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Abstract: New Markov chain Monte Carlo (MCMC) methods have been proposed to tackle
inference with tall datasets, i.e., when the number n of data items is intractably large. A
large class of these new MCMC methods is based on randomly subsampling the dataset at
each MCMC iteration. We investigate whether random projections can replace this random
subsampling for linear regression of big streaming data. In the latter setting, random pro-
jections have indeed become standard for non-Bayesian treatments. We isolate two issues for
MCMC to apply to streaming regression: 1) a resampling issue; MCMC should access the
same random projections across iterations to avoid keeping the whole dataset in memory and
2) a budget issue; making individual MCMC acceptance decisions should require o(n) ran-
dom projections. While the resampling issue can be satisfyingly tackled, current techniques
in random projections and MCMC for tall data do not solve the budget issue, and may well
end up showing it is not possible.

1. Introduction

Markov chain Monte Carlo algorithms (MCMC; Robert & Casella, 2004) are loops that sweep over
the whole dataset at each iteration, thus making the application of such methods to large datasets
delicate. The flagship of MCMC is the Metropolis-Hastings algorithm (MH), which is very popular
for Bayesian inference in complex models (Brooks et al. , 2011, Part II). With the recent big data
and fast data revolutions, a lot of effort has been recently spent on proposing variants of MH that
scale to tall datasets, when the bottleneck is the number n of individual items while the dimension
of the data remains tractable for MCMC, see (Bardenet et al. , 2015) for a review.

On the other hand, random matrix theory has generated a paradigm shift in the machine learning
community over the last decade, providing well-grounded dimension reduction tools at a cheap com-
putational price. Random projection techniques have been successfully applied to large dimension
problems in compressed sensing (Donoho, 2006; Candes & Tao, 2006; Baraniuk, 2007), regression
(Maillard & Munos, 2012; Zhang et al. , 2013), clustering (Sakai & Imiya, 2009), classification
(Duarte et al. , 2007) or sparse representations (Hamilton et al. , 2013) to name a few. This success
is based on concentration inequalities (Dasgupta & Gupta, 2003), together with low numerical cost
implementations (Achlioptas, 2003). Importantly, algorithms that rely on four-wise independent
Johnson-Lindenstrauss matrices (Alon et al. , 1996, 1992, 2007; Wang et al. , 2007) achieve high
numerical performance for streaming data, even under constraints such as turnstile updates, when
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data arrives in the form of statements like “add quantity ¢ to the (i,j)th element of the data
matrix”.

Streaming MCMC would be MCMC-like algorithms that require only one pass over the data,
o(n) storage, and still perform sampling correctly with large probability. To achieve this, we ask to
which extent random projection techniques can be combined with MH.

Previous work. Variants of MH for tall datasets can be classified in two groups. Divide-and-
conquer approaches partition the dataset into manageable parts, run MCMC on each part, and
combine the results of these multiple runs (Huang & Gelman, 2005; Scott et al. , 2013; Neiswanger
et al. , 2014; Minsker et al. , 2014; Srivastava et al. , 2014). Subsampling approaches rely on ran-
domly subsampling the dataset at each MCMC iteration (Welling & Teh, 2011; Bardenet et al.
, 2014; Korattikara et al. , 2014; MacLaurin & Adams, 2014; Quiroz et al. , 2014, 2015). In this
paper, we focus on the subsampling approach of Bardenet et al. (2014), henceforth “confidence
MH?”, for three reasons. First, it relies on concentration inequalities, which is precisely the kind of
guarantee random projections provide. Second, confidence MH inherits the uniform ergodicity of
the underlying intractable MH. In other words, one iteration of confidence MH is as efficient as one
iteration of an MH with the same user-defined parameters. We can thus make sense of the compu-
tational cost of one iteration of confidence MH, since roughly the same total number of iterations
as MH is necessary for a given accuracy. Third, the price of these theoretical guarantees is a high
computational cost precisely because of subsampling and conservative concentration inequalities,
so that random projections can potentially benefit this algorithm the most.

