Keywords: Internet, TCP, window flow control, fluid approximation, stability, performance evaluation, fairness Internet, TCP, contrôle de flux à fenêtre, approximation fluide, stabilité, évaluation de performance, équité

We compare the efficiency of the flow control of two versions of TCP, the transmission control protocol of the Internet: the current version called Reno, and a recently proposed version called Vegas. By means of a fluid approximation, we show that due to the use of round-trip times measurement, the window dynamics of TCP Vegas are much more stable than those of TCP Reno, resulting in a much more efficient utilization of the network resources. In addition, whereas TCP Reno discriminates against users with long propagation delays, TCP Vegas fairly shares the available bandwidth between the users, whatever their propagation delays.

Introduction

Most of today's Internet traffic is generated by traditional data transfer applications such as HTTP, NNTP or FTP connections 1 . These applications which are usually not sensitive to the delivery time of each individual packet, but rather to the total transfer time of the data, are often referred to as elastic applications, as opposed to real-time applications. They use largely TCP, which provides end-to-end control over the "best-effort" service of IP. The role of TCP, apart from ensuring a reliable delivery of the packets, is to adapt the sending rate of the source to the capacity of the network. Without flow control, the source could indeed saturate one or several routers, which would cause many losses and retransmissions, resulting in a low "goodput". Thus TCP must face the trade-off of achieving a high utilization of the network resources while keeping the amount of data in the buffers as low as possible. The flow control of TCP is based on a window mechanism, which consists in limiting the number of packets sent by the source and not yet acknowledged by the destination. The efficiency of this mechanism depends greatly on the choice of the window size, as shown in Figure 1. Unfortunately, due to the heterogeneity of the Internet, the "good" value of the window size is not known a priori. Moreover, it depends on dynamic parameters of the network, such as the number of connections sharing the same link. For these reasons, the window mechanism of TCP is adaptive. The window size is initially set to 1 and then evolves according to the following algorithm [START_REF] Jacobson | Congestion avoidance and control[END_REF], where ACK denotes the reception of an acknowledgment:

W*

1 See Appendix A for the main abbreviations used in the paper

RR n°3563

Additive Increase every ACK do if then else

In the first phase called the slow-start phase, the window size is doubled each time acknowledgments have been received, that is every round-trip time (RTT), resulting in an exponential increase. In the second phase called the congestion avoidance phase, the window size is increased by one every RTT, resulting in a linear increase. The window threshold indicates when switching from one phase to the other. When a loss is detected by the expiry of a time-out (TO), the values of and are changed as follows:

Multiplicative Decrease every TO do where is a fixed parameter such that , typically set to 1/2. Thus the window mechanism of TCP consists roughly of cycles where the window size is initially set to 1 and increased constantly until a loss occurs2 . As a result, the current version of TCP called Reno oscillates between periods of "under-utilization" and periods of "over-utilization" of the network resources.

In order to avoid such a periodic behavior, a new version of TCP called Vegas was proposed in [START_REF] Brakmo | TCP Vegas: End to end congestion avoidance on a global Internet[END_REF]. The main idea is to use the RTT measurement to stabilize the window size close to the "good" value. More precisely, the source computes the minimum of all measured round-trip times , and evaluates the difference where is the expected throughput and is the actual throughput . Defining two fixed parameters and , typically set to 1 and 3 or 2 and 4, the congestion avoidance phase is then changed as follows:

Additive Increase-Decrease every RTT do if then else if then

Other modifications proposed in [START_REF] Brakmo | TCP Vegas: End to end congestion avoidance on a global Internet[END_REF], which concern the retransmission mechanism or the slow-start phase, are not considered in this paper. However, we will refer to this version of TCP where only the congestion avoidance phase is modified as TCP Vegas for convenience. In particular, both versions considered in the following have the same behavior as far as the slow-start phase and the loss detection and retransmission mechanisms are concerned. That is the reason why in the rest of the paper, we only focus on the steady behavior of TCP Reno and TCP Vegas, where the congestion avoidance phase plays a crucial role.

