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Abstract: We compare the efficiency of the flow control of two versions of TCP, the
transmission control protocol of the Internet: the current version called Reno, and a recently
proposed version called Vegas. By means of a fluid approximation, we show that due to the
use of round-trip times measurement, the window dynamics of TCP Vegas are much more
stable than those of TCP Reno, resulting in a much more efficient utilization of the network
resources. In addition, whereas TCPReno discriminates against users with long propagation
delays, TCP Vegas fairly shares the available bandwidth between the users, whatever their
propagation delays.
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Comparaison de TCP Reno et TCP Vegas
par Approximation Fluide

Résumé : Nous comparons l’efficacité du contrôle de flux de deux versions de TCP, le
protocole de contrôle de transmission de l’Internet : la version actuelle appelée Reno, et une
version récemment proposée appelée Vegas. Par une approximation fluide, nous montrons
que grâce à l’utilisation des mesures de temps de transmission des paquets, la dynamique
de la fenêtre de TCP Vegas est beaucoup plus stable que celle de TCP Reno, et conduit à
une utilisation bien plus efficace des ressources du réseau. De plus, alors que TCP Reno
défavorise les utilisateurs ayant de long délais de propagation, TCP Vegas partage la bande
passante équitablement entre les utilisateurs, quelque soient leurs délais de propagation.

Mots-clés : Internet, TCP, contrôle de flux à fenêtre, approximation fluide, stabilité,
évaluation de performance, équité.
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1 Introduction
Most of today’s Internet traffic is generated by traditional data transfer applications such as
HTTP, NNTP or FTP connections1 . These applications which are usually not sensitive to
the delivery time of each individual packet, but rather to the total transfer time of the data,
are often referred to as elastic applications, as opposed to real-time applications. They use
largely TCP, which provides end-to-end control over the “best-effort” service of IP. The role
of TCP, apart from ensuring a reliable delivery of the packets, is to adapt the sending rate
of the source to the capacity of the network. Without flow control, the source could indeed
saturate one or several routers, which would cause many losses and retransmissions, result-
ing in a low “goodput”. Thus TCP must face the trade-off of achieving a high utilization
of the network resources while keeping the amount of data in the buffers as low as possible.

W* Window Size

Goodput

Figure 1: Typical “goodput” curve

The flow control of TCP is based on a window mechanism, which consists in limiting
the number of packets sent by the source and not yet acknowledged by the destination. The
efficiency of this mechanism depends greatly on the choice of the window size, as shown in
Figure 1. Unfortunately, due to the heterogeneity of the Internet, the “good” value of
the window size is not known a priori. Moreover, it depends on dynamic parameters of the
network, such as the number of connections sharing the same link. For these reasons, the
window mechanism of TCP is adaptive. The window size is initially set to 1 and then
evolves according to the following algorithm [4], where ACK denotes the reception of an
acknowledgment:

1See Appendix A for the main abbreviations used in the paper
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4 T. Bonald

Additive Increase

every ACK do
if then
else

In the first phase called the slow-start phase, the window size is doubled each time
acknowledgments have been received, that is every round-trip time (RTT), resulting in an
exponential increase. In the second phase called the congestion avoidance phase, the win-
dow size is increased by one every RTT, resulting in a linear increase. The window threshold

indicates when switching from one phase to the other. When a loss is detected by the
expiry of a time-out (TO), the values of and are changed as follows:

Multiplicative Decrease

every TO do

where is a fixed parameter such that , typically set to 1/2. Thus the window
mechanism of TCP consists roughly of cycles where the window size is initially set to 1
and increased constantly until a loss occurs2. As a result, the current version of TCP called
Reno oscillates between periods of “under-utilization” and periods of “over-utilization” of
the network resources.

In order to avoid such a periodic behavior, a new version of TCP called Vegas was
proposed in [3]. The main idea is to use the RTT measurement to stabilize the window
size close to the “good” value. More precisely, the source computes the minimum of all
measured round-trip times , and evaluates the difference

where is the expected throughput and is the actual throughput .
Defining two fixed parameters and , typically set to 1 and 3 or 2 and 4, the congestion
avoidance phase is then changed as follows:

2In fact, the window size is also limited by the receiver’s advertised window, typically set to 64 K-bytes, or
more with the window scale option [5]. In the following, we assume that this parameter does not constrain the
increase of the window.

INRIA
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Additive Increase-Decrease

every RTT do
if then
else if then

Other modifications proposed in [3], which concern the retransmission mechanism or
the slow-start phase, are not considered in this paper. However, we will refer to this version
of TCP where only the congestion avoidance phase is modified as TCP Vegas for conve-
nience. In particular, both versions considered in the following have the same behavior as
far as the slow-start phase and the loss detection and retransmission mechanisms are con-
cerned. That is the reason why in the rest of the paper, we only focus on the steady behavior
of TCP Reno and TCP Vegas, where the congestion avoidance phase plays a crucial role.

