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Microtearing turbulence: magnetic braiding and disruption limit
Marie-Christine Firpo1

Laboratoire de Physique des Plasmas, CNRS - Ecole Polytechnique, 91128 Palaiseau cedex,
France

A realistic reduced model involving a large poloidal spectrum of microtearing modes is used to probe the
existence of some stochasticity of magnetic field lines. Stochasticity is shown to occur even for the low values
of the magnetic perturbation δB/B devoted to magnetic turbulence that have been experimentally measured.
Because the diffusion coefficient may strongly depend on the radial (or magnetic-flux) coordinate, being very
low near some resonant surfaces, and because its evaluation implicitly makes a normal diffusion hypothesis,
one turns to another indicator appropriate to diagnose the confinement: the mean residence time of magnetic
field lines. Their computation in the microturbulence frame points to the existence of a disruption limit,
namely of a critical order of magnitude of δB/B above which stochasticity is no longer benign yet leads to
a macroscopic loss of confinement in some tens to hundred of electron toroidal excursions. Since the level of
magnetic turbulence δB/B has been measured to grow with the plasma electron density this would also be a
density limit.

I. INTRODUCTION AND OBJECTIVES

In the tokamak terminology, magnetic microturbulence
refers to the simultaneous excitation of a large spec-
trum of magnetic modes with poloidal mode numbers
m ≫ 1. It might however be thought that the small-
ness of the relative magnitude of the magnetic pertur-
bation δB/B devoted to magnetic turbulence as mea-
sured in some tokamak experiments1,2 makes the ques-
tion of the stochasticity of the magnetic field lines rather
irrelevant. Yet, several recent results coming from gy-
rokinetic simulations have unveiled the ubiquity of the
magnetic stochasticity under physical parameters rele-
vant to fusion-oriented tokamak plasmas. In particular,
electromagnetic numerical simulations in the conditions
of tokamak ion temperature gradient turbulence3 have
demonstrated that the magnetic field could be stochas-
tic even at very low plasma pressure. Concurrently, an-
other study8 aiming at unveiling the nature and mech-
anisms behind turbulent transport in tokamak plasmas
based on ab initio gyrokinetic simulations demonstrated
that heat transport is dominated by the electron mag-
netic component and pointed to microtearing modes as a
possible candidate to explain turbulent transport in toka-
mak plasmas. Moreover, other nonlinear gyrokinetic nu-
merical simulations of microtearing mode turbulence us-
ing the experimental parameters from a high-β discharge
of the spherical torus NSTX experiment9 indicated that
the transport is almost entirely electromagnetic as a re-
sult of the electrons diffusing in the stochastic magnetic
field. Lastly, electromagnetic gyrokinetic simulations of
plasma microturbulence10 have also supported the near-
ubiquitous character of magnetic stochasticity.
Experimentally, there is increasing evidence of the mi-

crotearing nature of magnetic turbulence. Very recently,
the first direct experimental verification of microtearing
mode turbulence in the core region of tokamak plasmas
has been reported in the JIPPT-IIU tokamak2, where lo-
cal magnetic fluctuations were measured using a heavy
ion beam probe. In the ASDEX-Upgrade, edge mea-
surements using electron cyclotron emission imaging just

detected also that the temperature fluctuations have fea-
tures similar to microtearing modes11. Accordingly, there
is now a growing body of evidence both from numerical
gyrokinetic simulations and novel experimental diagnos-
tic approaches that magnetic fluctuations come under the
form of microtearing modes that control electron heat
transport.

