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Physiological models have been proposed to describe the processes that underlie the link between neural and hemodynamic activity in the brain. Among these, the Balloon model describes the changes in blood flow, blood volume and oxygen concentration when an hemodynamic response is ensuing neural activation. Next, an hemodynamic model links these variables to the blood-oxygen-leveldependent (BOLD) effect. Taken together, these equations allow the precise modeling of the coupling between the cerebral blood flow and hemodynamic response. However, several competing versions of the hemodynamic model and different physiological parameters values have been described in the literature. In this work, we analyse Arterial Spin Labelling (ASL) functional Magnetic Resonance Imaging (fMRI) data, which contains both perfusion and hemodynamic effects, to compare the impact of different settings in the coupling between blood flow and hemodynamic response.

INTRODUCTION

In the past decade, physiological models have been described to explain the physiological changes caused by neural activity. In [START_REF] Buxton | Dynamics of blood flow and oxygenation changes during brain activation: the balloon model[END_REF][START_REF] Friston | Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics[END_REF][START_REF] Buxton | Modeling the hemodynamic response to brain activation[END_REF] different models have been introduced: neural coupling, which maps neural activity to ensuing cerebral blood flow (CBF); the Balloon model, which relates CBF to volume and deoxyhemoglobin changes, and hemodynamic model, also referred to as BM in [START_REF] Stephan | Comparing hemodynamic models with DCM[END_REF], that relates these parameters to the blood-oxygen-level-dependent (BOLD) effect. These models thus provide a complete description of the physiological process underlying hemodynamic activity, from neural activation to the hemodynamics or BOLD effect measurement. However, different parameter settings have been proposed in the Balloon model formulation and several BM have been presented in [START_REF] Stephan | Comparing hemodynamic models with DCM[END_REF]. Such variability provides flexibility to model physiological responses but also introduces more complexity.

The Arterial Spin Labelling (ASL) signal embodies two components: an hemodynamic or BOLD component and a perfusion one. The ASL signal comes from a T2* image acquisition with successive alternate control/tag settings, with inversed magnetization in the tag image. An hemodynamic or BOLD effect can be found in both control/tag images, while a perfusion effect can be captured from the control-tag difference. Their typical shapes are respectively described by the hemodynamic response function, here referred as BRF for BOLD response function, and the perfusion response function (PRF). These two response functions can be estimated using the probabilistic joint detection-estimation (JDE) formalism [START_REF] Vincent | Bayesian BOLD and perfusion source separation and deconvolution from functional ASL imaging[END_REF][START_REF] Vincent | Bayesian joint detection-estimation of cerebral vasoreactivity from ASL fMRI data[END_REF], although the PRF estimation remains difficult because of the noisier nature of the perfusion component within the ASL signal. For this reason, in [START_REF] Frau-Pascual | Physiologically informed Bayesian analysis of ASL fMRI data[END_REF] we used a physiological link between PRF and BRF shapes as a prior knowledge in the JDE framework [START_REF] Vincent | Bayesian BOLD and perfusion source separation and deconvolution from functional ASL imaging[END_REF][START_REF] Vincent | Bayesian joint detection-estimation of cerebral vasoreactivity from ASL fMRI data[END_REF]. However, the physiological parameters we chose and the BM model we used in [START_REF] Frau-Pascual | Physiologically informed Bayesian analysis of ASL fMRI data[END_REF] were not completely in accordance with the analysis performed in [START_REF] Stephan | Comparing hemodynamic models with DCM[END_REF], where the performance of the different models was compared. Hence, in this paper we want to replicate the analysis of [START_REF] Stephan | Comparing hemodynamic models with DCM[END_REF] but for ASL data and to identify which model outperforms the other for informing the link between perfusion and hemodynamics (PRF/BRF link) in the JDE analysis of ASL data. Results on real data could give us a hint on the best set of parameters to use in the Balloon and hemodynamic (BM) models.

The rest of the paper is organized as follows: the models considered in the computation of the perfusion/hemodynamics link are presented and analysed in Section 2; the physiologically informed ASL JDE model is introduced in Section 3; and some results are presented and discussed in Sections 4-5.

