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Abstract. We consider the problem of finding a bijection between the sets of alternating

sign matrices and of totally symmetric self complementary plane partitions, which can be

reformulated using Gog and Magog triangles. In a previous work we introduced GOGAm tri-
angles, which are images of Magog triangles by the Schützenberger involution. In this paper

we introduce Gog and GOGAm pentagons. We conjecture that they are equienumerated.

We provide some numerical evidence as well as an explicit bijection in the case when they
have one or two diagonals. We also consider some interesting statistics on Gog and Magog

triangles.

1. Introduction

Finding a bijection between the set of alternating sign matrices and the set of totally sym-
metric self complementary plane partitions is a well known open problem in combinatorics.
One can reformulate this problem using so-called Gog and Magog triangles, which are particu-
lar species of Gelfand-Tsetlin triangles. For example below are a Gog and a Magog triangle of
size 4 (precise definitions are recalled below):

1 2 3 4
1 3 4

2 3
3

1 1 2 4
1 2 2

1 2
1

In particular, Gog triangles are in simple bijection with alternating sign matrices of the
same size, while Magog triangles are in bijection with totally symmetric self complementary
plane partitions. In [9], Mills, Robbins and Rumsey introduced trapezoids in this problem by
considering k diagonals on the right of a triangle of size n, as below, where we show a Magog
trapezoid:

2 3∗∗∗
∗ ∗
∗

1 3

1 2

1 2

1

They conjectured that Gog and Magog trapezoids of the same shape are equienumerated.
Some related conjectures can be found in [8]. Zeilberger [12] proved the conjecture of Mills,
Robbins and Rumsey, but no explicit bijection is known, except for k = 1 (which is a relatively
easy problem) and for k = 2, this bijection being the main result of [4]. In this last paper a
new class of triangles and trapezoids was introduced, called GOGAm triangles (or trapezoids),
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which are in bijection with the Magog triangles by the Schützenberger involution acting on
Gelfand-Tsetlin triangles. In this paper we introduce Gog and GOGAm pentagons, obtained
by taking the intersection of some leftmost and rightmost diagonals and some bottom rows of
Gog and GOGAm triangles, as below

4 5 6
3 5 6 7

2 3 5 6
3 5 6

4 5
4

We conjecture that the Gog and GOGAm pentagons of the same shape are equienumerated.
Actually we formulate a refined conjecture where the bottom entries of the pentagons coincide.
This generalizes the conjecture of Mills Robbins and Rumsey. We give some numerical evidence
for this conjecture and give a bijective proof for several shapes of pentagons, for example for
pentagons composed of one or two diagonals. We will also consider a new statistic (which we
call the β-statistic) on the different species of triangles, which is of independent interest.

This paper is organized as follows: in section 2 we recall basic definitions, then in section 3
we introduce Gog and Magog triangles and trapezoids, as well as GOGAm triangles and some
new statistic on them. In section 4 we introduce the main objects of the paper, which are
pentagons, and we formulate the main conjecture for which we give some numerical evidence.
Finally in section 5 we give some partial results towards the conjecture.

2. Basic definitions

2.1. Totally Symmetric Self-Complementary Plane Partitions and Alternating Sign
Matrices. A Plane Partition is a stack of cubes in a corner.

Choosing a large cube that contains a plane partition, one can also encode the partition as
a lozenge tiling of an hexagon. A Totally Symmetric Self-Complementary Plane Partition
(TSSCPP) of size n is a plane partition, inside a cube of side 2n, such that the lozenge tiling
has all the symmetries of the hexagon and the partition is the same as its complement inside
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the cube, as in the picture below, where n = 3.

An Alternating Sign Matrix (ASM) is a square matrix with entries in {−1, 0,+1} such that,
on each line and on each column, the non zero entries alternate in sign, the sum of each line
and each column being equal to 1. Below is an alternating sign matrix of size 5.

M =


0 1 0 0 0
0 0 1 0 0
1 −1 0 0 1
0 1 −1 1 0
0 0 1 0 0


It is well known [1] that the number of TSSCPP of size n is

An =

n−1∏
j=0

(3j + 1)!

(n+ j)!
= 1, 2, 7, 42, 429, . . .(2.1)

As first proved by Zeilberger [12], this is also the number of ASM of size n (more about
this story is in [5]), however no explicit bijection between these classes of objects has ever been
constructed, and finding one is a major open problem in combinatorics. In this paper we use
Gog and Magog triangles, defined below, in order to investigate this question.

2.2. Gelfand-Tsetlin triangles.

2.2.1.

