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On asymptotic elastodynamic homogenization approaches for
periodic media

H. Nassar, Q.-C. He∗, N. Auffray∗

Université Paris-Est, Modélisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS,
5 bd Descartes, 77454 Marne-la-Vallée, France

Abstract

A fairly large family of asymptotic elastodynamic homogenization methods is shown
to be derivable from Willis exact elastodynamic homogenization theory for periodic
media under appropriate approximation assumptions about, for example, frequencies,
wavelengths and phase contrast. In light of this result, two long-wavelength and low-
frequency asymptotic elastodynamic approaches are carefully analyzed and compared
in connection with higher-order strain-gradient media. In particular, these approaches
are proved to be unable to capture, at least in the one-dimensional setting, the optical
branches of the dispersion curve. As an example, a two-phase string is thoroughly
studied so as to illustrate the main results of the present work.
Keywords: Homogenization, elastodynamics, asymptotics, effective motion equation

1. Introduction

For the elastodynamic homogenization of periodically inhomogeneous media, a
large family of methods based on asymptotic analysis (see, for example, Antonakakis
et al. 2014; Auriault and Bonnet 1985; Auriault and Boutin 2012; Boutin and Auriault
1993; Boutin et al. 2014; Colquitt et al. 2014; Craster et al. 2010; Daya et al. 2002;
Nolde et al. 2011) has been proposed and developed since the pioneer works of Ben-
soussan et al. (1978) and Sanchez-Palencia (1980). Making the key hypothesis of scale
separation, or long wavelengths (LW), and adopting some additional assumptions such
as low-frequency (LF), finite-frequency (FF), high or low phase contrast, asymptotic
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elastodynamic homogenization approaches consist in first expanding and computing
the relevant local (or microscopic) fields term by term up to, theoretically speaking,
getting an arbitrarily high accuracy, and then constructing the macroscopic fields and
the effective constitutive properties by carrying out appropriate volume averages over
a unit cell. Even though these approaches have been proven to be useful and efficient
in many situations, two important questions remain largely open. First, apart from
guiding asymptotic expansions, does the scale separation hypothesis also play a role
in defining the effective fields for a periodic medium? Second, what is the effective
elastodynamic behavior if the asymptotic expansions are made up to infinite order?

At the same time and independently, J.R. Willis initiated and presented an elegant
elastodynamic homogenization theory for periodically and randomly inhomogeneous
media (Willis, 1980a,b, 1981, 1985, 1997). Recently, owing to increasing interest
in acoustic metamaterials and cloaking (see, e.g., Chen and Chan 2010; Lee et al.
2012; Liu et al. 2000; Milton et al. 2006; Norris 2008; Norris and Shuvalov 2011),
Willis theory has been substantially developed by him-self and other researchers
(Milton and Willis, 2007, 2010; Nassar et al., 2015; Nemat-Nasser and Srivastava,
2011, 2012, 2013; Nemat-Nasser et al., 2011; Norris et al., 2012; Shuvalov et al.,
2011; Srivastava and Nemat-Nasser, 2011; Willis, 2009, 2011, 2012). In contrast with
asymptotic homogenization approaches, Willis theory is exact and does not make
any scale separation hypothesis. In addition, the effective elastodynamic constitutive
law obtained by Willis theory for a homogenized periodic medium produces the
same dispersion relation as in the initial periodic one (see, e.g., Nemat-Nasser and
Srivastava 2011). However, Willis effective elastodynamic behavior is in general non-
local both in time and space, so that its numerical determination and implementation
are tough and quite expensive. Further, because of the generality of Willis theory,
some supplementary conditions need being specified and imposed for its application
to be physically sound. This issue has been addressed and studied in our recent work
about periodic media (Nassar et al., 2015).

The principal purpose of the present work is to reveal the connections between
asymptotic elastodynamic homogenization approaches and Willis relevant exact theory.
By achieving this objective, we hope to gain a deep insight into them and contribute
to their respective development. The main results obtained by the present work can
be summarized as follows:

(i) It is demonstrated that a quite large class of asymptotic elastodynamic homoge-
nization approaches can be derived as approximations to Willis exact theory
for periodic media under appropriate assumptions on loadings, microstructure
and/or phase properties. Precisely, after introducing a scaling, an asymptotic
theory can be deduced by expanding Willis theory over a neighborhood de-
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fined by the scaling. The resulting asymptotic theory can in turn serve as
approximating and interpreting Willis theory.

(ii) Under the LW and LF hypotheses, two asymptotic elastodynamic homogeniza-
tion approaches are explicitly deduced from Willis theory so that they extend to
the elastodynamic context the asymptotic elastostatic ones proposed by Boutin
(1996) and Smyshlyaev and Cherednichenko (2000) to account for higher-order
strain-gradient effects. In addition, for highly contrasted media or under the
LW and FF assumptions, the asymptotic approaches initiated by Auriault and
Bonnet (1985) and by Daya et al. (2002), respectively, are shown to be consistent
with a modified Willis theory first suggested by Milton and Willis (2007).

(iii) While the effective elastodynamic constitutive behavior obtained by Willis theory
generates the same dispersion relation as the initial one at the microscopic level,
the LW-LF asymptotic elastodynamic homogenization methods are shown to
necessarily omit, at least in the one-dimensional setting, the optical branches of
the dispersion curve.

(iv) For a two-phase string, Willis theory and the LW and LF asymptotic approaches
are applied, and the corresponding effective elastodynamic properties are ana-
lytically obtained and numerically discussed.

The paper is organized as follows. The second section gives a short summary
for Willis theory and introduces the corresponding effective displacement and body
force fields which are related by an exact effective impedance incarnating the exact
effective constitutive law. The third section presents asymptotic homogenization
methods in two steps. The first step consists in giving two-scale representations of
fields before introducing any small parameters. This demonstrates that the resulting
asymptotic theories define the same notion of effective behavior as in Willis theory.
In the second step, a small parameter is introduced through what is called a scaling
or an imbedding, and the corresponding asymptotic expansion is carried out. In
section 4 where the LF-LW hypothesis is adopted, Willis theory is used to derive two
asymptotic homogenization approaches which extend to the elastodynamic setting the
two ones proposed by Boutin (1996) and by Smyshlyaev and Cherednichenko (2000)
in the elastostatic context. In section 5, the dispersion relations in Willis theory
and asymptotic theories are carefully examined and compared. In section 6, some of
the main results obtained in the preceding sections are illustrated and discussed by
studying the elastodynamic behavior of a 1D two-phase string. In section 7, a short
conclusion is provided.
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2. Willis’ exact elastodynamic homogenization theory: a short summary

In the context of periodic media, the elastodynamic homogenization theory of
Willis can be completely established through a purely spatial formulation in which
the Bloch (or Floquet) wave expansions play a key role (Willis, 2011). Such a spatial
formulation is adopted in what follows.

Consider a periodic medium Ω and let be given a pair of wavenumber k and
frequency ω. We prescribe over Ω a harmonic plane wave body force

f(x, t) = f̃ei(k·x+ωt) (2.1)

where i =
√
−1, f̃ is a constant force vector amplitude and (·) stands for the usual

inner product. The periodicity hypothesis implies that the resulting displacement
field u in Ω is a Bloch wave of the form

u(x, t) = ũ(x)ei(k·x+ωt) (2.2)

where ũ(x) is a time-independent and spatially R-periodic displacement amplitude
with R representing the periodicity lattice associated to Ω.

