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This supplementary material collects some technical
proofs that were only sketched in the main body of the
paper, and clarifies a few aspects that were not treated in
full detail due to space limitations. For convenience of the
reader, we have also provided in Section A a brief introduc-
tion to elementary notions of algebraic geometry, that could
be useful for a better understanding of the theory underly-
ing our results. Propositions that appear in the main body
of the paper will be stated here with the same numbering,
while auxiliary results will be numbered independently.

A. Algebraic varieties and ideals

We give a brief and informal introduction to some no-
tions of algebraic geometry. Proofs and more details can
be found in any basic reference on the subject. For exam-
ple, see [3] for an accessible presentation with a focus on
computational aspects.

Affine and projective algebraic varieties. Let K be a
field; for our purposes, we will only be interested in K =
C (complex numbers) or K = R (real numbers). Let
K[z1,...,z,] denote the ring of polynomials in n variables
with coefficients in K. An affine algebraic variety is defined
as the zero-locus of a family of polynomial equations:
V(S)={(s1,---,8n) | f(51,-..,8,) =0, Vfe S} CK"

ey
where S C K[y, ..., 2,]." We will say that such a variety
V(S) is defined by the set S. It is actually customary to
consider only special families of polynomials called ideals:
these are sets that form additive groups, and that are closed
under multiplication with any other polynomial (so that if
f belongs to an ideal i, then the product g f is in i for any
polynomial g). For example, the set

(f,9) = {haf +hag|h1,he € Klzq,...,2,]}  (2)
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!For some authors this is actually definition of an affine algebraic set,
since they require algebraic varieties to be also irreducible (see the defini-
tion in the following paragraph).
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is the ideal generated by f and g, i.e., the smallest ideal
that contains both f and g. It is quite easy to realize that
the affine variety defined by a set of polynomials S coin-
cides with the variety defined by the ideal generated by S,
so we can always assume that a variety is defined by an
ideal. The association between algebraic varieties and poly-
nomial ideals is the first brick in the foundation of algebraic
geometry. We collect some fundamental properties of this
correspondence:

e Every polynomial ideal can be generated by a finite
number of polynomials, so varieties are always defined
by finite sets of equations.

e Different ideals can define the same variety V. To clar-
ify this behavior, we need to mention that any ideal i
is contained in its so-called radical /i (defined as the
set of polynomials f for which there exists a m > 1
such that f™ € i). Now, if two ideals i; and i5 have
the same radical v/i; = 1/iz, then they define the same
variety V(i;) = V (i2). If K is an algebraically closed
field, then the converse also holds. This important re-
sult is known as Hilbert’s Nullstellensatz.

e The largest ideal defining an algebraic variety V', con-
taining all polynomials which vanish on V, is denoted
with (V). This ideal is a always a radical ideal, i.e.,
it coincides with its radical i((V) = 1/i(V). In sum-
mary, the association between varieties and ideals can
be descrbed as follows:

affine varieties radical ideals

% LN (V)
V(i) & i

If K is an algebraically closed field, then these maps
are bijections and inverses of each other (however the

(1342

map “i” is actually injective over any field).



In the paper, we usually deal with subsets of projective
space, so we now introduce the notion of projective alge-
braic varieties.” A projective variety is defined as a subset
of P*(K) (n-dimensional projective space) that is the zero-
set of family of homogeneous polynomials:

W(S) = {[so;81;---;8n]| f(S0,...,8n) =0 Vf €S} CP"(K)
(3)
where S C Klzg,1,...,%,] is a set of homogeneous
polynomials. We recall that a homogenous polynomial
has terms of the same degree d, and has the property that
F(As0,...,Asn) = Af(sq,...,s,) for all A\ € K: note
that this condition is necessary in order for the evaluation
on homogeneous coordinates to be well-defined. There ex-
ists a correspondence between projective varieties and ho-
mogeneous radical ideals (radical ideals generated by sets
of homogenous polynomials) that has some technical com-
plications but is conceptually completely analogous to the
affine case. Finally, we point out that the intersection of
projective variety W C P"(K) with an affine chart (say
Up = {xo = 1}) is an affine variety, obtained simply by
substituting ¢ = 1 for all polynomials defining W; con-
versely, an affine variety V' C K" can always be viewed as
the affine portion of its projective closure V. C P"(K), that
is obtained by homogenizing all polynomials defining V.

Example 1. Consider the affine variety V' C R? defined by
the following polynomial conditions:

s x? =0

fiieiae o)
forxzy+y=0

One can prove that the projective closure of V' is the projec-

tive variety V' C P?(R) defined by the homogenized gener-

ators:
P4 22=0 )
firay+yz=0

If we restrict to the affine chart {z = 1} we see that V/
coinciiles with V, but V' also contains one point “at infin-
ity > Vn{z=0}={[0:1:0]}.