The goal of this paper is to compare the efficiency of the flow control of TCP Reno and TCP Vegas, in terms of utilization of the network resources. As noted above, we are not interested in error control mechanisms, since both protocols do not differ at this stage. In particular, we only model losses which have an impact on the flow control, namely those which are due to buffer overflow, and cause the expiry of a time-out and the window reduction according to the multiplicative decrease algorithm.

The model and the fluid approximation used for the analysis are described in next section. In Section 3, we compare the stable behavior of TCP Reno and TCP Vegas by studying the steady state of a fixed number of connections sharing the same link. Using this, we then compare in Section 4 the performance of TCP Reno and TCP Vegas, both in terms of utilization of the available bandwidth and buffer occupation, when the number of connections is dynamic, namely when the starting times of the connections and the size of the transferred files are random. Finally, we consider in Section 5 the problem of the fair sharing of the available bandwidth, when the connections have different propagation delays. Section 6 concludes the paper.

Model

Network dynamics

Consider a single connection going through FIFO routers, and controlled by a window of fixed size . Assuming that the source can always use the transmission capacity allowed by the flow control (which is indeed the case for most connections, which consist of the transfer of a single file), and representing the cross traffic at each router by an exogenous flow, the model corresponds the open-closed queueing network of Figure 2. It turns out that this model, which was studied in [START_REF] Lazar | Optimal flow control of a class of queueing networks in equilibrium[END_REF][START_REF] Mitra | Asymptotically optimal design of congestion control for high speed data networks[END_REF] in the particular case of exponential service times and Poisson arrival processes, is untractable in the more realistic situation where the service times are deterministic and the arrival processes generally distributed. In particular, it was shown in [START_REF] Baccelli | Window flow control in FIFO networks with cross traffic[END_REF] that the throughput of the controlled connection depends in a crucial way on the statistical characteristics of the cross traffic. However, it is possible to give tight bounds on its value. Denote by the available bandwidth of the controlled connection, defined by [START_REF] Ahn | Experience with TCP Vegas: Emulation and experiment[END_REF] where is the service rate at queue and the traffic intensity of the cross flow at that queue, and let be the propagation delay of the packets of the controlled connection (that is the round-trip time minus the queueing delays). Then the following inequality always holds true:

Source Destination

In addition, this bound is tight when the size of the packets is small (see [START_REF] Baccelli | Window flow control in FIFO networks with cross traffic[END_REF]), that is when the transmission times are small compared to the propagation delay , which is indeed the case in current high-speed communication networks. Thus in the fluid approximation, we have As shown in Figure 3, the model reduces then to a single bottleneck, namely the queue which reaches the minimum in the right-hand side of (1). Denoting by the available buffer size at this node (that is , where is the buffer size of router), the maximum allowed window size (without buffer overflow) is given by The resulting throughput curve is shown in Figure 4. This curve is an idealized version of that of Figure 1. It is clear that the optimal window size is the bandwidth-delay product . In this case, the controlled connection uses all the available bandwidth and no data packet is buffered in the network. In the following, the window size of the connection is not static but varies according to the algorithms of TCP Reno or TCP Vegas. Though the window size is now a function of time, we assume that the network dynamics are sufficiently fast compared to the window dynamics, so that the system is always in the steady state described above. In particular, the throughput of the TCP connection is still given at any time by [START_REF] Baccelli | Window flow control in FIFO networks with cross traffic[END_REF] and from Little's law, we get at any time ,

INRIA Source Destination
(3)

RR n°3563

Window dynamics

Since the slow-start phase is very short compared to the congestion avoidance phase (due to the exponential increase of the window), it can be neglected in the evaluation of long-range performance criteria we are interested in. In the congestion avoidance phase, the window size increases (or decreases) linearly at rate 1/RTT. Provided the window size is sufficiently large, it may be modeled by a continuous function of time. This leads to the following equations for the window evolution of TCP Reno:

TCP Reno (4)
Concerning TCP Vegas, since the first packet of the connection experiments no queueing delay, the minimum of all measured round-trip times is reached immediately and is equal to the propagation delay . This leads to the following equations for the window evolution of TCP Vegas:

TCP Vegas (5)
Here, is given by [START_REF] Keshav | A control-theoretic approach to flow control[END_REF] where if and if (the value of for the critical values and of belongs respectively to the intervals and), and represents the buffer occupation, performed by the source thanks to the RTT measurement, namely [START_REF] Lakshman | Performance analysis of window-based flow control using TCP/IP: The effect of high bandwidth-delay products and random loss[END_REF] INRIA Hence, the window algorithm of TCP Vegas aims at stabilizing the window size so as to have between and packets buffered in the network, that is to a value very close to (and above) the optimal value (see Figure 5 below). In the next section, we describe in details this stable behavior in the case of multiple connections.

Stability

In this section, we consider a fixed number of connections which use the same version of TCP, either Reno or Vegas, to transfer a single (large) file through the same link. These connections are assumed to be homogeneous, that is to experiment the same propagation delay (the case of heterogeneous connections is investigated in Section 5). In addition, the connections are assumed to be synchronized, in the sense that in case of buffer overflow, all connections detect a loss and multiply their window size by , according to the multiplicative decrease algorithm described in Section 1. This synchronization phenomenon was reported for instance in [START_REF] Lakshman | Performance analysis of window-based flow control using TCP/IP: The effect of high bandwidth-delay products and random loss[END_REF][START_REF] Shenker | Some observations on the dynamics of a congestion control algorithm[END_REF].

We index these connections by , and denote by the window size of connection at time . We assume that each connection started at some negative time , and we focus on the evolution of the window sizes for non-negative times . For any , we denote by the total window size at time , and by and respectively the total throughput and the total buffer occupation at time .

TCP Reno

From the FIFO assumption, each of the TCP Reno connections experiments the same RTT. In view of (4), the window sizes of two connections , have the same dynamics: and

In addition, it follows from (3) and (4) that when when when (9)

Let be the first positive time when a loss occurs. As we shall see, losses occur then at times

, where is the period of the unique solution of (9), such that . More precisely, we have In addition, it follows from (8) that for any connection , Thus the dynamics are completely determined by the periodic function . The difference between the window sizes tends to zero when tends to infinity, so that in the steady state, the throughput of each connection is a fraction of the total throughput . We will distinguish between two cases, depending on the value of with respect to . We define the ratio between the bandwidth-delay product and the buffer size at the bottleneck node (is the normalized buffer size, as defined in [START_REF] Lakshman | Performance analysis of window-based flow control using TCP/IP: The effect of high bandwidth-delay products and random loss[END_REF]). Note that

In both cases, we evaluate the average throughput and the average buffer occupation, respectively defined by Remark (Insensitivity). In both cases, the (total) average throughput and the average buffer occupation do not depend on the number of connections .

Numerical example. Consider the case packets/s, ms, and packets. For a packet size of 500 bytes, this corresponds to a bottleneck of speed 4 Mb/s with a buffer of 50 K-bytes. Figure 6 shows the window evolution of connections, starting from the initial state , and , when the parameter is equal to 1/2.

TCP Vegas

In the following, we assume that each of the TCP Vegas connections measures accurately , so that the dynamics of each window size are given by (5), where the value of depends on the buffer occupation of connection , namely

INRIA

Remark (Perfect measurement).

This assumption, which is reasonable in the case of a single connection, may be not realistic in the case of multiple connections, since the queueing delays may be positive at the starting times of the connections. This question is discussed in details in Appendix B.

If the window sizes stabilize, it follows then from (6) that their values in the steady state must satisfy the inequalities:

In particular, RTT cannot be equal to the round-trip propagation delay , so that denoting by the total window size in the steady state, we get from (3), and

In particular, the total throughput and the buffer occupation satisfy in this case and (13)

Hence, a necessary condition for the window sizes to stabilize is that . In fact, we will show that this condition is also sufficient. We first need the following property.