In what follows, the time dependence will be dropped when there is no risk of
confusion. In terms of (u,f), the harmonic motion equation over Ω can be written as

∇ · [C(x) : (∇⊗su(x))] + f(x) = −ω2ρ(x)u(x). (2.3)

In this equation, the fourth-order elastic stiffness tensor C and the scalar mass
density ρ are periodic functions of the material point position vector x; the symbols ∇·
and ∇⊗s represent the divergence and symmetric gradient operators, respectively.
Accounting for (2.1) and (2.2) in (2.3), we obtain the reduced but equivalent motion
equation in terms of ũ and f̃ :

(∇ + ik) · {C(x) : [(∇ + ik)⊗sũ(x)]}+ f̃ = −ω2ρ(x)ũ(x) (2.4)

which holds over any unit cell T of the periodic medium in question and is supple-
mented with the appropriate periodic boundary conditions implied by the continuity
of displacements and tractions. Below, the solution to equation (2.3) is noted as uk,ω
while the one to equation (2.4) is denoted by ũk,ω.

The effective displacement field corresponds to the plane wave obtained through
averaging the periodic Bloch amplitude of the microscopic one:

Uk,ω(x) ≡ Ũk,ωeik·x ≡
1
|T |

(∫
T
ũk,ω(x′) dx′

)
eik·x ≡ 〈ũk,ω〉 eik·x (2.5)
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where ≡ states equality by definition, T is a unit cell, 〈〉 is the average-over-T operator
and |T | is the volume of T . It can be shown that the effective motion equation takes
the form (Willis, 1997):

Zk,ω · Ũk,ω = f̃ (2.6)

where Zk,ω is the effective impedance Hermitian second order tensor. It has the
following expression:

Zk,ω = iωρek,ωiω + iωSk,ω · ik − ik ·Ce
k,ω · ik, (2.7)

where ρe is the effective mass density tensor of order 2, S is a tensor of order 3
combining the stress-velocity and momentum-strain coupling terms and Ce is the
effective elastic stiffness tensor of order 4 (see AppendixA for more details). Except
in simple cases, these tensors are found numerically.

The dependence of the impedance tensor Zk,ω on k and ω is in general non-
polynomial and far from being trivial. The determination of Zk,ω necessitates solving
equation (2.4) for each pair (k, ω) and for d independent loadings1 f̃ in a d-dimensional
space. It goes without saying that such task is hard and costly. Most importantly, the
knowledge of Zk,ω at distinct points (k, ω) does not reveal the nature of the effective
behavior and is rather unsatisfying. An approach which is less accurate but more
uniform over (regions of) the (k, ω)-space is preferable.

The main purpose of the present paper is to discuss different asymptotic expansions,
LW-LF asymptotics in particular, of the effective impedance Zk,ω. The exact effective
behavior described by Zk,ω will then be replaced by a simpler approximate asymptotic
one Zε truncated at some order of accuracy R.

3. Asymptotic elastodynamic homogenization theories derived as approx-
imations to Willis’ exact one

Asymptotic homogenization methods proceed according to an averaging scheme
based on two-scale representations of fields seemingly different from the Bloch-wave-
based one used in Willis theory. Next, and before introducing any asymptotic
expansions, we prove that such averages coincide with definition (2.5) which implies
that Willis and asymptotic theories define the same notion of effective behavior.
We recast then asymptotic methods into two steps: two-scale representation and
imbedding.

1Body forces will then serve as guiding the upscaling process. Afterwards, they can be set to
zero in the case of investigating free waves.

5



3.1. Two-scale representation
Consider the harmonic motion equation (2.3). The displacement field solution

uω(x) depends on x due to two sources of “inhomogeneities”. The first one, due
to C(x) and ρ(x), can be referred to as microstructure. The second one, stemming
from f(x), comes thus from loading. For the sake of argument, we assume that we
have a closed-form expression of uω(x) where x appears multiple times. To each
appearance, we can assign one of the two mentioned inhomogeneity sources and we
replace x by an auxiliary variable, x′, each time the appearance is microstructure-
related. The obtained expression, which depends on both x and x′, corresponds to
a two-scale representation of the displacement field, uω(x,x′), where loading and
microstructure influences have been segregated. Such representation is particularly
appealing since the effective displacement can then be defined by “averaging over
microstructure” according to

Uω(x) = 〈uω(x,x′)〉x′ , (3.1)

where 〈〉x′ stands for averaging with respect to x′ over the unit cell T . Operator 〈〉x
is similarly defined. We stress the fact that, by construction, when x′ is replaced
by x, we recover uω(x) = uω(x,x) and that we expect uω(x,x′) to be R-periodic
with respect to x′ due to the periodicity of the microstructure.

Since we do not have a closed-form expression for uω(x), the two-scale represen-
tation uω(x,x′) is defined implicitly as the solution of the equation

(∇x + ∇x′) · {C(x′) : [(∇x + ∇x′)⊗suω(x,x′)]}+ f(x) = −ω2ρ(x′)uω(x,x′).

The gradient operators ∇x and ∇x′ act with respect to x and x′ respectively. Note
that all fields are R-periodic in x′ and that putting x′ = x yields back the original
fields and motion equation2.

Let us prescribe a plane wave body force f(x) = f̃eik·x. The above equation
having coefficients homogeneous in x, its solution uk,ω(x,x′) can be looked for in the
form

uk,ω(x,x′) = ũk,ω(x′)eik·x. (3.2)
The two-scale motion equation becomes

(∇x′ + ik) · {C(x′) : [(∇x′ + ik)⊗sũk,ω(x′)]}+ f̃ = −ω2ρ(x′)ũk,ω(x′),

2In particular, the following derivation rule holds:

(∇x + ∇x′)⊗suω(x,x′ = x) = ∇x⊗suω(x).
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and needs to be solved under R-periodic boundary conditions and homogeneous body
force amplitude f̃ . The foregoing equation is identical to equation (2.4) in Willis
theory formulated through Bloch waves. Therefore, the displacement solutions uk,ω
are the same for both problems. Its two-scale representation is given by (3.2), where
setting x′ = x leads to the Bloch wave solution to (2.4). Hence, averaging uk,ω(x,x′)
according to definition (3.1) delivers the effective displacement field defined in (2.5).
Since the effective loadings and displacements are identical for both the Willis and
two-scale representation approaches, so are the corresponding effective behaviors.

Having shown that the two-scale representation scheme amounts to Willis theory
for periodic media, our attention can now focus on calculating Zk,ω. Scalings, that
we shall introduce next, will give rise to approximations to Zk,ω but will not change
the definition of the effective behavior.

Finally, the macroscopic displacement as defined in (3.1) is sometimes thought of
as a moving average of the microscopic displacement over a unit cell. Relation (2.5)
defines the macroscopic displacement as the long-wavelength component of the
microscopic displacement field. In fact, the moving-average interpretation is only
valid in the limit k → 0 and only up to the first order in ‖k‖ while the long-
wavelength-component interpretation is valid as long as k is in the first Brillouin zone
(Nassar et al., 2015). Both interpretations coincide in the limit k→ 0 because the
corresponding filters (respectively, a cardinal sine and a “horizontal” hyperplane) in
Fourier domain are tangent at k = 0.

3.2. Imbedding
In order to approximate the effective impedance Zk,ω, we will make assumptions

on the order of magnitude of several of its parameters. To this end, it may be
misleading to denote the effective impedance by Zk,ω as this quantity also depends
on other parameters than k and ω such as C(x), ρ(x) and R. Call p a generic,
scalar or tensorial, parameter of the homogenization problem under consideration.
For the purposes of the present section, the effective impedance will be denoted
by Zp. It is interesting to give examples of what p can be: the loading frequency ω
or wavenumber k, the size of an inclusion in a matrix-inclusion composite, the size of
a unit cell, the mean stiffness, the mean mass density or a phase contrast parameter.

