥJ ,ℓ − hJ ,ℓ‖22 + ‖hJ ,ℓ‖22 + 2〈ĥJ ,ℓ − hJ ,ℓ, hJ ,ℓ〉

)

−
(
‖hℓ − hJ ,ℓ‖22 + ‖hJ ,ℓ‖22 + 2〈hℓ − hJ ,ℓ, hJ ,ℓ〉

)
− ζn − pen(J )

=‖ĥJ ,ℓ − hJ ,ℓ‖22 + 2〈ĥJ ,ℓ − hJ ,ℓ, hJ ,ℓ〉 − ‖hℓ − hJ ,ℓ‖22 − ζn − pen(J ), (4.4)

since 〈hℓ − hJ ,ℓ, hJ ,ℓ〉 = 0 by definition of hJ ,ℓ as projection of hℓ on the subspace generated by
{ψjk, j ∈ J , k ∈ Z}.

Thus:

E

((
AJ

)2
+

)
≤ 2E

((
‖ĥJ ,ℓ − hJ ,ℓ‖22 − pen1(J )

)2)

+ 2E
((

2〈ĥJ ,ℓ − hJ ,ℓ, hJ ,ℓ〉 − ‖hℓ − hJ ,ℓ‖22 − ζn − pen2(J )
)2)

. (4.5)

where

pen1(J ) =
K2Jmax

n
, and pen2(J ) =

4M2xJ
n

+
4M2‖ϕJ ‖2∞x2J

n2
. (4.6)
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Step 2: Upper bound of the first term in the r.h.s. of (4.5)

Reformulation of ‖ĥJ ,ℓ − hJ ,ℓ‖22

The first term in the r.h.s. of (4.4) is the approximation error of hJ by ĥJ ,ℓ and equals

‖ĥJ ,ℓ − hJ ,ℓ‖22 =
∑

j∈J

∑

k∈Z

(
β̂jk − βjk

)2
=

∑

j∈J

∑

k∈Z
γ̄n

(
ψjk

)2
.

To control it, let us introduce, for coefficients a = (ajk, −1 ≤ j ≤ Jn, k ∈ Z), the set F1,J =
{∑j∈J

∑
k∈Z ajkψjk, ajk ∈ Q, ‖a‖2 ≤ 1}, which is countable and dense in the unit ball of

L2([0, 1]):

(∑

j∈J

∑

k∈Z
γ̄n

(
ψjk

)2)1/2
= sup

‖a‖2≤1

∣∣∣
∑

j∈J

∑

k∈Z
ajkγ̄n

(
ψjk

)∣∣∣

= sup
‖a‖2≤1

∣∣∣γ̄n
(∑

j∈J

∑

k∈Z
ajkψjk

)∣∣∣

= sup
f∈F1,J

∣∣γ̄n(f)
∣∣ := χn(J ). (4.7)

Let us introduce, for ρ > 0,

ΩJ (ρ) =
{
∀j ∈ J ,

∑

k∈Z

∣∣γ̄n(ψjk)
∣∣ ≤ ρ2−j/2

}
. (4.8)

Then, to upper bound the first term in (4.5), we can write:

E

((
‖ĥJ ,ℓ − hJ ,ℓ‖22 − pen1(J )

)2) ≤ 2A1(J ) + 2A2(J ) (4.9)

where

A1(J ) = E

((
χ2
n(J )1lΩJ (ρ) − pen1(J )

)2)
, and A2(J ) = E

(
χ4
n(J )1lΩc

J
(ρ)

)
. (4.10)

The upper bounds of A1(J ) and A2(J ) make the object of the remainder of Step 2. We use
ideas developed in [3]. To upper bound A1(J ), we use the identity

A1(J ) =

∫ +∞

0
t P

(
χ2
n(J )1lΩJ (ρ) − pen1(J ) > t

)
dt, (4.11)

and look for deviation inequalities of χ2
n(J )1lΩ(J )(ρ). Then, estimates of the probability of Ωc

J (ρ)
are studied to control A2(J ).