A PHYSIOLOGICAL LINK BETWEEN PERFUSION AND HEMODYNAMICS

An approximate relationship between the perfusion and hemodynamic response functions can be derived from physiological models. In this section, we recall the work presented in [START_REF] Frau-Pascual | Physiologically informed Bayesian analysis of ASL fMRI data[END_REF], in which the extended Balloon model and the BM model were used to describe a link between perfusion and hemodynamic response functions. Following the same reasoning as in [START_REF] Stephan | Comparing hemodynamic models with DCM[END_REF], we further analyse the different models to recover a more accurate perfusion/hemodynamics link, with the correct set of parameters.

The extended Balloon model

The Balloon model was first proposed in [START_REF] Buxton | Dynamics of blood flow and oxygenation changes during brain activation: the balloon model[END_REF] to link neuronal and vascular processes by considering the capillary as a balloon that inflates under the effect of blood flow variations. More specifically, the model describes how, after some stimulation, the local blood flow finptq increases and leads to the subsequent augmentation of the local capillary volume νptq. This incoming blood is strongly oxygenated but only part of the oxygen is consumed. It follows a local decrease of the deoxyhemoglobin concentration ξptq and therefore a BOLD effect variation. The Balloon model was then extended in [START_REF] Friston | Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics[END_REF] to include the effect of the neuronal activity uptq on the variation of some auto-regulated flow inducing signal ψptq so as to eventually link neuronal to hemodynamic activity. with initial conditions ψp0q " 0, finp0q " νp0q " ξp0q " 1. Lower case notation is used for normalized functions by convention. The system depends on 5 hemodynamic parameters: τ ψ , τ f and τm are time constants respectively for signal decay/elimination, auto-regulatory feedback from blood flow and mean transit time, w reflects the ability of the vein to eject blood, and E0 is the oxygen extraction fraction. Another parameter η is the neuronal efficacy weighting term that models neuronal efficacy variability.

The hemodynamic model

Buxton et al [START_REF] Buxton | Modeling the hemodynamic response to brain activation[END_REF] proposed the following expression to link the hemodynamic response (BRF) 1 hptq to physiological quantities considering the intra-vascular and extra-vascular components:

hptq " V0rk1p1 ´ξptqq `k2 ˆ1 ´ξptq νptq ˙`k3p1 ´νptqqs (1)
where k1, k2 and k3 are scanner-dependent constants and V0 is the resting blood volume fraction. This equation can be linearized into:

hptq " V0rpk1 `k2qp1 ´ξptqq `pk3 ´k2qp1 ´νptqqs . (2) 
As synthesized in [START_REF] Stephan | Comparing hemodynamic models with DCM[END_REF], where the hemodynamic model is referred to as BM, different expressions were proposed for k1, k2 and k3: the classical ones (classical BM) in [START_REF] Buxton | Modeling the hemodynamic response to brain activation[END_REF], and their revised (revised BM) version in [START_REF] Obata | Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients[END_REF]. Hereafter, we will use the same notation as Stephan et al [START_REF] Stephan | Comparing hemodynamic models with DCM[END_REF]: CBM and RBM stand for models using the classical and revised expressions, respectively, and subscripts "L" and "N" for the nonlinear (Eq. ( 1)) and linear (Eq. ( 2)) expressions:

CBM RBM k1 " p1 ´V0q4.3ϑ0E0T E k1 " 4.3ϑ0E0T E (3) k2 " 2E0 k2 " r0E0T E (4) k3 " 1 ´ k3 " 1 ´ ( 5 
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where ϑ0 is the frequency offset at the outer surface of the magnetized vessel for fully deoxygenated blood, r0 the slope of the relation between intra-vascular relaxation rate and oxygen saturation, and the ratio of intra-and extravascular signal.

In the end, we have different combinations: classical linear BM (CBML), revised linear BM (RBML), classical nonlinear BM (CBMN ) and revised nonlinear BM (RBMN ). Different values have been proposed in [START_REF] Friston | Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics[END_REF][START_REF] Khalidov | Activelets: Wavelets for sparse representation of hemodynamic responses[END_REF] (see Tab. 1) for the physiological and BM parameters, and we consider some of them in this paper. According to [START_REF] Behzadi | An arteriolar compliance model of the cerebral blood flow response to neural stimulus[END_REF], we also considered at 3T: r0 " 100s ´1 and ϑ0 " 80.6s ´1. For parameter, the values given by [START_REF] Stephan | Comparing hemodynamic models with DCM[END_REF] have been used: 0.4, 1 and 1.43.