Contraction Property. For any connections

, such that , the function is non-negative and non-increasing.

Proof. Since the window dynamics of connections and are the same, if the window sizes coincide at some time , then they coincide forever. The first part of the lemma follows then from the fact that the functions and are piecewise continuous, and both multiplied by at the discontinuity points. Now using the fact that for all , we get from (5) and (6), and which implies that the non-negative function is non-increasing.

Stabilization. If

, there exists a finite time from which no loss occurs. In addition, the window sizes stabilize in finite time, that is for any initial condition, there exists and a -uple , which satisfies (12), such that Proof. Let and be respectively the minimum and the maximum of all window sizes at time 0. From the above property, and remain respectively the minimum and the maximum of all window sizes at any time , and we can define

We first show that there exists a finite time from which no loss occurs. Note that when a loss occurs, all windows are multiplied by , so that the result is immediate if . In the case , define

Note that by hypothesis. Define such that and assume that for some ,

We will show that in this case, the total window size decreases at time , and this will conclude the first part of the proof. Since , we have

Using the inequalities we obtain Hence, , and since is the minimum of all buffer occupations at time , all window sizes decrease at time .

INRIA

To prove the second part of the result, we first note that since the function is non-negative and non-increasing, its derivative tends to zero, and there exists such that where is the maximum RTT, namely Let be a fixed time larger than . If , the system is in equilibrium at time , with

If

, we will show that , so that all window sizes are equal at time , and the system reaches in finite time , the equilibrium Assume that (equivalently). If , then from (5), so that there exists such that and If , then , so that and there actually exists such that and This implies a contradiction. We show by a similar argument that implies , so that the system reaches in finite time the equilibrium Periodic Regime If , the system reaches in finite time the same periodic regime as that of TCP Reno connections, that is there exists , such that where is the periodic function of period defined in §3. 1, and Proof. We use the same notations as above. In particular, and denote respectively the minimum and the maximum of all window sizes at any time . Let be such that and let be such that no loss occurs at time . Since , we have If , then by the same argument as that used in the proof of stabilization, there exists such that no loss occurs at time , and . Hence, a contradiction. Therefore, , and from (6), . Thus at any time , either a loss occurs or all window sizes increase at rate 1/RTT. In particular, each TCP Vegas connection behaves exactly like a TCP Reno connection, and the result follows from §3.1.

In view of the above results, the ratio 3 (14) is a critical value for the number of TCP Vegas connections. If , the window sizes stabilize in finite time, whereas if , the mechanisms introduced in the congestion avoidance phase of TCP Vegas are not effective, and after a transient period, the system behaves exactly like TCP Reno connections. 3 For any , denotes the only integer belonging to .

INRIA

It is worth noting that when the window sizes stabilize, there is a continuum of possible equilibria, depending on the initial state. In view of (12), denoting respectively by and the minimum and the maximum of all window sizes in the steady state, we have so that the fairness of TCP Vegas depends in a crucial way on the ratio . In the case and for instance, some users could receive three times more bandwidth than other users. On the other hand, when , TCP Vegas is stable and fair, since the window sizes converge in finite time to the single equilibrium, given by (15)

In view of the above results, the main parameter of TCP Vegas is , since it determines the maximum number of connections under which the system stabilizes, according to (14). It is clear that a positive value for is required, but it should not be chosen too large, so as to keep the amount of data per connection buffered in the network as low as possible. Thus reasonable values for are 1 or 2, as proposed in [START_REF] Brakmo | TCP Vegas: End to end congestion avoidance on a global Internet[END_REF]. Concerning the parameter , it was introduced to allow the window to stabilize and to make the protocol less sensitive to small variations in the available bandwidth. In fact, there is a trade-off on the choice of the difference .

Large vs small . For large values of (compared to), TCP Vegas is robust but unfair, whereas for small values of , TCP Vegas is fair (at least for homogeneous connections, the general case is treated in Section 5), but not robust, in the sense that small variations in the available bandwidth may lead to changes in the window size.