Deviation inequality for supa∈ΛJ

∣∣γ̄n(f)
∣∣

The supremum in (4.7) is obtained for

ājk =
γ̄n(ψjk)

χn(J )
. (4.12)

On the set ΩJ (ρ) ∩ {χn(J > z}, for a constant z > 0 that shall be fixed in the sequel, we have
for all j ∈ J ,

∑

k∈Z

∣∣ājk
∣∣ =

∑
k∈Z

∣∣γ̄n(ψjk)
∣∣

χn(J )
≤ ρ2−j/2

z
.
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As a consequence, on the set ΩJ (ρ) ∩ {χn(J ) > z}, we can restrict the research of the optima
to the set

ΛJ =
{
a = (ajk)j≥−1,k∈Z ∈ Q{−1,... }×Z, ajk = 0 if j /∈ J ,

∑

k∈Z

∣∣ajk
∣∣ ≤ ρ2−j/2

z
if j ∈ J

}
,

which is countable.

We can then use Talagrand inequality (see [18, p.170]) to obtain that for all η > 0 and x > 0,

P

(
sup
a∈ΛJ

∣∣γ̄n(f)
∣∣ ≥ (1 + η)E

(
sup
a∈ΛJ

∣∣γ̄n(f)
∣∣)+

√
2νnx+

(1
3
+

1

η

)
bnx

)
≤ e−x, (4.13)

where E
(
supa∈ΛJ

∣∣γ̄n(f)
∣∣) and where νn and bn can be chosen respectively as νn = M2/n and

bn = 2M‖ψ‖∞ρCard(J )/nz. Indeed, νn is an upper bound of:

1

n
sup
a∈ΛJ

Var
(
Y1

∑

j∈J

∑

k∈Z
ajkψjk

(
Gℓ(X

1
ℓ )
))

≤ M2

n
sup
a∈ΛJ

∥∥∥
∑

j∈J

∑

k∈Z
ajkψjk

∥∥∥
2

2
≤ M2

n
, (4.14)

from the definition of ΛJ . As for the term bn, it can be obtained from:

1

n
sup
a∈ΛJ

sup
(u,y)∈[0,1]×R

∣∣∣y
∑

j∈J

∑

k∈Z
ajkψjk(u)− E

(
Y1

∑

j∈J

∑

k∈Z
ajkψjk

(
Gℓ(X

1
ℓ )
))∣∣∣

≤2M

n

∑

j∈J

∑

k∈Z
|ajk|2j/2‖ψ‖∞ ≤ 2M‖ψ‖∞

n

∑

j∈J

ρ2−j/2

z
2j/2 =

2M‖ψ‖∞ρ Card(J )

n z
. (4.15)

For the expectation in the r.h.s. in the probability, we have:

E
(
sup
a∈ΛJ

∣∣γ̄n(f)
∣∣) ≤ E

(
χn(J )

)
≤

√
E
(
χ2
n(J )

)
=

√∑

j∈J

∑

k∈Z
E
(
γ̄2n(ψjk)

)

=

√∑

j∈J

∑

k∈Z

1

n
Var

(
Y1ψjk(Gℓ(X

1
ℓ ))

)
≤M

√
2Jmax

n
(4.16)

by using the Cauchy-Schwarz inequality and the fact that ‖ψjk‖22 = 1.

Because supa∈AJ

∣∣γ̄n(f)
∣∣ ≥ χn(J )1lΩJ (ρ)∩{χn(J>z}, Equations (4.13)-(4.16) become:

P

(
χn(J )1lΩJ (ρ)∩{χn(J )>z} ≥ (1+η)M

√
2Jmax

n
+

√
2M2x

n
+
(1
3
+
1

η

)2M‖ψ‖∞ρ Card(J )

n z
x
)
≤ e−x.

Choosing z =
√

2x
n

(
1
3 +

1
η

)
‖ψ‖∞, we obtain:

P

(
χn(J )1lΩJ (ρ)∩{χn(J )>z} ≥ (1 + η)M

√
2Jmax

n
+ (1 + ρ)MCard(J )

√
2x

n

)
≤ e−x.