Definition 2.1. A Gelfand-Tsetlin triangle of size n is a triangular array X = (Xi,j)n>i>j>1

of positive integers

Xn,1 Xn,2 . . . Xn,n−1 Xn,n

Xn−1,1 Xn−1,2 . . . Xn−1,n−1

. . . . . . . . .
X2,1 X2,2

X1,1

such that

Xi+1,j 6 Xi,j 6 Xi+1,j+1 for n− 1 > i > j > 1.
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For example here is a Gelfand-Tsetlin triangle of size 5:

2 2 7 11 15
2 6 8 13

6 6 9
6 7

7

2.2.2. Schützenberger involution. Gelfand-Tsetlin triangles label bases of irreducible representa-
tions of general linear groups. As such, they are in simple bijection with semi-standard Young
tableaux (SSYT). It follows that the Schützenberger involution, which is defined on SSYTs,
can be transported to Gelfand-Tsetlin triangles. We recall the definition of this involution here.
Since we will not use SSYTs in this paper we give only a brief sketch and we insist on the def-
inition of the involution directly on Gelfand-Tsetlin triangles. Let A be a finite totally ordered
alphabet. The Robinson-Schensted correspondance is a bijection between words and pairs of
Young tableaux of the same shape, more precisely, it assigns to every word w of length n on
A a pair (P (w), Q(w)) formed of a semi-standard Young tableau P of size n, and a standard
tableau Q of the same shape. Let a 7→ ā be the order reversing involution on A, then the
Schützenberger involution on words maps a word w = a1 . . . an to S(w) = ān . . . ā1. It turns
out that for two words w1 and w2 with P (w1) = P (w2) one has P (S(w1)) = P (S(w2)), there-
fore S descends to an involution S : P 7→ S(P ) on semi-standard Young tableaux, moreover
this involution preserves the shapes of the tableaux. It is much less easy to describe the map S
directly on Gelfand-Tsetlin triangles, however this has been done by Berenstein and Kirillov [3].
First define involutions sk, for k 6 n−1, acting on the set of Gelfand-Tsetlin triangles of size n.
If X = (xi,j)n>i>j>1 is such a triangle the action of sk on X is given by skX = (X̃i,j)n>i>j>1

with
X̃i,j = Xi,j , if i 6= k

X̃k,j = max(Xk+1,j , Xk−1,j−1) + min(Xk+1,j+1, Xk−1,j)−Xi,j

It is understood that max(a, b) = max(b, a) = a and min(a, b) = min(b, a) = a if the entry b
of the triangle is not defined. The geometric meaning of the transformation of an entry is the
following: on row k, any entry Xk,j is surrounded by four (or less if it is on the boundary)
numbers, increasing from left to right.

Xk+1,j Xk+1,j+1

Xk,j

Xk−1,j−1 Xk−1,j

These four numbers determine a smallest interval containing Xk,j , namely

[max(Xk+1,j , Xk−1,j−1),min(Xk+1,j+1, Xk−1,j)]

and the transformation maps Xk,j to its mirror image with respect to the center of this interval.
Define ωj = sjsj−1 . . . s2s1.

Definition 2.2. The Schützenberger involution, acting on Gelfand-Tsetlin triangles of size n,
is given by the formula

S = ω1ω2 . . . ωn−1.

It is a non trivial result that S is an involution and coincides with the Schützenberger
involution when transported to SSYTs, see [3]; beware that the sk do not satisfy the braid
relations. As an example, below is a Gelfand-Tsetlin triangle X of size 4, together with its
images by the successive maps s1, s2s1, s3s2s1, s1s3s2s1, s2s1s3s2s1 and S = s1s2s1s3s2s1.
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X =

1 3 3 5
1 3 4

2 4
3

s1(X) =

1 3 3 5
1 3 4

2 4
3

s2s1(X) =

1 3 3 5
1 3 4

2 3
3

s3s2s1(X) =

1 3 3 5
2 3 4

2 3
3

s1s3s2s1(X) =

1 3 3 5
2 3 4

2 3
2

s2s1s3s2s1(X) =

1 3 3 5
2 3 4

2 4
2

S(X) =

1 3 3 5
2 3 4

2 4
4

3. Gog, Magog and GOGAm triangles

3.1. Gog triangles.

Definition 3.1. A Gog triangle of size n is a Gelfand-Tsetlin triangle such that

(i) Xn,j = j, 1 6 j 6 n

and

(ii) Xi,j < Xi,j+1, j < i 6 n− 1
in other words, such that its rows are strictly increasing.