Irreducible decomposition, dimension. An algebraic
variety (affine or projective) is said to be irreducible if it
is not the union of two proper algebraic varieties. A funda-
mental result states that every algebraic variety can be ex-
pressed as the union of a finite number of irreducible com-
ponents, and moreover this decomposition is unique. Given

2The joint image is actually a subset of a product of projective spaces
P2 x ... x P2. However, we can still talk about projective varieties since
one can show that a product of projective spaces can always be embedded
in a higher dimensional projective space PV (using the so-called Segre
embbedding). One can also work directly in P2 x ... x P2, with a few
technical adjustments.

a decomposition of a variety V' into irreducible components
V=Wu...uwy ©6)

we obtain an associated decomposition of ideals (notice the
union now becomes an intersection):

(V) =iWy) n...Nni(Wy). (7

Ideals of the form i(W') where W is irreducible can be char-
acterized in purely algebraic terms, and are called prime
ideals. The reason for this terminology is that ideals were
first introduced as a generalization of the integers (“ideal
numbers”), and the decomposition (7) generalizes the fac-
torization of integers. However, a general non-radical ideal
cannot be expressed as an intersection of primes, and re-
quires a more elaborate decomposition based on so-called
primary ideals (“primary decomposition”); this decompo-
sition is also not completely unique. Since for our purposes
we will only be interested in radical ideals associated to va-
rieties, we can actually always find a decomposition into
primes, and the decomposition is unique (basically because
it corresponds to an irreducible decomposition of varieties,
as illustrated above).

If V is an irreducible variety, we can define its dimension
to be the maximal length d of chains Vo C ... C V; =V
of irreducible varieties contained in V. There are also a
number of equivalent algebraic definitions (e.g., the longest
chain of prime ideals ideals containing i(V')).

Example 2. 1f we consider again the variety V' C R? de-
fined by (4), one can show that V- = W; U W, where

Wi ={z=0,y =0}

8

Wy = {x +1= O} ®)

See Figure 1. Note that 17 is a point (a 0-dimensional

irreducible variety) and W5 is a line (a 1-dimensional irre-
ducible variety).
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3
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Figure 1. The affine variety V' from Examples 1 and 2.



Grobner bases. The properties of ideals discussed above
do not provide us with a practical ways for dealing with al-
gebraic varieties computationally. For example, how can
we verify if a polynomial g is contained in a given ideal
i = (f1,...,fs) (“ideal membership problem”)? More
generally, how can we establish whether two ideals i; and
io coincide (“ideal equality problem™)? The basic tool for
dealing with these kinds of practical problems is given by
Grobner bases. In order to define a Grobner basis we have
to first fix a total monomial ordering (e.g., lexicographic
ordering or graded lexicographic ordering), so that for ev-
ery polynomial we can define a leading term. For any ideal
i C K[z1,...,z,], we can consider the associated leading
term ideal LT (i), generated by all the leading terms of el-
ements of i. Now we can define a Grobner basis for i as
a special set f1,..., f,, of generators of i whose leading
terms LT(f1),...,LT(f,) are generators for the leading
term ideal LT'(i). Some important properties of Grobner
bases are:

e A Grobner basis can be computed from any set of gen-
erators of an ideal (Buchberger’s algorithm).

e Grobner bases provide a practical division algorithm,
that computes the division of a polynomial f by a set of
polynomials f1,..., fs. This results in an expression
of the form f = q1 f1+. .. gs fs +r for some remainder
polynomial r, and provides a simple solution to the
ideal membership problem (an element f belongs to
an ideal i = (fy,..., fs) if and only if its remainder
under division is zero).

e For a fixed monomial ordering, every ideal has a
unique reduced Grobner basis, where “reduced” essen-
tially means that each generator does not contain any
monomial that is the leading term of some other gen-
erator. This allows to easily verify when two ideals are
the same.

Grobner bases are also very important for solving sys-
tems of polynomial equations (elimination method), and for
computing the dimension of ideals. Moreover, Grobner
bases have been used to design algorithms for computing
the radical of an ideal, and for recovering primary decom-
positions [5]. These methods are implemented in computer
algebra systems such as Macaulay?2 [6], Singular [4] (used
for our computations), or Sage [16] (which actually con-
tains Singular).

Example 3. Considering the lexicographic ordering x > v,
one can show that any element of the form a(z,y)f1 +
b(x,y)f2, lying in the ideal generated by fi and fo, will
have a leading term that is either multiple of LT (f;) = 22
or of LT(f3) = zy (basically one needs to prove that no
cancellation can occur): this means f;, fo form a Grobner

basis. However, if we had considered for example the poly-
nomials f7 together with

fo=ay—y? ©9)
then a simple computation shows that
fs=yh—(@-y+Dfa=y" -y (0

whose leading term 3 cannot be generated using LT (f1) =
23, LT(f;) = 22y. A basic evaluation using Singular
shows that in fact f7, fg together with fg actually form a
Grobner basis.

B. Proofs and technical material

B1. The closure of the joint image

We prove Proposition 1 from the main part of the paper,
which describes the relationship between the joint image Z,,
and its closure Z,,. We also argue that the set C,, = Z,, \ Z,
is a distinguishable set.

Proposition 1. Givenn > 3 cameras with non-collinear
(distinct) pinholes, one has T, = T, \ Cy,, where

Cn,:U(eilx'-'XP?qj)X"'Xei”)' (11)
i=1

Here P%i) indicates P? at position i in the product, and
e;; denotes the epipole in image j relative to image i. If
n = 2, or more generally if the cameras have collinear pin-
holes, then one must remove from C,, the n-tuple of epipoles
(e1,...,ey,) (in this case there is only one epipole in each
image).