Regarding the budget issue, that is, the number of datapoints needed at each iteration of the
algorithm in order to maintain performance guarantees, Bardenet et al. (2014) explained why con-
fidence MH requires ©(n) datapoints per iteration to guarantee the inheritance of the convergence
speed of the underlying, intractable MH. This cost was then lowered to o(n) in Bardenet et al.
(2015), using control variates such as Taylor expansions around the maximum likelihood estimator
(MLE), assuming these are available. At this stage, we note that if data is streaming and arrives in
a turnstile manner (Muthukrishnan, 2005; Clarkson & Woodruff, 2009), even the MLE might not
be easy to compute, even for simple models. Additionally, confidence MH suffers from a resampling
issue: drawing a different random subsample of the dataset at each MCMC iteration requires the
ability to store and repeatedly query the full dataset.

Finally, Geppert et al. (2015) have applied random projections to Bayesian regression of tall
data, recommending the use of the posterior of the projected dataset, built by a single multiplication
by a random matrix. Good experimental results have been shown; we argue in Section 4.3, however,
that the accuracy guarantee of Geppert et al. (2015) is too weak for some important Bayesian
inference tasks.

Contribution. We combine existing results from distinct communities, namely the MCMC
and random projections literature, to investigate whether random projections can advantageously
replace uniform subsampling in the confidence MH of Bardenet et al. (2014). For that purpose
and to gain as much intuition on the problem as possible, we focus on the illustrative case of
Bayesian linear regression. This is arguably one of the simplest tasks that MCMC can be applied
to, which still captures the difficulty for MCMC to handle tall datasets. Furthermore, it is amenable
to powerful random projection techniques, also known as sketching (Clarkson & Woodruff, 2009).

Our answer to the title question is yes and no: while random projections successfully tackle the
resampling issue, the budget issue seems to be hard to overcome. Overall, we isolate the strengths
and weaknesses of random projections as a tool for subsampling-based MH.

In Section 2, we introduce subsampling-based Metropolis-Hastings for regressing tall data, and
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detail the confidence MH algorithm of Bardenet et al. (2014). On the positive side, in Section 3, we
use a uniform concentration result of Sarlés (2006) to build a candidate projection-based confidence
MH that can address the resampling issue. In Section 4, we take a close look at the confidence
bounds provided by random projection techniques, and argue that solving the budget issue is not
possible with typical random projection concentration inequalities. In particular, we argue that a
naive application of the control variate technique that solves the budget issue for confidence MH in
(Bardenet et al. , 2015) fails here.

2. Metropolis-Hastings for regressing tall data

Consider a regression dataset of n points {1, ...,2,} in R? arranged in a n x d matrix X, along
with the corresponding regressed variable Y € R™. Given a prior p(6) on the regression coefficients
6 € R?, Bayesian linear regression assumes a generative model Y|X,0 ~ N(X#,c%I). For ease of
derivation, we will consider here the noise o to be known and equal to 1/v/2, so that the posterior
reads

7(6) o< 4(8) = exp — || X0 — Y||p(0). 1)

Extending our algorithm to an unknown ¢ will be straightforward. For general priors, the posterior
(1) is intractable and we rely on Bayesian computational tools to approximate it.

A standard approach to sample approximately from 7 is the Metropolis-Hastings algorithm (MH;
Robert & Casella, 2004, Chapter 7.3). MH consists in building an ergodic Markov chain of invariant
distribution 7. Given a proposal ¢(6’|f), MH starts its chain at a user-defined 6, then at iteration
k+1 it proposes a candidate state 8 ~ ¢(-|0)) and sets 01 to 6 with probability min[1, a(6g, 6")],
where
(0") q(0)0"

. )
"GO = ) gy ?

while 051 is otherwise set to 0. In practice, this last step is implemented by drawing a uniform u ~
Upp,11 and comparing a0y, 6') to u. Each iteration of MH thus requires to evaluate the unnormalized
posterior v at a new point, which requires the whole dataset (X,Y") by definition (1). When the
data is tall, i.e. the number n of data points is large, MH is thus often ruled as too costly. However,
recent advances have been made in adapting MH to the tall data setting, see (Bardenet et al. ,
2015) for a review.

