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Moutard transform approach to generalized analytic functions with contour poles *

. In particular, we show that generalized analytic functions with the simplest contour poles can be Moutard transformed to the regular ones, at least, locally. In addition, the later Moutard-type transforms are locally invertible.

Introduction

We study the equations

∂ z ψ = u ψ in D, (1) 
∂ z ψ + = -ū ψ+ in D, (2) 
where D is an open domain in C, u = u(z) is a given function in D, ∂ z = ∂/∂ z.

The functions ψ = ψ(z) satisfying equation [START_REF] Arkad'ev | Singular solutions of the KdV equation and the inverse scattering method[END_REF] are known as generalized analytic functions in D, equation ( 2) is known as the conjugate equation to [START_REF] Arkad'ev | Singular solutions of the KdV equation and the inverse scattering method[END_REF]; see [START_REF] Vekua | Generalized Analytic Functions[END_REF]. In the present article the notation f = f (z) does not mean that f is holomorphic.

The classical theory of generalized analytic functions is presented in [START_REF] Bers | Theory of pseudo-analytic functions[END_REF], [START_REF] Vekua | Generalized Analytic Functions[END_REF]. In addition, very recently in [START_REF] Grinevich | Moutard transform for generalized analytic functions[END_REF], [START_REF] Grinevich | Generalized analytic functions, Moutard-type transforms and holomorphic maps[END_REF] it was shown that a new progress in this theory is possible by involving ideas of Moutard-type transforms going back to [START_REF] Moutard | Sur la construction des équations de la forme 1 z ∂ 2 z ∂x∂y = λ(x, y) qui admettenent une intégrale générale explicite[END_REF]. Actually, ideas of Moutard-type transform were developed and successfully used in the soliton theory in dimension 2+1, in the spectral theory in dimension 2 and in the differential geometry; see [START_REF] Doliwa | Integrable lattices and their sublattices: From the discrete Moutard (discrete Cauchy-Riemann) 4-point equation to the self-adjoint 5-point scheme[END_REF], [START_REF] Matveev | Darboux transformations and solitons[END_REF], [START_REF] Nimmo | Superposition principles associated with the Moutard transformation: an integrable discretization of a 2+1dimensional sine-Gordon system[END_REF], [START_REF] Novikov | Two-dimensional von Neumann-Wigner potentials with a multiple positive eigenvalue[END_REF]- [START_REF] Taimanov | On the Moutard transformation and its applications to spectral theory and Soliton equations[END_REF] and references therein.

We recall that in our case the Moutard-type transforms assign in quadratures to a given coefficient u and fixed solutions f j , f + j , j = 1, . . . , N, of equations ( 1), [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishimori hierarchies[END_REF], and all formal solutions ψ, ψ + of (1), ( 2) a new coefficient ũ and new related formal solutions ψ, ψ+ for these generalized analytic function equations; see [START_REF] Grinevich | Moutard transform for generalized analytic functions[END_REF], [START_REF] Grinevich | Generalized analytic functions, Moutard-type transforms and holomorphic maps[END_REF]. In turn, the construction of [START_REF] Grinevich | Moutard transform for generalized analytic functions[END_REF] was stimulated by recent articles by I.A. Taimanov [START_REF] Taimanov | Blowing up solutions of the modified Novikov-Veselov equation and minimal surfaces[END_REF], [START_REF] Taimanov | The Moutard transformation of two-dimensional Dirac operators and Möbius geometry[END_REF] on the Moutard-type transforms for the Dirac operators in the framework of the soliton theory in dimension 2 + 1.

In the classical theory of generalized analytic functions it is usually assumed that

u ∈ L p (D), p > 2, if D is bounded, (3) u ∈ L p,2 (C), p > 2, if D = C, (4) 
where L p,ν (C) denotes complex-valued functions u such that u ∈ L p (D 1 ), u ν ∈ L p (D 1 ), where

u ν (z) = 1 |z| ν u 1 z , (5) 
D 1 = {z ∈ C : |z| ≤ 1};
see [START_REF] Vekua | Generalized Analytic Functions[END_REF].

On the other hand, one of the most important applications of the generalized analytic functions theory is associated with the inverse scattering in two dimensions, see [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishimori hierarchies[END_REF], [START_REF] Fokas | On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations[END_REF]- [START_REF] Grinevich | Faddeev eigenfunctions for multipoint potentials[END_REF], [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF], [START_REF] Kazeykina | A large-time asymptotics for the solution of the Cauchy problem for the Novikov-Veselov equation at negative energy with non-singular scattering data[END_REF], [START_REF] Lakshtanov | A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator[END_REF] and references therein. In addition, already in [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF] it was shown that, for the case of the two-dimensional Schrödinger equation, not only regular generalized analytic functions, where u satisfies (3) or ( 4), but generalized analytic functions with contour poles, also naturally arise. However, in the latter case, assumptions (3), [START_REF] Crum | Associated Sturm-Liouville systems[END_REF] are not valid at all. It is quite likely, that the classical methods of generalized analytic functions dot not admit appropriate generalizations for this case. In particular, the problem of proper solving the generalized analytic function equation ( 1) for u with contour poles was remaining well-known, but open.