Here is an example:

1 2 3 4 5
1 3 4 5

1 4 5
2 4

3

There is a simple bijection between Gog triangles and alternating sign matrices (see e.g. [5]).
If (Mij)16i,j6n is an ASM of size n, then the matrix M̄ij =

∑n
k=iMkj has exactly i− 1 entries

0 and n− i+1 entries 1 on row i. Let (Xij)j=1,...,i be the columns (in increasing order) with a 1
entry of M̄ on row n−i+1. The triangle X = (Xij)n>i>j>1 is the Gog triangle corresponding to
M . For example, the following matrix M is the alternating sign matrix of size 5 corresponding
to the above Gog triangle. We also show the matrix M̄ .

M =


0 1 0 0 0
0 0 1 0 0
1 −1 0 0 1
0 1 −1 1 0
0 0 1 0 0

 M̄ =


1 1 1 1 1
1 0 1 1 1
1 0 0 1 1
0 1 0 1 0
0 0 1 0 0
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3.2. Magog triangles.

Definition 3.2. A Magog triangle of size n is a Gelfand-Tsetlin triangle such that Xjj 6 j for
all 1 6 j 6 n.

There is a well known bijection between Magog triangles and TSSCPP of the same size (see
e.g. [5]). The problem of finding an explicit bijection between ASM and TSSCPP can therefore
be reduced to that of finding an explicit bijection between Gog and Magog triangles.

3.3. Statistics. We will define several statistics on the sets of Gelfand-Tsetlin triangles.

3.3.1. The α statistics. For a triangle X of size n we define

αGog(X) = X1,1, the bottom entry of the triangle

αMagog(X) =
∑n

1 Xn,i −
∑n−1

1 Xn−1,i.

It is a well known property of the Schützenberger involution that, for all Gelfand-Tsetlin
triangles, αGog(X) = αMagog(S(X)) and, of course, αGog(S(X)) = αMagog(X).

3.3.2. The β statistics. For Gelfand-Tsetlin triangle X, of size n, we define

βGog(X)= the number of indices k such that Xk,k = n.

The definition of βMagog is more involved. Let k be the largest integer such that Xk,k = k.
If there is no such k, then βMagog(X) = 0. If k exists then we define a sequence of pairs
(il, jl)16l6k by (i1, j1) = (k, k) and, if k > 1,

(il+1, jl+1) = (il, jl − 1) if Xil,jl−1 = Xil−1,jl−1,
(il+1, jl+1) = (il − 1, jl − 1) if Xil,jl−1 < Xil−1,jl−1

Since j decreases by 1 at each step, one has jl = k − l + 1 and the sequence ends at step k,
when jk = 1. We define

βMagog(X) = ik.

Each step of the above algorithm can be described as follows: suppose that the current entry
with index (il, jl) is a and consider the two neighbouring entries in the triangle as below:

b a

c

If b < c then the next entry is c as below

b a

c

whereas is b = c the next entry is the upper entry b

b a

b

As an illustration, the following triangle has k = 5 and βMagog(X) = 3. The sequence of indices
obtained by applying the above algorithm is (5, 5), (4, 4), (4, 3), (3, 2), (3, 1). The corresponding
entries are 5, 3, 3, 2, 1, they are highlighted on the picture.
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1 1 2 2 4 5

1 1 2 3 5

1 1 3 3

1 2 3

1 2

1

3.3.3. A conjecture. It is easy to see that, on Gog (resp. Magog) triangles of size n, the statistics
αGog and βGog (resp. αMagog and βMagog) take values in [1, n]. If we identify Gog triangles with
alternating sign matrices, then the two statistics αGog, βGog correspond to the position of the
1 in, respectively, the bottom row and the rightmost column. It is known that the α statistic
is equienumerated on Gog and Magog triangles, i.e. for all k the number of Gog triangles with
αGog(X) = k is equal to the number of Magog triangles with αMagog(X) = k.

Conjecture 3.3. For any n the two statistics α, β are equienumerated on, respectively, Gog
and Magog triangles.

We have verified this conjecture numerically for triangles of sizes up to n = 14. For example,
the distribution of the two statistics on triangles of size 8 is given in the following table:

8 7 6 5 4 3 2 1
8 218348 0 0 0 0 0 0 0
7 0 218348 210912 184886 137566 80782 33462 7436
6 0 210912 377208 444548 390104 253214 111956 26026
5 0 184886 444548 620256 604890 421486 196014 47320
4 0 137566 390104 604890 635180 467740 227136 56784
3 0 80782 253214 421486 467740 360880 182546 47320
2 0 33462 111956 196014 227136 182546 96252 26026
1 0 7436 26026 47320 56784 47320 26026 7436

The distribution is symmetric in α and β, as is clear from the interpretation in terms of Alter-
nating Sign Matrices.