The goal of this paper is to compare the efficiency of the flow control of TCP Reno and
TCP Vegas, in terms of utilization of the network resources. As noted above, we are not
interested in error control mechanisms, since both protocols do not differ at this stage. In
particular, we only model losses which have an impact on the flow control, namely those
which are due to buffer overflow, and cause the expiry of a time-out and the window reduc-
tion according to the multiplicative decrease algorithm.

The model and the fluid approximation used for the analysis are described in next sec-
tion. In Section 3, we compare the stable behavior of TCP Reno and TCP Vegas by studying
the steady state of a fixed number of connections sharing the same link. Using this, we then
compare in Section 4 the performance of TCP Reno and TCP Vegas, both in terms of uti-
lization of the available bandwidth and buffer occupation, when the number of connections
is dynamic, namely when the starting times of the connections and the size of the trans-
ferred files are random. Finally, we consider in Section 5 the problem of the fair sharing of
the available bandwidth, when the connections have different propagation delays. Section
6 concludes the paper.

2 Model

2.1 Network dynamics

Consider a single connection going through FIFO routers, and controlled by a window of
fixed size . Assuming that the source can always use the transmission capacity allowed
by the flow control (which is indeed the case for most connections, which consist of the
transfer of a single file), and representing the cross traffic at each router by an exogenous
flow, the model corresponds the open-closed queueing network of Figure 2.
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6 T. Bonald

Source Destination

Figure 2: Discrete model with cross traffic

It turns out that this model, which was studied in [8, 9] in the particular case of exponen-
tial service times and Poisson arrival processes, is untractable in the more realistic situation
where the service times are deterministic and the arrival processes generally distributed. In
particular, it was shown in [2] that the throughput of the controlled connection depends
in a crucial way on the statistical characteristics of the cross traffic. However, it is possible
to give tight bounds on its value. Denote by the available bandwidth of the controlled
connection, defined by

(1)

where is the service rate at queue and the traffic intensity of the cross flow at that
queue, and let be the propagation delay of the packets of the controlled connection (that is
the round-trip time minus the queueing delays). Then the following inequality always holds
true:

In addition, this bound is tight when the size of the packets is small (see [2]), that is when
the transmission times are small compared to the propagation delay , which
is indeed the case in current high-speed communication networks. Thus in the fluid approx-
imation, we have

As shown in Figure 3, the model reduces then to a single bottleneck, namely the queue
which reaches the minimum in the right-hand side of (1). Denoting by the available
buffer size at this node (that is , where is the buffer size of router ), the
maximum allowed window size (without buffer overflow) is given by

INRIA
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Source Destination

Figure 3: Fluid approximation

The resulting throughput curve is shown in Figure 4. This curve is an idealized version
of that of Figure 1. It is clear that the optimal window size is the bandwidth-delay product

. In this case, the controlled connection uses all the available bandwidth and no
data packet is buffered in the network.

*

Throughput

Window Size

Figure 4: Throughput curve

In the following, the window size of the connection is not static but varies according to
the algorithms of TCP Reno or TCP Vegas. Though the window size is now a function of
time, we assume that the network dynamics are sufficiently fast compared to the window
dynamics, so that the system is always in the steady state described above. In particular, the
throughput of the TCP connection is still given at any time by

(2)

and from Little’s law, we get at any time ,

(3)

RR n° 3563
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2.2 Window dynamics

Since the slow-start phase is very short compared to the congestion avoidance phase (due to
the exponential increase of the window), it can be neglected in the evaluation of long-range
performance criteria we are interested in. In the congestion avoidance phase, the window
size increases (or decreases) linearly at rate 1/RTT. Provided the window size is sufficiently
large, it may be modeled by a continuous function of time. This leads to the following
equations for the window evolution of TCP Reno:

TCP Reno

(4)

Concerning TCPVegas, since the first packet of the connection experiments no queueing
delay, the minimum of all measured round-trip times is reached immediately and
is equal to the propagation delay . This leads to the following equations for the window
evolution of TCP Vegas:

TCP Vegas

(5)

Here, is given by

(6)

where if and if (the value of for the critical
values and of belongs respectively to the intervals and ), and
represents the buffer occupation, performed by the source thanks to the RTT measurement,
namely

(7)

INRIA
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Hence, the window algorithm of TCP Vegas aims at stabilizing the window size so as
to have between and packets buffered in the network, that is to a value very close to
(and above) the optimal value (see Figure 5 below). In the next section, we describe in
details this stable behavior in the case of multiple connections.