Gyrokinetic numerical simulations are certainly use-
ful since they should eventually provide a fine-scale self-
consistent picture of tokamak plasma dynamics, yet they
are highly numerically-demanding and challenging. It
remains therefore desirable to continue to build and de-
velop reduced and versatile models to improve the un-
derstanding of the puzzling and critical tokamak trans-
port issue and to test paths towards the improvement
of the confinement. In order to reduce the complexity
of the system formed by the strong equilibrium mag-
netic field and the assemblies of charged particles self-
consistently interacting with turbulent electromagnetic
perturbations, one may adopt a non self-consistent test
particle approach under suitable assumptions for the elec-
tromagnetic field. A more fundamental approach is to fo-
cus on the magnetic structure of the confinement. Indeed
the Maxwell equation divB = 0 forms a closed and exact
equation enabling to isolate the effect of the magnetic
field and study its properties. This does not mean at all
that one neglects the electric field or assumes the nullity
of the electric perturbations. This does not mean either
that the trajectories of charged particles in a spatially
integrable magnetic field are integrable since the three-
degrees of freedom Hamiltonian from which derive the
particle equations of motion may a priori allow chaotic
motions. Indeed in the case where the (integrable) mag-
netic structure possesses an X-point, as in the divertor
scheme, charged particles experience a chaotic motion in
the vicinity of the magnetic separatrices12. This is just a
reduction of the picture. It was notably shown by Cary
and Littlejohn in a seminal paper13 that the zero diver-
gence of the magnetic field, which may be interpreted as
a condition of phase space conservation, makes the equa-
tions of magnetic field lines derive from a Hamiltonian
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system.
This line of research connected years ago to the intro-

duction of the paradigmatic standard map14 that had a
considerable importance in the understanding of the on-
set and phase-space manifestations of Hamiltonian chaos.
This captured the universal behaviour of area-preserving
maps with divided phase space when integrable islands
of stability are surrounded by a chaotic component. Yet,
this model is not meant to address the quantitative trans-
port issues posed by magnetic confinement fusion. Us-
ing the present computing capacities and the improved
knowledge of the magnetic turbulence coming from ex-
perimental measurements and recent gyrokinetic results,
it has become possible to consider more realistic models
of magnetic field lines under microturbulence conditions
and compute their transport properties. The microtur-
bulence magnetic framework used in the present study
will be exposed in Section II. Some numerical results ob-
tained within such microtearing turbulence models hav-
ing a large spectrum of poloidal modes will be presented.
It will be shown that a value of the magnitude of the
magnetic perturbation as low as 10−5 does not imply
that magnetic field lines are close to integrability.
The problem of the disruptions in toroidal devices for

magnetic confinement fusion must be tamed to ensure
the viability of industrial fusion reactors. Contrarily
to macroscopic dramatic phenomena, such as the saw-
tooth crash, that may be related to the onset of the
chaos of magnetic field lines due to some subset of long-
wavelength modes with different helicities (See e.g.4–7),
the consequences of the loss of the integrity of mag-
netic surfaces in the presence of plasma microturbu-
lence have been observed in some gyrokinetic numerical
simulations3 to be normally benign or moderate. Yet,
there is certainly some limit in the braiding of the mag-
netic field lines above which magnetic confinement breaks
and a disruption occurs. Section III will be devoted to
the exploration of disruption limits associated to mag-
netic microturbulence. This study will involve the evalu-
ation of some probability distribution functions (pdf) of
magnetic confinement times. These are obtained through
rather demanding numerical simulations within the re-
duced magnetic turbulence model. Yet, it is useful to
point out the benefit of using a reduced approach by
noting that the numerical cost of analogous simulations
within a full gyrokinetic frame would have been much
higher and possibly prohibitive. A short discussion con-
cludes the work.

II. THE HAMILTONIAN MICROTEARING
TURBULENCE FRAMEWORK

A. Presentation

The canonical representation of an arbitrary magnetic
field in a toroidal magnetic confinement device is written
in Eq. (1). Let us consider a set of variables (ρ, θ, ϕ)

where ρ is a radius-like variable that vanishes along the
magnetic axis. Then, there exist15 two single-valued
functions ψ(ρ, θ, ϕ) and Φ(ρ, θ, ϕ), such that the magnetic
field can be written in the form

B = ∇ψ ×∇θ +∇ϕ×∇Φ. (1)

Eliminating the variable ρ by using Φ(ψ, θ, ϕ), the equa-
tions for the magnetic field lines read

dψ

dϕ
=

B.∇ψ
B.∇ϕ

= −∂Φ
∂θ

, (2)

dθ

dϕ
=

B.∇θ
B.∇ϕ

=
∂Φ

∂ψ
. (3)

In this representation, Φ plays the role of a generically
one-and-a-half degrees of freedom Hamiltonian16–18, the
toroidal angle ϕ is a time-like variable and ψ is the mo-
mentum conjugated to the poloidal angle θ. In a non-
steady state, the field-line Hamiltonian depends also on
the real time t, that plays the role of a parameter, but
not of a canonical variable, and will be noted Φt.