In the limiting case , the steady state would actually consist of variations of the window sizes around the equilibrium (due to the packetization effect), a phenomenon which is not captured by the fluid approximation used. We argue that these oscillations which are very slow (due to the linear increasing-decreasing rate of the window) and of small magnitude, do not significantly damage the performance of the flow control. Furthermore, these oscillations may be suitable to make the protocol responsive to sporadic changes in the available bandwidth. Note that in the worst case where these oscillations are in phase, the maximum number of connections under which the window sizes stabilize would be changed into

T. Bonald

Thus in the following, we will always consider the case , and the subsequent analysis is valid only for practical implementations of TCP Vegas where is very small compared to . However, it is clear from (12) that in other cases (for instance when is equal to [START_REF] Ahn | Experience with TCP Vegas: Emulation and experiment[END_REF][START_REF] Brakmo | TCP Vegas: End to end congestion avoidance on a global Internet[END_REF] or [START_REF] Baccelli | Window flow control in FIFO networks with cross traffic[END_REF][START_REF] Jacobson | Congestion avoidance and control[END_REF], as proposed in [START_REF] Brakmo | TCP Vegas: End to end congestion avoidance on a global Internet[END_REF]), the following results provide upper and lower bounds on the performance of the protocol.

Example. Consider the same example as above, but in the case of 3 TCP Vegas connections, and with the parameters . As shown in Figure 7, the total window size stabilizes to the value , which is very close to the optimal window size .

Performance Evaluation

In this section, we consider a model where the number of connections sharing the same link is dynamic. More precisely, we assume that the starting times of the connections form a Poisson process of intensity (this assumption is reasonable as soon as these connections are generated by a large number of users which have mutually independent behaviors), and that the sizes of the files are i.i.d., with a general distribution of mean .

INRIA

All connections use the same version of TCP, either Reno or Vegas. We assume that the sizes of the files are sufficiently large, so that at any time , the connections can be assumed to be in the steady state described in Section 3. Under some condition on the load of the network, defined by , we will show that this system is stable. Let , and be respectively the number of connections, the total throughput and the buffer occupation in the steady state. We will evaluate the performance of TCP Reno and TCP Vegas both in terms of utilization and congestion of the network, respectively defined by and We will distinguish between two cases, depending on the value of the bandwidth-delay product compared to buffer size . As in §3.1, we denote by the ratio between bandwidth-delay product and the buffer size.

Small bandwidth-delay product

When

, both TCP Reno and TCP Vegas use all the available bandwidth, that is the total throughput is equal to whatever the number of connections, and In addition, the number of connections present in the system corresponds to the number of customers in a queue, so that the stability condition is , and in the steady state, the law of the number of connections is geometric:

Since the buffer occupation of TCP Reno is not sensitive to the number of connections, we immediately get from (11), (16) Using (15), we obtain that is

RR n°3563 0 1 2 -1 +1 +2 Figure 8: Birth-death process
Using this, we get from the equality that In the same way, we get from the equality that

Discussion

The results obtained are illustrated by Figures 9 and 10 for a buffer size , and with the usual parameters and . Note that in this case, the critical value of the bandwidth-delay product is . The stability condition , where if otherwise is also represented in both figures. When the load tends to its maximal value , the mean number of connections becomes large, so that TCP Vegas has the same behavior as TCP Reno (see §3.2) and thus the same performance. Except for this case, TCP Vegas clearly outperforms TCP Reno, both in terms of buffer occupation and utilization of the available bandwidth.

