N
N

N

Uncontrolled inexact information within bundle methods

HAL

open science

Jérdme Malick, Welington de Oliveira, Sofia Zaourar-Michel

» To cite this version:

Jéréme Malick, Welington de Oliveira, Sofia Zaourar-Michel.
within bundle methods. EURO Journal on Computational Optimization, 2017, 5 (1), pp.5-29.

10.1007/s13675-015-0060-9 . hal-01249261

HAL Id: hal-01249261
https://hal.science/hal-01249261
Submitted on 30 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Uncontrolled inexact information

https://hal.science/hal-01249261
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Uncontrolled inexact information within bundle methods

Jérome Malick - Welington de Oliveira - Sofia
Zaourar

Received: date / Accepted: date

Abstract We consider convex nonsmooth optimization problems where additional
information with uncontrolled accuracy is readily available. It is often the case when
the objective function is itself the output of an optimization solver, as for large-scale
energy optimization problems tackled by decomposition. In this paper, we study how
to incorporate the uncontrolled linearizations into (proximal and level) bundle algo-
rithms in view of generating better iterates and possibly accelerating the methods. We
provide the convergence analysis of the algorithms using uncontrolled linearizations,
and we present numerical illustrations showing they indeed speed up resolution of
two stochastic optimization problems coming from energy optimization (two-stage
linear problems and chance-constrained problems in reservoir management).

Keywords Nonsmooth optimization, bundle methods, inexact oracle, energy
optimization, two-stage stochastic problems, chance-constrained problems

Mathematics Subject Classification (2000) 65KO05 - 49J52 - 49M27 - 90C15 -
90C25 - 90C27

J. Malick
CNRS, LJK, Grenoble, France
E-mail: jerome.malick @inria.fr

W. de Oliveira

UERIJ, Rio de Janeiro, Brazil

BCAM, Bilbao, Basque Country - Spain
E-mail: welington@ime.uerj.br

S. Zaourar
INRIA, UJF, Grenoble, France
E-mail: sofia.zaourar @inria.fr

2 Jérdme Malick et al.

1 Introduction: context, problem, and contributions
1.1 Nonsmooth minimization with an (inexact) oracle

We consider nonsmooth optimization problems of the form

:= inf 1
for=inf flx), (1)
with a convex function f: R" — R; and a (nonempty) polyhedral set X C R", and
we assume that the infimum is finite (f, > —oo). Typically, the nonsmoothness of f
comes after a maximization, i.e. when f itself is the result of an inner optimization
problem

f(x) = sup h(u,x))
uelU
where h(u,-) are convex for each u lying in a set U. Such nonsmooth objective func-
tions appear in Lagrangian relaxation (see e.g. [LemO1]), in stochastic optimization
with recourse (see e.g. [SDR09]), or in Benders decomposition (see e.g. [Geo72]).
For a fixed accuracy 11 > 0, a so-called (lower) n-oracle of f provides, for a point
x € X as an input, an approximate value and an approximate linearization

{fxeR such that f(x)—n < f; < f(x),

3
gx €R" suchthat fi+g.(-—x) < f(-). *

If the oracle error is null (] = 0), the oracle returns the exact value f, = f(x) and a
subgradient g, € d f(x). For some problems, as in large-scale stochastic optimization
or in combinatiorial optimization, computing exact information on f is expensive,
or even out-of-reach, whereas computing some inexact information (1 > 0) is still
possible. For example, when f is given by (2), any i € U gives an inexact value and
an approximate linearization of f at a given x € X. Indeed, the convexity of A(u,-)
yields
h(it,x)+g" (z—x) <h(i,z) < f(z), forany g€ dh(i,x).

So we have inexact information on f by taking
fr="h(i,x) and g, =g € dh(i,x). 4

In this case, an 1-oracle maximizes A(-,x) over U up to the tolerance 1, i.e., computes
i € U satisfying f(x) —n < h(i,x) < f(x) so that (4) gives the 1-information (3).

Among the nonsmooth optimization methods to solve problems (1) with f known
by an oracle (3), are the bundle-type methods: the Kelley method [Kel60, HUL93],
proximal bundle methods [HUL93], level bundle methods [LNN95], generalized bun-
dle methods [Fra02], and doubly stabilized bundle methods [dS15]. Initially devel-
lopped for exact oracles (17 = 0), these methods have been extended to handle inexact
oracles (11 > 0) and to solve (1) up to an accuracy of 1. Complete convergence anal-
ysis of these methods exists; roughly speaking, under some assumptions, the iterates
Xy are an 7M-minimizing sequence

S <liminf f(x;) < fi + 7.)

Uncontrolled inexact information within bundle methods 3

We refer to [HinO1] and [Sol03] for first articles, [ZPROO] for an inexact version
of the Kelley method, [F4b00] for an inexact level method, [Kiw06] and [dOSL14]
for inexact proximal bundle methods, and [dOS14] for inexact level methods with
vanishing errors.

1.2 Inexact oracle... and more

For some optimization problems as above with an n-oracle, there is in fact additional
uncontrolled information on f, which is already available or cheap to get.

A typical example is in combinatorial optimization when f has the form (2), with
a discrete set U and with a Lagrangian function % (see e.g. [LemO1]). In this case,
exact or approximate resolution schemes produce “good” feasible points it € U, that
give, in turn, linearizations of f by (4) — but with uncontrolled accuracy, so that
this cannot be used for an oracle with fixed accuracy 1. For instance, when (2) is
solved by a branch-and-bound algorithm, feasible solutions are generated during the
exploration of the branch-and-bound tree, but only the final one, the optimal solution,
is used by the oracle to generate (3). The (uncontrolled) information (4) produced
by the intermediate feasible solutions is not used, whereas it is available for free
and possibly fine (since nearly optimal solutions are usually obtained soon in the
branch-and-bound process). It is the same situation when we have cheap heuristics
computing solutions that are ”good” in practice (sometimes with probabilistic guar-
antees) but without the (deterministic) guarantee required for an n-oracle. We will
consider in section 4 an energy optimization problem with such an efficient specific
heuristic; other examples include p-median problems [BTV06] and unit-commitment
problems (see e.g. the recent review [TvAFL15]).

Another type of example of cheap uncontrolled information appears in two-stage
stochastic linear problems (see e.g. [SDR09], and applications to energy problems in
[ZPROO] and [dOSP*10]). In this case, the function has a form (2) with separable
terms corresponding to linear maximization subproblems

N
fx)=c'x+ Y mfi(x) with fi(x)= sup (hi—Tx) u, (6)
i=1 WTu<q

for given N, m;, h;, T, W and ¢ (details to come in section 4). Computing exact infor-
mation on f requires to solve the N linear optimization subproblems, which is costly
when N is large. Solving only a fraction of these subproblems (say 10%) still gives
inexact uncontrolled information on f. Indeed if we compute i; an optimal solution
giving f;(x), then we can also use it to under-approximate other terms f;(x) (since the
feasible sets are the same, we have (h; — Tx)"ii; < f;(x)). Thus, for a given fraction
of solved problems, we have an inexact linearization but with an unknown accuracy.

We formalize the situation where we can compute controlled information together
with some uncontrolled inexact information by assuming that we have

an oracle with accuracy bounded by 17 > 0, and
a “cutting-plane generator” adding linearizations with uncontrolled accuracy.