)

2.1. Confidence Metropolis-Hastings

We focus here on a concentration-based MH proposed by Bardenet et al. (2014) and further
improved by Bardenet et al. (2015). The algorithm samples a Markov chain similarly to MH, and
we define it here by going through one of its iterations. Assume the current state of the chain is 6
and a proposal §’ has been drawn from ¢(-|0), as well as a uniform u ~ Ujg ;). MH would require
to compute «(6,60’) in (2) and compare it to u, but we avoid this as follows. Upon noting that the
average log likelihood is

n

1 1
00) = ——IIX0 = Y[ = =~ > (270 — )%,

i=1
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one can build an estimate of £(0) by uniformly subsampling ¢ < n rows z7,...,z; of X and the
corresponding rows of Y, namely

Z(xfTnyf)z. (3)

i=1

OE

S

One can then estimate « in (2) through

q(010")p(6")
q(6"10)p(0)

Given a confidence level 6 > 0, concentration inequalities such as Hoeffding’s (Boucheron et al. ,
2013) yield confidence bounds ¢;(J) such that

loga,(6,6') = n [4(6") — 4(6)] +log

P (n_l\lgg\at(a,ﬂl) “loga(6,9)] < ct(é)) >1-4, (4)

where the probability P is over the subsampled dataset. Let (¢;);>0 be a divergent nondecreasing
sequence and (d;) be such that ), d; < d. In confidence MH, one increases i and draws new data
items until /_\

n~tlogay, (6,6") —logu| > e, (6;). (5)

Denoting by T the smallest ¢; such that (5) holds, Bardenet et al. (2014) show that accepting

the point ' if and only if @T(O, 6") > logu amounts to the same acceptance decision as MH
with probability 1 — . If the ideal, intractable MH is uniformly ergodic, then confidence MH has
a limiting distribution that is within O(4) of 7, and it is uniformly ergodic with close constants to
the ideal algorithm (Bardenet et al. , 2014, Proposition 3.2), thus making one iteration as efficient
as one iteration of the underlying intractable MH.

Outside requiring confidence bounds ¢;(d), confidence MH has two main disadvantages: first,
Bardenet et al. (2014) show that c;(6) has to be of order n~! on average, which leads to the
required number of subsamples T to be of order n at a given iteration, thus obtaining no more
than a constant gain when compared to MH. We refer here to this pitfall as the budget issue.
Bardenet et al. (2015) introduce control variates using Taylor expansions of the log likelihood,
and use concentration inequalities to bound only the Taylor remainder of the log likelihood ratio.
They achieve as low as O(1) data points per iteration in favourable cases. Second, confidence MH
requires (4) to hold at each MH iteration independently, which means a new random subsample of
the dataset has to be drawn at each MH iteration. This is also a drawback, since for numerous big
data applications, storing the data and repeatedly subsampling it is not tractable. We call this pitfall
the resampling issue. Note that this is not specific to using uniform subsampling to build acceptance
ratio estimates: all MCMC algorithms with randomized acceptance steps need to guarantee some
independence across iterations of the coin tosses generating the acceptance ratio estimates. In the
remaining section, we investigate whether random projections can advantageously replace uniform
subsampling in providing estimates of the log likelihood ratio with confidence guarantees such as

(4)-



R. Bardenet and O.-A. Maillard/Random projections in MCMC for tall data 5

3. A confidence Metropolis-Hastings with random projections

The log likelihood ratio corresponding to (1) is

p(6,0') £ nle(0) — £(0))
=[1X0 - Y|* - | x0' - Y| (6)
=(X(0-0),X(0+0)—2Y). (7)

As such, it is preserved by random projections, which preserve Euclidean norms by the celebrated
Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, 1984; Boucheron et al. , 2013). In practice,
random projections amount here to choosing a projection dimension k£ < d, and drawing a k x n
random matrix A such that replacing X and Y by AX and AY in (6) or (7) results in a controlled
approximation of the log likelihood ratio. In this section, we formalize this argument and show how
this yields a variant of the confidence MH in Section 2.1.

3.1. A uniform Johnson-Lindenstrauss lemma

We first state the original Johnson-Lindenstrauss (JL) lemma.

Lemma 1 (Johnson & Lindenstrauss, 1984). Let x € R™ and € € (0,1). Let A be an k x n matrix
of i.i.d. Gaussian N(0,1/k) entries. It holds

P (|[|Az|? — %] > ella]|?) < 2e7H/4=<10),

Remark. The Gaussian N(0,1/k) distribution in Lemma 1 can be replaced by a Rademacher
+1/vk, or a distribution with values #+/3/k with probability 1/6 and 0 with probability 1/3,
see (Achlioptas, 2003). Recent works (Alon et al. , 2007; Ailon & Liberty, 2009; Gilbert et al. ,
2007) have also considered more computationally efficient distributions using Rademacher matrices
enjoying a 4-wise independence property, leading to faster solutions with low memory requirement.
In the sequel, we refer to matrices that satisfy a JL lemma as Johnson-Lindenstrauss matrices.