Physiological linear relationship between response functions

Akin to [START_REF] Frau-Pascual | Physiologically informed Bayesian analysis of ASL fMRI data[END_REF], starting from the system of differential equations, we derive an approximate relationship between the PRF, namely gptq and the BRF, namely hptq. Both PRF and BRF are percent signal In what follows, we will drop the time index t and consider functions h, ψ, etc. in their discretized vector form. By linearizing the system of differential equations around the resting point tψ, g, 1 ´ν, 1 ´ξu " t0, 0, 0, 0u as in [START_REF] Khalidov | Activelets: Wavelets for sparse representation of hemodynamic responses[END_REF], we get:
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where D and I are the first order differential operator and the identity matrix respectively, and γ " 1 τm ´1 `p1´E 0 q lnp1´E 0 q
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By considering this system of equations and the BM equations (linear (2)/nonlinear (1) forms), we can derive a linear relationship between h and g that reads g " Ωh where:

Ω " V ´1 0 ppk1 `k2qB `pk3 ´k2qAq ´1 (6) 
when Eq. ( 2) holds and when Eq. (1) holds instead. Hence, we have different Ω matrices depending on the Balloon model parameters (see Tab. 1), the classical or revised expression for k1, k2 and k3 (see Eqs. ( 3)-( 5)), directly impacted by parameter, and the model (Eqs. ( 6)-( 7)). Changing Ω might therefore affect the PRF and BRF estimation results from ASL data and identifying the best combination of these ingredients is the issue we want to address in the present paper.

Ω " V ´1 0 `k1B `k2pB ´AqpI ´Aq ´1 `k3A ˘´1 (7) 

Perfusion/hemodynamics link analysis on simulated data

As we have seen, matrix Ω will vary depending on which model we consider: CBML, RBML, CBMN and RBMN with different possible values for , and on which set of parameters we use: [START_REF] Friston | Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics[END_REF] or [START_REF] Khalidov | Activelets: Wavelets for sparse representation of hemodynamic responses[END_REF].

Here, we simulate a PRF by applying gm " Ωmhcan to the canonical BRF shape (hcan) using different Ωm (m coding the model that we use) to find out which factors have a stronger impact on Ω. As there is no canonical PRF, we use the canonical BRF as a reference. Fig. 1(a) illustrates the cases for which we observed the strongest variability in the simulated PRF shape when applying gm " Ωmh when Ωm is defined either by ( 6) or (7) using the parameters proposed in [START_REF] Khalidov | Activelets: Wavelets for sparse representation of hemodynamic responses[END_REF]. Besides, we also found variability between the generated PRFs associated with different values. Fig. 1(b) shows this fact for the CBML model.

To draw significant conclusions about the statistical significance of the measured differences between PRF and canonical BRF, for each value we performed a 2 way-ANOVA including the model type (CBML, RBML, CBMN and RBMN ) and the setting of parameters (see Tab. 1) as the two factors of interest. We entered the squared differences between the canonical BRF and the different PRFs as observations in our analysis. For " 0.4 only, we identified a very significant difference between the sets of parameters, but none between classical and revised or linear and nonlinear BM models at a 0.01 level of significance (F-test: F " 38.98, p-val ă 10 ´4). This result is also confirmed by the discrepancy depicted in Fig. 1(b) between the blue curve and the other traces. To sum up, the setting of physiological parameters and can impact the quality of the link between perfusion and hemodynamic response functions, whereas choosing a particular BM model has a limited influence. In what follows, we address the same concern on real ASL data acquired along an fMRI experiment.