)

4 Jérdme Malick et al.

This abstract cutting-plane generator should be seen as an external module, having
the previous bundle of linearizaions as an input, and adding other linearizations with-
out calling the n-oracle. There is no other requirement on the generator: it can use
information already available, call heuristics, or even run optimization algorithms.
For example, in our numerical experiments, the cutting-plane generators will add in-
exact (uncontrolled) linearizations produced during a fixed number of iterations of a
standard bundle method using heuristics.

Note that the situation (7) does not fit in the context of “on-demand accuracy
oracles” of [dOS14] where the oracle both requires and provides more information.
Note also that the cutting-plane generator is different from the multi-cuts techniques
used to accelerate cutting-plane methods in operation research (see e.g. [DLO5] in
”column generation”, [MW81] for the Benders decomposition of mixed-integer pro-
gramming, and [RS03] in stochastic programming). Contrary to our cutting-plane
generator, these techniques usually add several ”controlled” cuts. In this context, our
approach can be seen as an uncontrolled multi-cut technique.

In the two situations mentioned in this section (Lagrangian relaxations of combi-
natorial optimization problems, and decompositions of stochastic optimization prob-
lems), obtaining uncontrolled bundle information and calling the cutting-plane gen-
erator are often of neglectable computational cost compared to the cost of calling the
(controlled) oracle. A wise practitioner can therefore be tempted to use the uncon-
trolled bundle information inside of his bundle method. The goal of this paper is to
serve as an incentive to follow this meaningful practical intuition, as it establishes
that incorporating uncontrolled bundle information can help in practice and is also
consistent in theory.

1.3 Using uncontrolled linearizations in bundle methods

Assume that we are at iteration k of a bundle method solving (1), and that we have a
family of linearizations

fit)=fote(—x) (<f()) (8)

associated to points {x;} C X. In this paper, we consider that some of these lineariza-
tions (indexed by J[’) were given by the oracle, (so they are inexact up to the oracle
error f(x;)) — 1N < fy, < f(x;) for all i € J}1), and that the others (indexed by J})
were created by the cutting-plane generator (so we do not known and do not control
their inexactness). Bundle methods use available linearizations to create the so-called
cutting-plane model of f, which is

()= max fi() (< f()). 9)

ey il
i€ UJE

This model is used to compute the next iterate xz;; by solving a convex quadratic
programming problem. In proximal bundle algorithms (see e.g. [HUL93]), x4 is

LERPN

the proximal point of f; given a “prox-parameter” ;> 0 and the “stability center” £;;

Uncontrolled inexact information within bundle methods 5

the quadratic optimization problem is the following:

) { miny , ¥+ i”x—ﬁkHz
min fi(x) + —|x—&)* = st filx)y<rn, VieJlup (10
X 21y xeX, relR

In level bundle algorithms (see e.g. [LNNO95]), x;1; is the projection of the current
stability center £; onto the level set of "level parameter” f,lev

Xp = {xeX L fex) gf,geV} - {xex L Filx) < £ foralli € 7 uJ,;‘}; (11)
the quadratic optimization problem is the following:

| min, %_||x—)?k||2
min —[|x—5|* < st. filx) <l VieJJudgp (12)
)CGXk 2 x € X

In both cases, it is clear that using more information gives a more precise model, so
would possibly lead to computation of better iterates since the model (9) using all
the information (max on both J,? and J}!) is obviously always above the model of f
that would restrict the max to J,:’ only. Admittedly, in practice using the complete
model (9) rather than ignoring uncontrolled information makes quadratic program-
ming problems (10) and (12) larger and then more difficult to solve. This is partly
compensated by the ever-growing performance of (specific or even general-purpose)
linear-quadratic programming solvers. Anyway, this drawback does not really hold
in the case of expensive oracles — which is the situation we consider in this paper.
Thus, there is a clear practical interest to consider as much information as possible
when solving (1) with bundle methods: richer information can accelerate numerical
methods at a neglectable cost, so that the overall computing time is lower than using
only the controlled information. This will be illustrated in section 4.

There is nevertheless a theoretical argument against using the uncontrolled in-
formation in the model. Up to our understanding, the convergence results of bundle
methods do not extend in a straightforward way for handling general models (9).
Standard proofs of convergence use indeed that iterates are computed using a cutting-
plane model with “controlled” linearizations, produced by an oracle with bounded or
vanishing accuracy (n — 0); see e.g. [Fab00], [Kiw06], and [dOS14]. In our situa-
tion, the call of the cutting-plane generator makes us lose control on the construction
of the cutting-plane model and therefore on the next iterate.

The only analysis which is generic enough to cover uncontrolled linearizations
is the recent article [dOSL14] on the convergence of various forms of proximal bun-
dle methods. So we start with considering, in section 2, a proximal bundle algorithm
using the cutting-plane generator which is a trivial extension of the standard inexact
proximal method of [Kiw06] and whose analysis is an instantiation of the generic
analysis of [dOSL14]. Numerical experiments show that this proximal algorithm
does accelerate the convergence with the help of uncontrolled linearizations added
by a cheap cutting-plane generator. However this algorithm may not fully capture
the uncontrolled information: the prox-parameter #; in (10) ties the next iterate to the

6 Jérdme Malick et al.

stability center X, so that the step can be small even when the model is reasonably
rich due to the added uncontrolled linearizations. This feature is inherent to proximal
algorithms.

In contrast, level bundle method would better benefit from additional uncontrolled
inexact information: richer cutting-plane models would tend to generate useful lower
bounds, and then the level set X; would better approximate the solution set, and the
next iterate would better approximate a solution. However, to our knowledge, there is
no level bundle method which we could build on to introduce uncontrolled informa-
tion: the level counterpart of [Kiw06] able to deal with bounded accuracy n-oracle
in the general case has not been developed yet, because of the difficulty of setting
up a noise attenuation without direct control on the step (operated by #; in proximal
methods). In particular, our situation does not fit in the recent analysis of [dOS14]
that features oracles with varying accuracy but controlling the error (and driving it to
zero), nor in [VAdO14] that assumes the oracle to have uniformly bounded errors on
a compact feasible set X.

1.4 Contributions, structure, and notation

This paper presents two inexact bundle algorithms (proximal and level) incorporating
(already available or cheap to compute) uncontrolled bundle information. We formal-
ize the additional information as produced by an external module (the cutting-plane
generator of (7)) producing inexact linearizations without known or bounded accu-
racy. In section 2, we consider a proximal bundle algorithm using this cutting-plane
generator, which is simple (in the sense that is a trivial extension of the standard in-
exact proximal method of [Kiw06]) and has a simple analysis (in the sense that it is
an instantiation of the generic analysis of proximal methods of [dOSL14]). We intro-
duce in section 3 a new inexact level bundle algorithm using the cutting-plane gener-
ator which is an extension of the limited-memory proximal level algorithm [BKL95]
with an implicit noise attenuation step. This is the first level algorithm able to handle
inexact oracles without assuming compactness of the feasible set X or a vanishing
error; this is the main technical contribution of this paper. Finally, in section 4, we
present and discuss computational illustrations on stochastic optimization problems
coming from energy optimization: two-stage linear problems (arising in the planning
of hydro-electric power generation, see [ZPR00] and [dOSP™10]) and joint chance-
constrained optimization problems (arising in cascaded reservoir management, see
e.g. [vVAdO14]). For these problems, we show that the methods save computational
time in using both controlled and uncontrolled information.

Before moving to these developments, we finish this introduction by recalling
some notation and terminology of bundle algorithms.