Proof. In the main part of the paper we have introduced the
matrix

M1 U 0 0

Mo 0 wu> ... 0
Ulur,. . u)=| . . (12)

M, O 0 ... u,

and pointed out that joint image variety can be set-
theoretically characterized by:

Tn = {(u1,...,un) S (PQ)n | u(’lL1,...

See for example [ 1, | 1]. If the cameras are not all collinear,
the nullspace of U (uq, . . . , u,,) has dimension at most one,
and (u,...,u,) belongs to C,, = Z,, \ Z, if and only if
annihilating vectors [p; A1;...;\,] € R**™ are such that
A; = 0 for some i: in this case p must be one of the camera
centers, and we see that C,, is given by (11). If the cam-
eras are collinear, then the same reasoning applies except
when (uq,...,u,) = (e1,...,e,) (because the nullspace
ofU(ey,...,e,) has dimension two): in this case, it is easy
to realize that (eq, ..., e,) € Z,. O

, Wy is not full rank}.



Proposition bl. The set C,, defined in the previous propo-
sition is a distinguished set in I, i.e., it can be computed
from any algebraic characterization of Z,,.

Proof. For n = 2, the epipoles are distinguished points
since (eq, es) is the singular locus of s (see Proposition
3); otherwise, more explicitly, they can be computed from
the epipolar constraint as the null-spaces of the associated
fundamental matrix. For any number of views, it is suf-
ficient to note that the “projection” of Tn(/\/ll, M)
onto a chosen copy of P2 x P? is exactly the joint image
of the corresponding views (and, algebraically, the epipolar
constraint can be obtained via variable elimination). O]

B2. The joint image and multilinear forms

We now give a proof of Proposition 3. The result is
implied by Theorem 3.6 in [1], but the case of multilinear
constraints (multidegree (1, ..., 1)) is not pointed out. Our
proof is also adapted from the one given in [!], but we use
more direct argument to show Proposition b3.

Proposition 3. Given n cameras My, ..., M,, the mul-
tilinear constraints which vanish on V,, form a vector space

of dimension d,, = 3" — (n ;)r 3) + n.

Remark. In the rest of this section, we will assume that
the camera matrices My, ..., M, satisfy a generality as-
sumption, namely that all 4 x 4 matrices formed by any
four distinct rows from My, ..., M,, have full rank. If the
camera centers are distinct, this condition can be guaran-
teed by changing bases appropriately in the different image
planes. Since this kind of operation preserves the dimen-
sion of spaces generated by multilinearities (because the
vector spaces are mapped isomorphically onto themselves),
this assumption does not affect the general validity of the
result.

Proof. Let W, be the vector space generated by multlinear
relations arising as maximal minors of U(wu1, ..., u,) de-
fined in (12); for simplicity we will refer to these constraints
as the “fundamental” multilinearities. We will first compute
the dimension of W,,; then we will show that W, coincides
with the space of a/l multilinear constraints which vanish on
T,.. Our proof heavily relies on the fact that the fundamen-
tal multilinearities form a Grobner basis for lexicographic
ordering (and in fact, for all admissible term orderings): this
will be shown in Proposition b3.

To compute the dimension of W,, we will use the follow-
ing well known property of Grobner bases (see for example

[3D):

(P) If a set of homogeneous polynomials
fi,-.., fn forms a Grobner basis (for a fixed
monomial ordering), then dimg(f1,..., fn) =
dimg (In(f1),...,In(fn)), where In(f;) de-
notes the initial term of f;.

To use this result, we first introduce a lexicographic or-
dering for the monomials in R[x1,y1,21,...,Zn, Yn, 2n)s
sothat x1 > -+ > Ty > Y1 > -+ > Yn > 21 > Zn.
In Lemma b3, we will show that for this ordering the set of
leading terms of the fundamental mutlilinearities is given
by T = M, \ S, where

M, = {z%y"2" |
a, B,y EN", a+pB+y=1[1;...;1]},
(13)
is the set of all multilinear monomials, and
S ={x%yPz" e M,, | « =0, <3
{z%y | 8] <3} 4

U{z%y"2" e M, | lo| =1, |8] < 1},

where we used multi-index notation, so that for example
z* =11, xg(k). According to property (P), we know that
dim(W,,) = dim(Span(T)). Since all monomials are lin-
early independent, we can now compute the dimension of
W, using a simple counting argument:

dim(Wy) = |T| = [M,| - |S] =
-+t

=3 <1+n+<;)+ (g
=3 (1+n—|— <Z)+ (g) +n(n+1)> +n

=3" — <n;—3> + n.
(15)

Finally, to show that W,, coincides with the space of all
multilinear constraints, we recall that the fundamental mul-
tilinearities set-theoretically define the joint image variety
T, (they give necessary and sufficient conditions for corre-
spondence). Using the Nullstellensatz theorem, it is enough
to prove that they generate a radical ideal®. This will also
be shown in Proposition b3.