Lemma 1 gives a confidence bound as in (4), which is only valid for one choice of 4, 6’. This is
precisely what causes the resampling issue in confidence MH. To address this, we need to guarantee
that the same projections (AX, AY') can be reused in further MH iterations. A naive union bound
argument over the whole Markov chain (0 )1<k<7 would not be valid, as the accepted states depend
on A. Fortunately, Sarlés (2006) showed that the JL lemma can be made uniform over the span
of the columns of Z = [X,Y], the n x (d + 1) concatenation of X and Y. We restate the result of
Sarlés (2006) here and make its confidence bound explicit.

Proposition 3.1 (Sarlés, 2006). Let r = rk([X,Y]) and A be a k x n Johnson-Lindenstrauss
matriz. Let U be n X r with orthonormal columns. Then it holds

]P’(Vv,w e R", |{AUv, AUw) — (v,w)| < e||v||||w>
62 63
>1-4 [TQ + (34r)27"—2} HEw), (8)

Remark. In this proposition, note that the high probability event holds uniformly over all v, w € R",
and not only pointwise.
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3.2. The resampling issue

To see why Proposition 3.1 yields a uniform control of the log likelihood ratio (7) on ©, let us write
the SVD of Z = [X,Y] as Z = UXVT. Upon rewriting (7) as

e (") o (1))
0 ’ -2 ’

Proposition 3.1 yields a confidence bound on the difference between (7) and
(AX(0—0"),AX(6+6") —24Y).
Thus, the log likelihood ratio (7) satisfies
V0,0, p(0,0") € [b_(0,0'),b4(0,0")] 9)
with probability given by (8), where

b(0,0") = (AX (60— 0'),AX(0+6') — 24Y)

€ ’ ’
+m||AX(G—9)H||AX(0+9)—2AY\|. (10)
Since (9) is valid for all 6,6’ € R?, using it in (4) allows the user to reuse the same projections
AX, AY from one MH iteration to the next. We give a one-pass MCMC-like algorithm in Figure 1
that relies on the uniform bound of Sarlés (2006). This algorithm potentially solves the resampling
issue introduced in Section 1, as we do not need to query the dataset at each new iteration for
the concentration inequality to hold. Still we are guaranteed RPMH makes the same acceptance
decisions as MH with large probability, which is key for convergence properties to be derived as in
(Bardenet et al. , 2014). Note that in confidence MH in Section 2.1, the number of subsamples is
increased until the acceptance decision is made. This corresponds here to increasing the number k of
random projections and decreasing e accordingly to control the probability (8) until the confidence
interval (9) is small enough that (5) holds. We replaced this increase of k by the FAIL flag in RPMH,
which is raised as soon as k does not allow to make a decision. We will see this simple algorithm
already illustrates the weakness of the approach.
For the moment, we turn to the budget issue and investigate whether & = o(n) random projections
are enough for the algorithm RPMH in Figure 1 to return FAIL only with small probability over
the coin tosses of the algorithm.

4. The budget issue

In this section, we denote by 0* the MLE, 6* = argming || X6 — Y||, corresponding to noise n* =
X0* —Y. Given a JL matrix A, we also denote by ¢ the MLE of the projected regression problem
6 = argmin, ||AX0 — AY ||, with corresponding noise 7 = X6 — Y.

4.1. A close look at confidence bounds

In this section, we investigate how the size of the confidence interval (9) scales with ¢ and n for
different applications of Proposition 3.1, and examine the impact on the algorithm in Figure 1.
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NAIVEONEPASSRPMH(p(6), q(0'16), 60, X,Y, A, T)
1 Compute AX, AY > can be done while acquiring data.
2 for k=1,...,T,
3 0 «+ ek_l
4 0 ~ q(|6)7 u Z’{(O,l)v
5 % « log [u it |
6 loga « [|[AX0 — AY||2 — || AX0' — AY2
7 Compute b4 (0,60’) as in (10) or (13). > Compute bounds
8 if ¥(u,0,0") € [b_(6,0"),b4(0,0")] > We cannot make a decision
9 ___return FaIL.
10 if loga > v
11 0r < 0’ > Accept
12 else 0; < 0 > Reject
13 return (0y)g>1

FIGURE 1. The pseudocode of our proposed MH with random projections.

