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Abstract. In this paper, we construct a continuous-in-time model which is designed to be used for the
finances of public institutions. This model is based on using measures over time interval to describe loan
scheme, reimbursement scheme and interest payment scheme; and, on using mathematical operators to
describe links existing between those quantities. The consistency of the model with respect to the real
world is illustrated using examples and its mathematical consistency is checked. Then the model is used
on simplified examples in order to show its capability to be used to forecast consequences of a decision
or to set out a financial strategy.
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1 Introduction
For the time being, a discrete model of financial multiyear planning has been being used by the

company MGDIS1. This model allows to set out annual and multiyear budgets for any organization and,
in particular, for local communities. It has also been being marketed by MGDIS in the context of the
local community finances.

∗This work is jointly funded by MGDIS company (http://www.mgdis.fr/) and the LMBA (http://www.lmba-math.fr/).
1http://www.mgdis.fr/

1

http://www.mgdis.fr/
http://www.lmba-math.fr/
http://www.mgdis.fr/
http://www.mgdis.fr/


This model uses tables and generates outcomes in the form of tables. Each value in the tables is a
synthetic value of a given quantity over a given period of time.

The implementation of the model to provide answers to a question consists first in setting the whole
time period of interest associated with the question. Then, it consists in defining the periods of time and
the quantities under consideration. A table is filled with every known (or forecasted) quantity associated
with every period of time. The model allows to compute the quantities that are consequences of the
known ones on the first period of time. Then, knowing the values of all quantities under consideration on
the first period, the model allows to compute – on the second period of time – the values of the quantities
that are consequences of the quantities on the first period of time and of the known quantities on this
second period of time. And finally, the process goes on to compute the values of all quantities on the
third period, on the fourth one, etc.

This way to proceed gives good results, works well and software tools implementing it help organiza-
tions to foresee the consequences of their decisions and to elaborate their strategies.
Nevertheless it has drawbacks. The first one is related to the fact that the definition of the periods of
time at stake is done at the beginning of the process. Consequently, in the case when an implementation
of the model is done using given periods of time and when the same model is needed, but with other
periods of time, all the process needs to be redone starting from the ground. As this is expensive, this is
commonly not done. And in practice, only one model, with one set of periods of time, is implemented.
The second drawback is linked with the using of tables itself. This imposes to compute the quantities
on the first period of time before computing them on the second one etc. Hence, this makes the model
hard to be used within an automatic strategy elaboration tool that needs to manage constrains and goals
several years ahead.

A way to overcome those drawbacks consists in designing models of a new kind which are continuous-
in-time, which involve mathematical objects like measures and densities and which use mathematical
operators like derivation, integration and convolution.
As those models are continuous-in-time (see Merton [9] and Sundaresan [10]), the question of the periods
of time is not an issue while implementing the model. They can of course be introduced once all the
measures are computed. In particular, the outcomes of the model can be reported on any set of periods
of time without reimplementing it.
On another hand, as it manages measures, that are defined on the whole time period of interest, using
operators that link them, the issue of computing things on a given year before computing things on
the next year etc. is avoided. Then the question of establishing strategies may be expressed as a
problem of optimization under constraints involving a fitness (see Hanselmann, Schrempf & Hanebeck
[7]), mathematical operators and (if they exist) their inverses.

Setting out first models of that kind is the aim of the present paper. This is done with the con-
straint that the discrete model of financial multiyear planning can be interpreted as particular case of
the continuous-in-time models built in the present paper. This is important in order to reuse works that
were previously led using the discrete model in the new framework.

We refer to Frénod & Safa [2, 4, 3], which improve one of the continuous-in-time financial models
built in the present paper incorporating in it elements of control theory in order to determine the optimal
loan scheme that achieves desired goals and that satisfies imposed constraints.

The paper is organized as follows. In section 2, we introduce the models. There are the ”financial
model with constant rate”, the ”model with variable rate” (which is a simple evolution of the former
one). There is also the ”financial model with constant rate set at instants of borrowing” which needs
a non-direct improvement of the financial model with constant rate. The mathematical consistency of
the models is analyzed and the way to interpret them is explained. In section 5, the models are used on
simplified problems in order to show how they can be used.
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2 Financial model with constant rate
2.1 Mathematical material

In this section, we build the financial model which we will work with hereafter. This model is based
on the use of measures. We will take as definition of measures the Radon measure slant that consists
in saying that a measure on a close, bounded and non-empty interval [tI,Θmax] ⊂ R is a continuous
and linear form acting on space Coc ([tI,Θmax]) of continuous functions defined over [tI,Θmax]. It is well
known that the usual norm on Coc ([tI,Θmax]) is:

‖ψ‖L∞([tI,Θmax]) = sup
t∈[tI,Θmax]

{
|ψ(t)|

}
, (1)

and that the set of Radon measures M([tI,Θmax]) is a Banach space when provided with norm:

‖µ‖M((tI,Θmax)) = sup
ψ∈Coc ([tI,Θmax]),ψ 6=0

{
〈µ, ψ〉

‖ψ‖L∞([tI,Θmax])

}
. (2)

As we will use the convolution and Fourier Transform which are operators acting on measures over R,
we will also consider that M([tI,Θmax]) is the set of Radon Measures over R, supported in [tI,Θmax].

Among M([tI,Θmax]), some measures are absolutely continuous with respect to the Lebesgue mea-
sure dt. This means that they read ρ(t)dt, where t is the variable in R. From the application point of
view, the density ρ(t) of such a measure can be interpreted as a time density (time density of borrowed
amount linked with a loan, time density of repayment, etc.). In the sequel, we will call those kinds of
measures ”density measures”. Other measures, for instance Dirac masses δt=t1 are concentrated. They
can be interpreted as localized actions or payment etc.

Before explaining the quantities that are involved in the models and the relations between them, we
introduce Tmin which is the time scale below which nothing coming from the model will be observed. To
be more precise, we say that a measure m̃ is observed over time interval [t1, t2] if∫ t2

t1

m̃, (3)

is computed. And, we will always, choose times t1 and t2 such that t2 − t1 > Tmin.

2.2 Model building
In what follows, [tI,Θmax] stands for a time interval over which things happen.
The first quantity is the Loan Measure κ̃E . It is defined such that the amount borrowed between

times t1 and t2 is: ∫ t2

t1

κ̃E . (4)

It is related to the Total Borrowed Amount of the loan: Kmax by the following expression:∫ +∞

−∞
κ̃E = Kmax . (5)

The second one is the Capital Repayment Measure ρ̃K. It gives the scheme according to which the
capital is repaid and it is defined such that the amount of capital which is repaid between t1 and t2 is:∫ t2

t1

ρ̃K. (6)

Loan Measure κ̃E and Capital Repayment Measure ρ̃K are both supposed to be in M([tI,Θmax]) and
are connected by a convolution operator:

ρ̃K = κ̃E ? γ̃, (7)
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where the Repayment Pattern γ̃ is a non-negative measure with total mass which equals 1, i.e:∫ +∞

−∞
γ̃ = 1, (8)

which support is included in [0,Θmax − tI] and which is such that the support of κ̃E ? γ̃ is included in
[tI,Θmax]. The Repayment Pattern expresses the way an amount 1 borrowed at t = 0 is repaid.
Notice that if κ̃E = κE(t)dt and γ̃ = γ(t)dt are density measures, then so is ρ̃K, i.e ρ̃K = ρK(t)dt and:

ρK(t) = (κE ? γ)(t) =
∫ +∞

−∞
κE(s)γ(t− s) ds. (9)

Loan Density κE and Repayment Density ρK are time densities. Since the amounts are expressed in
monetary unit, the unit of those densities is monetary unit over time. Then, since the dimension of dt is
time, κE(t)dt and ρK(t)dt have the dimension of a monetary amount. By the way, because of its defini-
tion the dimension of density γ(t) is the inverse of a time yielding γ(t)dt has no dimension. This makes
that formula (9) is homogeneous with regard to dimension issues. In the case when the measures are
not density measures, then κ̃E and ρ̃K have the dimension of monetary amount and γ̃ has no dimension.
Thus, formula (7) is also consistent.