3.4. Trapezoids. Trapezoids where introduced by Mills, Robbins and Rumsey [9], they are
obtained by taking the k rightmost SW-NE diagonals in a triangle. For example, below is a
Magog trapezoid with n = 5 and k = 2.

2 3

2 3

1 2

1 2

1

A Magog trapezoid can be completed into a Magog triangle by putting a triangle of 1’s to
its left in order to obtain a Magog triangle as follows
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2 3

2 3

1 2

1 2

1

111

11

1

Similarly a Gog trapezoid can be completed by putting to its left the smallest Gog triangle,
which is made of constant NW-SE diagonals with respective entries 1, 2, 3, . . .

4 5

4 5

2 4

2 3

2

321

21

1

In this way Gog (or Magog) trapezoids can be seen as forming a subset of Gog (or Magog)
triangles. This leads us to a refined version of the conjecture.

Conjecture 3.4. For any n, k the two statistics α, β are equienumerated on, respectively, Gog
and Magog trapezoids of shape (n, k).

Again, we have checked this conjecture numerically for all values of n, k 6 14.

3.5. GOGAm triangles.

Definition 3.5. A GOGAm triangle of size n is a Gelfand-Tsetlin triangle whose image by the
Schützenberger involution is a Magog triangle (of size n).

Of course, the problem of finding an explicit bijection between Gog and Magog triangles can
be reduced to that of finding an explicit bijection between Gog and GOGAm triangles. It is
shown in [4] that the GOGAm triangles are the Gelfand-Tsetlin triangles X = (Xi,j)n>i>j>1

such that Xnn 6 n and, for all 1 6 k 6 n− 1 and, for all n = j0 > j1 > j2 . . . > jn−k > 1, one
has

(3.1)

(
n−k−1∑
i=0

Xji+i,ji −Xji+1+i,ji+1

)
+Xjn−k+n−k,jn−k

6 k.

It is easier to describe this last condition with a picture. Consider a Gelfand-Tsetlin triangle
as below and the highlighted entries a, b, c, d, e, f, g: the first one is the upper right corner, the
second one is below on the right most SW-NE diagonal, the next one is just one step to the
NW, the next is below on the second rightmost SW-NE diagonal, etc. The quantity to evaluate
in equation (3.1) is a− b+ c− d+ e− f + g, the sum of the local maxima minus the sum of the
local minima of the zigzag path thus created. In order that the triangle be a GOGAm triangle,
this quantity has to be at most k where k is the index of the SW-NE diagonal of the last entry
of the path (numbering them from the left), which is 5 in our example.
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∗
∗
∗

g

f

∗
∗

∗
∗
∗
∗
∗
∗

∗ ∗ ∗ c ∗
∗ e ∗ b

∗ d ∗
∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ a

One can define the αGOGAm and βGOGAm statistics by

αGOGAm(X) = αMagog(S(X)), βGOGAm(X) = βMagog(S(X)).

It follows from well-known properties of the Schützenberger involution, recalled in section 3.3.1,
that

αGOGAm(X) = αGog(X) = X1,1.

As with Gog and Magog we can define GOGAm trapezoids by taking diagonals on the right,
and we can embed them into GOGAm triangles by adding a triangle of 1’s on the upper left.
This is compatible with the embedding of Magog trapezoids into Magog triangles: if a Magog
triangle is obtained from a Magog trapezoid as in

2 3

2 3

1 2

1 2

1

111

11

1

then the triangle of 1’s on the upper left of the Magog trapezoid remains invariant when
applying the Schützenberger involution, therefore we obtain a GOGAm triangle which comes
from a GOGAm trapezoid.

4. Pentagons

We now introduce the main object of our paper.

Definition 4.1. For positive integers k, l,m, n, satisfying

max(k, l,m) 6 n max(k, l) 6 m 6 k + l − 1

a (k, l,m, n) Gog (resp. GOGAm) pentagon is an array of positive integers X = (Xi,j) with
min(m, k + j − 1) > i > j > 1; l > j, extracted from a Gog (resp. GOGAm) triangle of size n.

In other words, a (n, k, l,m) pentagon is obtained by keeping the intersection of the k right
most SW-NE diagonals, the l leftmost SE-NW diagonals, and the m bottom lines of a triangle
of size n. For example, the following is a (4, 5, 6, 7) Gog pentagon.
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2

3

4

4

3

3

5

5

4 5 6

5 6 7

5 6

6

k = 4

l = 5

m = 6

It can be extracted from the following Gog triangle of size 7:

1

1

1

2

3

4

4

2

2

3

3

5

5

3 4 5 6 7

4 5 6 7

5 6 7

5 6

6

Note that, when l = m = n, a Gog or GOGAm pentagon is actually a trapezoid.