In tokamaks, the equilibrium configuration is axisym-
metric. The equilibrium magnetic field B0(r) has its
field lines spiralling on perfect nested magnetic surfaces
around the magnetic axis and these are defined by a con-
stant ψ. This amounts to say that the magnetic field-
line Hamiltonian associated to B0 is integrable, being
Φ0(ψ). It identifies with the poloidal magnetic flux and
ψ with the toroidal magnetic flux. From the equilibrium
poloidal flux Φ0(ψ), one defines the very important quan-
tity called the safety factor profile q(ψ), or equivalently
its inverse, the winding profile w (ψ), through

dΦ0(ψ)

dψ
=

1

q (ψ)
= w(ψ). (4)

Yet, axisymmetry is bound to be broken by external ef-
fects, such as the toroidal ripple in the magnetic field,
which appears in tokamaks due to the finite number of
toroidal magnetic field coils, or as the edge magnetic per-
turbations due to additional coils serving to control par-
ticle and heat loads on tokamak walls19 or by some in-
trinsic instability phenomena such as MHD activity or
microturbulence. The generic form of the magnetic field-
line Hamiltonian reads then

Φt(ψ, θ, ϕ) = Φ0(ψ) + δΦt(ψ, θ, ϕ). (5)

The order of magnitude of the relative perturbation
|δB|/B0 quantifies the deviation from axisymmetry and
integrability. Using the poloidal and toroidal periodici-
ties, this can be Fourier decomposed as

δΦ(ψ, θ, ϕ) =
∑
m,n

εm,nδΦmn(ψ) cos(mθ−nϕ+χmn), (6)

where from now on, the time dependence index has been
dropped to simplify the notations. A rough model for
the behavior of microtearing waveforms was proposed by
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Stix in28. In the present work, a more refined model of
microtearing turbulence described in27 will be used. This
is an empirical experimentally-based model taking

δΦmn(ψ) ≡
[
cosh

(
1

∆
ln

ψ

ψmn

)]−m∆
2

. (7)

The (m,n) waveform is maximal on the rational surface
ψmn, defined as the value of the toroidal magnetic flux for
which q(ψmn) = m/n. The physically realistic value of
the parameter ∆ is about 0.01. This ensures the correct
minimally-smooth peaking of the waveforms. In numer-
ical simulations, the poloidal modes with 1 < m < 40
have been retained and the associated toroidal modes
are such that the resonances (m,n) are present. Figure
1 shows these modes. A standard winding profile is used
with

w(ψ) = 0.2(2− ψ)(ψ2 − 2ψ + 2), (8)

corresponding to a monotonously growing q-profile. It
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FIG. 1. The (m,n) modes retained in this study are within
the limits imposed by the minimal and maximal q-values
defining respectively the lower and upper lines.

should be noted that the present model considers the
whole spectrum of magnetic modes, not the only the
part with the largest m modes that may be prop-
erly defined as the turbulent part. This is consistent
with the experimental reality where relatively large scale
magnetohydrodynamic-like modes coexist with small
scale perturbations.