The homogenization problem we are interested in is to calculate Zp=pf for given
values pf of the parameters p. Since this problem is hard or costly to be solved
through a direct calculation, we look for a “point” p = pi in the space of parameters for
which Zp=pi is known or can be “easily” calculated. Next, we try to extrapolate Zp=pi
to a neighborhood of pi which contains p = pf . A natural idea is to try to apply
the Taylor series expansion Zp near p = pi and then to replace p by pf . However,
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this entails dealing with a multi-variable Taylor expansion and, in particular, trouble
arises in assigning an order of accuracy to any truncated series (for example, is ‖k‖2

infinitely small with respect to ω3 or the converse ?). To circumvent this difficulty, we
introduce a scaling acting as a path p = pε such that p(ε = 0) = pi and p(ε = 1) = pf .
Subsequently, we define the perturbed impedance Zε = Zp=pε which is to be expanded
about ε = 0 or p = pi and truncated with respect to ε. Then by setting ε = 1 in the
truncated expansion we get an approximation of Zp=pf .

The variable ε, through the definition of the path p = pε and of the expan-
sion neighborhood about ε = 0, gives rise to all the assumptions we make on the
parameters p. See table 1 for examples and (non-exhaustive) references.

Expansion type pε Assumptions
LW-LF
(Boutin and Auriault, 1993)

kε = εk,
ωε = εω

‖k‖ � 2π/`,
ω � ωo

LW-FF
(Daya et al., 2002)

kε = εk,
ωε = ω0 + εω1 + . . .

‖k‖ � 2π/`,
ω ≈ ω0 6= 0

High-contrast (LW-LF)
(Auriault and Bonnet, 1985)

kε = εk,
ωε = εω,
Cε = C2 + χ1(ε2C1 −C2)

‖k‖ � 2π/`,
ω � ωo,
‖C1‖ � ‖C2‖

Low-contrast
(Willis, 1985, 1997)

Cε = 〈C〉+ εC ′,
ρε = 〈ρ〉+ ερ′

‖C ′‖ � ‖〈C〉‖,
ρ′ � 〈ρ〉

Table 1: Examples of expansions from the literature. Symbol ≈ means “of the same order of
magnitude”, symbol� means “very small with respect to”, ` and ωo are, respectively, a characteristic
length and frequency of the microstructure, C1 and C2 are the stiffness tensors of a two-phase
composite, χ1 is the indicator function of phase 1 in that composite, C ′ = C − 〈C〉, ρ′ = ρ− 〈ρ〉
and ‖C‖ is the norm of C.

Now for a chosen scaling pε, we need to first define and then calculate Zε without
referring to the unknown impedance Zp. Recalling that the determination of Zp

requires solving equation (2.4), the calculation of the expansion of Zε necessitates
solving the perturbed motion equation deduced from (2.4) according to p 7→ pε.
Borrowing the words of Bensoussan et al. (1978), this amounts to “imbedding”
equation (2.4) into “a family of problems (parametrized by ε)”:

(∇ + ikε) · {Cε(x) : [(∇ + ikε)⊗sũε(x)]}+ f̃ = −(ωε)2ρε(x)ũε(x). (3.3)

While the scaling of p = {C, ρ,k, ω} can be chosen arbitrarily, scaling, or expansion,
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of the solution ũ is to be deduced so as to fulfill the above equation. Body force
scaling is of no importance since f̃ and ũ are in a linear relationship.

Injecting a Taylor expansion of the perturbed displacement field

ũε =
∑
r

ũrεr (3.4)

into (3.3) yields a hierarchy of microscopic motion equations, one for each order in ε.
Solving these equations for ũr, we obtain a hierarchy of effective motion equations in
the coefficients Ũ r of the Taylor expansion of the perturbed effective displacement
given by

Ũ ε ≡ 〈ũε〉 ≡
∑
r

Ũ rεr ≡
∑
r

〈ũr〉 εr. (3.5)

Said effective hierarchy defines the terms Zr in the expansion of Zε:

Zε =
∑
r

Zrεr. (3.6)

The last step in writing the approximate effective behavior consists in determining
the approximate effective impedance of order R. In other words, having the scaled
effective motion equation

Zε · Ũ ε = f̃ , (3.7)
we need to define a truncated effective impedance in some sense. Two general
systematic approaches have been proposed in the literature. For clarity, it is preferable
to present these approaches in their original context of LW-LF asymptotics.

4. Links between exact and LW-LF asymptotic approaches

Effective impedances Z, whether exact or approximate, depend on the Fourier
variables k and ω. Therefore, back in the real space-time domain, Z corresponds to
an integro-differential operator which acts on the effective displacement field U (x, t)
and yields f(x, t). The nature of this operator is determined by the way in which Z
depends on k and ω. LW-LF asymptotics give birth to an approximate effective
impedance which is a polynomial in k and ω. Accordingly, the LW-LF approximate
effective behavior is local in both space and time and corresponds, to the lowest
order, to the usual wave equation as will be seen. Other scalings yield other types of
approximate effective behaviors, the nature of which (whether local or not for instance)
depends strongly on the underlying microstructure and the expansion neighborhood.

Rather than pursuing our general discussion of asymptotic methods we will restrict
our attention to selected topics in LW-LF asymptotics and make a few links with
Willis exact theory through the use of Bloch wave expansions. High-contrast and FF
asymptotics are briefly discussed in subsection 5.5.
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4.1. Two scalings
In the classical formulation of asymptotic homogenization as presented by Sanchez-

Palencia (1980) for instance, the small parameter ε is introduced in the arguments
of C and ρ and is used to make them vary on an infinitely (as ε→ 0) finer scale than
the loading. The corresponding two-scale motion equation takes the form

(∇x + ∇x′) · {C(x′/ε) : [(∇x + ∇x′)⊗suε(x,x′)]}+ f(x) = −ω2ρ(x′/ε)uε(x,x′).

The Fourier transform of the above equation with respect to x results in

(ik + ∇x′) · {C(x′/ε) : [(ik + ∇x′)⊗sũε(x′)]}+ f̃ = −ω2ρ(x′/ε)ũε(x′),

which is a particular case of the general equation (3.3) with Cε(x′) = C(x′/ε)
and ρε(x′) = ρ(x′/ε). Upon the change of variable y = x′/ε, the above equation
becomes(

ik + 1
ε
∇y

)
·
{
C(y) :

[(
ik + 1

ε
∇y

)
⊗sûε(y)

]}
+ f̃ = −ω2ρ(y)ûε(y)

with ûε(y) = ũε(x′). Rearranging the powers of ε, we get:

(∇y+iεk)·
{
C(y) :

[
(∇y + iεk)⊗s

( 1
ε2 û

ε(y)
)]}

+f̃ = −(εω)2ρ(y)
( 1
ε2 û

ε(y)
)
, (4.1)

which is another particular case of (3.3) and where y becomes a dummy variable and
needs not to be specified.

The above two scalings are therefore related to one another in the following way:

ũCε,ρε(x′) = ε2ũεk,εω(y), (4.2)

with y = x′/ε. Hence, reducing the unit cell size by a factor of ε is equivalent to
reducing the wavelength and the frequency of the loading by the same factor while
rescaling displacements by a factor of ε2. This relation shows that the classical
approach, based on Cε and ρε, is equivalent to the one based on LW-LF asymptotics.
Averaging (4.2), we see that the perturbed effective impedance can also be recast in
two ways:

Zε = ZCε,ρε = 1
ε2Zεk,εω. (4.3)

The above equivalency relation between the classical scaling {Cε, ρε} and the LW-LF
one {εk, εω} shows again how the asymptotic homogenization theory can be derived
from Willis theory. More details will be given subsequently.
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The perturbed full Bloch wave uε(x) = ũε(x)eik·x response to the plane wave
loading f(x) = f̃eik·x now admits the two-scale representation:

uε(x,x′) = ũε(x′)eik·x = ε2ũεk,εω(y)eik·x = ε2ũεk,εω(x′/ε)eik·x.