It is in order to precise that in the framework of inverse scattering for the Schrödinger equation in two dimensions the generalized analytic function equation [START_REF] Arkad'ev | Singular solutions of the KdV equation and the inverse scattering method[END_REF] with contour poles arises for the case when

u = u -1 ∆ , ψ = ψ -1 ∆ , ( 6 
)
where ∆ is real-valued and u -1 , ψ -1 , ∆ are quite regular (e.g. real-analytic) functions on D, and the pole contours are the zeroes of ∆. In this setting ψ = ψ(x, z, E) are the Faddeev exponentially growing solutions of the Schrödinger equation in x ∈ R 2 at fixed energy E ∈ R, u is a particular case of the Faddeev generalized scattering data, ∆ is the modified Fredholm determinant for the Lipman-Schwinger-Faddeev integral equation for ψ, and z is a fixed-energy spectral parameter; see [START_REF] Faddeev | Inverse problem of quantum scattering theory. II[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF] and references therein.

Proceeding from the aforementioned inverse scattering motivation, we consider the generalized analytic function equation [START_REF] Arkad'ev | Singular solutions of the KdV equation and the inverse scattering method[END_REF] with contour poles for the case when u is of the form as in [START_REF] Duistermaat | Differential equations in the spectral parameter[END_REF], and when this equation has sufficiently many (more or less as in the regular case) local solutions ψ of the form as in [START_REF] Duistermaat | Differential equations in the spectral parameter[END_REF]. Adopting the terminology of [START_REF] Grinevich | Spectrally meromorphic operators and nonlinear systems[END_REF] we say that in this case equation ( 1) is of meromorphic class. Note also that equation (1) may be of meromorphic class only if principal terms of u near pole contours satisfy solvability conditions; for simple contour poles these conditions were found in [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF].

Actually, our recent works [START_REF] Grinevich | Moutard transform for generalized analytic functions[END_REF], [START_REF] Grinevich | Generalized analytic functions, Moutard-type transforms and holomorphic maps[END_REF] were motivated considerably by the aforementioned open problem of proper solving the generalized analytic function equation [START_REF] Arkad'ev | Singular solutions of the KdV equation and the inverse scattering method[END_REF] with contour poles for the meromorphic case. In particular, in [START_REF] Grinevich | Moutard transform for generalized analytic functions[END_REF] we give examples of coefficients u when equation ( 1) is of meromorphic class and can be efficiently studied using Moutard-type transforms. In addition, we were stimulated by results of [START_REF] Arkad'ev | Singular solutions of the KdV equation and the inverse scattering method[END_REF], [START_REF] Crum | Associated Sturm-Liouville systems[END_REF], [START_REF] Grinevich | Singular soliton operators and indefinite metrics[END_REF], [START_REF] Novikov | The Moutard transformation and twodimensional multipoint delta-shaped potentials[END_REF], [START_REF] Taimanov | On the Moutard transformation and its applications to spectral theory and Soliton equations[END_REF], [START_REF] Taimanov | Blowing up solutions of the modified Novikov-Veselov equation and minimal surfaces[END_REF] on efficient applications of Darboux-Crum and Moutard-type transforms to studies of some important linear ODE's and PDS's with singular coefficients.

The results of the present work can be summarized as follows:

• We give composition and inversion formulas for the simple Moutardtype transforms for the equations ( 1), [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishimori hierarchies[END_REF]; see Theorems 1, 2 in Subsection 2.2;

• We show that any equation (1) of meromorphic class with a simple contour pole can be transformed to a regular one in a neighborhood of the pole contour via an appropriate simple Moutard-type transform; see Theorem 3 in Subsection 3.4.

2 Moutard-type transforms for generalized analytic functions

Basic construction

Let

f j = f j (z) and f + j = f + j (z), j = 1, . . . , N, (7) 
denote a set of fixed solutions of equations ( 1) and (2), respectively. Let ψ, ψ + be arbitrary solutions of (1), [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishimori hierarchies[END_REF]. We define an imaginaryvalued potential ω ψ,ψ + = ω ψ,ψ + (z) such that

∂ z ω ψ,ψ+ = ψψ + , ∂ z ω ψ,ψ + = -ψψ + in D. (8) 
We recall that this definition is self-consistent, at least, under the assumption that D is simply-connected. The integration constant is imaginary-valued and may depend on concrete situation.

As in [START_REF] Grinevich | Moutard transform for generalized analytic functions[END_REF], [START_REF] Grinevich | Generalized analytic functions, Moutard-type transforms and holomorphic maps[END_REF] we consider imaginary-valued potentials ω f j ,f + k , j, k = 1, . . . , N, and we set

Ω =      ω f 1 ,f + 1 ω f 2 ,f + 1 . . . ω f N ,f + 1 ω f 1 ,f + 2 ω f 2 ,f + 2 . . . ω f N ,f + 2 . . . . . . . . . . . . ω f 1 ,f + N ω f 2 ,f + N . . . ω f N ,f + N      . (9) 
Following [START_REF] Grinevich | Moutard transform for generalized analytic functions[END_REF], for equations (1), (2) we consider the Moutard-type transform

u M / / ũ , (10) 
{ψ, ψ + } M / / { ψ, ψ+ } , (11) 
M = M u,f,f + = M u,f 1 ,...,f N ,f + 1 ,...,f + N ( 12 
)
defined as follows:

ũ = u + f 1 . . . f N Ω -1    f + 1 . . . f + N    , (13) 
ψ = ψ -f 1 . . . f N Ω -1    ω ψ,f + 1 . . . ω ψ,f + N    , (14) 
ψ+ = ψ + -f + 1 . . . f + N (Ω -1 ) t    ω f 1 ,ψ + . . . ω f N ,ψ +    , (15) 
where ψ, ψ + are formal solutions to equations ( 1), (2), respectively, ω ψ,f + j and ω f j ,ψ + are defined as in [START_REF] Fokas | On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations[END_REF]; t in (15) stands for the matrix transposition.