In order to illustrate formula (7) (or (9)), in Figure 1, we draw examples of κ̃E , γ̃ and ρ̃K. The
picture at the top left of Figure 1 shows three measures that are density measures. The function at the
top is Density γ and the one in the middle is Density κE . The result of the convolution, which definition
here is given by (9) is drawn at the bottom. The result of the action of γ on κE via the convolution is a
shift toward right and an enlargement of the support.
The picture at the top right shows the action of Repayment Pattern γ (which is a density measure) on
a Loan Measure which is the Dirac mass δt= 1

4
. We see that the result is a function which is a shift of

1
4 of γ toward the right. This illustrates that the Repayment Pattern gives the way that an amount 1
borrowed at time 0 is repaid. Indeed, in the present situation the considered Loan Measure means that
an amount 1 is borrowed at time t = 1

4 . Hence, Repayment Density ρK is the repayment density which
is generated by an amount 1 borrowed at t = 0 shifted of 1

4 .
The picture at the bottom left represents the convolution of Repayment Pattern which is the Dirac mass
δt= 1

4
and density measure of Loan Density κE . The result is a function which is a shift of κE of 1

4 . Here,
Repayment Measure ρ̃K is a density measure. We notice the results of pictures in the top right and the
bottom left are the same. This results from convolution property.
The picture at the bottom right shows the action of γ̃ which is Dirac mass δt= 1

4
on a sum of two Dirac

(δt= 1
4

+ δt= 1
2
). This convolution result is not density measure, it is κ̃E translated of 1

4 which is the time
at which the Repayment Pattern is concentrated.

The third quantity involved in the model is the Current Debt Field KRD. It is a function that, at
any time t, gives the capital amount still to be repaid. The fourth one is the Interest Payment Measure
ρ̃I . It is related to the Current Debt Field by a proportionality relation. This induces that ρ̃I = ρI(t)dt
is always a density measure and that ρI(t) is linked with KRD by:

ρI(t) = αKRD(t), (10)

where, α is the loan rate, it is the inverse of a time (see Remark 2.1). Relation (10) is dimensionally
homogeneous. Indeed, it relates Interest Payment Density ρI , which dimension is the one of monetary
amount over time, to field KRD expressed in monetary unit by the multiplication by α which unit is the
inverse of a time.

There are also other measures which are used in this model such as ρ̃I
K, σ̃, β̃, σ̃g. They are defined

as follows. Measure ρ̃I
K is the Initial Debt Repayment Plan. It expresses how current debt amount at

the initial instant will be repaid. It is a repayment scheme and it satisfies:∫ +∞

tI

ρ̃I
K = KRD(tI), (11)
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where KRD(tI) is the known Current Debt at initial time tI.
Algebraic Spending Measure σ̃ is defined such that the difference between spendings and incomes required
to satisfy the current needs between times t1 and t2 is:∫ t2

t1

σ̃. (12)

Measure of Isolated Spending β̃ is related to the notion of project. We consider that, in the budget,
some spendings can be gathered because they all contribute to a common goal. We call this gathering
a project and β̃ is the Spending Scheme associated to the project. The last considered measure is the
Current Spending σ̃g. It is the Scheme associated to spendings which are not related to the project and
it is defined as:

σ̃g = σ̃ − β̃. (13)

In order to balance the budget in terms of incomes and spendings, the budget balance rules obligate
Loan Measure κ̃E to be equal to Measure of Algebraic Spending σ̃ added to measures associated with
quantities that have to be repaid or paid. This is expressed by the following equality:

κ̃E = σ̃ + ρ̃K + ρ̃I
K + ρ̃I . (14)

According to (13) and (14), the dimension of the following measures ρ̃I
K, σ̃, β̃, σ̃g is the one of a monetary

amount.
Remark 2.1. Rate α can be written in terms of the usual rate of the loan τ . In fact, τ is determined such
that, if the Current Debt KRD remains the same and equals a constant K over the period [t1, t1 + 1year],∫ t1+1year

t1

ρ̃I = τK, (15)

which means that the interest paid over the year is equal to τK. In this case, ρI(t) = αK and then
relation ρI(t) = αKRD(t) becomes:

(1year)αK = τK. (16)

So:

α = τ

(1year) . (17)

It is important to notice that τ has no dimension (as it links variables that express both in monetary
units). The variable α is a quantity that is dimensionless divided by a time. It has the dimension of an
inverse of time.

The Current Debt Field KRD is related to Loan Measure κ̃E and Repayment Measure ρ̃K by the
following Ordinary Differential Equation:

dKRD
dt

= κE(t)− ρK(t)− ρI
K(t). (18)

The solution of this ODE is expressed:

KRD(t) = KRD(tI) +
∫ t

tI

κ̃E −
∫ t

tI

ρ̃K −
∫ t

tI

ρ̃I
K =

∫ t

tI

κ̃E −
∫ t

tI

ρ̃K +
∫ +∞

t

ρ̃I
K. (19)

Using expression (7) of Repayment Measure ρ̃K and expression (10), the Interest Payment Density
ρI can be expressed in terms of Loan Measure κ̃E :

ρI(t) = α

∫ t

tI

κ̃E − α
∫ t

tI

κ̃E ? γ̃ + α

∫ +∞

t

ρ̃I
K. (20)
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Figure 1: In each of the four pictures, γ̃ is represented at the top, κ̃E in the middle and ρ̃K = κ̃E ?γ̃ at the
bottom. (When the considered measure is a density measure, its density is drawn. When it undergoes
concentrations, bars located at the concentration positions, with hight the amount which is concentrated
at each location, are drawn).

2.3 Justifications and properties
We will justify, in this section, the convolution relation (see (7) or (9)), that links Repayment Measure

ρ̃K with Loan Measure κ̃E . We will adopt both mathematical and financial point of view.