B. The Hamiltonian for a single mode: estimation of the
resonance widths

Let us first characterize the Hamiltonian model in
the case of a single arbitrary mode (m0, n0). Us-
ing a canonical transform with the generating function
F2(θ,Ψ, ϕ) = (m0θ − n0ϕ)Ψ, that amounts to moving to
the (m0, n0) wave frame, the single mode Hamiltonian

reads Φ̂(Ψ,Θ, ϕ) = Φ(ψ, θ, ϕ) + ∂F2/∂ϕ with ψ = m0Ψ

and Θ = m0θ − n0ϕ. This yields

Φ̂(Ψ,Θ) = Φ0(m0Ψ)− n0Ψ+ εm0,n0δΦm0n0(m0Ψ) cosΘ.
(9)

Figure 2 and Figure 3 represent respectively the per-
turbed Hamiltonian waveform and the topology of the
Hamiltonian phase space for the same one-wave inte-
grable case. The fixed points of the Hamiltonian (9)
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FIG. 2. Perturbed Hamiltonian waveform δΦm0n0 for the
mode m0 = 33, n0 = 8 and for the parameter ∆ = 0.01. The
q-profile considered here is the same as in Figure 3.
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FIG. 3. Phase space portrait of magnetic field lines in the
case where a single microtearing mode is retained, displayed
in the wave frame in the (Θ,Ψ) space. Here this is the mode
m0 = 33, n0 = 8. The q-profile used in the figure is q(ψ) =
1.5 + 3.2ψ which gives ψm0=33,n0=8 ≃ 0.82 that corresponds,
in the new wave frame variables, to Ψ ≃ 0.248. The amplitude
of the mode is εm0,n0 = 5.10−4.

are given by Θ = 0 or π. For Θ = π, the action ψ of the
fixed points satisfies

0 =
1

q(ψ)
− n0
m0

+εm0,n0

m0

2ψ
δΦm0n0(ψ) tanh

(
1

∆
ln

ψ

ψm0n0

)
.

(10)
This equations admits an obvious solution ψ = ψm0n0

corresponding to an elliptic fixed point and it admits
two other roots ψ+ > ψm0n0 and ψ− < ψm0n0 in the
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case where the q-profile is monotonously increasing that
correspond to hyperbolic fixed points. We can then es-
timate the resonance width associated to the (m0, n0)
single wave Hamiltonian. The largest toroidal flux cor-
responding to the upper half-width of the resonance, de-
noted by ψ̄+, may be estimated from the energy conser-

vation on the upper separatrix so that Φ̂(ψ+/m0, π) =

Φ̂(ψ̄+/m0, 0). Under the assumption that ψ̄+ ≃ ψ+, this
yields

ψ̄+ − ψ+ ∼ εm0,n0

δΦm0n0(ψ̄
+) + δΦm0n0(ψ

+)
n0

m0
− 1

q(ψ̄+)

. (11)

Finally, for the consistent hypotheses ensuring the small-
ness of ψ̄+ − ψ+, namely εm0,n0

sufficiently small and a
non-vanishing magnetic shear at the rational surface, it
is possible to further simplify Eq. (11) by making ψ+ ≃
ψm0n0 , δΦm0n0(ψ̄

+) ≃ δΦm0n0(ψ
+) ≃ 1, and by using

q
(
ψ̄+

)
−m0/n0 ≃ q′(m0/n0) (ψ

+ − ψm0n0). The expres-

sion of the resonance half-width, δψm0n0 = ψ̄+ − ψm0n0 ,
amounts then to

δψm0n0 =

(
2εm0,n0

|w′(ψm0n0)|

)1/2

=
m0

n0

(
2εm0,n0

q′(ψm0n0)

)1/2

.

(12)
This is the classical expression of the microtearing reso-
nance half-width.
Unless otherwise specified, we define ε such that

εm,n ≡ εn/m, so that the mode amplitudes εm,n are
indeed all of the same order ε. The expression of
the resonance half-widths reduces then to δψm0n0 =

[2εq(ψm0n0)/q
′(ψm0n0)]

1/2
. The magnetic field pertur-

bation δBmn relates to εm,n through

δBmn
B0ϕ

=
1

2
√
2

mεm,n

A
√
ψmn

, (13)

where A denotes the tokamak aspect ratio (A = R0/a).
Although the knowledge of the magnetic spectrum would
be necessary to make quantitative estimations, which re-
mains a really challenging task due to the experimental
difficulties to measure internal magnetic perturbations,
the objective of the present study is more qualitative
than quantitative so that we shall mainly retain for our
purposes that δB/B ∝ ε.