For small bandwidth-delay products (), both TCP Reno and TCP Vegas fully utilize the available bandwidth. The major difference is that the buffer occupation of TCP Vegas is much lower than the buffer occupation of TCP Reno. In particular, whereas the buffer occupation of TCP Vegas is very close to zero whatever the load of the network, we have in view of (16), when that is in the case for small values of the bandwidth-delay product. Note that the congestion would be even more severe for higher values of . This gap between both protocols reflects the benefits of the window mechanism of TCP Vegas, which consists in stabilizing the windows instead of discovering the available bandwidth by filling the buffer.), TCP Reno under-utilizes the network resources, due to the fact that when a loss occurs, all windows are multiplied by , and there is not enough fluid to "fill the pipe" . In particular, we have in view of (17), when that is in the case when is close to packets. On the other hand, except when the load of the network is very high, TCP Vegas fully utilizes the available bandwidth. Now assume that are very large. In this case, the buffer is almost always empty and the RTT are roughly equal to the propagation delays. Hence, we have in the steady state, and by Little's law, Thus in the case of large bandwidth-delay products, TCP Reno significantly discriminates against connections with larger propagation delays, as already observed in [START_REF] Lakshman | Performance analysis of window-based flow control using TCP/IP: The effect of high bandwidth-delay products and random loss[END_REF].

Finally, we consider the case of connections (denoted with a prime) with small bandwidth-delay products, and connections with large bandwidth-delay products, still denoted by . We use the same approximations as above, namely and From previous analysis, the connections with small propagation delays have the same window dynamics, and thus will have the same throughput in the steady state, roughly equal to . In addition, the buffer occupation satisfies the differential equation As in §3.1, the steady state of the system is periodic with period On the other hand, since the window sizes of the connections with large propagation delays increase linearly, respectively at rates , we have where are the window sizes of these connections when a loss occurs. Since the average throughput of connection is given by we finally get

RR n°3563

Numerical example. Consider as above a bottleneck of speed packets/s, with a buffer size of packets. The parameter is equal to 1/2. Figure 11 shows the throughput evolution of connections with small propagation delays (ms, ms), starting from the initial window sizes , , and a single connection with a large propagation delay (ms), starting from the initial window size . By simulation [12], we find the following bandwidth sharing in the steady state: and As expected, both connections with small propagation delays receive roughly half of the available bandwidth, whereas the third connection receives only a small fraction of it, namely

TCP Vegas

As in §3.2, we first note that if the windows stabilize, there is a unique possible equilibrium , characterized by the equations so that

In particular, each connection receives the same throughput in the steady state, whatever its propagation delay, and there is a total of packets buffered at the bottleneck node, as in the case of homogeneous connections. Thus is clearly a necessary condition for stabilization. We guess that this condition is also sufficient. However, we will prove only the following partial result. By convention, we assume that . 12, after a transient period, the available bandwidth is equally shared between the 3 connections.

Stabilization

Conclusion

We have used a fluid approximation to compare the efficiency of the flow control of TCP Reno and TCP Vegas. Since these protocols differ essentially in their steady behavior (due to different congestion avoidance phases), we have focused on long-term performance criteria such as the average throughput and the average buffer occupation. The main conclusion is that TCP Vegas, the window mechanism of which consists in stabilizing the window size to the optimal value plus a number of "extra" packets comprised between and , is much more stable, efficient and fair than TCP Reno. It is clear that the model used for the analysis is an idealized representation of a TCP connection, as explained in Section 2. However, it gives some insights on the steady behavior of both protocols for sufficiently large windows (so that the discrete nature of the window mechanism may be neglected), and for large file transfers (so that the steady state described in Section 3 may be effectively reached). Another interesting result is that the window mechanism TCP Vegas is much more conservative than that of TCP Reno, and that in the worst case, TCP Vegas behaves exactly as TCP Reno, namely when the number of connections sharing the same bottleneck is larger than , where is the buffer size of this bottleneck. As a result, the performance of the Internet cannot a priori be damaged by the use of TCP Vegas instead of TCP Reno. On the other hand, the main expected benefits of TCP Vegas are the following:

• Since the buffers are not filled up by TCP Vegas connections, the queueing delays in the Internet may be significantly decreased, and this would be of great interest, especially for real-time applications. As illustrated by Figure 9, this effect should be significant when the bandwidth-delay product of the link is small;

• When the bandwidth-delay product of the link is large, TCP Vegas fully utilizes the available bandwidth, whereas TCP Reno utilizes only a fraction of it (see Figure 10). Equivalently, the buffer requirements of TCP Vegas do not depend on the bandwidthdelay product of the link, but only on the number of connections sharing this link, which is a much more convenient and realistic design rule.