The picture at the top left of Figure 2 shows the action of Repayment Pattern γ̃ which is a combi-
nation of seven Dirac masses (three Dirac masses have the same mass 5

19 at different times 0.3, 0.4, 0.5,
the other four Dirac masses have the same mass 1

19 at times 0.25, 0.35, 0.45, 0.55, see top diagram) on
Dirac mass located in 0.1 with mass equal to 20 (see middle diagram). This convolution result is not a
density measure, it is 20× γ̃ translated of 0.1 (see bottom diagram).
This simulation can be interpreted from the financial slant as follows. The middle diagram means the
Loan amount is borrowed at once at time 0.1. The measure drawn in the bottom diagram is computed us-
ing formula (7), it means that the total repayment is made of amount 100

19 at times 0.4, 0.5, 0.6 and amount
20
19 at times 0.35, 0.45, 0.55, 0.65. Thus, the total repayment amount is equal to 300+80

19 = 380
19 = 20,

meaning that it equals the amount borrowed at time 0.1. This diagram represents well the Repayment
Plan associated with localized loan which is represented by the middle diagram according to the Repay-
ment Pattern γ̃ shown in the top diagram. This example illustrates that formula (7) models correctly
the way to compute the Repayment Scheme from the loan.
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The picture at the top right of Figure 2 represents the convolution of Repayment Pattern γ̃ which is
the same as previously and Loan Measure κ̃E = 20δt=0.1 + 10δt=0.17 (see middle diagram). The result
(see bottom diagram) is the superposition of two measures, the first measure is the one of the bottom
diagram at the top left picture, and the second measure is this same one shifted of 0.07 and divided in
half.
The meaning of this simulation can be given as follows. The middle diagram means that the loan is
shared into two pieces, the first one consists in borrowing 20 at time 0.1 and the second one consists in
borrowing 10 at time 0.17. The bottom diagram represents the result of formula (7). The total repay-
ment is constitued by two repayments. The first repayment is associated with the first piece and is done
according to the Repayment Pattern γ̃. The second repayment is associated with the second piece. The
total repayment of the first piece is shown at the top left picture in the bottom diagram. The repayment
associated with the second piece is made of amount 50

19 at times 0.47, 0.57, 0.67, and of amount 10
19 at

times 0.42, 0.52, 0.62, 0.72. The total repayment is well the combination of these two repayments, which
is equal to the following amount: 20 + (3× 50

19 ) + (4× 10
19 ) = 30. We can also conclude with this example

that formula (7) is pertinent.

The picture at the bottom left of Figure 2 shows the action of Repayment Pattern γ̃, which is the
same as the previous one, on Loan Measure κ̃E which is a combination of five Dirac masses (two Dirac
masses have the same mass 20 at times 0.1 and 0.17, three Dirac masses have the same mass 10 at times
0.07, 0.13 and 0.2, see middle diagram). This convolution result is the combination of two measures.
The first measure is the sum of 20× γ̃ which is translated of 0.1 and 20× γ̃ which is translated of 0.17.
The second measure is the sum of the same quantity 10 × γ̃ which are translated respectively of 0.07,
0.13 and 0.2.
The meaning of this simulation is the following. The middle diagram means that the loan is shared into
five pieces, two pieces consist in borrowing 20 at times 0.1 and 0.17 and the other three pieces consist
in borrowing 10 at times 0.07, 0.13 and 0.2. The total repayment is the sum of five repayments. Each
repayment is associated with one piece and is done according to the Repayment Pattern γ̃. The total
repayment can be computed as previously as the combination of these five repayments. The bottom
diagram represents the result of formula (7) which models correctly the way to compute the Repayment
Plan from the loans.

The bottom right picture in this same Figure 2 shows three density measures. The function in the
top diagram is Density γ and the one in the middle diagram is Density κE . They are such that γdt and
κEdt are respectively close to Repayment Pattern Measure γ̃ and to Loan Measure κ̃E of the bottom
left picture. The result of the convolution is drawn in the bottom diagram. It is Repayment Density ρK
and it is such that ρKdt is close to ρ̃K of the bottom diagram in the bottom left picture.

This illustrates that, if a Repayment Pattern Density γ and a Loan Density κE are respectively
idealizations of Repayment Pattern Measure γ̃ and Loan Measure κ̃E , then Repayment Density ρK given
by (9) is an idealization of Repayment Measure ρ̃K given by (7).

To express this in more mathematical terms, we notice that for any measures κ̃E1, κ̃E2 in M([tI,
Θmax]) and γ̃1, γ̃2 in M([0,Θmax]) such that κ̃E2 ? γ̃2 and κ̃E1 ? γ̃1 are in M([tI,Θmax]), we have:

‖κ̃E2 ? γ̃2 − κ̃E1 ? γ̃1‖M([tI,Θmax]) ≤ ‖κ̃E2 − κ̃E1‖M([tI,Θmax])‖γ̃1‖M([0,Θmax])+
‖γ̃2 − γ̃1‖M([0,Θmax])‖κ̃E2‖M([tI,Θmax]). (21)

Using this formula with κ̃E1 and γ̃1, which are respectively the measures in the middle and the top
diagram of the bottom left picture and with κ̃E2 = κE2(t)dt, γ̃2 = γ2(t)dt, where κE2, γ2 are the
densities drawn in the middle and the top diagram of the bottom right picture, we obtain the following
conclusion: measure ρ̃K1 which is the Repayment Plan associated with Loan Measure κ̃E1 and with
Repayment Pattern γ̃1, and, measure ρK2 which is the Repayment Density associated with Loan Density
κE2 and with Repayment Pattern Density γ2 satisfy:

‖ρK2(t)dt− ρ̃K1‖M([tI,Θmax]) ≤ ‖κE2(t)dt− κ̃E1‖M‖γ̃1‖M([0,Θmax])+
‖γ2(t)dt− γ̃1‖M([0,Θmax])‖κE2(t)dt‖M([tI,Θmax]). (22)
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Figure 2: In each of the four pictures, γ̃ is represented at the top, κ̃E in the middle and ρ̃K = κ̃E ? γ̃
at the bottom. These measures are concentrated measures in pictures at the left and in the top right
picture. They are density measures in the bottom right picture.
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This means that if κ̃E1 and κ̃E2 are close and if γ̃1 and γ̃2 are close, then, ρ̃K2 and ρ̃K1 are also close.

We just saw that if any two density measures are respectively close to two concentrated measures,
then, the density measure which is obtained by the convolution of these two density measures is also close
to the concentrated measure which is obtained by the convolution of these two concentrated measures.
This will be the basis that will allow us to prefer using density measures in the models and simulations.
In fact, there are several mathematical and financial reasons for this preference. From the mathematical
point of view, it is clearly easier to handle functions than measures. Indeed, with functions, we can
for instance use the Hilbert nature of L2 spaces, we can call upon functional analysis and numerical
analysis. From the financial point of view, the density approach can bring fuzziness, for instance in front
of uncertainty, that can be welcome.

Loan and Repayment Measures are represented by concentrated measures in the left pictures and
the top right picture of Figure 2. This formalism is consistent with reality. Indeed, in the real world,
amounts are borrowed at fixed times and amounts are also repaid at fixed times. For instance, we
can easily interpret the top left picture of Figure 2 by saying that an amount is borrowed at time 0.1
and repaid in seven times (at times 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65). It is concluded that financial
simulation using concentrated measures gives realistic results.
Loan and Repayment Measures that are represented in the bottom right picture of Figure 2 are density
measures. A direct interpretation of the diagrams of this picture leads that amounts are borrowed
continuously in time and amounts are also repaid continuously in time. This is not in accordance with
the real world.