4.1. Completion of GOGAm pentagons. Given a (k, l,m, n) pentagon, the smallest Gelfand-
Tsetlin triangle of size n containing it is obtained by completing each SW-NE diagonal of X
with the maximal value of this diagonal in order to obtain a trapezoid, then adding a triangle
of 1’s to the upper left of this trapezoid, see below a (4, 4, 5, 7) GOGAm pentagon and the
smallest Gelfand-Tsetlin triangle containing it:

1

1

1

1

1

1

2

1

1

1

1

2

3

1 1 2 3 5

1 2 3 5

2 3 5

2 5

3

The following remark will be useful in order to check whether a pentagon is a GOGAm
pentagon.

Proposition 4.2. Let X be a (k, l,m, n) GOGAm pentagon then the smallest Gelfand-Tsetlin
triangle of size n containing X is a GOGAm triangle.

Proof. The proof relies on the following lemma.

Lemma 4.3. Let X be a GOGAm triangle of size n.

(1) If one replaces all entries of X in some upper left triangle by 1’s, the resulting triangle
is still a GOGAm triangle.

(2) Let n > m > k > 1. Assume that X is constant on each partial SW-NE diagonal of
the form (Xi+l,k+l;n− i > l > 0) for i > m+ 1, then the triangle obtained from X by
replacing the entries (Xm+l,k+l;n−m > l > 1) by Xm,k is a GOGAm triangle.



PENTAGONS 11

Proof. It is easily seen that the above replacements give a Gelfand-Tsetlin triangle. The claim
now follow by inspection of the formula (3.1), which shows that, upon making the above re-
placements, the quantity on the left cannot increase. �

End of proof of Proposition 4.2. Let X be a (k, l,m, n) GOGAm pentagon and let Y be a
GOGAm triangle of size n containing X. One can replace the entries of the n − k leftmost
SW-NE diagonals of Y to the left by 1’s and get a GOGAm triangle. Then one can replace
successively the SW-NE partial diagonals as in the Lemma above. The resulting GOGAm
triangle is the smallest Gelfand-Tsetlin triangle containing X. �

4.2. The main conjecture.

Conjecture 4.4. For all k, l,m, n, x the numbers of (k, l,m, n) Gog and GOGAm pentagons
with bottom entry equal to x are equal.

4.3. Numerical verifications. We have verified the conjecture 4.4 for all values of the pa-
rameters n, k, l,m, x at most 7. We have also investigated larger values of the parameter n for
pentagons with k or l = 3. As a small sample of the numerical values obtained, we have verified
that the numbers of Gog and GOGAm pentagons of shape (5, 4, 7, 7) are given, according to
the value of the bottom entry x, by

x 1 2 3 4 5 6 7
4862 17488 32839 40903 35699 20920 6578

while the numbers of Gog and GOGAm pentagons of shape (5, 3, 6, 9) are given by

x 1 2 3 4 5 6 7 8 9
22402 98264 239686 419076 570857 620188 528820 330255 120763

5. Some results

5.1. Trapezoids.

Theorem 5.1 (Zeilberger [12]). For all k 6 n, the (n, k) Gog and Magog trapezoids are equienu-
merated.

Composing by the Schützenberger involution yields that, for all k 6 n, the (n, k) Gog and
GOGAm trapezoids are equienumerated. In [4] a bijective proof of this last fact is given for
(n, 1) and (n, 2) trapezoids. Moreover our bijection preserves the statistic α (the value of the
bottom entry). As far as we know, apart from this case it is not known whether the statistic α
is equienumerated on Gog and Magog trapezoids with k < n. It seems also that our bijection
has the virtue of preserving the statistic β. We have verified this on a number of examples,
but we do not have a proof of this fact. Also it is possible to embed (2, l,m, n) pentagons
into triangles of size n so that our bijection restrict to a bijection between (2, l,m, n) Gog and
GOGAm pentagons (the embedding consists simply in completing the pentagons in the minimal
way). Details of this claim are not difficult to check but rather cumbersome to write down so
we omit them here.

Remark 5.2. Some related conjectures have been formulated by Krattenthaler [8]

5.2. Inversions and standard procedure. We will now describe a bijective approach to the
problem which yields some partial results. For this we need a few preliminaries.
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5.2.1. Inversions.

Definition 5.3. An inversion in a Gelfand-Tsetlin triangle X is a pair (i, j) such that Xi,j =
Xi+1,j.