Choosing ρ =
(
1
3 +

1
η

)
‖ψ‖∞, we can get rid of the constraint {χn(J ) > z} to evaluate the above

probability and choosing x = xJ + ξ:

P

(
χ2
n(J )1lΩJ (ρ) −

1

n

[
(1 + η)2M22Jmax + 2(1 + ρ)2Card2(J )xJ

+ 2(1 + ρ)(1 + η)M22
Jmax+1

2 Card(J )
√
xJ

)]
≥ hJ (ξ)

)

≤ e−xJ e−ξ,
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where

hJ (ξ) =
2(1 + ρ)M2 Card(J )

n

[
(1 + ρ)Card(J )ξ + (1 + η)2

Jmax+1
2

√
ξ
]
. (4.17)

The square bracket in the l.h.s. inside the probability can be upper bounded by npen1(J ) =
K2Jmax , for a certain constant K that depends on xJ , since Card(J ) ≤ Jmax and since x2 ≤ 2x

for all integers x ≥ 1. Then:

P

(
χ2
n(J )1lΩJ (ρ) − pen1

(
J
)
≥ hJ (ξ)

)
≤ e−xJ e−ξ. (4.18)

From this and (4.11),

A1(J ) ≤
∫ +∞

0
te−xe−h−1

J
(t)dt.

To upper bound the r.h.s., we have to lower bound h−1
J (t) and hence upper bound hJ (t). The

square bracket in (4.17) can be upper bounded by





2
√
2(1 + η)2

Jmax
2

√
ξ if ξ ≤ 2

(
1+η
1+ρ

)2
2Jmax

Card2J

2(1 + ρ)CardJ ξ if ξ > 2
(
1+η
1+ρ

)2
2Jmax

Card2J
.

Then, for t ≥ 0:

h−1
J (t) ≥





n2t2

32(1+ρ)2M2Card2J (1+η)22Jmax
if t ≤ 8M2(1+η)22Jmax

n

nt

4(1+ρ)2M2Card2J
if t > 8M2(1+η)22Jmax

n .

As a consequence,

A1(J ) ≤
∫ 8M2(1+η)22Jmax

n

0
te−xJ exp

(
− n2t2

32(1 + ρ)2M2Card2J (1 + η)22Jmax

)
dt

+

∫ +∞

8M2(1+η)22Jmax
n

te−xJ exp
(
− nt

4(1 + ρ)2M2Card2J
)
dt

≤e−xJ
32(1 + ρ)2M2Card2J (1 + η)22Jmax

2n2

[
1− exp

(
− 2M2(1 + η)22Jmax

(1 + ρ)2Card2J
)]

+e−xJ

16(1 + ρ)2M4Card2J
(
2(1 + η)22Jmax + (1 + ρ)2Card2J

)

n2
exp

(
− 2(1 + η)22Jmax

(1 + ρ)2Card2J
)

≤C22Jmax

n2
e−xJ . (4.19)

The latter upper bound determines the choice of Jmax. From the choice of xJ (2.8), we deduce
that ∑

J⊂{−1,...,Jn}
A1(J ) ≤ C22Jn

n2
=

C

n log2(n)
. (4.20)

Upper bound of A2(J )

For the term A2(J ) of (4.9), noting that:

|γ̄n(ψjk)| ≤M2j/2‖ψ‖∞ +M2−j/2

∫

R

ψ(u)du,
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we have for a constant C that depends only on the choice of ψ−10 and ψ00:

A2(J ) ≤
[
C

∑

j∈J

(
M2j/2‖ψ‖∞ +M2−j/2

∫

R

ψ(u)du
)2]2

× P

(
Ωc
J (η)

)
. (4.21)

Since:

n∑

i=1

E

[(Yiψjk

(
Gℓ(X

i
ℓ)
)
− E

(
Y1ψjk(Gℓ(X

1
ℓ ))

)

n

)2]
=

Var
(
Y1ψjk(Gℓ(X

1
ℓ ))

)

n
≤ M2

n
,

∣∣∣
Yiψjk

(
Gℓ(X

i
ℓ)
)
− E

(
Y1ψjk(Gℓ(X

1
ℓ ))

)

n

∣∣∣ ≤ 2M2j/2‖ψ‖∞
n

a.s.

then we have by Bernstein’s inequality (e.g. [18]):

P
(∣∣γ̄n(ψjk)

∣∣ ≥ ρ2−j/2
)
≤ 2 exp

(
− nρ22−j

2
(
M2 + 2M‖ψ‖∞ρ

)
)
.