The one-variable representation of the perturbed solution can be recovered by map-
ping x′ 7→ x:

uε(x) = ε2ũεk,εω(x/ε)eik·x.
Bloch waves appear then to naturally separate the slow, or macroscopic, variable k ·x
from the fast, or microscopic, variable x/ε. As expected, for ε = 1, we recover the
unperturbed displacement field.

The field ũεk,εω(x/ε) is εR-periodic with respect to x and admits a Fourier series
expansion over the reciprocal lattice ε−1R∗ = {ε−1ξ, ξ ∈ R∗} where R∗ is the
reciprocal lattice of R. It can then be seen as a function of the fast variables ε−1ξ ·x
whereas the slow variable is k · x. The parameter ε then plays the role of comparing
the magnitudes of k and ξ ∈ R∗. The requirement of scale separation, allowing for a
real, rather than conventional, distinction between fast and slow variables, can be
formulated as

‖k‖ � ‖ξ‖, ∀ξ ∈ R∗ − {0},

the smallest non-null ‖ξ‖ being comparable to the inverse of the unit cell characteristic
length.

4.2. Hierarchical motion equations
Following the discussion at the end of section 3.2, we write the first three motion

equations of orders ε−2, ε−1 and ε0 = 1 obtained by applying the Taylor expansion
to ûε in equation (4.1) about ε = 0. In fact, this has been done with great details3

by Boutin and Auriault (1993) and is recalled here for use in the following sections.
Noting that û corresponds to ũ with a rescaled space variable, the lowest-order
motion equation reads

∇ · [C : (∇⊗sû0
k,ω)] = 0,

which yields
û0
k,ω(y) = Ũ 0

k,ω.

The second one takes the form

∇ · [C : (∇⊗sû1
k,ω + ik⊗sŨ 0

k,ω)] = 0,

3although with no body forces.
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which leads to
û1
k,ω(y) = Ũ 1

k,ω +A(y) : (ik⊗sŨ 0
k,ω),

where A is a microstructure dependent, (k, ω)-independent, zero-average localization
operator. Finally, the third one, averaged with respect to y ∈ T , gives the classical
quasistatic homogenized motion equation:

ik · [〈C +C : ∇A〉 : (ik⊗sŨ 0
k,ω)] + f̃ = −ω2 〈ρ〉 Ũ 0

k,ω.

Therefore, the lowest order term Z0
k,ω in the LW-LF Taylor expansion of Z is equal

to
Z0
k,ω = k · 〈C +C : (∇⊗sA)〉 · k − ω2 〈ρ〉 I, (4.4)

where I is the second order identity tensor. Note that using Bloch waves to obtain
this classical result of homogenization theory is not new (see, for instance, Turbé,
1982, 1989). Here, we show that Bloch waves can similarly serve as establishing a
systematic connection with Willis theory.

Writing and solving higher-order motion equations allow to calculate all other
terms Zr. Next, we present two methods of defining the approximate effective
impedance of a given order R denoted by Z(R) for the first method and by Z [R] for
the second one.

4.3. Approximate effective behavior: momentum balance-based approach
This first approach is an elastodynamic extension of the method used by Boutin

(1996) to describe microstructural effects in elastostatics.
Having calculated the expansion (3.6) up to order R, the approximate effective

behavior can be defined through the approximate effective impedance

Z
(R)
k,ω =

∑
r≤R

Zr
k,ω.

The approximate effective motion equation accordingly reads

Z
(R)
k,ω · Ũk,ω = f̃ . (4.5)

The lowest order approximate effective behavior corresponds therefore to Z(0) = Z0

given in equation (4.4).
Let us now specify the connection between Willis exact theory and the present

LW-LF asymptotic theory. Thanks to equations (4.3) and (2.7), we have

Zε = iωρeεk,εωiω + iωSεk,εω · ik − ik ·Ce
εk,εω · ik,
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where an ε2 factor is canceled. Indeed, a general formula giving the expansion of Zε

is

Zε =
∑
r

εr
∑

α+β=r

(iω)β
α! β!

∂r

∂(ik′)α∂(iω′)β [iωρek′,ω′iω

+ iωSk′,ω′ · ik − ik ·Ce
k′,ω′ · ik]|k′=0,ω′=0 �α [⊗αik] (4.6)

where �α stands for α times contraction and ⊗αik represents the αth tensor power
of ik. Thus, we have

Z
(R)
k,ω =

∑
α+β≤R

(iω)β
α! β!

∂α+β

∂(ik′)α∂(iω′)β [iωρek′,ω′iω

+ iωSk′,ω′ · ik − ik ·Ce
k′,ω′ · ik]|k′=0,ω′=0 �α [⊗αik] . (4.7)

In the above expansions, we can restrict the summation to even powers of ω since all
motion equations depend on ω uniquely through ω2 (this would not be the case for a
linear visco-elastic behavior for example). In particular, for R = 0, the above sum
reduces to the sole term

Z
(0)
k,ω = Z0

k,ω = iωρe0,0iω + iωS0,0 · ik − ik ·Ce
0,0 · ik,

meaning that the Willis effective constitutive parameters, to the lowest order, thanks
to equation (4.4), are given by:

ρe0,0 = 〈ρ〉 I,
S0,0 = 0,
Ce

0,0 = 〈C +C : ∇⊗sA〉 .

The expression of Z(R) for R ≥ 1 requires pushing further in the hierarchical
motion equations as noted earlier and will allow to characterize the higher order terms
in the expansion of the Willis effective constitutive parameters. Finally, to obtain the
corresponding approximate effective motion equation in the real space-time domain,
we simply use the mappings iω 7→ ∂/∂t and ik 7→ ∇ in the expression of Z(R).
For R = 2, the approximate effective behavior is that of a strain-gradient medium
with micro-inertia (i.e., new terms with time derivatives) whose motion equation
involves the following derivatives of U :

∂α+2β

∂xα∂t2β
U for α + 2β ≤ 4. (4.8)

An explicit example of such approximate effective motion equation is given in section 6.
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4.4. Approximate effective behavior: energy-based approach
This second approach is based on two ingredients: a localization operator and

a variational formulation. This approach, introduced by Smyshlyaev and Chered-
nichenko (2000) for elastostatics, is generalized here to elastodynamics.

As for the localization operator, one can summarize the results of the first two
motion equations of the hierarchy by writing

ûε(y) = û0
k,ω(y) + εû1

k,ω(y) +O(ε2)
= Ũ 0

k,ω + εŨ 1
k,ω + εA(y) : ik⊗sŨ 0

k,ω +O(ε2)
= Ũ ε + εA(y) : ik⊗sŨ ε +O(ε2),

(4.9)

where A appears as the first order term of some localization operator Lε defined by:

ûε(y) = Lε(y) · Ũ ε. (4.10)

As for the variational formulation, starting from (4.1), it can be seen that ûε is
the stationary point of the action defined by

1
2

〈[(1
ε
∇ + ik

)
⊗sûε

]∗ᵀ
: C :

[(1
ε
∇ + ik

)
⊗sûε

]
− ω2ρûε∗ᵀ · ûε

〉
−<

(〈
ûε∗ · f̃

〉)
=1

2

〈[(1
ε
∇ + ik

)
⊗sûε

]∗ᵀ
: C :

[(1
ε
∇ + ik

)
⊗sûε

]
− ω2ρûε∗ᵀ · ûε

〉
−<

(
Ũ ε∗ · f̃

)
,

over the set of admissible displacement fields (R-periodic fields basically), where (ᵀ)
stands for transposition and < symbolizes the real part of a complex number. However,
we know that such stationary point can be written as in equation (4.10). Upon the
corresponding change of unknown field, the action becomes

1
2Ũ

ε∗ ·
〈[(1

ε
∇ + ik

)
⊗sLε

]∗ᵀ
: C :