— Aggregate linearizations. We will see that the optimality conditions of the quadratic
problems (10) and (12) introduce the “aggregated subgradients” g, € 9 fi (X1 1) +
Nx (x141), which will have a role in the stopping tests. They define in turn the so-
called “aggregate linearizations”, denoted with the convenient notation “—k” bor-

Uncontrolled inexact information within bundle methods 7

rowed from [dOSL14],

Fou() = felen) + 8 (- —xeq1) - (13)
It can be proved (see e.g. [dOS14, Prop. 3.2]) that f_; is indeed a linearization

Foalx) < filx) < f(x) forall x€ X. (14)
We also define the “aggregate linearization error” by

b = fo, — -k (Fe)- (15)

— Bundle compression. The linearizations used in f; are possibly numerous and im-
precise. It is interesting to be able to work with a limited memory and to somehow
extract the useful part from all linearizations. In bundle algorithm terminology, this
is called “bundle compression”, which is a desirable property in general [HUL93],
and thus even more in our context where it would make sense to compress un-
controlled bundle information. In theory we can compress a lot in the algorithms
presented in this paper: as usual for bundle methods, the current controlled lin-
earization and the aggregate linearization are sufficient to guarantee convergence.

— Descent test. The two bundle methods presented in this paper have a descent step
which is the technical point bringing convergence without compactness of X. The
stability center Xy is updated if the observed decrease is at least a fraction of the
predicted decrease

vi = fo, — Ji(oein)- (16)

More specifically, we use the following descent test

fos < foo—Kpve, with kp € (0,1). (17)

2 Proximal bundle method using uncontrolled information

This section explains how the usual inexact bundle method extends easily to deal
with uncontrolled bundle information: Algorithm 1 below is a version of the inex-
act proximal algorithm of [Kiw06] using the cutting-plane generator to incorporate
uncontrolled bundle information.

At iteration k of this algorithm, optimality conditions of the quadratic proximal
subproblem (10) can be written with the help of the (simplicial) Lagrange multipliers
a; associated to the constraints f;(x) < r, as

— X+ X — 1t Z oigi € Nx(x).
e U

The unique solution x;; can thus be written as a “subgradient step” along g, €
A fir(xk+1) + Nx (xx41) with specified stepsize #;

X1 = X — 18- (18)

8 Jérdme Malick et al.

Combined with (13), this yields that the aggregate linearization error é; defined in
(15) and the predicted decrease vy of (16) are connected by vy = e; + || 8|

Excessive inexactness is handled in a standard way: we employ the “noise atten-
uation” rule proposed by [Kiw06], consisting in increasing sharply #;, whenever &
is overly negative. More precisely, if & < —kKuutx||$x]|%, we set #; = 10 and solve
again (10) to obtain another iterate. Otherwise (i.e., & > — Kautx||$x/|?). the algorithm
performs like a classical proximal bundle method. We implement this using an extra
binary variable na indicating noise attenuation. After noise attenuation, #;, does not
decrease until a new descent step is performed (see line 20). Though it deals with
the coarse information (J;' # 0), the convergence of the algorithm still fits into the
generic bundle scheme analysis of [dOSL14].

Algorithm 1 Usual inexact proximal bundle method using cutting plane generator

1: Choose x] € X, and set £ < x|
2: Choose stopping tolerances, tol, > 0 and tol, > 0
3: Select k7, Ky € (0,1) and 1y >7 >0
4: (fy,,8x) < n-oracle(x;), set g1 — gy, and & < 0
50 J « {1}, J8 <O andna + 0
6: fork=1,2,... do
7: J¢ ecutting-plane-generator()?k,Jkn JE) > introduction of uncontrolled linearizations
8: Solve (10) to get x4 and compute gy
9: Setéy vy —ti|ge?
10: if & + & £ < tol, and ||g|| < tol, then > stopping test
11: return £; and f,
12: end if
13: if &, < — 1ty || 84|/ then > (noise) attenuation
14: na < 1, ty < 10z, and go back to line 8
15: end if
16: (frger»8xpsr) < M-oracle(xiq 1) > call n-oracle
17: if ka“ < f)?k — Kfvi then
18: Xk41 ¢ X1, na < 0 and choose 1 > 1 > descent step
19: else o
20: ftq1 < % and update ;: { Zi: i [ttk] i 22 = (1)
21: end if
22: Choose J/:7+1 O {k+1,—k} > bundle compression
23: end for

Theorem 1 (Convergence of inexact proximal bundle) Set the tolerances to zero
in Algorithm 1. Then the sequences testing optimality {&y + g] %} and {g,} become
“nonpositive”, in the sense that there exists a subsequence (indexed by %) such that:

limsup &+ £, £ < 0 and lim ||g] = 0.
kes ke s

Furthermore, the iterates {%;} generate an N-minimizing sequence, i.e. (22) holds.
Thus Algorithm I terminates after finitely many steps with an approximate solution if
the tolerances tolg, and tol, are strictly positive.

Uncontrolled inexact information within bundle methods 9

Proof The algorithm fits into the algorithmic pattern 4.2 of [dOSL14], and roughly
speaking the convergence comes from the use of the n-oracle at descent steps. More
specifically, we apply the generic convergence result of Theorems 6.11 and 4.4 of
[dOSL14]; let us check their assumptions one by one:

The oracle error is uniformly bounded by 1 (for iterates x; with j € J, ,:'), and thus
satisfies (6.8) of [dOSL14].

The cutting-plane model (9) satisfies fk < f, i.e., equation (4.10) in [dOSL14].
We have (3.8) of [dOSL14] by setting £ = f,.

The prox-parameter updating rule is of the type (6.14) of [dOSL14].

Equation (6.11) in [dOSL14] holds trivially for f; — fx,, as effective decrease.
We have (6.16) of [dOSL14] (specifically, with o = 0 and B; = Ky in there).

Thus Algorithm 1 satisfies all the assumptions (6.15) and (6.16) of [dOSL14, Theo-
rem 6.11]. This opens the way to apply [dOSL14, Theorem 4.4], which in turn states
that having a subsequence . such that limsup. (& + £/ £) < 0 and limyc s §¢ =0
gives the convergence up to 717, which is the desired conclusion. O

We report numerical illustrations of this algorithm in section 3.2. They show that
using uncontrolled linearizations within this algorithm leads to less iterations and
lower CPU time than using only controlled linearizations. However we see on (18)
that the algorithm may not exploit completely the added uncontrolled linearizations:
X+ 1s tied to Xy by the explicit prox-parameter #;, which could prevent the algorithm
from making big steps in case of rich cutting-plane model. Such behavior would not
appear with level bundle method.

3 Level method using uncontrolled information

This section presents a level bundle algorithm dealing with an 17-oracle and a cutting-
plane generator introducing uncontrolled linearizations, as in (7). When disregarding
the cutting-plane generator, this algorithm turns out to be the first level method able
to deal with inexact n-oracles in general; in this way, it can be seen as the level
counterpart of the proximal bundle method of [Kiw06]. The algorithm is presented
in section 3.1, its convergence is stated in section 3.2 and analyzed in section 3.3. Its
numerical behaviour is illustrated in section 4.