For example the following Gog triangle contains three inversions, (2, 2), (3, 1), (4, 1), the
respective equalities being depicted on the picture:

1 2 3 4 5

1 3 4 5

1 4 5

2 4

3

The name inversion comes from the fact that, for a Gog triangle corresponding to an alter-
nating sign matrix which is a permutation σ, its inversions are in one to one correspondance
with the inversions of the permutation σ.

Definition 5.4. Let X = (Xi,j)n>i>j>1 be a Gog triangle and let (k, l) be an inversion of X,
we say that this inversion covers the entry (i, j) if i = k + p and j = l + p for some p with
1 6 p 6 n− k.

The entries (i, j) covered by an inversion are depicted with ” + ” on the following picture.

• • • + •
• • + •
• • •
• •
•

5.2.2. Standard procedure. The basic idea for our bijection is that, for any inversion in the
Gog triangle, we should subtract 1 from the entries covered by this inversion, scanning the
inversions along the successive NW-SE diagonals, starting from the rightmost diagonal, and
scanning each diagonals from NW to SE. We call this the standard procedure. If the successive
triangles obtained after each of these steps are Gelfand-Tsetlin triangles, then we say that the
initial triangle is admissible.

Below is an admissible Gog triangle with three inversions.

1 2 3 4

1 3 4

1 3

2

Applying the standard procedure in three steps we obtain respectively

1 2 3 3

1 3 3

1 3

2

1 1 3 3

1 3 3

1 3

2

1 1 2 3

1 2 3

1 3

2

One can check that the result is a GOGAm triangle. More generally one has:
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Proposition 5.5. Let X be an admissible Gog triangle of size n, then the triangle obtained by
applying the standard procedure to X is a GOGAm triangle of size n.

Proof. Let us denote by Y the triangle obtained from X by the standard procedure. One has
Yi,j = Xi,j − ci,j where ci,j > 0 is the number of inversions which are covered by (i, j). Note
that this number weakly increases along SW-NE diagonals: ci+1,j+1 > ci,j .

We have to prove that for all n = j0 > j1 > j2 . . . > jn−k > 1, one has(
n−k−1∑
i=0

Yji+i,ji − Yji+1+i,ji+1

)
+ Yjn−k+n−k,jn−k

6 k

Let us rewrite the sum on the left hand side as

S = Xn,n − cn,n −
n−k∑
i=1

(Xji+i−1,ji − cji+i−1,ji −Xji+i,ji + cji+i,ji)

= Xn,n −

[
n−k∑
i=1

(Xji+i−1,ji −Xji+i,ji) + (cji−1+i−1,ji−1 − cji+i−1,ji)

]
− cjn−k+n−k,jn−k

.

One has Xn,n = n, furthermore, for each i one has either

Xji+i−1,ji −Xji+i,ji > 1

or

Xji+i−1,ji = Xji+i,ji

in which case (ji + i− 1, ji) is an inversion, therefore

cji−1+i−1,ji−1
− cji+i−1,ji > 1.

It follows that for each term in the sum

(Xji+i−1,ji −Xji+i,ji) + (cji−1+i−1,ji−1
− cji+i−1,ji) > 1

therefore

S 6 n− (n− k)− cjn−k+n−k,jn−k
6 k.

�

For admissible triangles the standard procedure is invertible, meaning that the triangle can
recovered uniquely from its associated GOGAm triangle. Indeed it suffices for that to scan the
inversions of the GOGAm triangle in the reverse order and to add one to the entries covered by
each inversion, in order to recover the original admissible triangle. We will call admissible the
GOGAm triangles for which the inverse of the standard procedure works. Thus the previous
proposition asserts that the standard procedure is a bijection between admissible Gog and
GOGAm triangles.

The following property is not difficult to check, we leave it as an exercise to the reader.

Proposition 5.6. The Gog triangles corresponding to permutation matrices, in the correspon-
dance between alternating sign matrices and Gog triangles, are all admissible.

This yields a bijection between Gog triangles corresponding to permutations matrices and a
subset of the GOGAm triangles (or of the Magog triangles by applying Schützenberger involu-
tion). A bijection between permutation matrices and a subset of the Magog triangles has also
been proposed by J. Striker [11], however it is not the same as the one obtained here.
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5.2.3. Triangles of size 2, 3 and 4. All Gog triangles of size 2 or 3 are admissible and the
standard procedure then gives a bijection between Gog and GOGAm triangles of this size.
Moreover, this bijection preserves the statistics α and β, more precisely, if ω denotes this
bijection then, for any Gog triangle X, one has αGog(X) = αGOGAm(ω(X)) and βGog(X) =
βGOGAm(ω(X)). For n = 3 the bijection is described in the following table, where we have also
shown the corresponding Magog triangles, as well as the value of the two statistics α and β.