[(1
ε
∇ + ik

)
⊗sLε

]
− ω2ρLε∗ᵀ ·Lε

〉
· Ũ ε

−<
(
Ũ ε∗ · f̃

)
= 1

2Ũ
ε∗ ·Zε · Ũ ε −<

(
Ũ ε∗ · f̃

)
. (4.11)

Finally, instead of truncating the expansion of Zε, the one of Lε is truncated at
order R to yield an approximate localization operator L(R) which is then injected
into (4.11). To sum up, we define the approximate effective impedance by

Z
[2R]
k,ω =

〈[
(∇ + ik)⊗sL(R)

k,ω

]∗ᵀ
: C :

[
(∇ + ik)⊗sL(R)

k,ω

]
− ω2ρL

(R)∗ᵀ
k,ω ·L(R)

k,ω

〉
. (4.12)

The approximate effective motion equation is accordingly

Z
[2R]
k,ω · Ũk,ω = f̃ .
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Impedance Z [2R] is not a partial sum of any Taylor series and is different from Z(2R).
In particular, Z [0] is different from the first term in the expansion Z0. In fact,
since L(0) = I as can be seen from equation (4.9), we have:

Z
[0]
k,ω = k · 〈C〉 · k − ω2 〈ρ〉 I.

Using again equation (4.9), we see that for R = 1, the approximate effective behavior
is also that of a strain-gradient medium with micro-inertia whose motion equation
involves the same derivatives as in (4.8) except for ∂4U/∂t4. An explicit example of
such approximate effective motion equation is given in section 6.

4.5. Discussion
It is of interest to discuss some of the differences distinguishing the above two

approaches. Comparing, in particular, Z(2) and Z [2] will be enough.
First, both approximate impedances yield a medium of order 4 in the sense that

the highest order derivative of U appearing in the motion equation is of order 4.
However, Z(2) involves a 4th-order time derivative while Z [2] does not and is hence
formally identical to the impedance of the strain-gradient medium derived by Mindlin
(1964).

Second, the most important advantage of the energy-based approach is that Z [2]

guarantees a positive definite elastic energy. As a matter of fact, truncating Lε
according to (4.9) amounts to changing the set of admissible fields of the action (4.11)
and not the action itself. Since C is positive definite, so is the elastic energy
defined by Z [2]. The momentum balance-based approach on the other hand does not
necessarily yield a positive definite elastic energy. However, if one were to interpret
the motion equation (4.5) asymptotically and solve for the Ũ r instead of Ũ , then
equation (4.5) will be replaced by the following hierarchy:

Z0
k,ω · Ũ 0

k,ω = f̃ ,

Z0
k,ω · Ũ 1

k,ω +Z1
k,ω · Ũ 0

k,ω = 0 . . .

The elastic energy at each stage remains therefore positive definite since Z0 defines a
positive definite effective elastic stiffness tensor as is well-known.

Third, only the momentum balance-based approach defines a “good” limit process
in the sense that Z(0) is equal to the correct homogenization limit while Z [0] is
some kind of a low-contrast approximation of said limit. At the second order, the
expression of the classical quasistatic effective stiffness tensor is recovered by Z [2].
Generally speaking, for R ≥ 1, Z(2R) and Z [2R] agree over all terms of order lower
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than R− 1 (these are the coefficients of all derivatives in the approximate effective
motion equation up to order R + 1).

Fourth, in order to define the effective 4th order medium, the momentum balance-
based approach uses more information since it requires to solve for ũr up to r = 3
whereas to define Z [2] only the solutions of order r = 0 and r = 1 are needed. It
is indeed surprising that a 4th order behavior can be defined with only a first order
approximation of the microscopic solution. Smyshlyaev and Cherednichenko (2000)
assessed however the quality of the approximation in a variational sense. What should
be stressed is that said variational sense is different from the usual asymptotic one.
We refer to the cited paper for details.

Finally, there are other approaches in the literature seeking to define a strain-
gradient behavior from microstructures and crystal structures in particular. We
mention the works of DiVincenzo (1986) and Maranganti and Sharma (2007). They
identified the coefficients of an enriched Lagrangian thanks to computing the dispersion
curve. Their method has however one important shortcoming since it is completely
based on free waves propagation. The implications are that the effective mass density
is postulated to be the mass per unit volume and that micro-inertia terms can never
appear. In fact, their approach is fundamentally different and cannot be obtained
through the present formalism since they have not clearly defined what the effective
displacement field must be.

5. Dispersion relation

In this section, some general aspects of free wave propagation and dispersion
curves for both Willis and LW-LF effective behaviors are studied. In particular,
we explain why Willis theory yields exactly the whole microscopic dispersion curve
while LW-LF asymptotics are restricted to acoustic branches. A theorem, in 1D
setting, will be proven, showing that all optical branches are systematically lost when
using LW-LF Taylor asymptotics. Optical branches are particularly interesting while
studying metamaterials since they are responsible4 for desired non-standard effects
such as “damping” (Liu et al., 2000). LW-LF Taylor asymptotics are therefore not
rich enough to model these branches. Finally, we make a short detour by high-contrast
and LW-FF asymptotics which allow to capture some optical modes.

4it is the band gap between acoustic and optical branches more precisely.
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5.1. Exact considerations
We will call a microscopic eigenmode, a mode (k, ω) which allows for a free wave or

a non-null solution, under f = 0, to the microscopic motion equation (2.4). Effective
eigenmodes are similarly defined with respect to the effective motion equation (2.6).
Willis theory transforms a solution ũk,ω of (2.4) into a solution Ũk,ω of (2.6) under
the same loading. In particular, free waves are transformed into free waves. Therefore,
microscopic and effective eigenmodes are the same except for particular modes
when Ũk,ω happens to be null in which case a microscopic freewave vanishes on the
effective scale. To sum up, if the microscopic dispersion curve, i.e., the set of all
microscopic eigenmodes, is symbolized by C , and the effective one is denoted by C e

then we have
C e = C − C za (5.1)

with
C e = {(k, ω) ∈ E ∗ × R such that detZk,ω = 0},

C za = {(k, ω) ∈ C such that all solutions of (2.4) satisfy 〈ũk,ω〉 = 0},

where “za” stands for “zero average”. The elements of C za correspond to the micro-
scopic free waves disappearing in the effective description. Note that a continuous
extrapolation of C e over gaps caused by C za, if any, allows to recover C entirely, if
said gaps were of empty interior. In this sense, microscopic dispersion curve C is
characterized by the effective behavior.

Curve C has generally (for a periodically inhomogeneous continuum) an infinite
number of branches ω = ωn(k) indexed with n ∈ N. Branches which go through
(k = 0, ω = 0) are called acoustic branches whereas all others are called optical
branches. As noted earlier, it is these optical branches that produce many of the
peculiar characteristics of metamaterials.

5.2. LW-LF approximations
The approximate dispersion relation is naturally defined through

{(k, ω) ∈ E ∗ × R+, detZ(R)
k,ω = 0}. (5.2)

The lowest order approximation of the dispersion relation is based on Z0 from (4.4)
and given by

det
(
−ω2 〈ρ〉 I + k ·Ce

0,0 · k
)

= 0.

Such curve has three branches ω = ω(0)
n (k) with n ∈ {0, 1, 2}, and all are acoustic.

We underline the fact that the ω(0)
n are positively homogeneous functions of de-

gree 1: ω(0)
n (ak) = |a|ω(0)

n (k). This implies that all waves, of sheet n, which propagate
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in direction k/‖k‖ have the same speed regardless of their wavelengths. In other
words, the approximate effective behavior described by Z0 is non-dispersive, as is
well known.