In order to describe how the simulation in the bottom right picture of Figure 2 is linked with the
simulation of the bottom left picture of this same figure, a Friedrich mollifier is introduced. A Friedrich
mollifier is a regular non-negative even function such that its integral is equal to 1. We take as Friedrich
mollifier a Gaussian function.
The picture at the bottom right represents three diagrams. The one at the top is the density γ of
measure γdt which is the convolution of this Friedrich mollifier with Repayment Pattern Measure γ̃
which is directly on its left (in the bottom left picture). The one in the middle is the density κE of
measure κEdt which is the convolution of this Friedrich mollifier with Loan Measure κ̃E which is directly
on its left. The diagram at the bottom of this figure represents Repayment Density ρK which is related
to γ and κE by equality (9).
Observing the bottom right picture and the bottom left picture of Figure 2 brings the conclusion that
the integral over a large enough interval of Loan Measure κ̃E and Repayment Measure ρ̃K give results
which are respectively close to the integral over the same interval of density measures κEdt and ρKdt. In
other words, if the simulations of the bottom pictures are observed (see (3)) over a large enough interval,
they bring very close conclusions.

This interpretation, calling upon ”model observation”, may justify that we can use density measures
in place of concentrated measures in the models and simulations.

Moreover, the bottom right picture in Figure 2 can be seen as a probabilistic version of the bottom
left picture of Figure 2. This probabilistic approach is related to an approximation, which allows to
replace pertinently a concentrated measure with concentrations that are not deterministically known by
a density measure. Indeed, if for instance, we imagine that the instants where the measure of the bottom
diagram at the bottom left picture is concentrated are not known precisely, then, this measure can be
replaced by the one of the bottom diagram of the bottom right picture.

In order to deepen this probabilistic vision, several references are proposed to the reader. The paper
of Hanselmann, Schrempf & Hanebeck [7] describes a numerical method which is based on optimization
and estimate techniques including this approach. The target of this numerical method is to produce
a good estimate of a density measure which is related only to the information about a concentrated
measure. This built density measure is considered as the right estimator and the optimal approximation
of the considered concentrated measure. Section 3 of [7] is referred for more technical details in the
optimization part.
The paper of Klumpp & Hanebeck [8] proposes an approach which allows the multiplication of two Dirac
measures which is mathematically not defined. The result of this multiplication is approached by density
measure. The numerical iterative method giving this approximation is given in detail in section 5 of this
paper. In this same section, Figures 6, 7 and 8 show the result of this approximation.
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Beside this probabilistic vision, we can introduce a second one which is related to the mean field limit
theory (see Benaim & Le Boudec [1] and Gast, Gaujal & Le Boudec [5]), for instance used in the kinetic
theory of gases (see Golse [6]). The framework of this second vision is when borrower borrows and repays
very often small amounts. It is based on the mathematical approach which describes the behavior of a
concentrated measure when the number of instants at which the measure is concentrated goes to infinity
while the mass at each instant of concentration goes to 0. The framework we consider, brings us to model
loan and repayment by sums of Dirac masses like

∑N
i=1 ω

N
i δt=tNi , where N → +∞ while

∑N
i=1 ω

N
i is

bounded independently of N . In order to avoid concentration of the Dirac mass locations, we also assume
∀[a, b] ⊂ R, Card{i, tNi ∈ [a, b]} to be also bounded by C(b− a)N , where C is a constant independent of
N . Those sums of Dirac masses are then approximated by density measures. In this framework, stability
formula (22) insures that, if this approximation is done for Loan Measure κ̃E1 (approximated by κE2dt)
and for Repayment Pattern γ̃1 (approximated by γ2dt), Repayment Density ρK2 = κE2 ? γ2 is such that
ρK2 approximates well Repayment Measure ρ̃K1 = κ̃E1 ? γ̃1.

3 Mathematical properties of the model
In this section we explore mathematical properties of the model we built in the previous section.

Those properties will be useful for some aspects of the model implementation to come in the following.
For our purpose and to be able to use some specific mathematical tools, we consider the case when all
measures are density measures.

For any interval [t1, t2], t2 > t1, L2([t1, t2]) stands for the space of square-integrable functions over
R having their support in [t1, t2]. For a positive number Θγ such that Θγ < Θmax − tI, we set the
Repayment Pattern γ such that:

γ ∈ L2([0,Θγ ]). (23)

In order to achieve what is described after equation (8), we need to choose Loan Density κE with support
being included in [tI,Θmax −Θγ ].

3.1 General results
Using relations (9), (14) and (20), we can directly state the following theorem.

Theorem 3.1. If all measures of model ( (4)-(14), (18)-(20)) are density measures, if Repayment Pattern
γ satisfies relation (23) and if Loan Density κE is in L2([tI,Θmax − Θγ ]) and Initial Debt Repayment
Density ρI

K is in L2([tI,Θmax]) then Algebraic Spending Density σ is also in L2([tI,Θmax]) and has the
next expression in terms of Loan Density κE:

σ(t) = κE(t)− (κE ? γ)(t)− α
∫ t

tI

(κE − κE ? γ)(s)ds − α
∫ Θmax

t

ρI
K(s)ds − ρI

K(t). (24)

Relation (24) is generally not invertible. Yet, it is possible to obtain an expression that allows, when
it makes sense, to compute Loan Density κE from Algebraic Spending Density σ. For doing this, in a
first place, defining linear operator L : L2([tI,Θmax−Θγ ])→ L2([tI,Θmax]) (acting on Loan Density κE)
by

L[κE ](t) = (κE − κE ? γ)(t)− α
∫ t

tI

(κE − κE ? γ)(s) ds, (25)

and operator D : L2([tI,Θmax])→ L2([tI,Θmax]) (acting on Initial Debt Repayment Density ρI
K) by

D[ρI
K](t) = −α

∫ Θmax

t

ρI
K(s) ds− ρI

K(t), (26)

expression (24) of density σ reads

σ(t) = L[κE ](t) +D[ρI
K](t). (27)

Secondly, we state the following lemma linking the Fourier Transforms of κE , γ and L[κE ].
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Lemma 3.2. If function κE is in L2([tI,Θmax −Θγ ]) and if γ satisfies relation (23), then we have the
following equality:

(1−F(γ))F(κE) = F
(
L[κE ] + α

∫ •
tI

L[κE ](s)eα(•−s) ds
)
, (28)

where F stands for the Fourier Transform Operator, where operator L is defined by (25) and where

F
(∫ •

tI

L[κE ](s)eα(•−s) ds
)

(29)

stands for the Fourier Transform of function

t 7→
∫ t

tI

L[κE ](s)eα(t−s) ds. (30)

Proof. Integrating by parts states that:

∫ t

tI

(∫ s

tI

(κE − κE ? γ)(y) dy
)
× αeα(t−s) ds

=
∫ t

tI

(κE − κE ? γ)(s)× eα(t−s) ds−
∫ t

tI

(κE − κE ? γ)(s) ds. (31)

From this, we get the following equality:∫ t

tI

(κE − κE ? γ)(s) ds =
∫ t

tI

(
(κE − κE ? γ)(s)− α

∫ s

tI

(κE − κE ? γ)(y) dy
)
× eα(t−s) ds. (32)

Using definition (25) of operator L, equality in (32) is multiplied by α to give:

α

∫ t

tI

(κE − κE ? γ)(s) ds = α

∫ t

tI

L[κE ](s)eα(t−s) ds. (33)

Replacing α
∫ t
tI

(κE−κE ?γ)(s) ds in relation (33) by (κE−κE ?γ)(t)−L[κE ](t) which is possible because
of (25), we obtain the following equality:

κE − κE ? γ = L[κE ] + α

∫ •
tI

L[κE ](s)eα(•−s) ds. (34)

Applying Fourier Transform to relation (34), we obtain equality (28), proving the lemma.