3.1 An inexact proximal-descent level bundle method

To avoid any compactness assumption, we consider a proximal-descent version of
level bundle method, inspired from the one of [BKL95]. At iteration & of this algo-
rithm, optimality conditions of the projection problem (12) can be written, with the
help of the Lagrange multipliers ¢; > 0 associated to the constraints f;(x) < i, as

—Xx+ X — Z 0; gi € Nx(x).
ielurs

10 Jérdme Malick et al.

Introducing the “stepsize”

Hy -= Z o,

-
i€/ U}

we observe that x; 1, the unique solution of the above optimality conditions, can be
written as the “subgradient step” along a direction gy € 9 fi (xx+1) + Nx (xk+1)

Xep1 =% — Wede suchthat p(fi(ver) — fi) = 0. (19)

The (inexact) upper bound is given by the n-oracle at the stability center (f,? P — Sr)-
When p; > 0, the predicted decrease (16) then corresponds to the level depth

__ gup lev
Vk_k —Jk >

and the aggregate linearization error is related to it, as

e = v — |8k (20)

To see this, notice from (19) that y; > 0 ensures that fi (x; ;) = f,le" and, therefore

&k = fo, — (Flxirn) + 84 (B —xee1)) = fo, — A1 — el 8ell> = vic — e 1> -

We emphasize that we do not control the stepsize L, in level bundle methods, in
contrast with proximal bundle methods where we can choose the prox-parameter #;
giving the stepsize. This poses a technical difficulty for handling excessive inexact-
ness within level methods. In Algorithm 1, as in other inexact proximal bundle meth-
ods, #; is increased when the noise is excessively large compared to g; (see line 13 in
Algorithm 1); this can not be done directly in an inexact level method. So we propose
in Algorithm 2 an implicit noise attenuation rule, combined with the level attenua-
tion rule. The idea is simple: we do not allow the depth v; to decrease if the noise is
excessive (see line 21). We will prove in the key proposition 2 that this simple idea
makes Ll to go to infinity in presence of noise, such that either a new descent step is
generated, or the algorithm terminates.

In practice, the projection onto X (problem (12)) is solved by a quadratic pro-
gramming solver (at line 18 of Algorithm 2). If X, is nonempty, the solver provides
Xx+1 and g, from which we deduce g; by (19). If X is empty, the solver raises a flag
of infeasibility and we exploit this information by updating the lower bound for the
optimal value f;: observe indeed that when X is empty, there holds

¥ < filx) < f(x) forallx € X,

so that we can set f,!ow = f,le" (see line 15). At each iteration of Algorithm 2, we thus
have a lower bound f;°" and an inexact upper bound £, such that

V< f <P+ 1)

Uncontrolled inexact information within bundle methods 11

Algorithm 2 New inexact proximal level method using cutting-plane generator

1: Choose x; € X, v; > 0, and set £| < x|
2: Choose stopping tolerances toly > 0, tol, > 0 and tol; > 0
3: Select k7, Kr, Kay € (0,1)
4: Choose a threshold pjyge > 0
5: (fx,»8x) < M-oracle(xy), set 1 < gx, and é; < 0
6: Set f17 < foy, [<= —o0, Ay <= oo, J]T = {1}, J3 0
7: fork=1,2,... do
8: J,‘: ecutting-plane-generator()?k,J,? =J1tl—1> > introduction of uncontrolled linearizations
9: Update f,l“ — f,fp — v and X {x €X: filx) < f,le"}
10: if Ay <toly or (& < tol, and ||g|| < tol,) then > stopping test
11: return £; and f;, = f,?p
12: end if
13: Run a quadratic optimization software on problem (12)
14: if Xy is empty then
15: FIOW IV A £ — FIOV vy < minf{vg, KA} > lower bound
16: Go back to line 9
17: else
18: Get x;41 and Ly, and compute g using (19)
19: & = vi — |82
20: end if
21: if W > Hiarge and &, > — i iy | &« then > (level+noise) attenuation
22: Vi < %, and go back to line 9
23: end if
24: (fxgs1>8xyy) < M-oracle(xir) > call n-oracle
25: if fo.., < f3y —Krvi then
26: Xkt1 < Xt 15 f,?fl < fay,, and f,l‘f{ ef,l"“’ > descent step
27 Apst < iy — 7 and vy < min{vg, KA}
28: else
29: Rt By Akl Dk Viw 1 Vi im0 and fI0% « flov
30: end if
31: Choose J;!, | D {k+1,—k} > bundle compression
32: end for

3.2 Convergence result

We have the following theorem stating the convergence of Algorithm 2, which is of
the same vein as Theorem 1 for Algorithm 1.

Theorem 2 (Convergence of inexact proximal level) Set the tolerances to zero in
Algorithm 2. Then the sequences testing optimality {Ay = f° — fi*V}, {&x} and {8}
become “nonpositive”, in the sense that

— either the sequence { A} tends to be nonpositive: limA; <0,
— or there exists a subsequence (indexed by %) such that: liminfic 7 &, < 0 and
limye 7 | 8[| = 0.

Furthermore, the iterates {%} generate an n-minimizing sequence, i.e.
fo <liminf £(£) < fi+1. (22)

Thus Algorithm 2 terminates after finitely many steps with an approximate solution if
the tolerances toly, tolg, and tol, are strictly positive.

12 Jérdme Malick et al.

The next section is devoted to the proof of this theorem. We will say that the
algorithm converges up to 1 when (22) holds. Note that there are two ways to stop
the algorithm (see line 10): the usual criterion based on the gap Ay = f: P_ f,l"w

limA; <0 = convergence up to n (23)

and a second one inspired from [BKL95] based on the aggregated error and subgra-
dients to deal with unbounded feasible sets. The next two lemmas explain these two
stopping tests and their consistency.

Lemma 1 (Nonpositivity of A; and convergence) [f limA; < O, then the sequence
{Z} satisfies

fo—n <limfy, < fo < liminf f(8) < fo +17. (24)
Furthermore, if at some iteration k we have A, < 0, then we have in fact
fi=m<fa <A< fE) < fitm. (25)
Proof Note first that the n-oracle properties imply that, for all k,
fo=n < f(&)—n < fe (26)

so that f,'* = f;, satisfies (21). We see that {f,” = fz } is nonincreasing (line 26),
{ f,low} is nondecreasing (line 15), and so {A; } is nonincreasing (line 27). The nonin-
creasing sequence { f, } is bounded from below thus converges and lim f3, > f. — 7.
Similarly the nondecreasing { f,lc‘w} is bounded from above by f;, thus it also con-
verges and lim fll"w < fi. Writing limA; <0 as lim f;, —lim f,l"w < 0 we obtain

fo—n <limfy < f.. 27)
Now passing to the limit-inf in (26) and adding 1, we also have

Combining this inequalities with (27) gives the announced inequalities (24).
The argument leading to the second inequality (25) is the same as above. For a
fixed k, (26) and A, < 0 give f, — 1 < f;, < fi, and adding 1) to (26) yields

< f@E) < fo+n<fi+n.
Combining the inequalities gives (25). a

Lemma 2 (Vanishing aggregate errors and convergence) For the sequences {%;},
{ér} and {g1} generated by Algorithm 2, we have, for all x € X,

FO) < f(x) i+ m = g (v — %), (28)
Assume that {%;} is bounded and there exists a subsequence indexed by % such that
liminfé; <0 d lim | g/ =0. 29
iminfé, <0 and lim || &) (29)

Then the algorithm converges up to 1.