The classical homogenization limit has therefore two limitations: no dispersive
effects and no optical branches can be captured. Dispersive effects can be however
modeled by taking into account higher order approximations: Z(R), R > 0, which
yield non-homogeneous functions ω = ω(R)

n (k), n ∈ {0, 1, 2}, and, correspondingly,
a weakly non-local behavior. LW-LF asymptotics of order R are still unable to
approximate the optical branches whatever R is. This intrinsic limitation of LW-LF
asymptotics to acoustic branches is proved by the following theorem.

5.3. Convergence domain
Generally speaking, if the assumptions made for defining a scaling (see table 1) are

not strictly satisfied, the approximate effective behavior will not have the expected
accuracy. To improve accuracy, we can increase the truncation order R or make better
suited assumptions (change the scaling p = pε altogether). Increasing the order R
augments the accuracy of the approximate effective behavior over some neighborhood,
or convergence domain, about p = pi (ε = 0). However, increasing R does not change
this domain. In order to change it, we have to improve the scaling or the path p = pε.

Here, we prove a theorem, for arbitrary 1D media, stating that LF and FF Taylor
expansions convergence domains are limited to a neighborhood of one branch, at
most. Further, we demonstrate that LW-LF asymptotics systematically miss all
optical branches. The keystone is Cauchy’s theorem on the convergence domain of
Taylor expansions of holomorphic functions. We start with general d dimensional
considerations and subsequently restrict our results to d = 1. In particular, a general
series representation of the Green operator of the effective medium will be useful and
is derived first of all.

Let k be a given wavenumber. It is known (Bensoussan et al., 1978) that the
eigenvalue problem:

(∇ + ik) · {C(x) : [(∇ + ik)⊗sψ(x)]} = −ω2ρ(x)ψ(x), (5.3)

under periodic boundary conditions, admits a series of solutions ω = ωn ≥ 0,
with n ∈ N, which can be listed in an increasing order. To each eigenvalue, there
corresponds an eigenvector ψn. Given the solution ũk,ω to equation (2.4), we can, in
view of the virtual work theorem, write〈

ψ∗n · f̃
〉

= (ω2
n − ω2) 〈ψ∗n · ρũk,ω〉 . (5.4)
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In particular, for f̃ = 0, ω = ωm and ũk,ω = ψm, we have the orthogonality property:

(ω2
n − ω2

m) 〈ψ∗n · ρψm〉 = 0,

which means that, with respect to the scalar product weighted with ρ, the fam-
ily {ψn}n∈N can be assumed orthogonal. When normalized, said family becomes
orthonormal which we assume hereafter. In fact, the family {ψn}n∈N forms an or-
thonormal basis for the space of solutions ũk,ω. Accordingly, we have the following
series representation of ũk,ω:

ũk,ω =
∑
n∈N
〈ψ∗n · ρũk,ω〉ψn,

which, in view of (5.4), can be recast as

ũk,ω =
∑
n∈N

〈
ψ∗n · f̃

〉
ω2
n − ω2 ψn =

∑
n∈N

ψn⊗〈ψ∗n〉
ω2
n − ω2 · f̃ ,

since f̃ is a constant vector. Upon averaging, we get an expression for the effective
displacement field:

Ũk,ω =
∑
n∈N

〈ψn〉⊗〈ψ∗n〉
ω2
n − ω2 · f̃ ,

and, most importantly, an expression for the inverse of the effective impedance Gk,ω:

Gk,ω ≡ Z−1
k,ω =

∑
n∈N

〈ψn〉⊗〈ψ∗n〉
ω2
n − ω2 . (5.5)

Note that all ψn and ωn are k-dependent and ω-independent. The second order
tensor Gk,ω is the Green operator, in Fourier domain, of the effective medium. A
corresponding expression for Zk,ω can be derived using Cramer’s rule for instance.
This is not done here since we shall consider d = 1 next.

For 1D media, the effective impedance and Green tensors become scalars. In
particular, we have

Gk,ω =
∑
n∈N

|〈ψn〉|2

ω2
n − ω2 . (5.6)

We now assume that the eigenvalues ωn are simple, for clarity purposes. Consider
the limits of Gk,ω as ω → ω+

n and ω → ω−n+1 for two consecutive eigen frequencies ωn
and ωn+1 with ωn < ωn+1. It can be seen that:

Gk,ω+
n

= −∞ and Gk,ω−n+1
= +∞, (5.7)
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given |〈ψn〉|2 6= 0 and |〈ψn+1〉|2 6= 0.
Now let ε 7→ pε = (kε, ωε) be a path connecting one point from the nth branch,

denoted by (kεn , ωn(kεn)) and attained for ε = εn > 0, to another from branch n+ 1,
called (kεn+1 , ωn+1(kεn+1)) and reached for ε = εn+1 > εn. Without loss of generality,
we assume that pε remains between the two branches n and n + 1. Recalling
that Zk,ω = 1/Gk,ω, the question is whether a Taylor expansion of Zε = Zkε,ωε can
converge at, and recover, both eigenmodes (kεn , ωn(kεn)) and (kεn+1 , ωn+1(kεn+1)).

First of all, if either |〈ψn(k = kεn)〉|2 or |〈ψn+1(k = kεn+1)〉|2 is null then the answer
is no since Zk,ω is, already itself, unable to recover the corresponding eigenmode ac-
cording to (5.1). We assume then that both |〈ψn(k = kεn)〉|2 and |〈ψn+1(k = kεn+1)〉|2
are non-null. Then, thanks to (5.7), Gε = Gkε,ωε changes sign when ε passes from εn
to εn+1 and attains, by continuity, zero for some value of ε in ]εn, εn+1[. The existence
of a zero value for Gε implies that Zε explodes at some point on the path pε between εn
and εn+1. This singularity of Zε, by Cauchy’s theorem, forbids convergence of Taylor
expansion of Zε about ε = 0 ≤ εn at ε = εn+1.

In particular, LW-LF Taylor asymptotics can converge only near the acoustic
branch. Optical branches are systematically lost. LW-FF Taylor asymptotics converge
near one optical branch at one time. For higher dimensions, singularities seem also to
limit the convergence domain although not in the nice one-branch-at-a-time manner
(a weaker version of the above theorem holds but is not presented here).

In order to have a Taylor expansion valid for multiple branches, one needs a
path p = pε which avoids the singularities of Z. Needless to say that such a path will
have to get out of the (k, ω)-plane and surf other dimensions. High-contrast scalings
provide, sometimes, depending on the underlying microstructure, such paths. A
LW-LF-high-contrast scaling can hence extend the convergence domain to englobing
multiple acoustic and optical branches. We refer to papers by Auriault and Bonnet
(1985) and by Auriault and Boutin (2012) for examples of such scalings.

Here, it is the definition of the approximate effective impedance in the momentum
balance-based approach that is adopted: Z(R). Similar results for Z [R] are thought to
hold.

5.4. Remark: on tuning
The loss of optical branches means that there could exist solutions to the ap-

proximate dispersion equation with complex ω. Such solutions are unstable and
non-physical. A “tuning” technique, due to Pichugin et al. (2008), introduces artificial
optical branches so that the approximate motion equation becomes stable. However,
the optical modes thus introduced still have no physical meaning. In addition, note
that a tuned motion equation is an implicit motion equation in the sense that deriva-
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tives of f appear when writing the tuned motion equation in forced regime. This
explains how tuned approximate motion equations are not unique while the partial
sums Z(R), and accordingly equation (4.5), are unique by the uniqueness of Taylor
expansions.