From Lemma 3.2 and equality (27) the following theorem can be stated.

Theorem 3.3. If Repayment Pattern is a density measure with its density γ satisfying relation (23), and
if Initial Debt Repayment Density ρI

K is in L2([tI,Θmax]); if we choose an Algebraic Spending Density σ
in L2([tI,Θmax]) such that

F
(
σ −D[ρI

K] + α

∫ •
tI

σ(s)−D[ρI
K](s) eα(•−s) ds

)
1−F(γ) ∈ L2(R), (35)

then function κE given in terms of σ by:

κE = F−1

(F(σ −D[ρI
K] + α

∫ •
tI

σ(s)−D[ρI
K](s) eα(•−s) ds

)
1−F(γ)

)
, (36)

where F−1 stands for the inverse of the Fourier Transform, is in L2([tI,Θmax − Θγ ]) and is the Loan
Density that brings Algebraic Spending Density σ using model ( (4)-(14), (18)-(20)).
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This theorem is a generic result that gives indication on the way to reverse the process that consists in
in computing Algebraic Spending Density σ from Loan Density κE into a process that consists in building
a Loan Density κE in order to achieve a desired Algebraic Spending Density σ. Yet, condition (35) needs
to be explained, as it is not very usable in this form. Nevertheless, It seems to be too complicated to
give it a more usable form remaining at this level of genericallity. Hence, to give a more precise form to
(35) we will choose a given expression of Repayment Pattern Density γ.

3.2 Results with a specific Repayment Pattern
Theorem 3.4. If

γ = 1
Θγ

1[0,Θγ ], (37)

and if Initial Debt Repayment Density ρI
K and Algebraic Spending Density σ are in L2([tI,Θmax]) and

satisfy the following equality:∫ Θmax

tI

(
σ(y)−D[ρI

K](y) + α

∫ y

tI

σ(s)−D[ρI
K](s)eα(y−s) ds

)
dy = 0, (38)

then, there exists an unique Loan Density κE in L2([tI,Θmax−Θγ ]) (which expression is given by formula
(36)) such that (27) holds.

In order to prove this theorem, we need the following lemmas:

Lemma 3.5. Under the same assumptions as in Theorem 3.4, linear operator L given by relation (25)
is a one-to-one map.

Proof. In a first place, according to equality (34), if Loan Density κE is in Ker(L), then it satisfies:

κE − κE ? γ = 0. (39)

And, according to definition (25) of operator L, if Loan Density κE satisfies relation (39), then, κE is in
Ker(L). Consequently, we have:

Ker(L) =
{
κE ∈ L2([tI,Θmax −Θγ ]), κE − (κE ? γ) = 0

}
. (40)

Secondly, for any positive integer n, we consider Pn the vector space of polynomial functions of degree
n and restricted to interval (tI,Θmax −Θγ). We will show that

Ker(L) ∩ Pn = {0}. (41)

In order to show relation (41), we will show that the coefficients of polynomial function κE are zero for
each κE in Ker(L) ∩ Pn. If κE ∈ Ker(L) ∩ Pn, then, for any x ∈ (tI,Θmax −Θγ),

κE(x) =
(
i=n∑
i=0

cix
i

)
× 1[tI,Θmax−Θγ ](x), (42)

where (ci)0≤i≤n are its coefficients and

κE − κE ? γ = 0. (43)

Using equalities (37) and (42), we obtain

(κE ? γ)(x) = 1
Θγ

i=n∑
i=0

ci

∫
[tI,Θmax−Θγ ]∩[x−Θγ ,x]

yi dy. (44)

Now, on the one hand, we show that coefficients (ci)0≤i≤n are zero, if tI + Θγ ≤ Θmax−Θγ . In this case,
for any x such that tI +Θγ ≤ Θmax−Θγ < x < Θmax, x is outside the support of κE . Hence, κE(x) = 0.
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Moreover, the intersection of intervals [tI,Θmax − Θγ ] and [x − Θγ , x] (on which the integral in (44) is
computed) is interval [Θmax −Θγ , x−Θγ ]. Then, relations (43), (44) yield the following equality:

i=n∑
i=0

ci
i+ 1 × [(Θmax −Θγ)i+1 − (x−Θγ)i+1] = 0. (45)

The polynom making up the left hand side of equality (45) is zero on interval (Θmax −Θγ ,Θmax) which
has an non empty interior. Consequently, coefficients (ci)0≤i≤n are zero.

On the other hand, we show that coefficients (ci)0≤i≤n are zero, if Θmax − Θγ < tI + Θγ . In this
case, for any x such that Θmax −Θγ < tI + Θγ < x < Θmax, κE(x) = 0 and the intersection of intervals
[tI,Θmax − Θγ ] and [x − Θγ , x] is interval [Θmax − Θγ , x − Θγ ]. Hence, we obtain that the polynom of
the left hand side of relation (45) is zero on interval (tI + Θγ ,Θmax) which has an non empty interior.
Consequently, coefficients (ci)0≤i≤n are zero.

We showed that coefficients (ci)0≤i≤n are zero in both cases tI + Θγ ≤ Θmax −Θγ and Θmax −Θγ <
tI + Θγ . From this, we can deduce that (41) is true for any integer n.

Hence by density of polynoms in L2([tI,Θmax −Θγ ]) the proof of the lemma is achieved.

Lemma 3.6. Assuming (37), that implies:∫ Θγ

0
yγ(y) dy =

Θ2
γ

2 6= 0, (46)

is achieved and if function L[κE ] given by relation (25) satisfies:∫ Θmax

tI

(
L[κE ](y) + α

∫ y

tI

L[κE ](s)eα(y−s) ds

)
dy = 0, (47)

then, F(κE) ∈ L∞(R) and is such that

lim
ξ→0
F(κE)(ξ) = − 2

Θ2
γ

∫ Θmax

tI

y ×

(
L[κE ](y) + α

∫ y

tI

L[κE ](s)eα(y−s) ds

)
dy. (48)

If L[κE ] does not satisfy the equality in relation (47), then, F(κE) has an infinite limit in 0.

Proof. As L[κE ] ∈ L2([tI,Θmax]), we get:

L[κE ] + α

∫ •
tI

L[κE ](s)eα(•−s) ds ∈ L2([tI,Θmax]). (49)

Then, using an order 1 Taylor expansion of e−iyξ, we obtain the following expansion of function F(L[κE ]+
α
∫ •
tI
L[κE ](s)eα(•−s) ds):

F
(
L[κE ] + α

∫ •
tI

L[κE ](s)eα(•−s) ds

)
(ξ) =

∫ Θmax

tI

(
L[κE ](y) + α

∫ y

tI

L[κE ](s)eα(y−s) ds

)
dy

−iξ
∫ Θmax

tI

y ×

(
L[κE ](y) + α

∫ y

tI

L[κE ](s)eα(y−s) ds

)
dy +O(ξ2).