Due to results of [START_REF] Grinevich | Moutard transform for generalized analytic functions[END_REF], the transformed functions ψ, ψ+ solve the transformed generalized-analytic function equations:

∂ z ψ = ũ ψ in D, (16) 
∂ z ψ+ = -ũ ψ+ in D. (17) 

Composition and inversion of simple Moutard transforms

We say that the Moutard-type transforms ( 10)-( 15) are simple if N = 1. In this case:

ψ = ψ -f 1 ω ψ,f + 1 ω f 1 ,f + 1 , (18) 
ψ+ = ψ + -f + 1 ω f 1 ,ψ + ω f 1 ,f + 1 , (19) ũ 
= u + f 1 f + 1 ω f 1 ,f + 1 . ( 20 
)
Proposition 1 For a simple Moutard transform ( 18)-( 20) the following formula holds:

ω ψ, ψ+ = ω ψ,ψ + ω f 1 ,f + 1 -ω ψ,f + 1 ω f 1 ,ψ + ω f 1 ,f + 1 + c ψ, ψ+ , (21) 
where ω ψ, ψ+ is defined according to [START_REF] Fokas | On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations[END_REF], and c ψ, ψ+ is an imaginary-valued integration constant.

Proposition 1 was announced in [START_REF] Grinevich | Generalized analytic functions, Moutard-type transforms and holomorphic maps[END_REF] and is proved in Section 4 of the present work.

Let f 1 , f 2 and f + 1 , f + 2 be some fixed solutions of equations ( 1) and ( 2), respectively, with given u. Let

u M / / ũ , (22) 
ψ, ψ + M / / ψ, ψ+ , (23) 
M = M 2 • M 1 , (24) 
where 1. M 1 is the simple Moutard transform for equations ( 1), ( 2) with coefficient u, generated by f 1 , f + 1 and given by formulas ( 18)-(20);

2. M 2 is the simple Moutard transform for equations ( 16), [START_REF] Grinevich | Spectrally meromorphic operators and nonlinear systems[END_REF] with coefficient ũ = M 1 u, given by:

ψ = ψ -f2 ω ψ, f + 2 ω f2 , f + 2 , (25) 
ψ+ = ψ+ -f + 2 ω f2 , ψ+ ω f2 , f + 2 , (26) ũ 
= ũ + f2 f + 2 ω f2 , f + 2 , ( 27 
)
where we assume that:

• ψ = M 1 ψ, ψ+ = M 1 ψ + , f2 = M 1 f 2 , f + 2 = M 1 f + 2 ;
• ω ψ, f + 2 , ω f2 , ψ+ and ω f2 , f + 2 are given by ( 21) with c ψ, f + 2 , c f2 , ψ+ and c f2 , f + 2 equal to zero. 3. We assume that

ω f 1 ,f + 1 = 0, ω f2 , f + 2 = 0. Theorem 1 Let f 1 , f 2 and f + 1 , f + 2
be some fixed solutions of equations ( 1) and ( 2), respectively, with given u, and let M be defined as in ( 22)- [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator[END_REF]. Then M coincides with the Moutard transform given by formulas ( 10)- [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF] for N = 2 and generated by the initial functions

f 1 , f 2 , f + 1 , f + 2 .
Schematically, the result of Theorem 1 can be also presented as follows:

ψ {f 1 ,f + 1 } M 1 / / {f 1 ,f 2 ,f + 1 ,f + 2 } 6 6 ψ { f2 , f + 2 } M 2 / / ψ ( 28 
)
Theorem 1 is proved in Section 4.

Next, in order to inverse simple Moutard transforms, we consider:

f 2 ≡ 0, f + 2 ≡ 0, ω f 2 ,f + 1 = i, ω f 1 ,f + 2 = i; (29) f2 = M 1 f 2 = f = -i f 1 ω f 1 ,f + 1 , f + 2 = M 1 f + 2 = f + = -i f + 1 ω f 1 ,f + 1 . (30) 
In particular, f and f + defined in [START_REF] Vekua | Generalized Analytic Functions[END_REF] satisfy equations ( 16) and ( 17), respectively, with the coefficient ũ given by [START_REF] Lakshtanov | A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy[END_REF].

Theorem 2 Let M 1 be a simple Moutard transform defined as in ( 18)- [START_REF] Lakshtanov | A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy[END_REF], where ω f 1 ,f + 1 = 0. Let M 2 be the simple Moutard transform for equations ( 16), [START_REF] Grinevich | Spectrally meromorphic operators and nonlinear systems[END_REF] with coefficient ũ = M 1 u, given by ( 25)- [START_REF] Taimanov | Blowing up solutions of the modified Novikov-Veselov equation and minimal surfaces[END_REF], where ψ = M 1 ψ, ψ+ = M 1 ψ + , f2 = f , f + 2 = f + , where f and f + are defined in [START_REF] Vekua | Generalized Analytic Functions[END_REF]. Then: 1. The potentials ω ψ, f + 2 , ω f2 , ψ+ , ω f2 , f + 2 can be chosen as follows:

ω ψ, f + 2 = -i ω ψ,f + 1 ω f 1 ,f + 1 , ω f2 , ψ+ = -i ω f 1 ,ψ + ω f 1 ,f + 1 , ω f2 , f + 2 = 1 ω f 1 ,f + 1 ; (31) 2. Under assumptions (31), the composition M = M 2 •M 1 is the identical transformation.
Thereom 2 is proved in Section 4.