Uncontrolled inexact information within bundle methods 13

Proof Fix x € X. The inequality (28) comes from (13) as follows:

=f (xk)+gk(x %)

= fo, — (foo — For(Fa)) + &5 (x — &)
= J& €k+gk(x xk)

> (&) —m — e+ 8y (x — %)

We also get the upper bound

fe S F (&) < f(0) 48+ + (18l e — £l

Passing to the liminf, (29) together with the boundedness of {£;} yields
f < liminf £(%) < f(x) + 1
kes

Taking the infimum over x € X gives (22). ad

3.3 Convergence proof

To prove Theorem 2, we adapt the usual rationale of convergence proof of bundle
methods, by considering the two cases of infinitely many and finitely many descent
steps (line 26). We show that in both cases one of the two stopping tests is active,
which guarantees in turn that the algorithm converges up 1 (by (23) and Lemma 2).
The technical challenge is to handle, first, a fixed inexactness in a level method and,
second, the uncontrolled cutting-plane model. We note that this proof of convergence
differs from the one of [BKI.95].

We start with a remark about the level depth v;. Looking at lines 15, 22 and 27,
we see that {v;} is nonincreasing, and that if v > 0 then é, > — . We also
notice that v; can be negative only if so is A, and then (23) holds. Therefore, we
consider that v, > 0 in the remainder of the section.

We will also need the index set .o of the iterations requiring a noise attenuation
(line 22). The following lemma studies the situation of infinitely many of such attenu-
ations. The following proposition treats the first case of infinitely many descent steps.

Lemma 3 (Infinitely many attenuations) If </ contains infinitely many indices,
then (29) holds with .9 = . If the sequence {%} is furthermore bounded, then
the algorithm converges up to 1.

Proof Recall that vy = & + || x| by (20). If k € o7, then we have
Vi = &+ tel|gell* > (1= Kae) e |8 [1* > (1= Kate) rargel| 261> > 0.

If the set <7 is infinite, then we have vy — 0, and therefore ||gx|| — O by the above
inequality. By (20), this yields that é; — 0 and then we have (29) with .¥ = &/. As a
result, if the sequence {#;} is bounded, we can invoke Lemma 2 and get that {%; } is
N -minimizing. a

14 Jérdme Malick et al.

Proposition 1 (Infinitely many descent steps) Suppose there are infinitely many
descent steps (line 26). Then the algorithm converges up to 1.

Proof Let us index the descent steps by £. More precisely k(¢) denotes the £ descent
iteration, and j(£) = k(£+ 1) — 1 the last iteration before the (¢+ 1)™. Note that £

is the ¢ (different) stability center, and that Lk(e) = X£j(p)- The descent test (17) gives
the inequality
ka(/:) 7ka) = KV 2 0.

Summing over ¢ we get

S hmka(un KfZV

Since lim, ka 1) 2 f« — 1M > —oo, we get that the series converges and then

By monotonicity of v, we thus have lim vy = 0. Let us distinguish now three cases:
(i)« finite (i) infinite and {%; }; bounded (iii).«7 infinite and {£; }; unbounded

In the case (i), for k large enough, we have vy = KAy, and then lim; Ay = 0. Thus,
(23) holds and the proof is over. In the case (i), we can use Lemma 3 which gives
(29) and that {%;} is -minimizing. So let us focus on the case (iii), and let us prove
by contradiction that {£ } is still 77-minimizing.

Suppose that there exists € > 0 such that f(£) > f. +n + € for all k large enough.
This yields that there exists ¥ € X such that f(%)) > (%) +n + €/2 for all large £.
Then (28) applied to k = j(¥) gives

i (x—%ie) < f)+n = f() +¢j) forallxeX,

which yields
gA;(({)()?—Xk(>)<€ —8/2
Using this inequality and (20), we develop

k(1) — X7 ka(a 5/
= ||k — % +||M,(z g,(/z)H +210)8 o) (= Xi(e))
= |1 e(e) — Xl + Ky o) 18 e H2+2g 0 E= %)
< Ree) — 1%+ 1500 [0 18 o) II? +2850) — €]
< | Ry — X +2HJ(/)[V]'(£)—8/2]-

As limg vy = 0 by (30), we have for all £ large enough v, < € /2 and then
£y — 7 < o) —f”z
which contradicts the fact that {£; } is unbounded. Hence, (22) must hold. a

We consider now the second case of finitely many descent steps. We start with a
lemma stating that null iterates get further away from the last stability center.

Uncontrolled inexact information within bundle methods 15

Lemma 4 (After a last descent step) If £, = £, = %, f,lev < f,lej] and v = vi_q,
then we have
.) 1—xp)?
s — 51 > o — 2+ L5002
[F:

Proof The bundle management of line 31 incorporates two pieces in the model f:
the k-th linearization f; and the aggregate linearization f_j. Both bring some infor-
mation, as follows. First, since f,(k,” < fk and f,lev < f,lej'l, we have that the level set
Xy is included in the “aggregate level set” X_q_) = {x € X : f,(k,l)(x) < fie
and therefore that x;1 € X_;_1). It can be proved (see e.g. [dOS14, Prop. 3.2]) that
the aggregate level-set produces the same iterate that X;_;; in other words,

xe =Py, (%)= Px_ () and (£—x) (x—x;) <Oforallx € X_(k-1y. B

Thus, we have (£ —x;)" (xx11 —xx) < 0 and developing ||x; 1 — £||* = ||xe1 —xx +
(xx — %) ||, the inequality gives

3kt — 2% > [l — £ + [Joe — 21| (32)

Now since f; < fi and xz; € Xy, we have S T g;k (g1 —xx) < f,le", which gives

Foo— 1% <l gn st —xel]- (33)

Iteration k is not a descent iteration: the converse of line 25 reads fx, > f; — Krvi—1.
Recalling that £ = f; — vi and vy = vy, this yields fy, — fi > (1 — ky)vk. To-
gether with (33), this gives

(1—xp)

1 — k]| > ————v.
ll &

k-

which ends the proof with (32). O

Proposition 2 (Finitely many descent steps) Suppose that Algorithm 2 generates
only finitely many descent steps. Then the algorithm converges up to 1.

Proof Let us consider first two easy cases. If lim A; < 0 then (23) holds, and the proof
is over. If 7 has infinitely many indices, we can conclude with Lemma 3 together
with the fact that the sequence {£;} is constant for k large enough.

Let us focus on the case where there exists A > 0 such that A, > A for all k, and
there is eventually no noise attenuation (<7 has finitely many indices). For k large
enough, the stability center is fixed (denoted £) and the depth is also fixed (at v > 0).

We claim that the sequence ||x;41 — || is not bounded. For sake of a contradiction,
suppose that it is bounded. Then the 1-subgradients are bounded (by a constant A)
by [HUL93, Prop. XI.4.1.2]. Apply Lemma 4; since the v and the £/°¥ are fixed,
the sequence {|[x1 — £[|}x increases by a constant factor (1 — k7)?%*/A? at each
iteration. This contradicts the boundedness.

16 Jérdme Malick et al.

We claim now that f; — oo. In view of a contradiction, suppose that {L} is
bounded: let i > 0 be such that y; < fi for all k large enough. Using (20) we have
that

v = el + MEN 8NP > — e + pgl| gl > —an + [l — £

As {v;} is nonincreasing, we have that fivg > vy > —in + ||xx; — £||?, contra-
dicting that ||x;4; — £[|> — oo. Hence, L — oo.
Since there is eventually no noise attenuation, we have (see line 21)

& < — Kl || 8]> <0 for all k large enough.