As a consequence,

∑

J⊂{−1,...Jn}
A2(J ) ≤

∑

J⊂{−1,...Jn}
22JmaxP

(
∃(j, k) ∈ J × Z,

∣∣γ̄n(ψjk)
∣∣ ≥ ρ2−j/2

)

≤C
∑

J⊂{−1,...Jn}
23Jmax exp

(
− nρ22−Jmax

2
(
M2 + 2M‖ψ‖∞ρ

)
)
. (4.22)

which is smaller than C/n2 for sufficiently large n, as Jmax ≤ Jn = log2(
√
n).

Step 3: Upper bound of the second term in the r.h.s. of (4.5)

For the terms 2 to 4 of (4.4),

2〈ĥJ ,ℓ − hJ ,ℓ, hJ ,ℓ〉 − ‖hℓ − hJ ,ℓ‖22 − ζn − pen2(J )

=2
∑

j∈J

∑

k∈Z
γ̄n

(
ψjk

)
βℓjk − ‖hℓ − hJ ,ℓ‖22 − 2γ̄n

(
hℓ
)
− pen2(J )

=2γ̄n

(∑

j∈J

∑

k∈Z
βℓjkψjk

)
− ‖hℓ − hJ ,ℓ‖22 − 2γ̄n

(
hℓ
)
− pen2(J )

=2γ̄n
(
hJ ,ℓ − hℓ

)
− ‖hℓ − hJ ,ℓ‖22 − pen2(J ) (4.23)

≤
( γ̄n

(
hJ ,ℓ − hℓ

)

‖hℓ − hJ ,ℓ‖2

)2
− pen2(J ) = γ̄2n

( hJ ,ℓ − hℓ
‖hℓ − hJ ,ℓ‖2

)
− pen2(J ), (4.24)

by using the identity 2ab− b2 ≤ a2. Setting ϕJ =
hJ ,ℓ−hℓ

‖hℓ−hJ ,ℓ‖2 and using Bernstein’s formula (see

[18, p.25]), we have for all x > 0:

P
(
γ̄n

(
ϕJ

)
≥

√
2M2

n
x+

2M‖ϕJ ‖∞
n

x
)
≤ e−x. (4.25)

Setting xJ + ξ as x in the above inequality and using that (a+ b)2 ≤ 2a2+2b2, this implies that

P

(
γ̄2n

(
ϕJ

)
− pen2(J ) ≥ rn(ξ)

)
≤ e−xJ e−ξ, (4.26)

20



where pen2(J ) has been defined in (4.6) and

rn(x, ξ) =
4M2‖ϕJ ‖2∞ξ2

n2
+

4M2ξ

n
.

Then,

E

((
2〈ĥJ ,ℓ − hJ ,ℓ, hJ ,ℓ〉 − ‖hℓ − hJ ,ℓ‖22 − ζn − pen2(J )

)2
+

)

≤E

([
γ̄2n

(
ϕJ

)
− pen2(J )

]2)

≤C
∫ +∞

0
t P

(∣∣γ̄2n
(
ϕJ

)
− pen2(J )

∣∣ > t
)
dt

≤Ce−xJ

∫ +∞

0
t exp

(
− n

2‖ϕJ ‖2∞
(
√

1 +
t‖ϕJ ‖2∞
M

− 1
))
dt ≤ Ce−xJ

n2
. (4.27)

The last inequality stems from the behaviour of the integrand when t is close to 0.

Gathering the results of Steps 1 to 3, we have by (4.9) and (4.5) that the first term in the
r.h.s. of (4.3) is smaller than C/(n log2(n)). This proves (4.1).