*

Throughput

Window Size

Diff

Figure 5: Window stabilization of TCP Vegas

3 Stability
In this section, we consider a fixed number of connections which use the same version
of TCP, either Reno or Vegas, to transfer a single (large) file through the same link. These
connections are assumed to be homogeneous, that is to experiment the same propagation
delay (the case of heterogeneous connections is investigated in Section 5). In addition,
the connections are assumed to be synchronized, in the sense that in case of buffer overflow,
all connections detect a loss and multiply their window size by , according to the multi-
plicative decrease algorithm described in Section 1. This synchronization phenomenon was
reported for instance in [7, 11].

We index these connections by , and denote by the window size
of connection at time . We assume that each connection started at some negative time
, and we focus on the evolution of the window sizes for non-negative

times . For any , we denote by the total window
size at time , and by and respectively the total throughput and the total buffer
occupation at time .

RR n° 3563
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3.1 TCP Reno

From the FIFO assumption, each of the TCP Reno connections experiments the same
RTT. In view of (4), the window sizes of two connections , have the same dynamics:

and
(8)

In addition, it follows from (3) and (4) that

when

when

when

(9)

Let be the first positive time when a loss occurs. As we shall see, losses occur then
at times , where is the period of the unique solution of (9), such that

. More precisely, we have

In addition, it follows from (8) that for any connection ,

Thus the dynamics are completely determined by the periodic function . The differ-
ence between the window sizes tends to zero when tends to infinity, so that in the steady
state, the throughput of each connection is a fraction of the total throughput .

We will distinguish between two cases, depending on the value of with respect
to . We define

the ratio between the bandwidth-delay product and the buffer size at the bottleneck node
( is the normalized buffer size, as defined in [7]). Note that

2For any , denotes the only integer belonging to .

INRIA
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In both cases, we evaluate the average throughput and the average buffer occupation, re-
spectively defined by

and

Case . The cycles consist of two phases of lengths and . During the
first phase, we have

and this phase ends when . During the second phase, we have

so that

and this phase ends when . The total duration of a cycle is .
From (2), the average throughput is given by

and the average occupation of the buffer by

After simple calculations, we obtain

and (10)

Case . The cycles consist of a single phase, namely

We have
and

that is

and (11)

RR n° 3563
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Remark (Insensitivity). In both cases, the (total) average throughput and the average
buffer occupation do not depend on the number of connections .

Numerical example. Consider the case packets/s, ms, and
packets. For a packet size of 500 bytes, this corresponds to a bottleneck of speed 4 Mb/s
with a buffer of 50 K-bytes. Figure 6 shows the window evolution of connections,
starting from the initial state , and , when the param-
eter is equal to 1/2.
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Figure 6: Window evolution of 3 TCP Reno connections

3.2 TCP Vegas

In the following, we assume that each of the TCP Vegas connections measures accurately
, so that the dynamics of each window size are given by (5), where the value

of depends on the buffer occupation of connection , namely

INRIA
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Remark (Perfect measurement). This assumption, which is reasonable in the
case of a single connection, may be not realistic in the case of multiple connections, since
the queueing delays may be positive at the starting times of the connections. This question
is discussed in details in Appendix B.

If the window sizes stabilize, it follows then from (6) that their values in
the steady state must satisfy the inequalities:

In particular, RTT cannot be equal to the round-trip propagation delay , so that denoting
by the total window size in the steady state, we get from (3),

and

(12)

In particular, the total throughput and the buffer occupation satisfy in this case

and (13)

Hence, a necessary condition for the window sizes to stabilize is that . In fact, we
will show that this condition is also sufficient. We first need the following property.

Contraction Property. For any connections , such that , the function
is non–negative and non–increasing.

Proof. Since the window dynamics of connections and are the same, if the window sizes
coincide at some time , then they coincide forever. The first part of the lemma follows
then from the fact that the functions and are piecewise continuous, and both
multiplied by at the discontinuity points.

Now using the fact that for all , we get from (5) and (6),

and

which implies that the non–negative function is non–increasing.

RR n° 3563
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Stabilization. If , there exists a finite time from which no loss occurs. In addition,
the window sizes stabilize in finite time, that is for any initial condition, there exists
and a –uple , which satisfies (12), such that

Proof. Let and be respectively the minimum and the maximum of all window
sizes at time 0. From the above property, and remain respectively the minimum
and the maximum of all window sizes at any time , and we can define

We first show that there exists a finite time from which no loss occurs. Note that when
a loss occurs, all windows are multiplied by , so that the result is immediate if . In
the case , define

Note that by hypothesis. Define such that

and assume that for some ,

We will show that in this case, the total window size decreases at time , and this will
conclude the first part of the proof. Since , we have

Using the inequalities

we obtain

Hence, , and since is the minimum of all buffer occupations at time , all
window sizes decrease at time .