By definition of é; in (15), we have that & > f(%) — N — f_x(&) > —n, from (3)
and (14). This yields ||g;||> < 1/ (Kauptx)- Since p; — oo, we get that §; — 0. Hence,
(29) holds with .# being all the large indices. Since the sequence {£} is finite (thus
bounded), we can conclude with Lemma 2. O

Remark 1 (More sophisticated versions) We emphasize that the important point of
the above proofs was to control the linearization error at descent steps. As a conse-
quence, we could add a test in the algorithm to stop the oracle whenever we detect
that the descent test will be false. This version of the algorithm would be proved to
be convergent with the exact same proof.

We could also cover the case of “upper oracles” in the terminology of [dOSL14].
The algorithm could indeed deal with controllable linearizations overestimating the
function by no more than a constant ¥ > 0. The same convergence proof would
result in a convergence to an (1 4+ 18)-solution. O

4 Numerical illustration on energy optimization

We illustrate the efficiency of our approach on two classes of energy optimization
problems: two-stage stochastic programming problems (with publicly available data
sets) and chance-constrained optimization problems arising from cascaded reservoir
management (with real-life data). Each following subsection treats one family of
problems for which we consider an exact oracle and a cutting-plane generator in-
corporating uncontrolled linearizations. Our goal here is not to obtain the best com-
putational results for these problems, but to show that using the uncontrolled bundle
information can speed-up computations.

Specifically, we compare Algorithm 1 and Algorithm 2 using cutting-plane gen-
erators to their basic versions not using any additional uncontrolled linearizations
(J¢ = 0 for all k). We have implemented these algorithms in MATLAB (using the
Gurobi solver for LP and QP problems); we name them as follows

— u-P: Algorithm 1, the proximal bundle using uncontrolled information,
P: Algorithm 1 with Ji! = 0, the standard proximal bundle algorithm,
u-L: Algorithm 2, the level bundle using uncontrolled information,

L: Algorithm 2 with Ji! = 0, the (new) level algorithm.

Uncontrolled inexact information within bundle methods 17

Notice that the comparison between level and proximal bundle algorithms are (sur-
prisingly) rare; an exception is [dS15]. In particular, in section 5.1.4 of [dS15], tests
are reported with tuning parameters of proximal and level bundle methods. Here we
set the parameters of the algorithms according to these tests: for both algorithms, we
take k7 = 0.1 and Ky = 0.99 ; for Algorithm 1, we take 1; = 10, = 107°, and the
update rule of Section 5.1.2 of [dS15] (with a = 2) for #; ; for Algorithm 2, we take
K = 0.2 and Harge = 5.

Since the controlled oracle is exact (1 = 0), the four methods converge to the
exact solution. The algorithms are compared by measuring the number of calls to the
exact oracle and the total CPU time to reach the stopping test. We use the relative
stopping tolerance

tol, =toly = 1072(1+ f(%)) and tolg = 107*(1 4 £ (%))

These experiments were performed on a computer with Intel(R) Core(TM), i3-3110M
CPU 2.40, 4G (RAM), under Windows 8, 64Bits.

We also compare the speed and robustness of the algorithms globally on all the
problems by using performance profiles [DMO02]. For each algorithm, we plot the
proportion of problems that it solved within a factor of the time required by the best
algorithm. More precisely, if we denote by 74(p) the time spent by algorithm A to
solve problem p and #*(p) the best time for solving problem p, then the proportion
of problems solved by A within a factor 7 is

number of problems p such that t4(p) < 7t*(p)
0a(7) = :

total number of problems

4.1 Two-stage stochastic linear optimization problems

Problem and instances description. Two-stage stochastic linear problems arise in the
planning of hydro-electric power generation; see e.g. [ZPR00] and [dOSP*10] for
applications to the New Zealand and Brazilian electricity system. The problem can
be formulated as (1) with

N
X={xeR|:Ax=>b} and f(x):ch—FZiriﬁ(x)
i=1

where ¢ € R", A € R™*" and b € R™ are such that the set X is bounded. Also,

fi(x):= min q'y s.t. Tx+Wy=h; (34
yE]R’jrz

is the so-called recourse function associated with the i-th scenario #; € R"2 (which
has a probability 7; > 0). In these problems, the vectors /; are the only uncertainty
parameters and are normally distributed. The dual linear problem of (34) is

filx)= sup (hi—Tx) u. (33)
WTu <q

18 Jérdme Malick et al.

We use the set of two-stage stochastic linear test-problems that have been used
by several authors including [SDR09,Ded06,dOSS11]). The set is available online
on the webpage of Istvan Deak'. The data set consists in 7 families of problems of
different sizes; we call them F1 to F7. A family of problems is given by the data
(c,A,b,q,T,W) along with a generator of appropriate scenarios, which takes as an
input the number of scenarios N, and returns (7;, ;) for i = 1,...,N. For each family,
we have 7 problems corresponding to N € {100,200, 500,800, 1000, 1200, 1500}.

Oracles and cutting-plane generator. Computing exact information on f requires
solving the N linear optimization subproblems (34)-(35). Solving only a fraction of
these subproblems still gives inexact information on f: the optimal solution #; giving
fi(x) can also be used to under-approximate other terms f;(x) (since the dual feasible
sets are the same, we have (d; — Tix) "it; < fj(x)). Thus we are in the situation (7) with

— an exact oracle providing the value f(x) and a subgradient g € d f(x) (n = 0) by
solving exactly the N subproblems (35);

— an uncontrolled oracle by solving 10% of the subproblems (35) and taking a feasi-
ble solution of the remaining subproblems. This oracle is about 90% times faster
than the fine one, but we do not know its accuracy.

— a cutting-plane generator consisting in running several iterations of a bundle
method using only the uncontrolled oracle (with the same stopping test and a
maximum of 100 iterations).

Numerical results. Table 1 presents the performances of the four algorithms on the 49
test-problems. It reports the number of (exact) oracle calls and CPU time (in minutes)
required to reach convergence. Each entry is the average over the seven instances of
the family, except for the last line which is the grand total over the 49 instances. This
table shows that adding uncontrolled linearization does speed up significantly the two
algorithms: we observe 25% less oracle calls and 10% less CPU time between L and
u-L, and 39.4% and 28.6% between P and u-P.

oracle calls CPU time (min)
N L P u-L u-P L P u-L u-P
F1 19 25 13 11 1.2 1.7 1.0 0.8

F2 25 39 19 25 29 4.6 2.5 32
F3 37 56 23 30 2.5 3.7 1.8 2.2
F4 39 62 31 35 33 5.1 2.9 3.0
F5 38 63 36 39 4.5 7.1 4.5 4.7
F6 57 81 37 51 4.8 6.2 4.2 5.4
F7 59 68 47 49 6.7 7.9 6.1 6.6
Total | 1928 2768 1440 1678 | 3.0h 42h 27h 3.0h

Table 1 Comparison of the four algorithms with respect to the number of oracle calls and the global CPU
time to get convergence. Each entry is the average over the seven instances of the family, except for the
last line which is the grand total over the 49 instances.

The decrease of oracle calls is more important than the one of CPU time because
of the additional time taken by the calls of the cutting-plane generator and by solving

! http://www.uni-corvinus.hu/index.php?id=26637

Uncontrolled inexact information within bundle methods 19

larger quadratic subproblems. We still observe a decrease of CPU time in all our
instances, even if the uncontrolled linearizations may have a poor accuracy. We also
note that the decrease is more important for proximal algorithm than the level one.
This is due to the fact that the level algorithm without uncontrolled information (L)
does already well: we see that the CPU times of L are comparable to the ones of u-P.