O

Lemma b2. Using the ordering x1 > -+ > Ty, > Y1 >
cee = Yp > 21000 > Zn, and assuming the condition in the
Remark, the leading terms of the fundamental multilineari-
ties are given by T = M, \ S, where M,, and S are defined
in (13) and (14).

3 Assuming the ideal J generated by the fundamental multilinearities is
radical, we can write 3 = P N (), (x4, yi, 2;) where B is the prime ideal
describing T, (defined by bilinear, trilinear, and quadrilinear relations [ 1]).
Any multilinearity that vanishes on Z,, lies in ¥ and in (z;, y;, 2;) for all
%, thus it must belong to Z.



Proof. From (13), we see that a monomial z%y”2" in M,,
can be also identified by the vector v = a + 28 + 3y €
[1,2,3]™; in this case we will write y, = 2%y”2?. One
can verify that y,, can be a leading term of a fundamental
multilinearity if and only if there exist v, v3, ¥4 such that
Wy, > p, and |v; — ;| < 4 for i = 2,3,4. Indeed, a
fundamental mutilinearity P is defined by choosing n + 4
rows of U from (12), and the monomials p, appearing in
P correspond to subsets of n rows (which are expressed
by the vectors v € [1,2,3]™); note also that the generality
assumption guarantees that all possible coefficients are non-
zero. It is straightforward to verify that p,, does not satisfy
the previous property if and only if it belongs to the set S
defined in (14).

O

Proposition b3. The fundamental multilinearities form a
universal Grobner basis (i.e., a Grobner basis relative to
any monomial ordering). Moreover, they define a radical
ideal.

Proof. Our proof is motivated by a classical result, which
states that in the ring R = R[z;;], where i = 1,...,m,
7 =1,...,n,and m < n, the maximal m X m minors of
X = (x;,;) form a universal Grobner basis (generating the
classical determinantal ideal) [14].

In order to obtain a similar statement for the maximal
minors of the matrix U/, we use the following two results:

1. If Z is a subset of variables in R[xz;;], and X’ is the
matrix obtained from X = (z; ;) by setting the vari-
ables in Z to zero, then the nonzero maximal minors
of X’ form a universal Grobner basis [2].

2. Let f1,..., fn be a set of polynomials forming a uni-
versal Grobner basis in Rfsi,..., sk, t1,...,t;], and
consider the evaluation map

¢ R[s1,...,8k,t1,...,t;] = Rls1,..., sk
g(s1,y .-y Skytiyenoyti) > g(81, .oy SkyCly et vy Cl)
(16)

for a fixed set c1,...,c; € R. Thinking fi,..., fx

as polynomials with ring coefficients, i.e., as ele-
ments of R[sq,...,sx] with R = R[tq,...,t;], we
denote with Le(f;) € R the leading coefficient of
fio X ¢(Le(f1)),...,0(Le(fn)) are non-zero, then
&(f1),--.,¢(fn) form a universal Grobner basis in
R[s1,...,sk] [12].

We now consider the matrix 2’ as in (12), but with in-
determinate camera matrices: according to the first result
given above, the maximal minors form a universal Grobner
basis. The fundamental multilinearities are obtained from
these minors by substituting the actual entries of the camera
matrices. If the leading coefficients of the minors are not

mapped to zero under this specialization, then we can use
the second result and obtain the claim. However, it is easy
to realize that the leading coefficients are given by the de-
terminants of the matrices obtained by selecting four rows
from the camera matrices; assuming the generality condi-
tion from the Remark, these do not vanish for the actual
camera entries. This implies that the fundamental multilin-
earities form a universal Grobner basis.

Finally, we now see that the monomials in 7' = M, \ S
(defined in (13) and (14)) generate the initial ideal for the
ideal generated by fundamental multilinearities. The fact
that this monomial ideal is squarefree, allows us to con-
clude that the fundamental multilinearities generate a rad-
ical ideal; see [ 10, Corollary 2.2].

O

B3. Geometric properties of the joint image

In this section we show that the joint image variety is
closely related to the blow-up, a fundamental construction
in algebraic geometry [8]. For our purposes we can give the
following definition for the blow-up:

Definition 1. Consider a smooth algebraic variety X of di-
mension n, and a subvariety Z C X of dimension d. Lo-
cally, we may write X as Z x W where W has dimension
n — d and is transversal to Z. Let \ : X \ Z — P"~4~1 pe
the map associating with x = (z,w) € Z x W the line {,
passing through w and z. The blow-up of X in Z is given
by closure of the graph of \:

Xz ={(w,f),e e X\Z} C X xP"71 (17

This is a smooth variety, with a natural map T : X, > X,
known as the blow-up map. The exceptional locus is the
inverse image Z = w1 (Z) = Z x P91 of the cen-
ter Z. It is is the set of points where T fails to be a local
isomorphism: in fact, ™ always contracts the second factor
pr-d-1 on to a point. See Figure 2 in the main part of
paper.

Basically, the blow-up replaces a subvariety Z C X with
all the directions in X pointing out of Z. Blow-ups are an
extremely important tool for the resolution of singularities,
that is, the operation of constructing suitable smooth models
for varieties with singularities. We refer to [9] for a nice and
accessible presentation.