C. Characterization of the local magnetic stochasticity

The previous expression of the microtearing resonance
half-widths may serve to estimate the local Chirikov
parameter that quantifies the local chaoticity of the
Hamiltonian magnetic field lines. The expression of
the Chirikov parameter relative to any couple of modes
(m,n) and (m′, n′) reads

s(m,n),(m′,n′) =
δψmn + δψm′n′

|ψmn − ψm′n′ |
.

Figure 4 represents the local maximal Chirikov parameter
associated to the modes (m,n). More precisely, for each
resonant surface ψmn is plotted the maximal Chirikov
parameter s(ψmn) = max(m′,n′) s(m,n),(m′,n′) divided by√
ε that the mode (m,n) realizes with some other mode

(m′, n′). The extent of the local maximal stochasticity
zone is represented by an horizontal segment between
each couple (ψmn, ψm′n′). From Figure 4, it is clear that
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FIG. 4. For each resonant surface ψmn on the X-axis is plotted
by a point the maximal Chirikov parameter s divided by

√
ε

realized with some mode (m′, n′) among the available modes.
The segments between the ψmn and their associated ψm′n′

are marked but are only wide enough to be visible about the
resonances associated to the integer values of q. The q-profile
used in the calculations corresponds to Eq. (8).

there are local minima of stochasticity in the close vicin-
ity of the resonances associated to integer values of the
q-profile while there are local maxima of stochasticity just
in the periphery of these zones. This result is valid for
q-profiles having a non-vanishing magnetic shear, that is
a condition for the validity of Eq. (12), and is consis-
tent with experimental results indicating that transport
barriers preferentially form about surfaces where q is an
integer.

Another consequence of the results shown on Figure 4
is that, apart from those neighborhoods of the q = integer
and low rational surfaces, some mid scale stochasticity
is realized even at extremely low values of the relative
magnetic perturbation amplitude ε, in our case even at
ε ∼ 10−7 − 10−6. Experimentally, ε has been reported1

to be of the order of 10−5 to 10−4 (in the L mode) in
Tore Supra and, very recently, to be of order 10−4 in
the JIPPT-IIU tokamak plasmas2. Therefore, within the
microtearing turbulence frame, the stochasticity of the
magnetic field lines under experimentally relevant values
of ε is generic. This is in agreement with the seminal
Stix’s analysis28 and the aforementioned recent gyroki-
netic results3,8–10.
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D. Numerical integration of the equations for the
magnetic field lines

The Hamiltonian dynamics associated to the equations
(2)-(3) has been integrated using a symplectic integrator
with toroidal angle ’time’-step 2π/3200.
Figures 5 and 6 represent the radial-type component,

ψ, of different magnetic field lines as a function of the
toroidal angle ϕ for the microturbulence model for two
values of the relative magnetic perturbation, namely ε =
2 · 10−5 and ε = 10−4. The non-integrable character of
the magnetic field lines is quite manifest from the figures.
However, whereas the behavior of the magnetic field

lines looks stochastic for ε = 10−4, this is much weaker
for ε = 2 · 10−5 where the magnetic field trajectories
correlate with the (m,n) resonances. As the magnetic
braiding gets smaller, the stochasticity in the ψ-domain
may become locally quite low so that the resonances are
not fully disaggregated behaving as cantori. As apparent
on the left plot of Figure 5, magnetic field lines can be re-
flected by remnants or almost intact resonances, possibly
of a high order, which induces some memory effect.
In Figure 4, the relative minimal values of the two-wave

overlap Chirikov parameter divided by ε1/2 are close to
124 about the (4, 1) resonance and to 133 about the (3, 1)
resonance. Being obtained for ε = 2·10−5, Figure 5 corre-
sponds then to a situation where the Chirikov parameter
about the resonances associated to the integer values of
q, where the chaos is minimal, is about 0.6, so noticeably
below 1. One could therefore be surprised to observe
some (at least partial) breaking of the KAM tori about
the integer surfaces.
However, it must be emphasized that the classical cri-