BAYESIAN HIERARCHICAL MODEL FOR ASL DATA ANALYSIS

ASL signal modeling

The ASL JDE model described in [START_REF] Vincent | Bayesian BOLD and perfusion source separation and deconvolution from functional ASL imaging[END_REF][START_REF] Vincent | Bayesian joint detection-estimation of cerebral vasoreactivity from ASL fMRI data[END_REF] considers functional homogeneous parcels with constant response shapes. In a given parcel P, the generative model for ASL time series, with M experimental conditions, reads @ j P P, |P| " J: 

yj " M ÿ m"1 a m j X m h looomooon paq `cm j W X
The measured signal yj is decomposed into the components: (a) Task-related hemodynamic component, where h is the unknown BRF shape and ta m j , j P P, m " 1 : M u are the magnitude of activation or hemodynamic response levels (BRLs). (b) Task-related perfusion component, that represents the variation of the perfusion around baseline when there is task-related activity. g is the PRF shape and tc m j , j P P, m " 1 : M u are the magnitude of activation or perfusion response levels (PRLs). (a-b) Task-related components. X encodes the lagged onset stimuli. The BRLs and PRLs (resp., a m j and c m j ) are assumed to follow 2M different spatial Gaussian mixture models but these Gaussian variables are governed by M common binary hidden Markov random fields tq m j , j P P, m " 1 : M u encoding voxels' activation states for each experimental condition m and promoting spatial correlation as in [START_REF] Vincent | Bayesian BOLD and perfusion source separation and deconvolution from functional ASL imaging[END_REF][START_REF] Vincent | Bayesian joint detection-estimation of cerebral vasoreactivity from ASL fMRI data[END_REF]. (c) Perfusion baseline completes the modelling of the perfusion component and it is encoded by the scalar αj. (b-c) The control/tag vector w " r1{2, ´1{2, 1{2, ...s and matrix W " diagpwq encode the difference in magnetization signs between the consecutive and alternated control (positive magnetization) and tagged (negative magnetization) ASL volumes. (d-e) Drift and noise terms allow to account for a potential drift and any other nuisance effect. Noise is assumed to be white Gaussian, which is a tenable assumption in ASL compared to BOLD fMRI.

A physiologically informed inference procedure

In Eq. ( 8), the hemodynamic component can be estimated from the ASL data with an increased confidence compared to the perfusion component, as it is known to have a higher contrast-to-noise ratio (CNR). The relationship g " Ωh, which was already derived between both components in [START_REF] Frau-Pascual | Physiologically informed Bayesian analysis of ASL fMRI data[END_REF], was then used to a priori constrain the PRF from the BRF in a stochastic manner. Since the hemodynamic component is associated with a better CNR, it makes more sense to recover first the BRF h and to improve estimation of the PRF g through the following conditional distribution in the JDE formulation: ppg|hq " N pΩh, vgΣgq, where Σg " p∆tq 4 pD t 2 D2q

´1 and D2 is the truncated second-order finite difference matrix that enforces temporal smoothness as a function of the prior variance vg: see [START_REF] Vincent | Bayesian BOLD and perfusion source separation and deconvolution from functional ASL imaging[END_REF][START_REF] Vincent | Bayesian joint detection-estimation of cerebral vasoreactivity from ASL fMRI data[END_REF] for details. As regards the BRF h, as in previous works [START_REF] Ciuciu | Unsupervised robust non-parametric estimation of the hemodynamic response function for any fMRI experiment[END_REF][START_REF] Vincent | Spatially adaptive mixture modeling for analysis of within-subject fMRI time series[END_REF], its prior distribution follows a centered multivariate Gaussian distribution: N p0, v h Σ h q where Σ h " Σg and v h is a free variance parameter. By using this physiological prior, we are enforcing the relationship between the two response functions, and this allows a better perfusion component estimation. Next, as in [START_REF] Frau-Pascual | Physiologically informed Bayesian analysis of ASL fMRI data[END_REF], this relationship is used in a fully Bayesian JDE approach for ASL data where each fully conditional posterior distribution is sampled at a time in order to compute minimum mean square error (or posterior mean) estimators as regards the PRF and BRF shapes as well as the PRLs and BRLs and maximum a posteriori (MAP) estimators for detecting which voxels elicit evoked activity. The interested reader is invited to refer to [START_REF] Frau-Pascual | Physiologically informed Bayesian analysis of ASL fMRI data[END_REF] for details on the hybrid Gibbs-Metropolis algorithm.