Proposition b4. Ifn > 3 cameras do not have collinear
pinholes, the joint image variety I, is isomorphic to the
blow-up of X = P> at Z = {ci,...,c,}, where c;, i =
1,...,n are the camera pinholes.

Proof. Iterating the construction given in Definition 1, we
see that the blow-up of P? at Z = {cy, ..., ¢, } is given by

XZ = {(p,le),...

), peP3\ Z} CPPx (P?)", (18)



where E; denotes the line through p and ¢;. In particular,
the projection of X onto (P?)™ is exactly the joint image
variety Z,,, so we have a natural map

f:Xz =T, 19)

In order to prove that f is an isomorphism we have to show
that: 1) f is injective 2) the differential 7'f of f is injective.

The fact that f is injective for (p, E%,, ooy lp) with p €
P3 \ Z follows from the observation that the “joint pro-
jection map” P3 — P? x ... x PP? is injective if one as-
sumes non-collinear pinholes (see Section 2.3 of the main
part of the paper). Moreover, if p = ¢; for some i, then
the exceptional set 71 (c;) is mapped isomorphically onto
{(e1i,...,l,...eni), L € P2} C T,, where ej; is the
epipole in the j-th image for the center c¢; (note that the
image of the exceptional locus f(7~1(Z)) is exactly the set
C,, given by Proposition Al).

To prove that the differential T'f is injective at points
(p, E},, oy bp) withp € IP3\ Z, it is enough to observe that
all lines in ?® are mapped injectively by the joint projec-
tion map (since f is locally an affine map, if the differential
were not injective, some line would have to be contracted).
Similarly, if p = ¢;, then all lines contained in 7~ (c;) are
mapped isomorphically on some image P2, and the same
holds for all lines passing through ¢; in P3. O

Proposition 4. (Singularities of the joint image variety)
When the camera pinholes are not collinear, I,, is smooth.
When they are collinear (in particular, for n = 2 views),
then I,, has a unique singular point given by the n-tuple of
epipoles (eq, ..., ep).

Proof. If the camera pinholes are not collinear, then Propo-
sition A3 immediately implies that the joint image variety
is smooth. If the pinholes are collinear, then the projec-
tion map f : X, — T, considered in the previous proof
is still well defined, and is a local isomorphism except at
points that lie on the baseline / C P? containing the cen-
ters (more precisely, on its strict transform in Xz, given by
7= (¢ \ Z)). In fact, f contracts this set onto (eq, ..., e,).
In general, however, birational morphisms between smooth
varieties can only contract sets of codimension 1 [13, The-
orem 2.2], while the baseline has codimension 2: we con-
clude that (ey,...,e,) must be the only singular point of
Ly O

B4. Dependencies among multi-view constraints

In this section we prove Proposition 5 of the main part of
the paper.

Proposition 5. Assume n cameras are given.

1. Bilinearities and trilinearities always strongly character-
ize I, independently of the camera configurations.

2. Bilinear constraints alone strongly characterize L., if
and only if the pinholes are not all coplanar.

3. Bilinear constraints alone weakly characterize L, if and
only if the pinholes are not all collinear.

Proof. Let us first assume that n = 4.

If My, ..., M, are cameras with pinholes ¢y, ..., ¢, in
general position (i.e., non coplanar), then up to homogra-
phies of P2 (that do not affect the joint image) and ho-
mographies of image planes (that simply result in linear
changes of variables that map k-linearities isomorphically
onto themselves) we may assume that:

100 1 100 0

Mi=[0 1 0 0], Ma=|0 1 0 1},

00 1 0 0010
(20)

100 0 1 00 0

Ms=[0 1 0 0], Ma=[0 1 0 0].

00 1 1 00 10

In this case, one can verify using Grobner bases that the six
epipolar relations are sufficient to generate, up to irrelevant
components, the ideal associated to the joint image variety
T4 (see also [11]).

If My,..., My are cameras with pinholes ¢y, ..., ¢, in
general coplanar position (i.e., coplanar with no subset of
three that are collinear), then we may similarly assume that:

1 0 0 1 1 000
Mi={0 1 0 Of, M2=1|0 1 0 1],
00 10 00 1 0
2]
1 000 1 0 0 1/3
Mz=1{0 1 0 Of, Ma=1|0 1 0 1/3]|.
00 1 1 00 1 1/3

This time, using Grobner basis we see that the epipolar
conditions describe an algebraic set WV that is strictly larger
than Z4. In fact, VW decomposes as

W=T,UV, (22)

where V; = {z; +y; + 2, =0|i=1,...,4} is the product
of the “trifocal lines” (i.e., the projection of the plane con-
taining the pinholes). We see that the epipolar constraints
are only a weak characterization of the joint image: cam-
era geometry can be recovered (for example by considering
subsets of three cameras, see [7]) although correspondences
are not directly characterized. On the other hand, one can



verify that including trilinear relations is sufficient to ex-
clude the spurious solutions and yields a strong characteri-
zation of 74

If My,..., M, are cameras with pinholes c¢y,...,c,
that are coplanar, and with a subset of three that are
collinear, then we can consider

1 00 1 100 0
Mi=[0 1 0 0], Mo=|0 1 0 1],
00 1 0 00 10
(23)
1 00 0 1 0 0
Ms=(0 1 0 0|, Ma=([0 1 0 1/2
00 1 1 00 1 1/2

Once again, we see that that the bilinear and trilinear con-
straints completely characterize 7,4, while only bilinear con-
ditions describe a set JV that also decomposes as

W=TI,UV, (24)

where V; = {z; +y; + 2, =0]i =1,...,4} is the product
of the “trifocal lines”.