terion for chaos – that the Chirikov overlap parameter
s1,2 between two resonances waves be larger than one – is
a crude one and many refinements have been proposed29.
In particular, even if we had a Hamiltonian system with
just two waves, taking into account the secondary res-
onances arising from the nonlinear beating between the
two primary resonances would reduce the effective dis-
tance between resonances30. A rule of thumb is that
connected chaos occurs when s1,2 ≃ 2/3 instead of 1 due
to this mechanism. The most sophisticated treatment for
the paradigmatic case of two primary resonances consists
in taking into account the creation of infinitely many
secondary resonances and using renormalization theory
to compute the chaos threshold31,32. Since this effect
of secondary resonances couples here to the existence of
a spectrum of primary modes, it is not surprising to ob-
serve the onset of chaos for values of the Chirikov overlap
parameter below 2/3. Moreover there is some source for
additional chaos since the resonances are not purely pen-
dulum sinusoidal waves. This is apparent in the phase
space portrait of a microtearing mode that has two close
x-points instead of one in the pendulum sinusoidal case
(see Figure 3).
The situation of Figure 5 with ε = 2 · 10−5 is certainly

above but very close to the threshold for connected chaos

since one can observe that two magnetic field lines re-
main contained between the (3, 1) and (4, 1) resonance
radial locations whereas the other two magnetic field
lines happen to cross these. For low enough values of
ε, the Chirikov parameter between the magnetic reso-
nances eventually becomes small enough in macroscopic
domains of the ψ-space impeding (normal) diffusion.

III. MAGNETIC CONFINEMENT TIMES

A. The magnetic microturbulence picture

In Sect. IID, from the integration of the magnetic field
line trajectories at experimentally relevant values of the
relative magnetic perturbation parameter ε emerges the
picture of the microturbulent magnetic transport. Some
locally stochastic domains of the phase space are sepa-
rated by partial transport barriers (cantori) limiting the
large scale magnetic diffusion. This suggests that char-
acterizing the transport through a magnetic diffusion co-
efficient, Dm, may not be a universally appropriate ap-
proach. Indeed, the presence of cantori should induce a
strong locality of the diffusion coefficient: namely Dm de-
pends on the action ψ, with locally almost vanishing min-
ima about the ψmn associated to the cantori. Moreover,
the diffusive nature of the transport is unclear. Com-
puting a diffusion coefficient implicitly means that the
diffusion is normal, neither sub- nor super-diffusive. An
alternative physical indicator, that is a natural indicator
in the fusion context where Lawson’s criterion is central,
would rather be given by the characteristic time spent
by the magnetic field lines to visit the phase space, that
may be viewed as a confinement time. The benefit of this
indicator is that it remains valid even in the absence of
(normal) diffusion.

B. First exit times

A physically meaningful indicator of the magnetic con-
finement for fusion applications is the residence time of
the magnetic field lines inside some inner volume of the
device. Indeed, in magnetic confinement devices, elec-
trons are strongly magnetized, so that a breakdown of
the magnetic confinement may result in the termination
of the electron confinement, or in other words, in a dis-
ruption.

To probe the magnetic transport properties within the
microturbulence framework, extensive numerical simula-
tions have been performed. Starting from magnetic field
lines in the core of the tokamak, more precisely such
that ψ(ϕ = 0) be in the range [0.05; 0.1], the number
of toroidal turns ϕexit/(2π) after which ψ(ϕexit) becomes
larger than 0.9 was computed for a large number of field
lines and at different values of the stochasticity parame-
ter ε. Figure 7 represents the distribution of the first exit
times ϕexit in units of toroidal turns for two values of ε.
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FIG. 5. (Left) Four magnetic field line traces ψ(ϕ) for the magnetic microturbulence model with ε = 2 · 10−5. (Right) Focus
on one of the magnetic field line traces ψ(ϕ) being transiently exploring a narrow ψ-domain below ψ31 ≃ 0.5816. The locations
in the ψ-space of some secondary resonances are indicated.
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FIG. 6. Three magnetic field line traces ψ(ϕ) for the magnetic
microturbulence model with ε = 10−4.