(50)

Since operator L satisfies equality in relation (47), relation (50) gives:

F
(
L[κE ] + α

∫ •
tI

L[κE ](s)eα(•−s) ds

)
(ξ)

= −iξ
∫ Θmax

tI

y ×

(
L[κE ](y) + α

∫ y

tI

L[κE ](s)eα(y−s) ds

)
dy +O(ξ2). (51)
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According to (37), function 1−F(γ) is Taylor expanded in 0 until the order 1 to obtain:

1−F(γ)(ξ) = iξ

∫ Θγ

0
yγ(y) dy +O(ξ2) = iξ

Θ2
γ

2 +O(ξ2). (52)

According to relations (28), (51) and (52), we get equality (48).
Moreover, according to relation (28), F(κE) is a finite quantity outside of 0. Hence, it is concluded

that F(κE) is in L∞(R).

On other hand, if equality in relation (47) is not satisfied, then, according to relations (28), (50) and
(52), F(κE) has an infinite limit at 0.

From this, the proof of the lemma is achieved.

Lemma 3.7. Under assumptions (37) and (47),(
1

1−F(γ)

)
|(−∞,− 2

Θγ )∪( 2
Θγ ,+∞)

∈ L∞(R), (53)

and F(κE) ∈ L2(R).

In Lemma 3.7,
( 1

1−F(γ)
)
|(−∞,− 2

Θγ )∪( 2
Θγ ,+∞) stands for the restriction of

( 1
1−F(γ)

)
to set (−∞,− 2

Θγ )∪

( 2
Θγ ,+∞).

Proof. As a consequence of assumptions (37), equality (46) holds and consequently∣∣∣∣∣ 1
1−F(γ)(ξ)

∣∣∣∣∣
2

= (ξΘγ)2

(ξΘγ − sin(ξΘγ))2 + (cos(ξΘγ)− 1)2 ≤

(
ξΘγ

ξΘγ − sin(ξΘγ)

)2

. (54)

Hence, if |ξ| ≥ 2/Θγ ∣∣∣∣∣ 1
1−F(γ)(ξ)

∣∣∣∣∣ ≤ 2, (55)

which implies property (53).
According to (49), we get:

F
(
L[κE ] + α

∫ •
tI

L[κE ](s)eα(•−s) ds

)
∈ L2(R). (56)

Consequently, according to relations (28) and (54)

F(κE)|(−∞,− 2
Θγ )∪( 2

Θγ ,+∞) ∈ L2(R) (57)

Finally, from Lemma 3.6, we know F(κE) ∈ L∞(R), which gives, using (57) that F(κE) ∈ L2(R),
ending the proof of the Lemma

Proof of Theorem 3.4. Under the assumptions (37) and (38) of Theorem 3.4, and using equality (27),
that gives L[κE ](t) = σ(t)−D[ρI

K](t), we can apply Lemma 3.7 to deduce that formula (35) of Theorem
3.3 giving κE makes sense and yields κE in L2([tI,Θmax − Θγ ]). Besides, from Lemma 3.5, we obtain
the uniqueness of κE , ending the proof of the theorem.
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4 Other financial models
4.1 Model with variable rate

The model we set out in Subsection 2.2 considered a constant rate. Nevertheless, if we consider in
it a function α that depends on t, the model becomes a financial model with variable rate. The only
modification to make is to enrich (10) by writing

ρI(t) = α(t)KRD(t). (58)

Once this enrichment is done, the rest of Subsection 2.2 and Subsection 2.3 can be led with essentially
no modification and the explanations remain true.
However, the mathematical results of section 3 are not true anymore in this context, and clearly using a
variable rate makes the question of expressing Loan Density κE in terms of Algebraic Spending Density
σ harder.

4.2 Model with constant rate set at instants of borrowing
In the real world, for loans that are at fixed rates, the rates are not the same all along the time. In

fact, the fixed rate associated with a borrowed amount is set at the time when the amount is borrowed.
The goal of this subsection is to enrich the model built above in order to account for this reality.

For this, we consider that all measures involved are density measures (we will see at the end of the
subsection trails to generalize the resulting model to mesures that are not density measures). The main
new thing that we need to introduce is quantity kRD that details Current Debt Field KRD. Quantity
kRD(t, s), that is so called Current Debt Density, depends on two variables (t and s) and is a time density
with respect to variable s. It is defined as the density of Current Debt at time t which is associated to
the amount borrowed at time s. In other words, the capital amount still to be paid at time t associated
with amounts borrowed between two instants s1 and s2 is, by definition∫ s2

s1

kRD(t, s) ds. (59)

Current Debt Density kRD is related to Loan Density κE using Repayment Pattern γ by the following
Ordinary Differential Equation:

dkRD(t, s)
dt

= −γ(t− s)κE(s), (60)

with initial condition kRD(s, s) = κE(s) that expresses that The Current Debt at time s which is related
to the borrowed amount at time s is the borrowed amount at time s.
To justify the pertinence of equation (60), we notice that, in view of the definition of Repayment Pattern
γ, γ(t − s) is the repayment at time t of an amount 1 which is borrowed at time s. Hence, for a
given amount A borrowed at time s, γ(t − s)A is the repayment at time t of amount A. Consequently,
γ(t − s)κE(s) is the density (with respect to s) of what is repaid at time t associated with what is
borrowed at time s. As this repayment density is nothing but the decreasing rate of kRD(t, s), (60)
seems consistent.
The solution of this differential equation is expressed as:

kRD(t, s) = κE(s)−
∫ t

s

γ(σ − s)κE(s) dσ. (61)

The definition of Current Debt Density kRD is consistent with the definition of Current Debt KRD
which is given in relation (19). Indeed, Current Debt KRD can be expressed in terms of kRD: it is the
integral over all instants since tI of what has to be repaid associated with what is borrowed at those
instants plus the Current Debt at time tI minus what has been repaid from this initial Current Debt:

KRD(t) =
∫ t

tI

kRD(t, s) ds+KRD(tI)−
∫ t

tI

ρI
K(s) ds. (62)
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Using equalities (11) and (61) in this last formula, we obtain

KRD(t) =
∫ t

tI

kRD(t, s) ds+
∫ +∞

t

ρI
K(s) ds

=
∫ t

tI

κE(s) ds−
∫ t

tI

(∫ t

s

γ(σ − s)κE(s) dσ
)
ds+

∫ +∞

t

ρI
K(s) ds.

(63)

Since ∫ t

tI

(∫ t

s

γ(σ − s)κE(s) dσ
)
ds =

∫ t

tI

(∫ σ

tI

γ(σ − s)κE(s) ds
)
dσ, (64)

(63) yields

KRD(t) =
∫ t

tI

κE(s) ds−
∫ t

tI

(∫ σ

tI

γ(σ − s)κE(s) ds
)
dσ +

∫ +∞

t

ρI
K(s) ds. (65)

Equality (65) has to be compared to (19), which in the context of density measures and using (9) to
express ρK gives

KRD(t) =
∫ t

tI

κE(t) dt−
∫ t

tI

(∫ +∞

−∞
κE(s)γ(σ − s) ds

)
dσ +

∫ +∞

t

ρI
K(t) dt. (66)

As γ is 0 on R−, γ(σ − s) is 0 for s larger than σ. On another hand κE(s) is 0 for s smaller than tI.
Hence (66) finally read

KRD(t) =
∫ t

tI

κE(t) dt−
∫ t

tI

(∫ σ

tI

κE(s)γ(σ − s) ds
)
dσ +

∫ +∞

t

ρI
K(t) dt, (67)

which is exactly (65).