Finally, if all M1, ..., M4 have collinear pinholes, we
cannot simply change reference frame in P3 and assume
the cameras to be fixed, since four collinear points are not
always projectively equivalent (the projective invariant is
given by the cross-ratio). However, we can use a single
parameter to describe all such camera configurations:

1 00 1 100 0

Mi=[0 1 0 of, Ma=[0 1 0 1],
00 10 0010
1 0 0 1/2 1 00 ¢t

Mg=[0 1 0 1/2], Ma=[0 1 0 1—¢
001 0 001 0

(25)
In this case, computing the primary decomposition we see
that bilinear and trilinear constraints have spurious compo-
nents only for ¢ = 0,1/2,1 which correspond to non-valid
values for ¢t (we assume the camera pinholes are distinct).
Bilinear constraints, on the other hand, characterize (for fea-
sible values of of t) a single irreducible component YV, that
strictly contains contains the joint image. With our choice
of camera matrices, this component is described by

W = { — 2324 — 23Ys + 2324 + Y324 = 0,
— 224 — 22Y4 + T224 + Y224 = 0,
— 29X3 — 29Y3 + X223 + Y223 = 0,
—21T4 — 21Ys + T124 + Y124 = 0,
— 2173 — 21Y3 + 123 + Y123 = 0,

— 21%2 — 21Y2 + T122 + Y122 = 0}.

(26)

Note that these expressions do not depend on the parameter
t, which shows that camera matrices cannot be determined
by the epipolar conditions. We conclude that in this case the

bilinearities do not give a weak characterization of the joint
image.

The previous analysis proves Proposition 4 for n = 4,
since we have exhausted all possible configurations of the
four pinholes in P2. The case n > 4 now follows easily
Indeed, bilinear and trilinear are always strongly sufficient
because we have shown this to be true for all sets of four
cameras (and this is enough thanks to Proposition 1 in the
main part of the paper). If the pinholes are non-coplanar,
we may assume that cameras (1,2, 3) have non-collinear
pinholes and span a plane that does not contain any other
pinhole, so applying the previous argument for all quadru-
plets of cameras (1,2, 3,¢) we can conclude that bilineari-
ties give a strong characterization of the joint image. If the
pinholes are only non-collinear, we can assume that pin-
holes (1,2) span a line that doesn’t contain other pinholes,
and similarly use this to conclude that bilinearities give a
weak characterization of the joint image (see the proof of
Proposition 5 in the main part of the paper). Finally, when-
ever the pinholes are all aligned, camera geometry cannot
be uniquely determined from bilinearities: for example, the
expressions in (26) show that, using appropriate image co-
ordinates, all pairs of cameras with pinholes on a given line
yield the same epipolar constraint. More generally, it is easy
to realize that if M, ..., M,, have collinear pinholes, then
any set of camera matrices M/, ..., M/ where M; is ob-
tained from M; by adding to its columns multiples of the
coordinate vector for the epipole, will yield the same set of
epipolar constraints. O

B5. Three views

We now focus on the case of n = 3 views. We point
out that any three cameras with non-collinear pinholes can
be transformed by homographies of P2 and of the image
planes into the triplet

1 0 0 1 1 0 0 O
Mi=[0 1 0 O, Ma=1{(0 1 0 1},
0 0 1 O 0 01 0
27
1 0 0 O
Ms=|[0 1 0 0].
0 01 1

Similarly, three cameras with collinear pinholes can be
transformed into

These camera matrices will be used for our explicit com-
putations.



We now consider the trilinear constraints encoded in the
trifocal tensor. We recall that these conditions can be de-
duced from the maximal minors of the matrix

My u; O 0
U(ur,uz,u3) = [ M2 0 uz 0 ]. (29)
Mz O 0 wus

More precisely, the nine trilinearities in the tensor that dis-
tinguishes the first view are given by

Tlij) S {45576}7.7 € {77879} (30)

where T;; is obtained by considering all rows of U/ exclud-
ing 7 and j.

Proposition 8. The nine trilinearities (30) that are en-
coded in the trifocal tensor span a vector space of dimen-
sion 8.