INRIA
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To prove the second part of the result, we first note that since the function
is non–negative and non–increasing, its derivative tends to zero, and there exists
such that

where is the maximum RTT, namely

Let be a fixed time larger than . If , the system is in equilibrium
at time , with

If , we will show that , so that all window sizes are equal at time
, and the system reaches in finite time , the equilibrium

Assume that (equivalently ). If , then from (5),

so that there exists such that

and

If , then , so that

and there actually exists such that

and

This implies

a contradiction. We show by a similar argument that implies , so
that the system reaches in finite time the equilibrium

RR n° 3563
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Periodic Regime If , the system reaches in finite time the same periodic regime
as that of TCP Reno connections, that is there exists , such that

where is the periodic function of period defined in §3.1, and

Proof. We use the same notations as above. In particular, and denote respec-
tively the minimum and the maximum of all window sizes at any time . Let be such
that

and let be such that no loss occurs at time . Since , we have

If , then by the same argument as that used in the proof of stabilization, there
exists such that no loss occurs at time , and . Hence,

a contradiction. Therefore, , and from (6), . Thus at any
time , either a loss occurs or all window sizes increase at rate 1/RTT. In particular,
each TCP Vegas connection behaves exactly like a TCP Reno connection, and the result
follows from §3.1.

In view of the above results, the ratio3

(14)

is a critical value for the number of TCP Vegas connections. If , the window sizes
stabilize in finite time, whereas if , the mechanisms introduced in the congestion
avoidance phase of TCP Vegas are not effective, and after a transient period, the system
behaves exactly like TCP Reno connections.

3For any , denotes the only integer belonging to .

INRIA
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It is worth noting that when the window sizes stabilize, there is a continuum of possible
equilibria, depending on the initial state. In view of (12), denoting respectively by and
the minimum and the maximum of all window sizes in the steady state, we have

so that the fairness of TCP Vegas depends in a crucial way on the ratio . In the case
and for instance, some users could receive three times more bandwidth than

other users. On the other hand, when , TCP Vegas is stable and fair, since the window
sizes converge in finite time to the single equilibrium, given by

(15)

In view of the above results, the main parameter of TCP Vegas is , since it determines
the maximum number of connections under which the system stabilizes, according to (14).
It is clear that a positive value for is required, but it should not be chosen too large, so
as to keep the amount of data per connection buffered in the network as low as possible.
Thus reasonable values for are 1 or 2, as proposed in [3]. Concerning the parameter , it
was introduced to allow the window to stabilize and to make the protocol less sensitive to
small variations in the available bandwidth. In fact, there is a trade-off on the choice of the
difference .

Large vs small . For large values of (compared to ), TCP Vegas is robust but unfair,
whereas for small values of , TCP Vegas is fair (at least for homogeneous connections, the
general case is treated in Section 5), but not robust, in the sense that small variations in the
available bandwidth may lead to changes in the window size.

In the limiting case , the steady state would actually consist of variations of the
window sizes around the equilibrium (due to the packetization effect), a phenomenon which
is not captured by the fluid approximation used. We argue that these oscillations which
are very slow (due to the linear increasing-decreasing rate of the window) and of small
magnitude, do not significantly damage the performance of the flow control. Furthermore,
these oscillations may be suitable to make the protocol responsive to sporadic changes in the
available bandwidth. Note that in the worst case where these oscillations are in phase, the
maximum number of connections under which the window sizes stabilize would be changed
into

RR n° 3563



18 T. Bonald

Thus in the following, we will always consider the case , and the subsequent
analysis is valid only for practical implementations of TCP Vegas where is very small
compared to . However, it is clear from (12) that in other cases (for instance when
is equal to (1,3) or (2,4), as proposed in [3]), the following results provide upper and lower
bounds on the performance of the protocol.

Example. Consider the same example as above, but in the case of 3 TCP Vegas connec-
tions, and with the parameters . As shown in Figure 7, the total window size
stabilizes to the value , which is very close to the optimal window size .
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Figure 7: Window evolution of 3 TCP Vegas connections

4 Performance Evaluation
In this section, we consider a model where the number of connections sharing the same link
is dynamic. More precisely, we assume that the starting times of the connections form a
Poisson process of intensity (this assumption is reasonable as soon as these connections
are generated by a large number of users which have mutually independent behaviors), and
that the sizes of the files are i.i.d., with a general distribution of mean .