The other introduced thing is Density rI(t, s). It is a time density with respect to both variables s
and t. It is the Interest Payment Density at time t which is associated with the borrowed amount at
time s. It is related to the Current Debt Density kRD by a proportionality relation:

rI(t, s) = αSAB(s) kRD(t, s), (68)

where, αSAB(s) is the value of the rate at the instant s at which the amount is borrowed (SAB is for
Set At Borrowed time). The expression of Borrowed Time Related Interest Payment Density rI may be
given in terms of Loan Density κE as follows:

rI(t, s) = α(s)κE(s)− αSAB(s)
∫ t

s

γ(σ − s)κE(s) dσ. (69)

By integration over variable s (which describes the borrowed time), from rI(t, s), Interest Payment
Density ρI can be defined as follows:

ρI(t) =
∫ t

tI

rI(t, s) ds+ ρI
I(t), (70)

where ρI
I(t) is a third new thing: it is the Interest Payment Density which is related to the Current Debt

Field at the initial instant tI. It is considered as given (as ρI
K and KRD(tI) are). From (69) and (70),

Interest Payment Density ρI reads

ρI(t) =
∫ t

tI

αSAB(s)κE(s) ds−
∫ t

tI

αSAB(s)
(∫ t

s

γ(σ − s)κE(s) dσ
)
ds+ ρI

I(t). (71)
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Expression (71) and consequently definition of Borrowed Time Related Interest Payment Density rI
are consistent with the expression of Interest Payment Density ρI given in relation (20). Indeed, if the
rate αSAB is fixed with worth α, (71) writes

ρI(t) = α

∫ t

tI

κE(s) ds− α
∫ t

tI

(∫ t

s

γ(σ − s)κE(s) dσ
)
ds+ ρI

I(t), (72)

and is exactly (20), that when written in the context of density measures reads

ρI(t) = α

∫ t

tI

κE(s) ds− α
∫ t

tI

(∫ t

s

γ(σ − s)κE(s) dσ
)
ds+ α

∫ +∞

t

ρI
K(s) ds, (73)

with the following definition of ρI
I

ρI
I(t) = α

∫ +∞

t

ρI
K(s) ds. (74)

Exchanging the role of s and σ in (71), it is possible to write expression of Interest Payments Density
ρI in the next form:

ρI(t) =
∫ t

tI

αSAB(s)κE(s) ds−
∫ t

tI

(∫ σ

tI

αSAB(s)γ(σ − s)κE(s) ds
)
dσ + ρI

I(t). (75)

Remark 4.1. This last form gives a trail to generalize the model to measures that are not density
measures. Indeed, it brings to think that it is possible to find a subspace of measure space M([tI,Θmax])
that is the dual of a space of functions containing piecewise continuous functions such that (75) can be
generalized as

ρI(t) =
〈
κ̃E , αSAB|[tI,t[

〉
−
〈
γ̃ ? (αSABκ̃E)|[tI,σ[,1[tI,t[

〉
+ ρI
I(t), (76)

where κ̃E is an element of this subspace of M([tI,Θmax]) and where 〈., .〉 stands for the duality bracket
of this space with the space it is the dual of.

4.3 Model with variable rate set at instants of borrowing
We can generalize the model explained in subsection 4.2 by considering that rate αSAB which is set

at borrowed time is variable. For this, the only thing that needs to be done is considering that αSAB(s, t)
depends on two variables (s and t). By definition αSAB(s, t) is the rate at time t that applies to amounts
that were borrowed at time s. All formula in subsection 4.2 can be rewritten adding this enrichment.
For instants, (75) is rewritten as:

ρI(t) =
∫ t

tI

αSAB(s, t)κE(s) ds−
∫ t

tI

(∫ σ

tI

αSAB(s, t)γ(σ − s)κE(s) ds
)
dσ + ρI

I(t). (77)

4.4 Model with varying Repayment Pattern
We now enrich again our model to take into account variable Repayment Pattern γ. For this, we

consider that γ(s, t) depends on two variables. The first variable s is the borrowed instant and the second
variable t is the current time. In order to ensure that amounts borrowed at any time s are repaid exactly,
γ(s, t) needs to satisfy the following variant of (8):∫ +∞

−∞
γ(s, σ) dσ = 1. (78)

Generalizing (9), Loan Density κE and Repayment Density ρK are connected by:

ρK(t) =
∫ +∞

−∞
γ(s, t− s)κE(s) ds. (79)
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Figure 3: In each of the four pictures, γ̃ is represented in the top diagram; κ̃E in the second diagram from
the top, ρ̃K, which is computed with relation (7), in the third one; KRD which is computed according to
relation (19) in the fourth one; ρI , calculated according to relation (10), in the fifth; the sixth diagram
gives the density of what is to paid. The two last diagrams are respectively the amounts of what to pay
over monthly and yearly period.
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Thanks to property (78), we have: ∫ +∞

−∞
ρK(t) dt =

∫ +∞

−∞
κE(t) dt. (80)

The variation, with respect to time t, of the Current Debt kRD which is associated to the amount
borrowed at time s is equal to the product of Repayment Pattern γ(s, t− s) by Loan Density κE at time
s. Hence, we obtain the following generalization of relation (60):

dkRD(t, s)
dt

= −γ(s, t− s)κE(s). (81)

Besides generalizing relation (75), Interest Payments Density ρI can be given as follows:

ρI(t) =
∫ t

tI

αSAB(s, t)κE(s) ds−
∫ t

tI

∫ σ

tI

αSAB(s, t)γ(s, σ − s)κE(s) ds dσ + ρI
I(t). (82)

5 Model using
In this section, we show on simplified examples how the previously built models can be used by an

organization to prepare its future financial plans.

5.1 Forecasts
In this subsection, we show how the model can be used by a local community, or any organization,

to forecast the consequences of a loan in the future.
In a first place, we briefly recall the comments on the pictures of Figure 2 with this slant. In the top
left picture, we see in the bottom digram, the reimbursement of an amount borrowed at once (see the
middle diagram), according to Repayment Pattern of the top diagram. In the top right picture, the
bottom digram shows the reimbursement of an amount borrowed in two (see the middle diagram), and
in the bottom left picture, the bottom digram shows the reimbursement of an amount borrowed with a
more complex scheme. The bottom digram of the bottom right picture shows the reimbursement density
associated to the loan density shown in the middle diagram, according to the Repayment Pattern shown
in the top diagram.
Of course, we could comment similarly on pictures of Figure 1 where various Repayment Patterns (top
diagrams) and Loan Measures (middle diagrams) yield Repay Measures (bottom diagrams).

Now we turn to richer simulations. Figure 3 shows four simulations in four pictures. Each picture
shows eight diagrams. For every simulation, initial time tI = 0, Current Debt at initial time KRD(tI) = 0
and Initial Debt Repayment Plan ρ̃I

K = 0. If we stand in the context of an organization that needs to
know its finance state in futur, the two last quantities describe its finance state at the beginning of the
considered period. And, loan rate α and Repayment Pattern γ̃ is a translation of the loan contract that
the organization has with it financial institution. In every presented simulation loan rate α = 0.07.