3 Removing the simplest contour pole singularity

Real analytic pole contour

We consider a real analytic curve Γ ⊂ D:

Γ = {z(τ ) : τ ∈]it 1 , it 2 [}, t 1 , t 2 ∈ R, (32) 
where:

• z(τ ) ∈ D for τ ∈]it 1 , it 2 [, • z is (complex-valued) real-analytic on ]it 1 , it 2 [, • z(τ ′ 1 ) = z(τ ′ 2 ) for τ ′ 1 = τ ′ 2 , • dz(it)/dt = 0 for for t ∈]t 1 , t 2 [.
Here D is the domain in (1), [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishimori hierarchies[END_REF].

Let

T = T a,b,ε = {τ ∈ C : a < Im τ < b, |Re τ | < ε}, (33) 
where a, b, ε ∈ R, ε > 0.

As a corollary of our assumptions, z in (32) could be continued to a holomorphic bijection Z:

Z : T a,b,ε → D a,b,ε , τ → z(τ ), (34) Z -1 : D a,b,ε → T a,b,ε , z → τ (z), for some a, b, ε such that t 1 < a < b < t 2 , ε > 0, where D a,b,ε ⊂ D.
Actually, we consider Γ of (32) as a pole contour for equations (1), (2).

Holomorphic change of variables

In the domain D a,b,ε of (34) we rewrite equations ( 1), (2) in variable τ ∈ T a,b,ε . In this connection, following [START_REF] Grinevich | Generalized analytic functions, Moutard-type transforms and holomorphic maps[END_REF] we consider

u * (τ ) = u(z(τ )) ∂z(τ ) ∂τ , (35) 
ψ * (τ ) = ψ(z(τ )) ∂z(τ ) ∂τ , ψ + * (τ ) = ψ + (z(τ )) ∂z(τ ) ∂τ , (36) 
where u(z), ψ(z), ψ + (z) are the same that in equations ( 1), (2), z(τ ) is the same that in (34), τ ∈ T a,b,ε . Then (see [START_REF] Grinevich | Generalized analytic functions, Moutard-type transforms and holomorphic maps[END_REF]):

∂ τ ψ * = u * ψ * in T a,b,ε , (37) 
∂ τ ψ + * = -ū * ψ+ * in T a,b,ε . (38) 
In addition, we have (see [START_REF] Grinevich | Generalized analytic functions, Moutard-type transforms and holomorphic maps[END_REF]):

M u * ,f * ,f + * • Z -1 = Z -1 • M u,f,f + , (39) 
where:

• Z -1 is considered as a map of the conjugate pairs of equations ( 1), ( 2) in D a,b,ε into the conjugate pairs of equations ( 37), (38) in T a,b,ε and is defined according to (35), (36);

• M u,f,f + for (1), ( 2) in D a,b,ε and M u * ,f * ,f + * for (37), (38) in T a,b,ε are defined according to formulas ( 10)- [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF], where u * , f * = {f 1, * , . . . , f N, * }, f + * = {f + 1, * , . . . , f + N, * } are defined according to (35), (36), and

ω ψ * ,ψ + * (τ ) = ω ψ,ψ + (z(τ )), (40) 
for all involved potentials.

In the framework of the Moutard transform approach, using the commutativity relation (39) we reduce local studies of equations ( 1), [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishimori hierarchies[END_REF] with contour pole at Γ in (32) to the case of contour pole at the straight line

Γ * = {τ ∈ T a,b,ε : Re τ = 0}, (41) 
where T a,b,ε is defined as in (33), (34).

Remark 1 We recall that, in view of formulas (35), (36), the generalized analytic functions ψ, ψ + of ( 1), ( 2) can be treated as spinors, i.e. differential forms of type 1 2 , 0 , and u can be treated as differential form of type 1 2 , 1 2 ; see [START_REF] Grinevich | Generalized analytic functions, Moutard-type transforms and holomorphic maps[END_REF]. These forms can be written as:

u = u(z) √ dzdz, ψ = ψ(z) √ dz, ψ + = ψ + (z) √ dz. ( 42 
)

Constraints on the meromorphic class coefficients at singularity

We consider equations (37), (38) in T = T a,b,ε defined by (33) for the case of simplest pole at Γ * defined by (41). We write τ = x + iy, τ = x -iy.

We assume that

u * (τ ) = e 2iφ(y) +∞ j=-n r j (y) x j in T , (43) 
where φ, r j are quite regular functions on the interval ]a, b[≈ Γ * , and φ, r -n are real-valued, n ∈ N. For this case we consider solutions ψ * , ψ + * of (37), (38) near Γ * of the following form:

ψ * = +∞ j=-n ′ α j (y) x j , ψ + * = +∞ j=-n ′′ α + j (y) x j , n ′ , n ′′ ∈ N, (44) 
where α j , α + j are quite regular on ]a, b[ and α -n ′ , α + -n ′′ are not-zero almost everywhere at ]a, b[. Note that in this section we consider u * , ψ * , ψ + * in formulas ( 43), (44) as formal power series in variable x.