Proof. For the triplets of camera matrices (27) or (28) the
claim can be verified by direct computation (it is enough to
consider a reduced Grobner basis of the generated ideal and
count the number of trilinear polynomials). Thus, we only
need to show that changing reference frames does not affect
the dimension of the vector space spanned by (30). This is
clear for homographies of P3, since these do not affect the
expressions of the trilinear constraints (see Section 2.3 in
the main part of the paper). On the other hand, a change
of coordinates in the different image planes corresponds to
a linear change of variables in the multilinearities and it is
easy to realize that the space generated by the trilinearities
defined by the trifocal tensor is mapped isomorphically onto
itself. Thus, the dimension of the space generated by this set
of constraints is preserved by changes of reference frames
in the different images. O

Proposition 9. If M, Ms, M3 do not have collinear
pinholes, then the constraints (30) describe a set VW =
T3 U S12 U S13, where

Si2 = {e1z x e x uz € (P?)*|ug € P?}, 31)
S13 = {e13 X ug x eq; € (P?)3 | uy € P2},

and e;; is the epipole in image i relative to the camera j.
Proof. Considering the camera matrices (27), one can ver-

ify using primary decomposition that the nine relations de-
scribe a space W that decomposes as W = Z5 U S12 U S13,

where

S12={x1+y1 =0;
x2 +y2 = 0;
z1 = 0

Sy ={z14+y1 =0;
z3+ys = 0;
z1 =0;
zZ3 = 0}

For our choice of cameras, these sets are exactly the ones
described by (31), which in turn are a characterization that
is independent of the choice of reference frames. O

By using the collinear cameras of (28) one can also show
the following

Proposition bS. If M, My, M3 have collinear pin-
holes, the constraints (30) strongly characterize the joint
image Ls.

Let us now clarify a subtle point relative to this last re-
sult: from Proposition 1 in the paper, we know that 9 tri-
linearities can never generate all of the trilinear relations
which vanish on V5 (since this is always a vector space of
dimension 10). However, this does not exclude the possibil-
ity for these to set-theoretically define Vs: in other words,
the zero-set of some relations can still describe V3, even
though they do not algebraically generate the whole space
of the trilinearities. This is the case for the nine trilinearities
(30) for cameras with collinear pinholes. For example, one
can verify that for the matrices (28) the trilinearity

Tog = —21T2%3 — 221Y203 + 21T2Y3 + T1T223 + T1Y223

(33)
does not belong to the vector space generated by (30), al-
though its zero-set clearly contains that of these nine trilin-
earities. To motivate this fact, one can show that Tl does
belong to the ideal generated by (30) (i.e., T35 can be writ-
ten as an algebraic combination of the nine trilinearities)
even if T54 doesn’t: this clearly implies that adding the con-
straint Thg to (30) does not impose any additional conditions
on the zero-set (since Thg = 0 if and only if T = 0).

Proposition 11.  Consider three cameras My, Mo, M.

o [f the pinholes are non-collinear:

1. For any trilinearity T that does not vanish on the prod-
uct of the trifocal lines, {B12, B13, Bos, T} gives a
strong characterization of the joint image.

2. The epipolar constraints { B12, B13, Ba3 } uniquely de-
termine camera geometry, i.e., they give a weak char-
acterization of the joint image.



e [f the cameras have collinear pinholes:

1. A strong characterization of the joint image is given
by {B12, B13, B23, T, T2} where Ty and T5 are (suf-
ficiently general) trilinear constraints.

2. Two epipolar constraints together with one (suffi-
ciently general) trilinearity {Bi2, B13,T} uniquely
determine camera geometry, i.e., they give a weak
characterization of the joint image.

Proof. Let us first assume that M;, Mo, M3 have non-
collinear pinholes.

1. The epipolar constraints describe the same pro-
jective locus as nine trilinearities (namely,
T‘127 T13, T23, T45, T46, etc.), that are obtained by
multiplying bilinearities with a variable associated
to the excluded image. In the case of non-collinear
pinholes, one can verify that these constraints span a
vector space of dimension 9. Any trilinearity that does
not vanish on the product of the trifocal lines cannot
belong to this space, so the three bilinearities together
with such a trilinearity must describe the same zero-set
as the whole space of trilinear constraints, i.e., exactly
Z5. See also [15].

2. This is well known: see [7, 11], or the discussion in
Example 3 in the main part of the paper.

We now assume that My, Ms, M3 have collinear pinholes.

1. Consider constraints {B12, B3, Bas, T;; }, where T},
is chosen from (30). In generic conditions these de-
scribe a set WV that decomposes as W = Zz UV, U Vs,
where V; and Vs are each products of three corre-
sponding (epipolar) lines in each image, respectively
passing through the (i — 2)-th coordinate points in
the second image and through the (j — 5)-th coordi-
nate point in the third (e.g., if we consider T;g then
V)1 is the product of the three epipolar lines containing
[1;0;0] € P? in the second image and V; is the prod-
uct of the three epipolar lines containing [0; 1; 0] € P?
in the third). Moreover, in general, if another trilin-
earity Ty, among (30) is such that & # 4 and [ # j,
then { B2, B13, Bas, T;j, T } are strongly sufficient,
since the spurious sets associated with each trilinear-
ity are excluded by the other constraint. The “generic”
assumption that was used in this argument is that the
triplets of epipolar lines associated with the funda-
mental points are all distinct: in other words, we as-
sumed that 1) no fundamental point in each image cor-
responds to any other fundamental point in another 2)
no pair of fundamental points in a given image lies on
the same epipolar line*. However, even if these con-
ditions are not satisfied, there will always be at least

4We point out that the matrices (28) do not satisfy these assumptions.

two trilinearities among (30) that can be used together
with the epipolar constraints to characterize Zs: this
follows from the fact that in each image one can al-
ways choose two fundamental points that do not lie on
the same epipolar line. See Example 2 in Section 6.