It is worth noting that this last feature makes TCP Vegas suitable for satellite links. In this case, the bandwidth-delay product is large, and it is crucial to use all the (costly) available bandwidth. In addition, losses which are due to buffer overflow must be avoided, since starting a slow-start phase takes a long time due to long propagation delays. Finally, since the congestion avoidance phase of TCP Vegas allows the window to decrease (this is clearly illustrated by Figure 7), it might not be necessary to fix an arbitrary limit to the window size depending on the bandwidth-delay product, as proposed in [START_REF] Jacobson | TCP Extensions for High Performance[END_REF] with the window scale option.

T. Bonald

The last issue, which was not addressed in this paper, concerns the deploying of TCP Vegas in the Internet. It may be argued that due to its conservative strategy, a TCP Vegas user will be severely disadvantaged compared to TCP Reno users, as illustrated in Figure 13 for the same numerical values as above (packets/s, ms and packets). If such a discrimination arises, the only way to incite users to behave "socially" (that is to use TCP Vegas instead of TCP Reno) would be to adopt a pricing scheme which penalizes resource-consuming behaviors. However, it is still unclear whether the expected drop in unnecessary retransmissions due to the conservative window mechanism would not finally result in a higher "goodput" for TCP Vegas users, as observed in [START_REF] Ahn | Experience with TCP Vegas: Emulation and experiment[END_REF][START_REF] Brakmo | TCP Vegas: End to end congestion avoidance on a global Internet[END_REF] by simulations and measurements in the Internet. If this turns out to be the general case (here analytical results would be of great help), it is likely that TCP Vegas, which improves both the individual utility of the users and the global utility of the network, will gradually replace TCP Reno. Therefore, the buffer occupation in presence of connections is smaller than . With the assumption of a perfect measurement, we have obtained a buffer occupation equal to . Thus we can consider that the conclusions of the paper are not significantly biased by this assumption, as far as the performance criteria are concerned. Concerning the fairness, this last result tends to show that TCP Vegas discriminates against older connections since their estimation of the propagation delay is more accurate thus smaller than that of recent connections. In other words, the shortest connections are favoured, and it may be argued that this is a desirable feature of a transmission control protocol [START_REF] Roberts | Bandwidth sharing and admission control for elastic traffic[END_REF].

Figure 1 :

 1 Figure 1: Typical "goodput" curve

Figure 2 :

 2 Figure 2: Discrete model with cross traffic

Figure 3 :

 3 Figure 3: Fluid approximation

Figure 4 :

 4 Figure 4: Throughput curve

Figure 5 :

 5 Figure 5: Window stabilization of TCP Vegas

 and Case . The cycles consist of two phases of lengths and . During the first phase, we have and this phase ends when . During the second phase, we have so that and this phase ends when . The total duration of a cycle is . From (2), the average throughput is given by and the average occupation of the buffer by After simple calculations, we obtain and (10) Case . The cycles consist of a single phase,

Figure 6 :

 6 Figure 6: Window evolution of 3 TCP Reno connections

Figure 7 :

 7 Figure 7: Window evolution of 3 TCP Vegas connections

Figure 9 :

 9 Figure 9: Buffer occupation

Figure 10 :

 10 Figure 10: Utilization of the available bandwidth

Figure 11 :

 11 Figure 11: Discrimination of TCP Reno against connections with large propagation delays

Figure 12 :

 12 Figure 12: Fairness of TCP Vegas

Figure 13 :

 13 Figure 13: Competition between TCP Reno and TCP Vegas

 In particular, previous condition is satisfied, no loss can occur due to the fact that , and converges in finite time to . Thus in the steady state, the buffer occupation of each connection is equal to , and the window sizes are equal to , where in view of expression (18),