Lemma 1 Assume that equation (37) with coefficient u * as in (43) has, at least, one solution ψ * of the form as in (44). Then n = 1 and |r -1 (y)| ≡ n ′ /2 in (43).

Lemma 1 follows from formal substitutions of (43), (44) into (37), (38). In the present article we restrict ourselves to the simplest (but generic) case when n ′ = n ′′ = 1. In this case, without loss of generality, we can assume that r -1 = -1/2, adding π/2 to the phase φ, if necessary.

Then, as a corollary of results of [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF], equation (37) is of meromorphic class, at least formally, if and only if:

Re r 0 (y) ≡ 0, y ∈]a, b[, (45) 
Im r 1 (y) = 1 2

d 2 φ(y) dy 2 , y ∈]a, b[. (46) 
For completeness of exposition, this result is proved in Section 5.

Here, belonging of equation (37) to meromorphic class means that equation (37) has local solutions ψ * near Γ * ⊂ T of the form (44) with n ′ = 1 parametrised by two real-values functions (one complex-valued function) on Γ * , i.e., roughly speaking, equation (37) has as many local solutions ψ * near Γ * as in the regular case.

Actually, equation (37) and formulas (43), (44) for u * , ψ * with n = 1,

n ′ = 1, r -1 = -1/2 imply that Im e -iφ(y) α -1 (y) = 0, y ∈]a, b[. (47) 
In addition, under conditions (45), ( 46), the solutions ψ * of (37), (44) are parametrised by β -1 (y) and Im β 1 (y) on ]a, b[, where α j (y) = e iφ(y) β j (y); see Section 5. Finally, one can see that the meromorphic class conditions (45), (46) for equation (37) imply the related meromorphic class conditions for the conjugate equation (38).

Moutard transform to the regular case

We consider equations (37), (38) for the case when

u * = e 2iφ(y) - 1 2x + r 0 (y) + r 1 (y)x + O x 2 in T ∪ ∂T , (48) 
where

φ is real-valued, φ ∈ C 2 ([a, b]) , u * + e 2iφ(y) 2x ∈ C 1 (T ∪ ∂T ) , (49) 
r 0 , r 1 satisfy (45), (46), T is defined by (33). We assume that equations (37), (38) have some solutions f * , f + * such that

f * = e iφ(y) β -1 (y) x + β 0 (y) + O(x) , β -1 is real-valued, β -1 > 0, β -1 ∈ C 1 ([a, b]) , (50) 
f * - e iφ(y) β -1 (y) x ∈ C 1 (T ∪ ∂T ) , f + * = e -i(φ(y)+π/2) β + -1 (y) x + β + 0 (y) + O(x) , β + -1 is real-valued, β + -1 > 0, β + -1 ∈ C 1 ([a, b]) , (51) 
f + * - e -i(φ(y)+π/2) β + -1 (y) x ∈ C 1 (T ∪ ∂T ) ,
where

∂ x O(x) = O(1), ∂ y O(x) = O(x).
Note that from point of view of formal considerations of Subsection 3.3 such solutions f * , f + * always exist.

Theorem 3 Let u * satisfy (48), (49) and equations ( 37), (38) have some solutions f * , f + * satisfying (50), (51). Let ω f * ,f + * be some potential defined according to [START_REF] Fokas | On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations[END_REF]. Then

ũ * = M u * ,f * ,f + * u * = O(1) in T a,b,δ ∪ ∂T a,b,δ (52) 
for some δ ∈]0, ε[, where M u * ,f * ,f + * is defined according to formulas ( 10)-( 15) for N = 1.

Theorem 3 is proved in Section 6.

The point is that that the results of Theorems 2, 3 and the commutativity formula (39) reduce local studies of equations ( 1), ( 2) near the simplest contour pole singularity to the regular case.

Proofs of Proposition 1 and Thereoms 1-2 4.1 Proof of Proposition 1

Let ω ψ, ψ+ be given by [START_REF] Matveev | Darboux transformations and solitons[END_REF]. Then it is sufficient to show that

∂ z ω ψ, ψ+ = ψ ψ+ , ∂ z ω ψ, ψ+ = -ψ ψ+ . ( 53 
)
Using the definitions of ω ψ,ψ

+ , ω ψ,f + 1 , ω f 1 ,ψ + , ω f 1 ,f + 1
, and ψ, ψ+ we have:

∂ z ω ψ, ψ+ = ∂ z ω ψ,ψ + ω f 1 ,f + 1 -ω ψ,f + 1 ω f 1 ,ψ + ω f 1 ,f + 1 + c ψ, ψ+ = = ∂ z ω ψ,ψ + -∂ z ω ψ,f + 1 ω f 1 ,ψ + ω f 1 ,f + 1 -∂ z ω f 1 ,ψ + ω ψ,f + 1 ω f 1 ,f + 1 + ∂ z ω f 1 ,f + 1 ω f 1 ,ψ + ω f 1 ,f + 1 ω ψ,f + 1 ω f 1 ,f + 1 = = ψψ + -ψf + 1 ω f 1 ,ψ + ω f 1 ,f + 1 -f 1 ψ + ω ψ,f + 1 ω f 1 ,f + 1 + ψψ + ω f 1 ,ψ + ω f 1 ,f + 1 ω ψ,f + 1 ω f 1 ,f + 1 = = ψ -f 1 ω ψ,f + 1 ω f 1 ,f + 1 ψ + -f + 1 ω f 1 ,ψ + ω f 1 ,f + 1 = ψ ψ+ ; ∂ z ω ψ, ψ+ = ∂ z ω ψ,ψ + ω f 1 ,f + 1 -ω ψ,f + 1 ω f 1 ,ψ + ω f 1 ,f + 1 + c ψ, ψ+ = = ∂ z ω ψ,ψ + -∂ z ω ψ,f + 1 ω f 1 ,ψ + ω f 1 ,f + 1 -∂ z ω f 1 ,ψ + ω ψ,f + 1 ω f 1 ,f + 1 + ∂ z ω f 1 ,f + 1 ω f 1 ,ψ + ω f 1 ,f + 1 ω ψ,f + 1 ω f 1 ,f + 1 = = -ψψ + + ψf + 1 ω f 1 ,ψ + ω f 1 ,f + 1 + f 1 ψ + ω ψ,f + 1 ω f 1 ,f + 1 -ψψ + ω f 1 ,ψ + ω f 1 ,f + 1 ω ψ,f + 1 ω f 1 ,f + 1 = = -ψ -f 1 ω ψ,f + 1 ω f 1 ,f + 1 ψ + -f + 1 ω f 1 ,ψ + ω f 1 ,f + 1 = -ψ ψ+ .
Thus, the proof of Proposition 1 is completed.

Proof of Theorem 1

Due to formula [START_REF] Matveev | Darboux transformations and solitons[END_REF] for ω f2 , f + 2 with c f2 , f + 2 = 0 and due to the assumptions that ω f 1 ,f + 1 = 0, ω f2 , f + 2 = 0, we have:

det Ω = ω f 1 ,f + 1 ω f2 , f + 2 = 0, ( 54 
)
where Ω is defined according to [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF] for N = 2. Due to the definition of M according to ( 22)-(24), using [START_REF] Matveev | Darboux transformations and solitons[END_REF] for ω ψ, ψ+ = ω f2 , f + 2 , ω ψ, f + 2 with c ψ, ψ+ = 0 and using (54), we obtain:

ψ = ψ -f2 ω ψ, f + 2 ω f2 , f + 2 = ψ -f 1 ω ψ,f + 1 ω f 1 ,f + 1 - -f 2 -f 1 ω f 2 ,f + 1 ω f 1 ,f + 1 ω ψ,f + 2 ω f 1 ,f + 1 -ω ψ,f + 1 ω f 1 ,f + 2 ω f 1 ,f + 1 ω f 2 ,f + 2 ω f 1 ,f + 1 -ω f 2 ,f + 1 ω f 1 ,f + 2 ω f 1 ,f + 1 -1 = = ψ -f 1 1 ω f 1 ,f + 1 ω f 2 ,f + 2 -ω f 2 ,f + 1 ω f 1 ,f + 2 × × ω ψ,f + 1 ω f 2 ,f + 2 - ω ψ,f + 1 ω f 2 ,f + 1 ω f 1 ,f + 2 ω f 1 ,f + 1 -ω ψ,f + 2 ω f 2 ,f + 1 + ω f 2 ,f + 1 ω ψ,f + 1 ω f 1 ,f + 2 ω f 1 ,f + 1 - -f 2 1 ω f 1 ,f + 1 ω f 2 ,f + 2 -ω f 2 ,f + 1 ω f 1 ,f + 2 ω ψ,f + 2 ω f 1 ,f + 1 -ω ψ,f + 1 ω f 1 ,f + 2 = = ψ -f 1 f 2 1 ω f 1 ,f + 1 ω f 2 ,f + 2 -ω f 2 ,f + 1 ω f 1 ,f + 2 ω ψ,f + 1 ω f 2 ,f + 2 -ω ψ,f + 2 ω f 2 ,f + 1 ω ψ,f + 2 ω f 1 ,f + 1 -ω ψ,f + 1 ω f 1 ,f + 2 .
(55) Taking into account that

Ω = ω f 1 ,f + 1 ω f 2 ,f + 1 ω f 1 ,f + 2 ω f 2 ,f + 2 , Ω -1 = 1 ω f 1 ,f + 1 ω f 2 ,f + 2 -ω f 2 ,f + 1 ω f 1 ,f + 2 ω f 2 ,f + 2 -ω f 2 ,f + 1 -ω f 1 ,f + 2 ω f 1 ,f + 1 , Ω -1 ω ψ,f + 1 ω ψ,f + 2 = 1 ω f 1 ,f + 1 ω f 2 ,f + 2 -ω f 2 ,f + 1 ω f 1 ,f + 2 ω ψ,f + 1 ω f 2 ,f + 2 -ω ψ,f + 2 ω f 2 ,f + 1 ω ψ,f + 2 ω f 1 ,f + 1 -ω ψ,f + 1 ω f 1 ,f + 2 , formula (55) 
can be rewritten as:

ψ = ψ -f 1 f 2 Ω -1 ω ψ,f + 1 ω ψ,f + 2 . (56) 
One can see that (56) coincides with formula [START_REF] Grinevich | Generalized analytic functions, Moutard-type transforms and holomorphic maps[END_REF] for N = 2. The computations for ψ+ are similar.