In Figure 8 is plotted for some values of ε above 10−4

the mean exit times computed by launching as many as
some tens of thousand initial conditions for the magnetic
field lines in the tokamak core. Figure 7 validates the
magnetic microturbulence picture depicted in Sect. IIIA.
For values of ε roughly below 10−4, the values of the exit
times become very large, in the sense that it becomes
numerically too demanding to compute them. Moreover
as ε decreases, there is an increasingly growing fraction
of the trajectories that never attain the tokamak border,
getting glued about low order resonances. As ε increases,
the local Chirikov parameter eventually raises above one
in the whole ψ domain and the conditions for the usual
diffusion in ψ space are fully satisfied. Indeed, for the
range of ε values considered in Fig. 8, the mean exit times
scale with ε as ε−2. This is the scaling expected from a
quasilinear diffusion approach33, since DQL ∝ (δB/B)2

and δB/B ∝ ε.

The Brownian nature of the behaviour of magnetic
field lines may be assessed by comparing the numerically
obtained distribution of first exit times with its predic-
tion in the case of Brownian motion. The first passage
time distribution of Brownian motion with positive drift
takes the form

f(τ ;µ, λ) =

(
λ

2πτ3

)1/2

exp

[
− λ

2µ2τ
(τ − µ)2

]
. (14)

It can be seen on Figure 9 that the distribution of the
numerical exit times in the case ϵ = 10−3 is fairly well
approximated by a function of the form (14). The next
Section will be devoted to some consequences for toka-
mak physics of the present results.

IV. INDICATIONS FOR A DISRUPTION LIMIT DUE
TO MAGNETIC MICROTURBULENCE

A. Preliminary justification for a static frame

The magnetic model presented in Section II may be
made time-dependent to account for the time variations
of field perturbations in real plasmas. Typical fluctuation
frequencies have been reported to be in the range 104 to
105 Hz. In this Section, our interest will lie however
on disruptive-type phenomena taking place on the time
scale of tens to hundreds of electron toroidal excursions.
For such a short time scale, it is possible to neglect the
diffusion effects induced by phase and restrict to a static
approach.

Moreover, it is a well-known experimental fact that
phase-locking between the rotating modes is one ’favor-
able’ ingredient for disruptions34–36. Considering that
modes rotate in phase is equivalent in the frame of the
modes to consider constant phases. One just proceeds
to a Galilean transform to the wave frame. Disruptions
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have also been observed to take place with slowly ro-
tating modes. Then, with regard to the brevity of the
disruptions, treating the disruption scenario in a static
frame can be a good approximation.

In any case, the static situation should be the more
deleterious, limit scenario for the loss of confinement
since one can easily imagine that some differential
poloidal rotation in the modes contrarily makes the field
lines spend more time moving in the poloidal direction
which increases their mean exit times.
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ε = 10−3 in the magnetic microturbulence model (histogram
and plain line continuous representation). In dotted line is
superimposed the first passage time distribution of Brownian
motion with positive drift given in Eq. (14) having the same
mean and variance as the data.
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B. Magnetic turbulence-driven disruption limit

In tokamak physics, there exist some dramatically
swift phenomena taking place on the lapse of time of some
tens to a couple of hundreds of microseconds. These are
the collapse phases of sawteeth, edge localized modes and
disruptions. All these phenomena may be interpreted as
transient, benign or severe losses of the magnetic confine-
ment and are mediated by the lighter charged particles of
the plasma, namely by the electrons. In a tokamak such
as JET, the electron thermal velocity at a temperature
of 10 keV is about 4.107m.s−1 so that the characteristic
time spent by electrons to make a toroidal excursion is
0.5µs. Consequently, a lapse of time of 100µs amounts to
200 electron toroidal excursions. It is quite instructive to
see on Figure 8 that 200 toroidal excursions is the order
of magnitude of the qualitative threshold mean exit time
separating a quick loss of the magnetic confinement for
ε > εth from a much better magnetic confinement pro-
vided the perturbation parameter ε becomes some frac-
tion of εth. From the Figure, one may retain the value
5.10−4 for εth. The magnetic perturbation δB/B is of
order ε with the spectrum of modes used here. Its value
associated to ε = 5.10−4 could be derived using Eq. (13).