					T. Bonald
	Example. Consider the same example as above, where	TCP Vegas connections
	with propagation delays	ms,	ms and	ms, start with initial window
	sizes	,	, and	. As shown in Figure
		. Assume that at time	, the connections	, are in equilib-
	rium, that is		
	If	, the windows stabilize in finite time, that is there exists	such that
	Proof. From the expression		
					(18)
	we get using (5),		
	Hence, a sufficient condition for	, to remain equal to is that
	But in this case, we have		

In fact, the window size is also limited by the receiver's advertised window, typically set to 64 K-bytes, or more with the window scale option[START_REF] Jacobson | TCP Extensions for High Performance[END_REF]. In the following, we assume that this parameter does not constrain the increase of the window.INRIA

RR n°3563

For any , denotes the only integer belonging to .INRIA

This is not the case of the available bandwidth for instance. The fact that this dynamic parameter of the connection varies with respect to the intensity of the cross traffic makes its estimation very difficult[START_REF] Keshav | A control-theoretic approach to flow control[END_REF].RR n°3563

Large bandwidth-delay product

In the case , we have seen in §3.1 that TCP Reno does not use all the available bandwidth, but only a fraction of it, given in view of [START_REF] Roberts | Bandwidth sharing and admission control for elastic traffic[END_REF] by Hence, the number of TCP Reno connections present in the system still corresponds to the number of customers in a queue, but for a server of speed instead of . In particular, the stability condition of the system is now Under this condition, we have (17) and from [START_REF] Roberts | Bandwidth sharing and admission control for elastic traffic[END_REF], Concerning TCP Vegas, the total throughput depends on the number of connections. More precisely, when when

Hence, the stability condition of the system is still , but the number of connections in the steady state is not geometric, and depends on the distribution of the file sizes. However, when is sufficiently large compared to , it is likely that is not very sensitive to the distribution of the file sizes. Thus to get analytical results, we will assume that the law of the file sizes is exponential in this particular case. The number of connections is then a birth-death process, shown in Figure 8

Fairness

In this section, we focus on the case of heterogeneous connections, which do not experiment the same propagation delay. As in Section 3, we consider a fixed number of connections sharing the same bottleneck. We denote by the propagation delay of connection . Denoting by the total buffer occupation as above, we have When the buffer is non-empty (

), the RTT of connection is given by By Little's law, we have , where is the throughput of connection . Using the fact that , we obtain the following implicit expression for :

TCP Reno

The dynamics of the system consist of previous expressions and the window dynamics of each connection, namely Since this system is not tractable in general, we will consider asymptotic results in the ratios of the bandwidth-delay products with respect of the buffer size. We first assume that are very small. After a transient period, the buffer is never empty and the RTT are roughly the same (equal to the queueing delay). In particular, the difference between window sizes vanishes as in §3.

B Measurement of RTTmin

Throughout the paper, we have made the assumption that the measurement of the minimum RTT on which the window mechanism of TCP Vegas is based was perfect. In particular, was always taken equal to the round-trip propagation delay . In this appendix, we discuss the validity of this assumption.

First note that the measurement of the propagation delay is robust in the sense that it concerns a static parameter of the connection 4 and it can only improve with time. However, in the particular (and rare) case where the route changes during the connection time, the propagation delay may increase and thus be under-estimated by the source, resulting in a poor utilization of the network resources. To avoid such a misbehavior, one possible solution would be to evaluate the minimum of the last RTT measures instead of the minimum of all RTT measures. But the parameter should then be carefully chosen in order to discriminate between changes in the route of the packets and transient congestion of the network. In the general case where the route remains the same during the connection time, the propagation delay can only be over-estimated (due to the queueing delays), thus cannot affect the performance of TCP Vegas in terms of utilization of the available bandwidth, but only in terms of buffer occupation.

T. Bonald

To evaluate the effect of biased measurement on the buffer occupation, we consider as in Section 3.2 the case of TCP Vegas connections sharing the same link, and starting respectively at times . We denote by the measure of connection , and consider the worst case where this measure is equal to the RTT of the first packet of this connection. In the case , the steady state of these connections is characterized by the equations:

In particular, the RTT is larger than , thus larger than the round-trip propagation delay . Denoting