5.5. On high-contrast and LW-FF asymptotic approximations
As observed earlier, in order to approximate any optical branch of the dispersion

curve, the LW-LF scaling must be abandoned in favor of other scalings such as the
high-contrast or the LW-FF ones first investigated by Auriault and Bonnet (1985)
and by Daya et al. (2002), respectively. In common with these two approaches is the
fact that, to the lowest order, the displacement field can be written as a large scale
modulation D of an R-periodic shape or weighting function φ:

u(x,x′) = φ(x′)D(x).
Both φ and D can be either scalars, vectors or tensors but their product, in the
corresponding sense, must yield a vector. For a highly contrasted hard matrix-soft
inclusion composite, φ turns out to be the indicator function of the matrix phase
whereas for the LW-FF scaling, φ is an R-periodic free oscillation mode of the
microstructure. In both cases, D appears as the natural macroscopic displacement
field as it depends only on the macroscopic variable x. In contrast, Willis theory as
presented above defines the macroscopic displacement as

U(x) = 〈φ〉D(x).
Unfortunately, in some cases5, 〈φ〉 can induce a non-negligible error making U an
inappropriate approximation of u.

Independently, a modified Willis theory which defines the macroscopic displace-
ment field as the weighted average

Uw(x) = 〈w(x′)u(x,x′)〉x′
for a given weight function w was suggested by Milton and Willis (2007). It is then
remarkable that by appropriately choosing w so that the averaged product 〈wφ〉
becomes equal to the identity, we can recover Uw = D. Note that introducing the
weight w does not essentially modify any of the formal aspects of Willis theory (Willis,
2011). Therefore, the frameworks of high-contrast and LW-FF asymptotics remain
consistent with Willis theory and can benefit from the same connections established
in detail in the previous sections for LW-LF asymptotics.

5The worst scenario occurs for a thin walled matrix when φ is the matrix indicator function and
for a homogeneous mass density ρ when φ is an R-periodic optical mode.
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6. Example: a 1D string

In this section, the exact effective impedance Z of a two-phase 1D string is
calculated, scaled and expanded in order to exemplify what has been presented in
the previous sections.

c1,ρ1 c2,ρ2

x=−a x=0 x=+a

Figure 1: A unit cell of a 1D 2-phase string.

6.1. Setup and exact effective behavior
The periodic 1D string to be studied has two phases of stiffness cj and mass

density ρj with j ∈ {1, 2}. A unit cell of length 2a is illustrated by figure 1. The
waves propagating along the string are either transverse or longitudinal waves (but
not both since this is a 1D example).

The motion equation (2.3) reduces, over each phase, to

cju
′′ + f̃ eikx = −ω2ρju,

where the superscript (′) stands for d/dx and f̃ is the amplitude of body forces and is
constant. The displacement u and traction Cu′ are required to be continuous across
phases and to satisfy the Bloch condition: u(x)e−ikx = ũ(x) and

[Cu′](x)e−ikx = C(x)(ũ′(x) + ikũ(x))

are periodic functions of period 2a.
Once u is calculated, the effective impedance Z can be defined as Z = f̃/〈ũ〉

and is a function, exclusively, of the period half-length a, stiffnesses c1 and c2, mass
densities ρ1 and ρ2, frequency ω and wavenumber k. The general form of the solution u
for phase j is known to be

u(x) = B+
j exp

(
iω
√
ρj/cjx

)
+B−j exp

(
−iω

√
ρj/cjx

)
+ f̃

cjk2 − ρjω2 exp (ikx) ,

where the B+,−
j are constants to be identified by the continuity and Bloch conditions.

Note that the above equation is valid as long as pairs (k, ω) satisfying cjk2−ρjω2 6= 0
are excluded.

22



The identification of the constants presents no particular interest for our purpose
and is skipped here. We directly give a closed form analytical expression for Z as

Z = P/Q, (6.1)

where

P = a(c1k
2 − ρ1ω

2)2(c2k
2 − ρ2ω

2)2 {4√c1ρ1c2ρ2 cos(2ka)

+ (√c1ρ1 −
√
c2ρ2)2 cos

[
ω(
√
ρ1/c1 −

√
ρ2/c2)a

]
−(√c1ρ1 +√c2ρ2)2 cos

[
ω(
√
ρ1/c1 +

√
ρ2/c2)a

]}
,

and where Q is specified in AppendixB. Note that Z can be continuously extrapolated
over the previously excluded values of k and ω. The dependence of Z on k and ω is
complicated and cannot be easily interpreted. What is certain is that Z describes a
non-local effective behavior in both space and time since it is neither a polynomial
in k nor in ω.

The dispersion relation, as can be found in Andrianov et al. (2008) and references
therein, is given by

cos(2ka) =
(√c1ρ1 +√c2ρ2)2

4√c1ρ1c2ρ2
cos

[
ω(
√
ρ1/c1 +

√
ρ2/c2)a

]

−
(√c1ρ1 −

√
c2ρ2)2

4√c1ρ1c2ρ2
cos

[
ω(
√
ρ1/c1 −

√
ρ2/c2)a

]
.

(6.2)

This is the same as P = 0 up to the (cjk2 − ρjω2)2 factors. In fact, the dispersion
relation can be obtained as argued before from Z = det(Z) = 0 and not P = 0 since
zeros of P can be “canceled” by zeros of Q. In particular, whenever (cjk2 − ρjω2)2 is
null, Q is null. This is not obvious and can be checked through calculations. Note
that the dispersion curve is even, periodic6 in k and of period π/a.

A typical dispersion curve is plotted in figure 2. It shows the first three branches
of the dispersion curve Z = 0: ωn(k) with n ∈ {1, 2, 3}; the first two branches of the
curve 1/Z = 0 are also displayed: $n(k) with n ∈ {1, 2}. We can see, as implied by
our theorem, that ω1 ≤ $1 ≤ ω2 ≤ $2 ≤ ω3 . . . In the plot, wavenumbers have been
normalized by a factor of 1/a and frequencies ω by a factor ωo = π

2a
√
〈1/C〉〈ρ〉

. The

6Incidentally, the dispersion curve is also periodic with the frequency ω if and only if the expression√
ρ1/c1−

√
ρ2/c2√

ρ1/c1+
√
ρ2/c2

is a rational number.
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ka π/2

ω/ωo

1

(ω1)

(ω2)

(ω3)

(̟1)

(̟2)

Figure 2: A typical dispersion curve. The first three branches, (ω1), (ω2) and (ω3), are plotted
against the first two branches of singularities of the effective impedance Z, $1 and $2. The dashed
line marks off the first Brillouin zone boundary.

numerical values used in the plots are:

c1 = 1010N, c2 = 4.1012N, ρ1 = 4900kg/m, ρ2 = 900kg/m, a = 5.10−3m.

6.2. LW-LF asymptotics
We next explore second order expansions of the Willis impedance Z according to

the two approaches discussed earlier and make a brief comparison with Mindlin’s 1D
second-order strain-gradient medium.
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6.2.1. Momentum balance-based approach
Define

Zε = 1
ε2Zεk,εω,

as in (4.3). The lowest order approximation to Z is therefore

Z(0) = Z0 = lim
ε→0

Zε = 2 c1c2

c1 + c2
k2 − ρ1 + ρ2

2 ω2,

as expected. An approximation of order 2 has the form

Z(2) = 2 c1c2

c1 + c2
k2 − ρ1 + ρ2

2 ω2

− a2

24
(c1 − c2)[2(ρ1c1 − ρ2c2) + (c1 + c2)(ρ1 − ρ2)]

(c1 + c2)2 ω2k2

− a2

96(ρ1 − ρ2)2 (c1 + c2)
c1c2

ω4.