The diagram at the top of each picture is the Repayment Pattern γ̃ associated to the simulation. The
second diagram is the Loan Measure κ̃E . This measure can be interpreted as the way the organization
is going to borrow and how much it will borrow. Once those quantities laid down, thanks to our model,
Repayment Measure ρ̃K is obtained from γ̃ and κ̃E by (7). The quantities drawn in the fourth and
fifth diagrams are respectively the Current Debt Field KRD, given by equality (19), and the Interest
Payments Density ρI defined by (10). The sixth diagram is the Measure of what has to be paid to the
financial institution defined by ρ̃K + ρ̃I . This is a forecast of what the organization will pay in future.
From measure ρ̃K + ρ̃I , the amounts of what to pay over monthly and yearly period can deduced by in-
tegration. This can refine the forecast. Those amounts are represented in the seventh and eighth diagram.

Those simulations illustrate the capability of our model to help the setting out of finance forecast.
Moreover, they illustrate the capability of our approach to overcome a problem occurring with the
presently used tools (see page 2): With the continuous-in-time approach, the computations are led
without any question concerning time period at which things are going to be observed. Indeed, those

19



questions arise only at the very end of the process to compute monthly or annual installments, or any
quantity which is related to a period of time.

Another capability which is illustrated by those examples is that our approach is flexible and can
incorporate complexity, concentrated and continuous objects in a same simulation that makes sense.
Their is no limitation in the choice of the Repayment Pattern and of the Loan Measure. Hence, we can
account for a wide variety real situations.

Let us go into more detailed explanations on what can be seen in pictures of Figure 3.
The top left picture shows a Repayment Pattern Density γ which is a piecewise function that is equal

to 0.25 between instants 2 and 6 and to 0 elsewhere. On the second diagram is drawn Loan Measure κ̃E
which is a sum of two Dirac masses. The first Dirac mass is of mass 1 at time 1.25 and the second one
is of mass 2 at time 2.25.

The Repayment Pattern Density in the top right picture is the same as before and the Loan Density
is a sinusoidal function over time period [0.2, 3] extended by 0.

The top diagram of the bottom left picture is Repayment Pattern Density γ which is an affine function
over an interval extended by 0. In this simulation, Loan Measure κ̃E is the one of the top right picture,
to which is added a Dirac mass that has mass 3 at time 1.5.

In the bottom right picture, the Repayment Pattern is the previous one plus a Dirac mass of mass
0.5 located at time 6.5. The loan Measure (see second diagram) is the sum of a sinusoidal function and
of Dirac mass with mass 4 at time 1.

5.2 Financial strategy
For an organization, setting out a strategy needs to go beyond doing forecasts. For financial strategy,

it needs to build a budget project, then to estimate its impact on the future finance health of the
organization and if it is not satisfactory, to rebuild a new budget project.

In this subsection we will show how to use our continuous-in-time model for those kind of purposes.

We first comment on Figure 4. The first diagram is the Repayment Pattern. It translates that the
organization has to repay borrowed amounts constantly just after borrowing. Then, on a second period,
the repayment decreases, and then stops. During the fourth period the repayment increases strongly.
The second diagram shows the Loan Measure. It is a translation of how much the organization plan to
borrow and according to what plan it is going to do it. In the third diagram is shown the Repayment
Measure. It can be interpreted as an impact of the choice of the Repayment Pattern and of the Loan
Measure. Now we can imagine that decision makers of the organization do not find this Repayment
Measure convenient and that they would prefer another one: the one which is given in the fourth
diagram. Once this targeted Repayment Measure is chosen, using formula (7) (or (9)), which reads using
Fourier Transform F(γ̃)F(κ̃E) = F(ρ̃K), allows us to compute a Loan Measure that will give it. This
Loan Measure is given in the fifth diagram. This resulting Loan Measure has some problems: It is not
non-negative and its support is two large. Hence we rid those problems by suppressing its negative part
and reducing its support, leading the loan measure shown in the sixth diagram. In order to be sure that
this Loan Measure fits well the decision makers’ will, its associated Repayment Measure is computed
and given in the last diagram.

This example illustrates well the capability of our model to be used in a strategy elaboration process.
This capability is entirely linked with its continuous-in-time nature. Indeed, this nature brings to handle
objects that are defined over a time interval of interest and mathematical operators that link them
together. Consequently, strategy-related questionings reduce to question of inverting those operators.
And, even if most of those operators are not invertible, solutions of the posed inversion problem can be
brought (as it is the case in this example and consistently with the contents of section 3).

The example of Figure 5 is richer than the previous one and involves the same Repayment Pattern
and initial Loan Measure. Yet, it involves moreover a Current Spending Measure σ̃g, that we chose to
be zero, which was not considered in the example related with Figure 4 and e. Using formula (24), the
Algebraic Spending Measure σ̃ can be computed. Consequently the Measure of Isolated Spending β̃, that
models how much money can be put into a project led by the organization, can be deduced according to
formula (13), which is same as σ̃.
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Figure 4: γ̃ is represented in the top diagram, κ̃E in the second diagram from the top, ρ̃K in the third
diagram from the top which is computed with relation (7), the fourth diagram from the top is targeted
Repayment Density which is supposed to be given, an new Loan Density is computed in the fifth diagram
from the top, this density is modified to generate also a new Loan Density in the sixth diagram from the
top, the bottom diagram is a consequently modified Repayment Density ρ̃K.
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Figure 5: γ̃ is represented in the top diagram, κ̃E in the second diagram from the top, β̃ in the third
diagram from the top which is computed with relation (28) or (84), the fourth diagram from the top
is targeted Isolated Spending Density, an new Loan Density is computed in the fifth diagram from the
top, this density is modified to generate also a new Loan Density in the sixth diagram from the top, the
bottom diagram is a consequently modified Isolated Spending Density which is same as β̃.
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The Isolated Spending Measure β̃ is drawn in the third diagram. Now, as in the previous example, we
can imagine that Isolated Spending Measure β̃ does not fit the vision of some decision makers. Then it
can be modified to get a more convenient one, drawn in the fourth diagram. Once the targeted Measure
of Isolated Spending β̃ set, applying formula (28), setting Measure β̃ gives an associated Loan Measure
(see the fifth diagram) that needs to be cleaned (see the sixth diagram). In order to be sure that this
Loan Measure fits well the decision makers’ objectives, its associated Isolated Spending Measure is com-
puted and given in the last diagram.

This example illustrates on a more complicated case that our model can be used for strategy elabora-
tion. This complication consists in giving Loan Measure κ̃E as function of Isolated Spending Measure β̃
under some assumptions. In order to make the simulations shown in Figure 5, κ̃E is computed in terms
of β̃ following several steps. These steps are the followings, in this example where σ̃ and β̃ are equals.
The first step is to compute L[κE ] as a function of β̃ and D[ρI

K] using relation (27). The second step is
to compute Fourier Transform of quantities L[κE ] + α

∫ •
tI
L[κE ](s)eα(•−s) ds and γ. If Inverse Fourier

Transform of quantity

F(L[κE ] + α
∫ •
tI
L[κE ](s)eα(•−s) ds)

(1−F(γ)) (83)

exists, then, κ̃E can be computed in term of β̃ with using relation (28) and it is given as follows:

κE = F−1

(
F(L[κE ] + α

∫ •
tI
L[κE ](s)eα(•−s) ds)

1−F(γ)

)
. (84)
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