Step 4:

Let us now consider the term E

[(
− θ̂J ,ℓ + Vℓ + ζn

)2

+

]
in (4.1). From (4.4) and (4.23):

E

[(
− θ̂J ,ℓ + Vℓ + ζn

)2
+

]

=E

((
‖hℓ − hJ ,ℓ‖22 − ‖ĥJ ,ℓ − hJ ,ℓ‖22 + 2γ̄n

(
hℓ − hJ ,ℓ

)
+ pen(J )

)2
+

)

≤4
(
‖hℓ − hJ ,ℓ‖42 + 4E

(
γ̄2n

(
hℓ − hJ ,ℓ

))
+ E

([
‖ĥJ ,ℓ − hJ ,ℓ‖22 − pen1(J )

]2
+

)
+ pen22(J )

)
,

(4.28)

where DJ has been defined in (4.2).

For the second term in the r.h.s. of (4.28), we have:

E

(
γ̄2n

(
hℓ − hJ ,ℓ

))
=Var

(
γ̄
(
hℓ − hJ ,ℓ

))

≤ 1

n
E

(
Y 2
1

(
hℓ(Gℓ(X

1
ℓ ))− hJ ,ℓ(Gℓ(X

1
ℓ ))

)2) ≤ M2‖hℓ − hJ ,ℓ‖22
n

≤C
( 1

n2
+ ‖hℓ − hJ ,ℓ‖42

)
(4.29)

by using that 2ab ≤ a2 + b2 for the last inequality.

The third term in the r.h.s. of (4.28) has been treated in (4.9) precedingly. We established
an upper bound in 2Jmax/n2. The fourth term, pen22(J ) is in x2J /n

2 ≤ C log2(n)/n2 from (4.6).
Gathering these results, we obtain (4.2) and then (2.26).

4.2 Proof of Corollary 2.8

Plugging (4.2) in (4.1), and using that

E
(
ζ2n
)
=

2

n
Var

(
Y1hℓ

(
Gℓ(X

1
ℓ )
))

≤ 2M2‖hℓ‖22
n

, (4.30)
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we obtain:

E

[(
θ̂ℓ − Vℓ

)2] ≤ C
[

inf
J⊂{−1,...,Jn}

(
‖hℓ − hJ ,ℓ‖42 +

2Jmax

n2

)
+

1 + ‖hℓ‖22
n

]
. (4.31)

If hℓ ∈ B(α, 2,∞), then from Proposition 2.7, we have for J = {−1, . . . , Jmax} that ‖hℓ −
hJ ,ℓ‖42 ≤ 2−4α Jmax . Thus, for subsets J of the form considered, the infimum is attained when
choosing Jmax = 2

4α+1 log2(n), which yield an upper bound in n8α/(4α+1).

For hℓ in a ball of radius R, ‖hℓ‖22 ≤ R2, and we can find an upper bound that does not
depend on h. Because the last term in (4.31) is in 1/n, the elbow effect is obtained by comparing
the order of the first term in the r.h.s. (n8α/(4α+1)) with 1/n when α varies. 2

A Properties of β̂jk

Lemma A.1.

lim
n→+∞

√
n
(
β̂ℓjk − βℓjk

)
= N

(
0,Var

(
Y ψjk

(
Gℓ(Xℓ)

)))
(A.1)

where
Var

(
Y ψjk

(
Gℓ(Xℓ)

))
= Var

(
gℓ(Xℓ)ψjk

(
Gℓ(Xℓ)

))
+ E

(
η2ℓψ

2
jk(Gℓ(Xℓ))

)
.

Proof. Recall that Y i = gℓ(X
i
ℓ) + ηiℓ. Then:

β̂ℓjk =
1

n

n∑

i=1

gℓ(X
i
ℓ)ψjk

(
Gℓ(X

i
ℓ)
)
+

1

n

n∑

i=1

ηiℓψjk

(
Gℓ(X

i
ℓ)
)

=βℓjk +
1

n

n∑

i=1

(
gℓ(X

i
ℓ)ψjk

(
Gℓ(X

i
ℓ)
)
− E

(
gℓ(Xℓ)ψjk(Gℓ(Xℓ))

))
+

1

n

n∑

i=1

ηiℓψjk

(
Gℓ(X

i
ℓ)
)
.