REAL DATA RESULTS

Here, we performed ASL JDE analysis on ASL fMRI data, considering the different models and parameter settings for Ω explored in Section 2. The analysis was performed on 8 individuals, although the results are shown for 1 subject only. The same conclusions hold for the other subjects. The ASL data were recorded during an experiment specifically designed to map auditory and visual primary cortices, with 291 scans, repetition time T R " 3 s, echo time T E " 18 ms, FoV 192 mm, dimensions 64 ˆ64 ˆ22 voxels (resolution of 3 ˆ3 ˆ3.5 mm 3 ). The tagging scheme used was PICORE Q2T, with T I1 " 700 ms, T I2 " 1700 ms. A fast event-related paradigm (mean ISI " 5.1s) was used, comprising sixty auditory and visual stimuli. Two regions of interest in the right temporal and left occipital lobes were defined manually as parcels of interest for looking at the evoked response in the the auditory and visual cortices, respectively. Fig. 2 shows the perfusion and hemodynamic response functions estimated using different Ω matrices for ppg | hq in the ASL JDE inference, considering 3000 MCMC iterations. Here, the two parameter sets [START_REF] Friston | Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics[END_REF][START_REF] Khalidov | Activelets: Wavelets for sparse representation of hemodynamic responses[END_REF] were tested and Ω was computed using the above mentioned models and values. Fig. 2 also depicts the canonical BRF (dashed line), which is in accordance with the BRF estimates for both methods. We observed very similar shapes, as well as similar perfusion response levels in Fig. 3 for the auditory cortex using RBMN . A variability in PRF could impact the PRLs retrieved. Fig. 4 shows the convergence of the relative reconstruction error (the lower the better) over MCMC iterations for the different parameter settings. BM models are not all shown as they have similar convergence speed. Interestingly, we observed a stronger variability between the two parameter sets as compared to changing the value. Important results are the lower relative reconstruction error of the parameters proposed in [START_REF] Khalidov | Activelets: Wavelets for sparse representation of hemodynamic responses[END_REF] from the first iteration, and the better performance in both sets of parameters ( [9] and [START_REF] Friston | Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics[END_REF]) for " 1.43. For this reason, we can consider the combination [ " 1.43 and parameters as in [START_REF] Khalidov | Activelets: Wavelets for sparse representation of hemodynamic responses[END_REF]] as the one performing the best and offering promising perspectives. However, after 3000 iterations, the algorithm converges to good parameter estimates in all cases.

DISCUSSION AND CONCLUSION

A physiological link has been described, combining the Balloon and BM models, to achieve a better estimation of parameters in an ASL JDE framework. Different versions of the BM model have been described in the literature, and different parameter settings for the Balloon model have also been proposed. In this paper, we considered them altogether to assess their impact in the context of ASL data analysis. On simulated data, the selection of physiological parameters used in the Balloon model as well as the setting of , were more critical than that of the BM model itself. On real ASL data, we confirmed this finding with a faster convergence in the joint estimation of perfusion and hemodynamic components of the signal, at least in the auditory and visual regions. Future work will be dedicated to confirm or infirm these results on other brain regions (eg, motor) and other data sets.

Fig. 1 .

 1 Fig. 1. PRFs resulting from Ωmhcan when using model m, for parameters in [9] (a), and for the CBML model (b).

Fig. 2 .

 2 Fig. 2. PRF (left) and BRF (right) estimates for model RBMN with parameters in [2] and [9], considering different values, estimated in auditory (a) and visual (b) cortices.

Fig. 3 .

 3 Fig. 3. Auditory cortex PRLs for model RBMN with parameters: [2] (top), [9] (bottom), considering (left to right) 0.4, 1 and 1.43.

Fig. 4 .

 4 Fig. 4. Convergence of the averaged relative reconstruction error over 10 runs for the auditory cortex and model RBMN . Standard deviations are shown with shaded colors.

Table 1 .

 1 Physiological and BM parameters used in[START_REF] Friston | Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics[END_REF][START_REF] Khalidov | Activelets: Wavelets for sparse representation of hemodynamic responses[END_REF]. We consider gptq " finptq´1, as finptq is the normalized perfusion, with initial value 1. Therefore the state variables become tψ, g, 1 ´ν, 1 ´ξu.

		η	τ ψ	τ f	τm	w	E0	V0
	[2]	0.5	1.25	2.5	1	0.2	0.8	0.02
	[9] 0.54 1.54 2.46 0.98 0.33 0.34	1
	changes.						

To clarify, the hemodynamic response corresponds to the impulse response, namely the BRF, only when a single stimulus or neural event is considered as input.
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