In additions, due to the definition of M according to ( 22)-(24), using (21) for ω f2 , f + 2 with c f2 , f + 2 = 0 and using (54), we obtain:

ũ = ũ + f2 f + 2 ω f2 , f + 2 = u + f 1 f + 1 ω f 1 ,f + 1 + f2 f + 2 ω f2 , f + 2 = = u+ f 1 f + 1 ω f 1 ,f + 1 + f 2 -f 1 ω f 2 ,f + 1 ω f 1 ,f + 1 f + 2 -f + 1 ω f 1 ,f + 2 ω f 1 ,f + 1 ω f 1 ,f + 1 ω f 1 ,f + 1 ω f 2 ,f + 2 -ω f 2 ,f + 1 ω f 1 ,f + 2 = = u + f 1 f + 1 ω f 2 ,f + 2 -f 2 f + 1 ω f 1 ,f + 2 -f 1 f + 2 ω f 2 ,f + 1 + f 2 f + 2 ω f 1 ,f + 1 ω f 1 ,f + 1 ω f 2 ,f + 2 -ω f 2 ,f + 1 ω f 1 ,f + 2 = = u + 1 ω f 1 ,f + 1 ω f 2 ,f + 2 -ω f 2 ,f + 1 ω f 1 ,f + 2 f 1 f 2 ω f 2 ,f + 2 -ω f 2 ,f + 1 -ω f 1 ,f + 2 ω f 1 ,f + 1 f + 1 f + 2 . ( 57 
)
One can see that (57) coincides with formula (13) for N = 2. This completes the proof of Theorem 1.

Proof of Thereom 2

First, we check that ω f2 , ψ+ , ω ψ, f + 2 , ω f2 , f + 2 defined in (31) are the potentials for the pairs { f , ψ+ }, { ψ, f + }, { f , f + }:

∂ z ω ψ, f + 2 = -i∂ z ω ψ,f + 1 ω f 1 ,f + 1 = -i ψf + 1 ω f 1 ,f + 1 + i ω ψ,f + 1 ω 2 f 1 ,f + 1 f 1 f + 1 = = ψ -f 1 ω ψ,f + 1 ω f 1 ,f + 1 -if + 1 ω f 1 ,f + 1 = ψ f + , ∂ z ω ψ, f + 2 = -i∂ z ω ψ,f + 1 ω f 1 ,f + 1 = i ψf + 1 ω f 1 ,f + 1 -i ω ψ,f + 1 ω 2 f 1 ,f + 1 f 1 f + 1 = = -ψ -f 1 ω ψ,f + 1 ω f 1 ,f + 1 -if + 1 ω f 1 ,f + 1 = -ψ f + ; (58) 
the calcualtions for ω f2 , ψ+ are analogous to the calculations for ω ψ, f + 2 ;

∂ z ω f2 , f + 2 = ∂ z 1 ω f 1 ,f + 1 = - ∂ z ω f 1 ,f + 1 ω 2 f 1 ,f + 1 = - f 1 f + 1 ω 2 f 1 ,f + 1 = f f + , ∂ z ω f2 , f + 2 = ∂ z 1 ω f 1 ,f + 1 = - ∂ z ω f 1 ,f + 1 ω 2 f 1 ,f + 1 = f 1 f + 1 ω 2 f 1 + 1 = -f β+ . (59) 
Here, we used also that all potentials ω ψ,ψ + are pure imaginary. Second, we calculate the transform M 2 • M 1 :

ψ = ψ - f ω ψ, f + 2 ω f2 , f + 2 = ψ -f 1 ω ψ,f + 1 ω f 1 ,f + 1 --i f 1 ω f 1 ,f + 1 -i ω ψ,f + 1 ω f 1 ,f + 1 1 ω f 1 ,f + 1 = = ψ -f 1 ω ψ,f + 1 ω f 1 ,f + 1 + f 1 ω ψ,f + 1 ω f 1 ,f + 1 = ψ;
the calcualtions for ψ+ are analogous to the calcualations for ψ;

ũ = ũ + f f + ω f2 , f + 2 = u + f 1 f + 1 ω f 1 ,f + 1 + f f + ω f2 , f + 2 = u + f 1 f + 1 ω f 1 ,f + 1 + -i f 1 ω f 1 ,f + 1 -i f + 1 ω f 1 ,f + 1 1 ω f 1 ,f + 1 = = u + f 1 f + 1 ω f 1 ,f + 1 - f 1 f + 1 ω f 1 ,f + 1 = u. (60) 
This completes the proof of Thereom 2.

Proof of meromorphic class conditions

We consider equation (37) and formulas (43), (44) for u * , ψ * , where n = 1, r -1 = -1/2, n ′ = 1. In this case formulas (43), (44) can be written as:

u * = e 2iφ(y) - 1 2x + r o (y) + r 1 (y)x + r 2 (y)x 2 + . . . , (61) 
ψ * = e iφ(y) β -1 (y) x + β 0 (y) + β 1 (y)x + β 2 (y)x 2 + . . . . (62) 
We substitute (61), ( 62) into (37), and we use that

2∂ τ ψ * = e iφ(y) - β -1 (y) x 2 + iβ -1 (y) -φ ′ (y)β -1 (y) x + (63) 
+ +∞ k=0 [iβ ′ k (y) -φ ′ (y)β k (y) + (k + 1)β k+1 (y)] x k , 2u * ψ * = e iφ(y) - β -1 (y) x 2 + -β 0 (y) + 2r 0 (y)β -1 (y) x + (64) + +∞ k=0 -β k+1 (y) + 2r k+1 (y)β -1 (y) + 2 k l=0 r l (y)β k-l (y) x k .
¿From this point and till the end of the proof ′ denotes ∂ y .