The naive approach. As given in (10), the confidence interval (9) is centered at

(AX(6—6'), AX(0+6") — 24Y),
< AX(6 - 0')|||AX (6 + 0') — 24Y | (11)

and we claim that at equilibrium of the chain, that is, when 6,6’ are drawn from 7 (6)q(¢’|9), this
middle will be within O,(y/n) of 0 in most usual settings, further being negative in a significant
proportion of iterations, since the proposal in MCMC for d > 3 is usually tuned to reach a constant
acceptance around 25%. Indeed, the target (1) is expected to be close to a Gaussian

A N (O (XTX) ), (12)

with equality for a flat prior. Following Roberts & Rosenthal (2001), a natural choice for the MCMC
proposal distribution ¢(6’|0) is then a Gaussian centered at € with inverse covariance proportional
to (AX)T(AX).

This leads to ||AX (6 — 0")|| = O,(1), for a given 6. Now, at equilibrium of the chain, it holds

|AX0 — AY|]? < O,(1) + ||AX60 — AY|?
< Op(1) + (1 +¢€) [[ln*]* + 11X (6 — 67)]%]

so that the last term in the right-hand side of (11) is O,(y/n). Note, moreover, that for “reasonable”
datasets, say X,Y are such that the noise n* is Gaussian, the right-hand side of (11) is even ©(y/n)
with large probability over X, Y.

The same arguments yield that, at equilibrium of the chain, the width of the confidence interval
(9) specified by (10) is of order ey/n. Let for simplicity the prior be flat and the proposal symmetric,
so that the condition in Step 8 of Figure 1 reads logu € [b_(6,6’),b4(6,6")].

Since the middle of the confidence interval (9) is O,(yv/n), negative in a significant proportion
of iterations, and its length is of order e/n for “reasonable” datasets, the probability that once
during the run logw, minus an exponential variable, falls within the confidence interval (9), grows
with n unless e = O(n~1/2). Avoiding RPMH to fail thus requires e = O(n~/2). In order to keep
the probability in (8) small, this amounts to using k = Q(n) random projections, thus violating our
memory constraints.
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FIGURE 2. Rescaled distance between 6* and 0. 100 datasets were simulated from a linear Gaussian model for each
pair (k,n), with X drawn from a spherical Gaussian. For each k, we show the median distance and the interquantile
region between 10% and 90%.

Claim 1. When using RPMH with the naive confidence bound (10) on datasets X,Y that come
from a regression model with (non-degenerate) Gaussian noise, one needs to use ¢ = O(n~/?) and
k = Q(n) random projections in order to ensure that RPMH does not fail with high probability.

Using pivots. The heuristics in this section are based on concentration of measure arguments,
and are thus very similar to the one in (Bardenet et al. , 2014, Section 3.2.2), which says that
subsampling-based MCMC needs ©(n) points per iteration at equilibrium. In the case of subsam-
pling, (Bardenet et al. , 2015, Section 7) show that one can go below (n) with one pass over the
data by remembering the MLE of the problem in “favourable” scenarios. The equivalent technique
in our case would be to apply Proposition 3.1 to

p(0,0) = (X(0—0"),X(0+0 —20%)).
The bounds in (10) are then replaced by
b1 (0,0) = (AX(0—0),AX (0 + 06" —20"))

€ ’ ’ *
m||AX(0—0)H||AX(9+9 —20M)]|. (13)
Since for ¥ = 6,6, at equilibrium, || X (9 —6*)|| = O,(1) by (12) and the choice of a proposal with
inverse covariance (AX)7(AX), the same arguments as for the naive case yield that the width of
the confidence interval (9) is now O,(€). Thus € = o(1) is enough to guarantee that logu only falls
within the confidence interval (9) with arbitrarily small probability, and & can be chosen as o(n)
while keeping the probability in (8) large.