The corresponding approximate effective motion equation, in the real space-time
domain, has the expression

− 2 c1c2

c1 + c2
u′′(x, t) + ρ1 + ρ2

2 ü(x, t)

− a2

24
(c1 − c2)[2(ρ1c1 − ρ2c2) + (c1 + c2)(ρ1 − ρ2)]

(c1 + c2)2 ü′′(x, t)

− a2

96(ρ1 − ρ2)2 (c1 + c2)
c1c2

¨̈u(x, t) = f(x, t),

where the superscripted dot stands for d/dt. Note that there is no term in u′′′′. This
means that there are no purely spatial higher order strain-gradient effects. In 1D,
this is not a particular feature of the approximation order. In fact, for all similar 1D
systems, we have in statics:

Zω=0 = 2 c1c2

c1 + c2
k2. (6.3)

Higher order strain gradient effects, and general strong non-local effects, caused by
heterogeneities appear only under dynamic loadings or when homogenizing in higher
dimensions (2D and 3D layered composites for instance), at least according to Willis
and equivalent theories. Strain gradient effects do appear in LW asymptotics when
continualizing discrete 1D lattices (see for example Pichugin et al. 2008). At this
stage, continualization of discrete lattices and homogenization of already continuous
media need to be clearly distinguished.
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6.2.2. Energy-based approach
It is easy to see that the first order localization tensor is given by

A(y) =
(

1
C(y) −

〈 1
C

〉)
y

〈1/C〉 −
a

2
c1 − c2

c1 + c2
.

When this expression is injected into (4.12), we get

Z [2] = 2 c1c2

c1 + c2
k2 − ρ1 + ρ2

2 ω2 − a2

24
(c1 − c2)2(ρ1 + ρ2)

(c1 + c2)2 ω2k2 + a2

24
(c1 − c2)2

c1 + c2
k4.

As expected, no ω4 terms appear. However, the k4 coefficient is non-null contrarily
to what happens in the momentum balance-based approach. Therefore, for higher
order approximations, we expect the coefficient of k4 to be corrected and eventually
to be set to zero (the same goes for all kn with n > 2, according to (6.3)).

6.2.3. Signature
In order to compare both effective models with Mindlin’s theory, it is convenient

to define a signature which is the series of signs of the coefficients appearing in the
expression of the effective impedance. The results are as follows:

Mindlin (1964)
momentum balance-based approach

energy-based approach

k2 ω2 k2ω2 k4 ω4

+ − − + 0
+ − + or − 0 −
+ − − + 0

It is seen that the energy-based approach yields the same signature as in Mindlin’s
theory (for 1D media) whereas the momentum balance-based approach has generally
a different signature.

6.2.4. Approximate dispersion curve
The approximate dispersion curves, ω(0)

1 (k) and ω(2)
1 (k), are calculated, according

to (5.2) and have the equations:

Z(0) = 0 and Z(2) = 0.

They are plotted in figure 3 and are almost indistinguishable. Note that these
approximations have only acoustic branches as expected. As can be seen, they yield
a good approximation for low frequencies (near the acoustic branch) and for almost
all low wavelengths up to, and except near, the frontier of the first Brillouin zone.
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The same goes for the energy-based approach which defines an approximation to
the dispersion curve, ω[2](k), of equation:

Z [2] = 0.

Curve ω[2](k) is a poor approximation except in the quasistatic range near ω = 0, k = 0
(see figure 3). As said earlier, the energy-based approach defines an approximate
effective impedance in a variational sense and is based on the asymptotics of the
localization operator. The momentum balance-based approach on the other hand
relies on the Taylor series of Z directly. Having Z = det(Z) in 1D, it is understandable
that the momentum balance-based approach yields a better approximation of the
dispersion curve. In higher dimensions, similar observations are expected to hold even
though a truncated Taylor series of Z does not produce a truncated Taylor series
of det(Z). This is because the error committed therein remains smaller than the one
committed by approximating det(Z) based on a truncated series of the localization
operator.

7. Conclusion

Willis elastodynamic homogenization theory is general and exact, giving rise to
an effective constitutive behavior which is non-local in both space and time. In the
present work dedicated to periodic media, we have suggested the fundamental idea of
using Willis theory as the basis for deriving a large class of asymptotic elastodynamic
homogenization approaches through making appropriate assumptions on loadings,
microstructure and phase property contrast. Having realized this idea, the present
work has clarified the relations between Willis theory and a good few asymptotic
theories reported in the literature, which were proposed and have been up to now
developed independently. We also believe that, in doing so, the present work has
contributed to getting new insights into Willis theory and asymptotic approaches,
and to their respective development.
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AppendixA. Willis effective constitutive law

Under the loading of a (harmonic) plane wave body force f(x) = f̃eik·x, all fields:
displacement u, velocity v, strain ε, momentum density p, stress σ, are Bloch waves
of the form

φ(x) = φ̃(x)eik·x,

for φ ∈ {u,v, ε,p,σ}. The corresponding effective fields Φ ∈ {U ,V ,E,P ,Σ} are
defined by

Φ(x) ≡ Φ̃eik·x ≡
〈
φ̃
〉
eik·x.

Then, the effective fields are related to one another according to the following effective
constitutive law (Willis, 2011)Σ

P

 =
Ce S1

S2 ρe


k,ω

E
V

 ,
where S1 is a stress-velocity coupling tensor of order 3 and S2 is a momentum
density-strain coupling tensor of order 3. The effective motion equation is

ik ·Σ + f = iωP .

Combined with the effective constitutive law, the above equation leads to equation (2.7)
where tensor S has been defined by

S ≡ S2 − S1ᵀ.

Note that Willis law is self-adjoint in the sense

Ce
k,ω = Ceᵀ

−k,ω, ρek,ω = ρeᵀ−k,ω and S1
k,ω = S2ᵀ

−k,ω.
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AppendixB. Expression of Q

The denominator Q of Z from equation (6.1) is given by the expression

2a√c1ρ1c2ρ2(c2k
2 − ρ2ω

2)(c1k
2 − ρ1ω

2)
[
(c1 + c2)k2 − (ρ1 + ρ2)ω2

]
cos(2ka)

− 4√c1ρ1c2ρ2(c1ρ2 − c2ρ1)
[
(c1 − c2)k2 − (ρ1 − ρ2)ω2

]
kω2 sin(2ka)

+√ρ2c2 [√ρ1(c1 − c2)k −√c1(ρ1 − ρ2)ω]2 ω{
(√c1k +√ρ1ω)2 sin

[
a(k +

√
ρ1/c1ω)

]
−(√c1k −

√
ρ1ω)2 sin

[
a(k −

√
ρ1/c1ω)

]}
+√c1ρ1 [√ρ2(c1 − c2)k −√c2(ρ1 − ρ2)ω]2 ω{

(√c2k +√ρ2ω)2 sin
[
a(k +

√
ρ2/c2ω)

]
−(√c2k −

√
ρ2ω)2 sin

[
a(k −

√
ρ2/c2ω)

]}

+ a

2(c1k
2 − ρ1ω

2)(c2k
2 − ρ2ω

2)
[
(c1 + c2)k2 − (ρ1 + ρ2)ω2

]
{

(√c1ρ1 −
√
c2ρ2)2 cos

[
ωa(

√
ρ2/c2 −

√
ρ1/c1)

]
−(√c1ρ1 +√c2ρ2)2 cos

[
ωa(

√
ρ2/c2 +

√
ρ1/c1)

]}

−√c1ρ1c2ρ2
[
(c1 − c2)k2 − (ρ1 − ρ2)ω2

]2
ω{

(√c1ρ1 +√c2ρ2) sin
[
ωa(

√
ρ2/c2 +

√
ρ1/c1)

]
−(√c1ρ1 −

√
c2ρ2) sin

[
ωa(

√
ρ2/c2 −

√
ρ1/c1)

]}
− (c1ρ2 − c2ρ1)2ω3k2{

(√c1ρ1 +√c2ρ2) sin
[
ωa(

√
ρ2/c2 +

√
ρ1/c1)

]
+(√c1ρ1 −

√
c2ρ2) sin

[
ωa(

√
ρ2/c2 −

√
ρ1/c1)

]}
.
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