——P
--u-L
o u-P

Fig. 1 Performance profiles of the four methods over the 49 instances

For these problems, the best method in terms of both oracle calls and CPU time
is u-L, the level method using the uncontrolled cutting-plane generator. Figure 1 con-
firms this by showing the performance profile of all solvers with respect to oracle
calls (the plot for CPU time is similar). Since its curve is always higher, u-L clearly
dominates the other methods in terms of speed and robustness. The value at T = 1
indicates that u-L is the best to solve around 70% of the 49 problems; it also solves
all the problems within a factor T ~ 1.5 of the best method.

We finish with a remark about the influence of the accuracy of the uncontrolled
oracle. We note indeed that we can adjust the accuracy of the uncontrolled oracle in
this situation by changing the percentage of subproblems (35) solved. In the reported
experiments, we choose to solve 10% of the subproblems because we found out that it
provides a good compromise between performance of the overall algorithm and com-
putational burden of the external module. We mention here that, during preliminary
tests, we observed that solving fewer subproblems (e.g. 1% of all subproblems) tends
to increase of the total number of exact oracle calls and to give higher CPU times
to solve the overall problem. On the other hand, we also observed that solving more
subproblems (e.g. 20% of all subproblems) tends to decrease of the number of exact
oracle calls, but with higher total CPU costs (since the uncontrollable oracle becomes
more expensive). In general, the efficient choice of the percentage of problems solved
depends on the problem’s data, such as variance of the random vectors and number
of considered scenarios.

20 Jérdme Malick et al.

4.2 Chance-constraint optimization problems

Problem and instances description. Joint chance-constrained optimization problems
appear in cascaded reservoir management in presence of probabilistic guarantees that
volumes in the reservoirs remain within bounds see e.g. [VAdO14]. With a target
probability p € (0,1), these constraints can be expressed as Pg(y) > &] > p where
& € R" represents the random vector of water inflows (of associate probability mea-
sure P) and g : R™ — R" is an affine mapping. The associated optimization problem
can be written (see more precisely [VAHMZ14, Eq.(15)]) as
: T

yergltgv qy st gy >v, (36)
where Y is a bounded polyhedron and V the set of points satisfying the probabil-
ity constraint. When considering finitely many scenarios {&',...,EN} with asso-
ciated probability {7,..., 7y} (see e.g. [SDR0O9, Chap.4], [DM13, Chap. 6], and
[VABdOS15]), V can be expressed as the following feasibility set

V:{VER":HzE{O,l}N, n'z<1—p, (1-2)& <v—bz, i:l,...,N}

where b € R” is defined component-wise by b = minj<j<y 5; Then the dual prob-
lem has the form (1) with

X=R} and f(x):=—(h(x)+d(x))

where /(x) is the optimal value of a mere linear programming problem (since Y is a
polyedron and g is affine)

h(x) :=min ¢"y—x"g(y)
yey

and d(x) is the optimal value of a (large-scale) mixed-binary linear problem

min x'v
. veR™M, ze{0,1}¥
d(x) = st E(l-z)<v-bzi=1,...,N 37
Tz<1—p.

Here we use the instances described in [VAHMZ14] and [vAdO14] constructed
from real-life data on the French hydro-valley Isere (provided to us by EDF, the
French Electricity Board). For N € {50, 100, 150, 200, 250} and p € {80%, 90%},
three different scenario samples are randomly generated, and as a result, we get thirty
different associated instances.

Oracles and cutting-plane generator. The bulk of the work of an exact oracle for f
is to solve the mixed-binary linear optimization problem (37) to optimality, which is
expensive as N grows. On the other hand, we have an easy way to produce feasible
solutions, as follows. To any binary point 7 € {0, 1}V satisfying 7772 < 1— p we
associate the vector ¥ € R” such that

v;:= max &! forall j=1,...,N. 38
/ ie{l:zlz()}éj J (38)

Uncontrolled inexact information within bundle methods 21

Observe then that the pair (7,7) is feasible for (37). Accordingly, d, :=x' #is an upper

approximation for d(x), which in turn provides a (cheap but imprecise) approximation
for f(x)
fo=—(h(x) +d) < f(x).

The recent work [vABdOS15] proposes a fast heuristic (denoted Heuristic hi therein)
to compute a good candidate Z (and therefore 7 as above) to approximate a solution
of problem (37). Thus we are in the situation (7) with

— an exact oracle providing the value f(x) and a subgradient g € df(x) (n =0) by
solving exactly the subproblem (37) with Gurobi;

— an uncontrolled oracle using the heuristic of [vABdOS15] and (38);

— a cutting-plane generator consisting in running several iterations of a bundle
method using only the uncontrolled oracle (with the same stopping test and a
maximum of 100 iterations).

Numerical results. Table 2 reports the number of (exact) oracle calls and CPU time
(in minutes) required to reach convergence, for the four algorithms over the 30 test-
problems. Each entry is the average over the instances with same N and p, except for
the last line which is the grand total over the 30 instances.

oracle calls CPU time (min)

N P L P u-L u-P L P u-L u-P
50 0.8 18 32 13 13 0.6 0.9 0.4 0.4
50 0.9 18 18 11 9 04 0.4 0.3 0.2
100 0.8 19 24 12 15 29 3.5 1.7 1.6
100 0.9 19 19 11 21 1.3 1.1 0.7 1.2
150 0.8 19 24 11 20 128 120 6.2 7.9
150 0.9 18 24 8 18 24 3.6 1.2 2.1
200 0.8 20 19 13 23 242 202 121 126
200 0.9 19 22 10 6 5.6 5.7 32 14
250 0.8 18 32 15 15 | 489 456 299 28.0
250 0.9 19 36 12 40 17.0 26.1 5.3 20.5
Total 558 751 346 543 | 58h 6.0h 3.0h 3.8h

Table 2 Comparison of the four algorithms with respect to oracle calls and global CPU time to get con-
vergence. Each entry is the average over the three instances, except for the last line which is the grand total
over the 30 instances.

The figures show that introducing uncontrolled linearizations reduces both the
number of oracle calls and the CPU time for both proximal and level algorithms. This
improvement is even more significant than for the two-stage problems: the reduction
of CPU times is of 47% for u-L and 36% for u-P.

We also see that u-L is more efficient u-P, both in CPU time and number of oracle
calls. In fact u-L makes a better use of uncontrolled information added by the cutting-
plane generator: L and P are comparable in terms of CPU time whereas u-L is faster
than u-P (by more than 20%). The performance profiles of Figure 2 confirm that u-L
is the fastest and most robust among the four methods.

22 Jérdme Malick et al.

o(t)

——P
--u-L
S u-P

Fig. 2 Performance profiles of the four methods on the 30 instances.

5 Conclusions

This paper analyzes two bundle algorithms (a proximal one and a level one) handling
cheap uncontrolled inexact linearizations, incorporated by an abstract cutting-plane
generator. Beside the formalisation and the emphasis on uncontrolled bundle infor-
mation, the main technical contribution of this paper is the challenging convergence
analysis of the level algorithm. This algorithm extends [BKL95] to handle inexact
n-oracles and to use the general uncontrolled cutting-plane model generator. The
key feature of this algorithm is a novel noise attenuation rule, that can be seen as an
implicit version of the one of [Kiw06]. Numerical experiments on two energy opti-
mization problems show that including cheap uncontrolled information can decrease
the CPU time to reach optimality, and that the level algorithm, fully exploiting the
additional information, works particularly well on these problems.