The 6* issue. Unfortunately, having access to 6* means we can solve the normal equations.
In particular we can compute products with (X7 X)~!, and thus compute the exact log likelihood
ratio (6) exactly. If this is the case, then there is no need for random projections in the first place.
As stated in Section 1, we are more interested in cases where accurately computing X7 X is not
possible, say data is acquired in a turnstile manner and one only has o(n) memory. In classical —as
opposed to Bayesian— regression (Clarkson & Woodruff, 2009), the MLE 6 of the projected problem
is used as a proxy for 6*.

+
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Unfortunately, replacing 6* by 6 in (13) requires to control || X6 — 6||. At equilibrium, 6 will be
close to #* in the sense that || X (0 — 6*)| = O,(1). However #* will generally be far from 6. In
Figure 2, we empirically show that for X, Y generated from the linear Gaussian model, || X (6* —6)]|
is ©(y/n). This leads to the same scaling ¢ = o(n~'/2) as for the naive approach (10), which in
turn leads to £ = Q(n) in Proposition 3.1 and the failure of the attempt to solve Bayesian linear
regression in o(n) memory.

4.2. A puzzling lower bound

To finish, we mention a lower bound on the memory budget that any randomized one-pass algorithm
satisfies if it solves linear regression.

Theorem 4.1. (Clarkson & Woodruff, 2009, Theorem 3.7) Let € > 0. Assumen > dlog,o(nd)/(36¢)
and d is sufficiently large. If a randomized 1-pass algorithm outputs, for any fived X,Y of size n.x d
and n x 1, a value 6 € R? such that

X0 - Y| < (146 X6" Y| (14)

with probability at least T/9, then this algorithm requires at least Q(d?e~!log(nd)) bits of space.

While Theorem 4.1 clearly applies to classical random projection regression, it is not immediately
clear how to rigorously apply this lower bound to the RPMH algorithm in Figure 1. In particular,
the proof of (Clarkson & Woodruff, 2009, Theorem 3.7) uses the fact the randomized algorithm
solves (14) for every X, Y. If Y is very close to the columnspace of X, then returning a uniformly
drawn sample from the output of RPMH will typically not satisfy (14). But, for “reasonable” XY,
say e.g. when the linear model is accurate and the distribution of the noise n* is Gaussian, (14) will
be satisfied with e = n~1, again leading to k = Q(n).

4.3. On previous work

Geppert et al. (2015) study Bayesian regression with random projections and show that with large
probability on the JL matrix A, the posterior of the projected regression

7(0) o< exp(—[[AX0 — AY[[*)p(6)

is within O(€?) of the posterior 7 in 2-Wasserstein distance. This is an interesting result, but being
close in Wasserstein distance is not sufficient to build credible intervals on # —a common task in
Bayesian inference— using less than Q(n) random projections.

Indeed, the leading term in (Geppert et al. , 2015, Lemma 8) comes from a bound

16* — 8> = O(e?), (15)

on the squared bias in (Geppert et al. , 2015, Lemma 6). Since both 7 and 7 put most of their
masses on regions of diameter of order n~!/2, we would need ¢ to be of order n~'/2 in order for
(15) to guarantee that credible intervals built with 7 and 7 do overlap. Note that requiring that
the credible intervals overlap is a minimum if 7 is to be used to make inference on 6. Again, having
e of order n~'/2 requires k = Q(n) in JL-type results such as Proposition 3.1, and the o(n) memory
constraint is not satisfied.
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5. Conclusion

Random projections are undeniably useful for classical linear regression, even under constrained
data acquisition. It is natural to wonder whether random projections can help approximate the log
acceptance ratio in MCMC for Bayesian linear regression. Uniform JL-type results guarantee that
random projection confidence bounds can hold tight across MCMC iterations, a feature not accessi-
ble to uniform subsampling. However, we have explained why making MCMC acceptance decisions
based on such bounds requires a higher degree of accuracy than what o(n) random projections can
provide. Control variates such as the MLE of the projected problem cannot fundamentally help.

Future work should investigate communication complexity results in the line of (Clarkson &
Woodruff, 2009), to derive a rigorous lower bound on memory complexity of one-pass MCMC for
linear regression. Another interesting avenue is to look for better control variates than the MLE of
the projected problem, possibly relaxing the constraint of doing being one-pass, such as in Zhang
et al. (2013), as long as memory remains controlled. Whether there is a fundamental trade-off or
enough room for a win-win method is still an open question.
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