The second term in the r.h.s. is a biais term due to the approximation of βℓjk, defined as an

integral, by a mean. The third term is due to the noise between Y i and gℓ(X
i
ℓ). The third term

is centered as E(ηℓ | Xℓ) = 0. Since the observations are i.i.d., we have by the central limit
theorem that

lim
n→+∞

1√
n

n∑

i=1

(
gℓ(X

i
ℓ)ψjk

(
Gℓ(X

i
ℓ)
)
− E

(
gℓ(Xℓ)ψjk(Gℓ(Xℓ))

)
1
n

∑n
i=1 η

i
ℓψjk

(
Gℓ(X

i
ℓ)
)

)
= N (0,Σ) (A.2)

with

Σ =

(
Var

(
gℓ(Xℓ)ψjk

(
Gℓ(Xℓ)

))
0

0 Var
(
ηℓψjk

(
Gℓ(Xℓ)

)
)
.

We have

Var
(
gℓ(Xℓ)ψjk

(
Gℓ(Xℓ)

))
=E

(
g2ℓ (Xℓ)ψ

2
jk

(
Gℓ(Xℓ)

))
− β2jk

=

∫ 1

0

(∑

jk

βjkψjk(u)
)2
ψ2
jk(u)du − β2jk,

and as E(ηℓ | Xℓ) = 0, we have

Var
(
ηℓψjk(Gℓ(Xℓ))

)
=E

(
η2ℓψ

2
jk(Gℓ(Xℓ))

)
=

∫

R

E
(
η2ℓ | Xℓ = G−1

ℓ (2−j(v + k))
)
ψ2(v)dv.

Using the Slutsky lemma concludes the proof. �
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B Sobol indices

The Sobol indices are based on the following decomposition for f (see Sobol [21]). We recall the
formulas here, with the notation Xp+1 for the random variable ε:

Y = f(X1, . . . ,Xp, ε) = f0 +

p+1∑

ℓ=1

fℓ(Xℓ) +
∑

1≤ℓ1<ℓ2≤p+1

fℓ1ℓ2(Xℓ1 ,Xℓ2) + · · ·+ f1,...,p+1(X1, . . . ,Xp, ε)

(B.1)

where f0 = E[Y ], fℓ(Xℓ) = E[Y |Xℓ]− E[Y ],

fℓ1ℓ2(Xℓ1 ,Xℓ2) = E[Y |Xℓ1 ,Xℓ2 ]− E[Y |Xℓ1 ]− E[Y |Xℓ2 ]−E[Y ], . . .

Then, the variance of Y can be written as:

Var(Y ) =

p+1∑

ℓ=1

Vℓ +
∑

1≤ℓ1<ℓ2≤p+1

Vℓ1ℓ2 + · · ·+ V1...p+1 (B.2)

where

Vℓ = Var(E[Y |Xℓ]), Vℓ1ℓ2 = Var(E[Y |Xℓ1 ,Xℓ2 ])− Vℓ1 − Vℓ2 , . . .

V1...p+1 = Var(Y )−
p+1∑

ℓ=1

Vℓ −
∑

1≤ℓ1<ℓ2≤p+1

Vℓ1ℓ2 − · · · −
∑

1≤ℓ1<···<ℓp≤p+1

Vℓ1...ℓp (B.3)

The first order indices are then defined as:

Sℓ = Vℓ/Var(Y ) = Var(E[Y |Xℓ])/Var(Y ) (B.4)

Sℓ corresponds to the part of the variance that can be explained by the variance of Y due to the
variable Xℓ alone. In the same manner, we define the second order indices, third order indices,
etc. by dividing the variance terms by Var(Y ).
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and Yazdan Yazdanpanah. Hepatitis C treatment as prevention of viral transmission and liver-related mor-
bidity in persons who inject drugs. Hepatology, 2015.

[8] J.-C. Fort, T. Klein, A. Lagnoux, and B. Laurent. Estimation of the Sobol indices in a linear functional
multidimensional model. Journal of Statistical Planning and Inference, 143(9):1590–1605, 2013.

23



[9] Jason Grebely, Gail V Matthews, Andrew R Lloyd, and Gregory J Dore. Elimination of hepatitis c virus
infection among people who inject drugs through treatment as prevention: feasibility and future requirements.
Clinical infectious diseases, 57(7):1014–1020, 2013.
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