To our knowledge, this paper is the first one to consider cheap uncontrolled in-
exact information within bundle methods and to show the interest to use it. A recent
preprint [vAFO15] builds on this line of research in a context of Benders decomposi-
tion. Note finally that we consider here an extreme case of a cutting-plane generator
with no control at all on the linearizations. More sophisticated and subtle ways to
incorporate cheap information should be possible, as for exemple using “adaptative
oracles”. Such inexact oracles would interact with the bundle algorithm (though accu-
racy parameters as in [dOS14] but not only) and would be able to choose between sev-
eral available approximation schemes with increasing accuracy and increasing cost
(as for example the three specific heuristics of [BTV06] for a combinatorial prob-
lem). A general study of smart and communicating oracles goes beyond the scope of
the paper and deserves special research and developments.

Uncontrolled inexact information within bundle methods 23

Acknowledgment

We thank Antonio Frangioni (Univ. of Pisa, Italy) for insightful discussions on a
first version of this article and Wim van Ackooij (EDF, France) for providing us
with the real-life data set used in section 4.2. The first author gratefully acknowl-
edges the support of the grant ”ANR GeoLMI” and the CNRS Mastodons project
“gargantua/titan”. The second author gratefully acknowledges the support provided
by Severo Ochoa Program SEV-2013-0323 and Basque Government BERC Program
2014-2017.

References

[BKL95] U. Brannlund, K. C. Kiwiel, and P. O. Lindberg, A descent proximal level bundle method for
convex nondifferentiable optimization, Operations Research Letters 17 (1995), no. 3, 121 —
126.

[BTV06] C. Beltran, C. Tadonki, and J.Ph. Vial, Solving the p-median problem with a semi-lagrangian
relaxation, Computational Optimization and Applications 35 (2006), no. 2.

[Dea06] 1. Deédk, Two-stage stochastic problems with correlated normal variables: computational
experiences, Annals OR 142 (2006), no. 1, 79-97.
[DLO5] J. Desrosiers and M. Lubbecke, A primer in column generation, Column Generation (G. De-

saulniers, J. Desrosiers, and M.. Solomon, eds.), Springer US, 2005, pp. 1-32 (English).

[DMO02] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Mathematical Programming 91 (2002), 201-213.

[DM13] D. Dentcheva and G. Martinez, Regularization methods for optimization problems with prob-
abilistic constraints, Math. Programming (series A) 138 (2013), no. 1-2, 223-251.

[dOS14] W. de Oliveira and C. Sagastizdbal, Level bundle methods for oracles with on-demand accu-
racy, Optimization Methods and Software 29 (2014), no. 6, 1180-1209.

[dOSL14] W. de Oliveira, C. Sagastizdbal, and C. Lemaréchal, Convex proximal bundle methods in
depth: a unified analysis for inexact oracles, Mathematical Programming 148 (2014), no. 1-
2,241-277 (English).

[dOSP*10] W. de Oliveira, C. Sagastizdbal, D. Penna, M. Maceira, and J. Damazio, Optimal scenario
tree reduction for stochastic streamflows in power generation planning problems, Optimiza-
tion Methods and Software 25 (2010), no. 6, 917-936.

[dOSS11] W. de Oliveira, C. Sagastizabal, and S. Scheimberg, Inexact bundle methods for two-stage
stochastic programming, SIAM Journal on Optimization 21 (2011), no. 2, 517-544.

[dS15] W. de Oliveira and M. Solodov, A doubly stabilized bundle method for nonsmooth convex
optimization, Mathematical Programming (2015), 1-35.
[Fab00] C. Fabian, Bundle-type methods for inexact data, Central European Journal of Operations

Research 8 (2000), 35-55.
[Fra02] A. Frangioni, Generalized bundle methods, STAM Journal on Optimization 13 (2002).

[Geo72] A.M. Geoffrion, Generalized Benders decomposition, Journal of Optimization Theory and
Applications 10 (1972), no. 4, 237-260.
[HinO1] M. Hintermiiller, A proximal bundle method based on approximate subgradients, Computa-

tional Optimization and Applications 20 (2001), 245-266, 10.1023/A:1011259017643.

[HUL93] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms,
Grund. der math. Wiss, no. 305-306, Springer-Verlag, 1993, (two volumes).

[Kel60] J. E. Kelley, The cutting plane method for solving convex programs, J. Soc. Indust. Appl.
Math. 8 (1960), 703-712.

[Kiw06] K. C. Kiwiel, A proximal bundle method with approximate subgradient linearizations, SIAM
Journal on Optimization 16 (2006), no. 4, 1007-1023.

[LemO1] C. Lemaréchal, Lagrangian relaxation, Computational Combinatorial Optimization
(M. Jiinger and D. Naddef, eds.), Springer Verlag, Heidelberg, 2001, pp. 112-156.

[LNNO95] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, New variants of bundle methods, Math.
Program. 69 (1995), no. 1, 111-147.

24

Jérdme Malick et al.

[MW381]
[RS03]

[SDRO09]

[Sol03]

[TvAFL15]

T. L. Magnanti and R. T. Wong, Accelerating benders decomposition: Algorithmic enhance-
ment and model selection criteria, Operations Research 29 (1981), no. 3, 464-484.

A. Ruszcezyniski and A. Shapiro, Stochastic programming, Handbooks in Operations Re-
search and Management Science, vol. 10, Elsevier, Amsterdam, 2003.

A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on stochastic programming: Mod-
eling and theory, MPS-SIAM Series on Optimization, SIAM - Society for Industrial and
Applied Mathematics and Mathematical Programming Society, Philadelphia, 2009.

M.V. Solodov, On approximations with finite precision in bundle methods for nonsmooth
optimization, Journal of Optimization Theory and Applications 119 (2003), no. 1, 151-165.
M. Tahanan, W. van Ackooij, A. Frangioni, and F. Lacalandra, Large-scale unit commitment
under uncertainty, 40R (2015), 1-57 (English).

[VABdOS15] W. van Ackooij, V. Berge, W. de Oliveira, and C. Sagastizabal, Probabilistic optimization

[VAdO14]

[VAFO15]

[VAHMZ14]

[ZPROO]

via approximate p-efficient points and bundle methods, Tech. report, 2015, Optimization
Online report number 4927.

W. van Ackooij and W. de Oliveira, Level bundle methods for constrained convex optimiza-
tion with various oracles, Computation Optimization and Applications 57 (2014), no. 3,
555-597.

W. van Ackooij, A. Frangioni, and W. Oliveira, Inexact stabilized benders decomposition
approaches to chance-constrained problems with finite support, Submitted; Available as
preprint TR-15-01 of Universita di Pisa Dipartimento di Informatica (2015).

W. van Ackooij, R. Henrion, A. Moller, and R. Zorgati, Joint chance constrained program-
ming for hydro reservoir management, Optimization and Engineering 15 (2014), no. 2, 509—
531.

G. Zakeri, A. Philpott, and D. Ryan, Inexact cuts in benders decomposition, SIAM Journal
on Optimization 10 (2000), no. 3, 643-657.