Collecting the terms at x k , k = -2, -1, 0, 1, 2, . . ., we obtain:

β -1 (y) =β -1 (y) for k = -2, ( 65 
)
β 0 (y) = -iβ ′ -1 (y) + φ ′ (y)β -1 (y) + 2r 0 (y)β -1 (y) for k = -1, (66) β 1 (y) + β 1 (y) = -iβ ′ 0 (y) + φ ′ (y)β 0 (y) + 2r 1 (y)β -1 (y)+ (67) 
+ 2r 0 (y)β 0 (y) for k = 0,

β k+1 (y) + (k + 1)β k+1 (y) = -iβ ′ k (y) + φ ′ (y)β k (y)+ (68) +2r k+1 (y)β -1 (y) + 2 k l=0 r l (y)β k-l (y) for k ≥ 1.
One can see that: relation (65) coincides with (47); relation (66) can be considered as a formula for finding β 0 ; relations (68) can be considered as recursion relations for finding β j , j ≥ 2. In addition, the real part of (67) can be considered as a formula for finding Re β 1 , whereas the imaginary part of (67) can be rewritten as

Im -iβ ′ 0 (y) + φ ′ (y)β 0 (y) + 2r 1 (y)β -1 (y) + 2r 0 (y)β 0 (y) = 0. (69) 
Actually, relations (65), (66), (69) yield the solvability constraints on φ, r 0 , r 1 . Substituting (65), (66) into (69) we obtain:

Im iφ ′ (y)β ′ -1 (y) + ((φ ′ (y)) 2 + 2φ ′ (y)r 0 (y))β -1 (y) + 2r 1 (y)β -1 (y)--2ir 0 (y)β ′ -1 (y) + (2r 0 (y)φ ′ (y) + 4(r 0 (y)) 2 )β -1 (y) + β ′′ -1 (y)-

-i(φ ′ (y) + 2r 0 (y))β ′ -1 (y) -i(φ ′′ (y) + 2r ′ 0 (y))β -1 (y) = 0.

In turn, (70) can be rewritten as:

Im β ′′ -1 (y) -2i[r 0 (y) + r 0 (y)]β ′ -1 (y) + [(φ ′ (y)) 2 + (71) + 2φ ′ (y)(r 0 (y) + r 0 (y)) + 4(r 0 (y)) 2 + 2r 1 (y) -iφ ′′ (y) -2ir ′ 0 (y)]β -1 (y) = 0.

In addition, taking into account that φ, β -1 are real-valued, we simplify (71) as follows:

Im -2i[r 0 (y)+r 0 (y)]β ′ -1 (y)+[4(r 0 (y)) 2 +2r 1 (y)-iφ ′′ (y)-2ir ′ 0 (y)]β -1 (y) = 0. (72)

One can see that (72) is fulfilled for all sufficiently regular real-valued β -1 if and only if (45), (46) are fulfilled. Finally, using (65)-(68) under conditions (45), (46), one can see that all ψ * of (62) satisfying (37) with u * of 61) are parametrised by β -1 and Im β 1 .

This completes the proof.

6 Proof of Thereom 3

Substituting (48), ( 50), ( 51) into (37), (38) we obtain: 

β
As in Section 5 we assume that ′ denotes ∂ y . Using (50), ( 51) and ( 73), (74) we obtain: 

f * f + * =e -iπ/
for some δ ∈]0, ε[. Note also that f * f + * = ie 2iφ(y) β -1 (y)β + -1 (y)

x 2 + O 1 x in T ∪ ∂T . (80) 
Finally, due to ( 20), ( 48), ( 79 

Theorem 3 is proved.

  0 (y) = i(β -1 (y)) ′ + (φ ′ (y) -2r 0 (y))β -1 (y), y ∈ [a, b],(73)β + 0 (y) = i(β + -1 (y)) ′ + (-φ ′ (y) + 2r 0 (y))β + -1 (y), y ∈ [a, b].

2 β - 1 ( 1 )- 1 Remark 2

 1112 in T ∪ ∂T . (75) Next, equation[START_REF] Fokas | On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations[END_REF] can be rewritten as:∂ x ω ψ,ψ + = 2i Im ψψ + , ∂ y ω ψ,ψ + = 2i Re ψψ + . (76)As a corollary of (75), (76) and the property that β 1 , β + 1 are real-valued, we have:∂ x ω f * ,f + * = -2iβ -1 (y)β + -1 (y) x 2 + O(1), ∂ y ω f * ,f + * = 2i β -1 (y)β + -1 (y) (y)β + -1 (y) + O(1) in T ∪ ∂T . (78) Note that res x=0 ∂ x (ω f * ,f + * ) = 0. for any fixed y = y 0 .Using also the strict positivity of β -1 β + -1 we obtain:1 ω f * ,f + * = -ix 2β -1 (y)β + -1 (y) + O x 2 in T a,b,δ ∪ ∂T a,b,δ ,

  ), (80):ũ * = u * + f * f + * ω f * ,f + * = e 2iφ(y) -1 2x + r 0 (y) + O(x) + e 2iφ(y) 1 2x + O(1) = = O(1) in T a,b,δ ∪ ∂T a,b,δ .
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