2. Let T be any trilinearity whose zero-set does not con-
tain that of {Bjs, B13}: then we may be sure that
W = {Bjs = Bi3 = T = 0} is a set of dimension
3, which must contain Z5 as a component of maximal
dimension. By excluding the spurious components we
can recover a strong characterization of the joint im-

age, and thus camera geometry can be determined.

O

B6. Transfer using multilinear constraints

We now present a brief discussion that relates the degen-
eracies of some classical approaches to point transfer with
the spurious components arising from weak characteriza-
tions of the joint image.

Let us first consider some bilinear and/or trilinear con-
straints P, ..., P; among three views that provide a strong
characterization of the joint image Z3. Given a pair of cor-
responding points (w1, u2) in the first two images (we may
assume for simplicity that the epipolar constraint between
two views is known), it is possible to find a corresponding
point in the third image by solving a linear system in the
affine coordinates of the third point:

Pi(ul,'u,g,yg) ZO, 1= 1,...,8. (34)

The coordinates of a point us will satisfy (34) if and only if
(u1,u2,us) is a correspondence.

A similar approach can actually be applied even if
Py, ..., P, do not strongly characterize the joint image, but
still describe a set of dimension 3. Indeed, this assumption
guarantees that for generic corresponding pairs (w1, us2)
(formally, pairs in an open dense set), the space of solutions
to (34) will be zero-dimensional, i.e., a point (since it must
be a linear space). The extent to which this approach will
fail for non-generic pairs depends on the extraneous cor-
respondences characterized by Py, ..., Ps: indeed, in gen-
eral, solutions to (34) will not necessarily coincide with cor-
respondences. In particular, we can consider the following
variations of transfer based on (34):

e Using { By, B13, Bos} yields epipolar transfer, which
is known to fail for pairs that lie on the trifocal lines,
or when the pinholes are collinear.

e Using the nine trilinearities (30) is equivalent to trans-
fer based on the trifocal tensor: this will fail when
w1, ug are epipoles, giving no conditions on w3 [7].



e Using any strong characterization of Z3 (for example
the ones given in Proposition 11) is equivalent to trian-
gulation based on the first two views followed by re-
projection onto the third: in this case we may be sure
that solutions to (34) give actual correspondences. For
example, if w;,us are corresponding epipoles, then
even though ug is not uniquely determined, the con-
straints (correctly) impose that it must lie on the trifo-
cal line (contrary to trifocal transfer).

B7. Examples

We conclude by discussing two simple examples that il-
lustrate in practice the results discussed in the previous sec-
tion.

1) Consider the three cameras with non-collinear pin-
holes given in (27). The sets Wy = {B1z2 = B13 = Ba3z =
0} and Wy = {B12 = By3 = Ty7y = 0} decompose as

W, =Z; UV,

_ (35)
Wo =1Z3UV, UV

where V; = {z; + y; + z; = 0|7 = 1,2, 3} is the product
of the trifocal lines, and

Vo ={B12 =y1 = y3 =0}

Vb = {B13 =21 = 29 = O}
In particular, we see that both sets of constraints
{Bi2, B13, B23} and {BlgLBlg,T47} are weak character-
izations of the joint image 73 (and they give minimal and

local descriptions of T3, see Example 2 in the main part of
the paper). On the other hand

{Bia = Biz =By =Ty =0} = W, N Wo =TI (37)

(36)

so {Bi2, B13, Ba3, Ty7} give a strong characterization of
the joint image, confirming Proposition 11.

2) Consider now the three cameras with collinear pin-
holes given in (27). We introduce the following sets:

W3 = {Bi2 = B3 = Ba3z = 0}
Wy = {B12 = B1z = Ty = 0}
Ws = {Bi2 = B13 = Baz = Ty7 = 0} (38)
We = {B12 = B13 = Bag = Ty7 = Tsg = 0}
Wy = {B1a = B13 = Bag = Ty7 = Tgg = 0}.
One can verify that:

- Ws is an irreducible set, and in fact the epipolar con-
straints do not yield a weak characterization of Z3 (Propo-
sition 4).

-W, decomposes as W, = Z3 UV, U Vy UV, where
Vc:{le,ZQ:Zg:O}
de{x1+y1=z1=z320} 39
Ve :{1‘1 +Y1 =21 = 29 :O}

In particular, { B12, B13, T4z} give a weak characterization
of 73, as stated in Proposition 11.

-Ws decomposes as Wy = Z3UV,, so, contrary to the non-
collinear case, the conditions {B12 = B1z = Bosz = Ty7 =
0} are not a strong characterization of the joint image. Note
also that there is only one spurious component, because the
first fundamental points (i.e., [1;0;0] € P?) in the second
and third image correspond (see the proof of Proposition
11).

-W; also decomposes as Wg = T3UV,, because the generic
assumption in the proof of Proposition 11 is not satisfied
(the spurious sets associated with Ty7 and T5g coincide).

-W7 = fg, SO that {312 = Blg = B23 = T47 = T(;g = 0}
is a strong characterization of the joint image.
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