Gog GOGAm Magog (α, β)

1 2 3
1 2

1

1 1 1
1 1

1

1 1 1
1 1

1
(1, 1)

1 2 3
1 2

2

1 1 2
1 2

2

1 1 2
1 1

1
(2, 1)

1 2 3
1 3

1

1 1 2
1 2

1

1 1 2
1 2

1
(1, 2)

1 2 3
1 3

2

1 1 3
1 3

2

1 1 3
1 2

1
(2, 2)

1 2 3
1 3

3

1 1 3
1 3

3

1 1 3
1 1

1
(3, 3)

1 2 3
2 3

2

1 2 2
2 2

2

1 2 2
1 2

1
(2, 2)

1 2 3
2 3

3

1 2 3
2 3

3

1 2 3
1 2

1
(3, 3)

There are 42 Gog triangles of size 4, among which 41 are admissible. The only non admissible
Gog triangle is

1 2 3 4
1 3 4

2 3
2

One thus obtain a bijection between Gog and GOGAm triangles of size 4, in which this last
triangle is mapped to the only non admissible GOGAm triangle which is

1 1 2 2
1 2 2

1 2
2

One can check that, again, the two statistics α and β are preserved by this bijection.

5.3. The (3, 3, 3, n) pentagons. The (3, 3, 3, n) Gog or GOGAm pentagons are Gelfand-Tsetlin
triangles composed of positive integers, of the form:



PENTAGONS 15

a d f

b e

c

In order that such a Gelfand-Tsetlin triangle be a (3, 3, 3, n) Gog pentagon, it is necessary
and sufficient that:

a < d < f ; b < e, f 6 n.

For GOGAm pentagons the conditions are:

f 6 n; f − e+ d 6 n− 1; f − c+ b 6 n− 1; f − e+ d− b+ a 6 n− 2.

We will now describe the bijection from Gog to GOGAm by decomposing the set of Gog
pentagons according to the inversion pattern. In the left column we put the different Gog
pentagons, on the right the corresponding GOGAm pentagons. There are three possible places
for inversions, hence 23 = 8 cases to consider. In 7 of these cases, the triangle is admissible,
and we apply the standard procedure. There is only one case where this procedure does not
apply.

Verifying that this table gives a bijection between Gog and GOGAm pentagons of this form
is straightforward, but tedious, so we leave this task to the interested reader.

Gog GOGAm

a d f
b e

c

a d f
b e

c

a d f
b d

c

a d f-1
b d

c

a d f
a e

c

a d-1 f
a e

c

a d f
b e

b

a d f-1
b e-1

b

Gog GOGAm

a d f
b d

b

a d-1 f-2
a d-1

b

a d f
a d

c

a d-1 f-1
a d

c

a d f
a e

a

a d-1 f-1
a e-1

a

a d f
a d

a

a d-1 f-2
a d-1

a

5.4. Pentagons with l = 1. The sets of (k, 1,m, n) Gog and GOGAm pentagons actually
both coincide with the set of nondecreasing sequences Xn,1 6 . . . 6 X1,1 satisfying

Xj,1 6 n− j + 1

(note that these sets are counted by Catalan numbers). Therefore the identity map provides a
trivial bijection between these two sets. Clearly the α statistic is preserved.

5.5. Pentagons with l = 2. Using the completion of a pentagon, one sees that the family of
inequalities (3.1) simplifies in the case of (n, 2, n, n) GOGAm pentagons and they reduce to

Xi,2 6 n− i+ 2(5.1)

Xi,2 −Xi−1,1 +Xi,1 6 n− i+ 1(5.2)
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Remark that, since −Xi−1,1+Xi,1 6 0, the inequality (5.2) follows from (5.1) unless Xi−1,1 =
Xi,1. We will now describe a bijection between Gog and GOGAm (n, 2, n, n) pentagons. One
can embed the (k, 2,m, n) pentagons inside (n, 2, n, n) pentagons by completing them in the
minimal way. One can check that the bijection that we will produce maps (k, 2,m, n) Gog
pentagons to (k, 2,m, n) GOGAm pentagons and gives a bijection between these subsets. We
leave this verification to the interested reader.

5.5.1. From Gog to GOGAm. Let X be a (n, 2, n, n) Gog pentagon. We shall construct a
(n, 2, n, n) GOGAm pentagon Y by scanning the inversions in the leftmost NW-SE diagonal
of X, starting from NW. Let us denote by n > i1 > . . . > ik > 1 these inversions, so that
Xi,1 = Xi+1,1 if and only if i ∈ {i1, . . . , ik}. We also put i0 = n. We will construct a sequence

of pentagons of the same shape Y (0) = X,Y (1), Y (2), . . . , Y (k) = Y .
Let us assume that we have constructed the trapezoids up to Y (l), that Y (l) 6 X, that

Y
(l)
ij = Xij for i 6 il, and that inequalities (5.1) and (5.2) are satisfied by Y (l) for i > il + 1.