Looking at Figure 8 comes the impression of a thresh-
old effect in the behaviour of the mean exit time as a
function of ε. We shall here examine its origin.

In the regime where the resonance overlap is sufficient
to ensure the complete stochasticity of the magnetic field
lines and the validity of the quasilinear approximation,
the mean exit ’times’ ⟨ϕexit⟩ scales as ε−2: there exists
some constant C > 0 such that ⟨ϕexit⟩ = C2ε−2. Con-
verting the toroidal angle to a real time τ through the use
of the electron parallel velocity as we have just done and
using the fact that δB/B is proportional to ε, this means
that the characteristic exit time scales with respect to the
relative magnetic perturbation as ⟨τexit⟩ ∝ (δB/B)−2.

Consequently, all other things being equal, a small
change in the magnetic perturbation ∆(δB/B) is asso-
ciated to a much larger change in the mean exit time
∆⟨τexit⟩ since

∆⟨τexit⟩
⟨τexit⟩

= −2

(
δB

B

)−1

∆

(
δB

B

)
, (15)

where δB/B is a (very) small parameter. From this it
follows that a relatively small change in the magnetic
perturbation is associated to a much larger relative vari-
ation in the mean confinement time. This sensitivity ef-
fect is beneficial when the magnitude of the magnetic
perturbation is reduced since the confinement time may
drastically increase but this effect is deleterious when the
magnetic perturbation is increased, by intrinsic or extrin-
sic routes, as the confinement time may drop to the point
where a macroscopic (major) disruption occurs and con-
finement is lost.

V. DISCUSSION

In the present study, the magnetic perturbation δB/B,
or equivalently the parameter ε, is a control parameter
which may take arbitrary values. In the framework of
magnetic microturbulence, magnetic field lines become
stochastic in a macroscopic fraction of the tokamak vol-
ume when the Chirikov parameter computed for any
two resonant waves (m,n) and (m′, n′) is roughly above
2/329. This has been shown to take place for the val-
ues of δB/B that have been experimentally measured
by cross polarization scattering in Tore Supra1 or by us-
ing the poloidal sweep of a heavy ion probing beam re-
cently in JIPPT-IIU2. These tokamaks therefore operate
in regimes where the stochastic hypothesis necessary to
derive a Fokker-Planck diffusive approach, like the quasi-
linear theory, is satisfied. Consistently, both the Tore
Supra and JIPPT-IIU teams have verified that the exper-
imentally measured levels of magnetic perturbation were
compatible with their experimentally measured electron
heat diffusivities χe when using the quasilinear expres-
sion for χe

33.

Predicted here is the existence of some qualitative
threshold on δB/B in this stochastic regime above which
the mean confinement exit times become too low to be
sustainable by the tokamak plasma. The sensitivity in
δB/B is reflected by Eq. (15). One may wonder whether
this disruptive-like limit may actually be reached. In-
deed, once there is an overall stochasticity of magnetic
field lines, there is some self-healing process coming into
play in the sense that the stochasticity of magnetic field
lines quenches the thermal gradients that are a source of
instability for the microtearing modes and may regulate
the magnetic microturbulence. However, collisionality
may remain as a source of destabilization of microtearing
modes.

These results should be put in perspective with the re-
cent achievements on runaway electron suppression above
some magnetic turbulence threshold reported by Zeng et
al.37. These experimental measurements done on TEX-
TOR have shown that magnetic turbulence is mainly con-
tributed from the background plasma and that its level
does strongly dependent on the toroidal magnetic field
and plasma density. Combining the two scaling laws ob-
tained by the authors comes the experimental scaling for
the level of magnetic turbulence

δB

B
∝ B−3√ne, (16)

where ne stands for the line averaged central density.
It follows from Eq. (16) that the previous threshold-
like limit on magnetic turbulence for disruption should
also be a density limit and that a high magnetic field is
beneficial.
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