This is the case for l = 0.
Let m be the largest integer such that Y

(l)
m,2 = Y

(l)
il+1+1,2. We put

Y
(l+1)
i,1 = Y

(l)
i,1 for n > i > m and il+1 > i

Y
(l+1)
i,1 = Y

(l)
i+1,1 for m− 1 > i > il+1

Y
(l+1)
i,2 = Y

(l)
i,2 for n > i > m+ 1 and il+1 > i

Y
(l+1)
i,2 = Y

(l)
i,2 − 1 for m > i > il+1 + 1.

From the definition of m, and the fact that X is a (n, 2, n, n) Gog pentagon, we see that this

new triangle is a Gelfand-Tsetlin triangle, that Y (l+1) 6 X, and that Y
(l+1)
ij = Xij for i 6 il+1.

Let us now check that Y (l+1) satisfies the inequalities (5.1) and (5.2) for i > il+1 + 1. The first
series of inequalities, for i > il+1 + 1, follow from the fact that Y (l) 6 X. For the second series,
they are satisfied for i > m + 1 since this is the case for Y (l). For m > i > il+1 + 1, observe
that

Y
(l+1)
i,2 − Y (l+1)

i+1,1 + Y
(l+1)
i+1,1 6 Y

(l+1)
i,2 = Y

(l+1)
m,2 = Y

(k)
m,2 − 1 6 n−m+ 1

by (5.1) for Y (l), from which (5.2) follows.
This proves that Y (l+1) again satisfies the induction hypothesis. Finally Y = Y (k) is a

(n, 2, n, n) GOGAm pentagon: indeed inequalities (5.1) follow again from Y (l+1) 6 X, and
(5.2) for i 6 ik follow from the fact that there are no inversions in this range. It follows that
the above algorithm provides a map from (n, 2, n, n) Gog pentagons to (n, 2, n, n) GOGAm
pentagons. Also, in this map, the α statistic is preserved.

5.5.2. Inverse map. We now describe the inverse map, from GOGAm to Gog pentagons.
We start from an (n, 2) GOGAm pentagon Y , and construct a sequence

Y = Y (k), Y (k−1), Y (k−2), . . . , Y (0) = X

of intermediate Gelfand-Tsetlin trapezoids.
Let n − 1 > ι1 > ι2 . . . > ιk > 1 be the inversions of the leftmost diagonal of Y , and let

ιk+1 = 0. Assume that Y (l) has been constructed and that Y
(l)
ij = Yij for i− j > ιl+1. This is

the case for l = k.



PENTAGONS 17

Let p be the smallest integer such thatinversion Y
(l)
il+1,2 = Y

(l)
p,2 . We put

Y
(l−1)
i,1 = Y

(l)
i,1 for n > i > ιl + 1 and p > i

Y
(l−1)
i,1 = Y

(l)
i−1,1 for ιl > i > p

Y
(l−1)
i,2 = Y

(l)
i,2 for n > i > ιl + 2 and p− 1 > i

Y
(l−1)
i,2 = X

(l)
i,2 − 1 for ιl + 1 > i > p.

It is immediate to check that if X is an (n, 2, n, n) Gog pentagon, and Y is its image by
the first algorithm then the above algorithm applied to Y yields X back, actually the sequence
Y (l) is the same. Therefore in order to prove the bijection we only need to show that if Y is a
GOGAm pentagon then the algorithm is well defined and X is a Gog pentagon. This is a bit
cumbersome, but not difficult and very similar to the opposite case, so we leave this task to the
reader.

5.6. An example. In this section we work out an example of the algorithm from the Gog
pentagon X to the GOGAm pentagon Y by showing the successive pentagons Y (k). At each
step we indicate the inversion, as well as the entry covered by this inversion, and the values of
the parameters il, p. The algorithm also runs backwards to yield the GOGAm→Gog bijection.

1

1

1

2

3

3

3

2

2

4

4

4

4

X = Y (0)

i1 = 6

m = 7

1

1

1

2

3

3

3

1

2

4

4

4

4

Y (1)

i2 = 5

m = 6

1

1

1

2

3

3

3

1

1

4

4

4

4

Y (2)

i3 = 2

m = 5
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1

1

1

1

2

3

3

1

1

3

3

3

4

Y (3)

i4 = 1

m = 2

1

1

1

1

2

3

3

1

1

3

3

3

3

Y (4) = Y
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