INRIA
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All connections use the same version of TCP, either Reno or Vegas. We assume that
the sizes of the files are sufficiently large, so that at any time , the connections can be
assumed to be in the steady state described in Section 3. Under some condition on the load
of the network, defined by , we will show that this system is stable. Let , and
be respectively the number of connections, the total throughput and the buffer occupation

in the steady state. We will evaluate the performance of TCP Reno and TCP Vegas both in
terms of utilization and congestion of the network, respectively defined by

and

We will distinguish between two cases, depending on the value of the bandwidth–delay
product compared to buffer size . As in §3.1, we denote by the ratio between
bandwidth–delay product and the buffer size.

4.1 Small bandwidth–delay product

When , both TCP Reno and TCP Vegas use all the available bandwidth, that
is the total throughput is equal to whatever the number of connections, and

In addition, the number of connections present in the system corresponds to the number of
customers in a queue, so that the stability condition is , and in the steady
state, the law of the number of connections is geometric:

Since the buffer occupation of TCP Reno is not sensitive to the number of connections, we
immediately get from (11),

(16)

Using (15), we obtain

that is

RR n° 3563
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4.2 Large bandwidth–delay product

In the case , we have seen in §3.1 that TCP Reno does not use all the available
bandwidth, but only a fraction of it, given in view of (10) by

Hence, the number of TCP Reno connections present in the system still corresponds to the
number of customers in a queue, but for a server of speed instead of . In
particular, the stability condition of the system is now

Under this condition, we have

(17)

and from (10),

Concerning TCP Vegas, the total throughput depends on the number of connections.
More precisely,

when
when

Hence, the stability condition of the system is still , but the number of connections
in the steady state is not geometric, and depends on the distribution of the file sizes.

However, when is sufficiently large compared to , it is likely that is not very
sensitive to the distribution of the file sizes. Thus to get analytical results, we will assume
that the law of the file sizes is exponential in this particular case. The number of connections
is then a birth–death process, shown in Figure 8. It follows from the Chapman-Kolmogorov
equations of this Markov chain that

if
if

where , and

INRIA
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0 1 2 -1 +1 +2

Figure 8: Birth–death process

Using this, we get from the equality

that

In the same way, we get from the equality

that

4.3 Discussion

The results obtained are illustrated by Figures 9 and 10 for a buffer size , and with
the usual parameters and . Note that in this case, the critical value of the
bandwidth–delay product is . The stability condition , where

if
otherwise

is also represented in both figures. When the load tends to its maximal value , the
mean number of connections becomes large, so that TCP Vegas has the same behavior as
TCP Reno (see §3.2) and thus the same performance. Except for this case, TCP Vegas
clearly outperforms TCP Reno, both in terms of buffer occupation and utilization of the
available bandwidth.

RR n° 3563
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For small bandwidth–delay products ( ), both TCP Reno and TCP Vegas fully
utilize the available bandwidth. The major difference is that the buffer occupation of TCP
Vegas is much lower than the buffer occupation of TCP Reno. In particular, whereas the
buffer occupation of TCP Vegas is very close to zero whatever the load of the network, we
have in view of (16),

when

that is in the case for small values of the bandwidth–delay product.
Note that the congestion would be even more severe for higher values of . This gap be-
tween both protocols reflects the benefits of the window mechanism of TCP Vegas, which
consists in stabilizing the windows instead of discovering the available bandwidth by filling
the buffer.
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Figure 9: Buffer occupation
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For large bandwidth–delay products ( ), TCP Reno under-utilizes the network
resources, due to the fact that when a loss occurs, all windows are multiplied by , and there
is not enough fluid to “fill the pipe” . In particular, we have in view of (17),

when

that is in the case when is close to packets. On the other
hand, except when the load of the network is very high, TCP Vegas fully utilizes the avail-
able bandwidth.

TCP Reno
TCP Vegas

1
10

100
1000

10000 Bandwidth*Delay (Packets)

0
25

50
75

100Load (%)

75

100

Utilization (%)

Figure 10: Utilization of the available bandwidth
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5 Fairness
In this section, we focus on the case of heterogeneous connections, which do not experiment
the same propagation delay. As in Section 3, we consider a fixed number of connections
sharing the same bottleneck. We denote by the propagation delay of connection .

Denoting by the total buffer occupation as above, we have

When the buffer is non–empty ( ), the RTT of connection is given by

By Little’s law, we have , where is the throughput of connection . Using
the fact that , we obtain the following implicit expression for :

5.1 TCP Reno

The dynamics of the system consist of previous expressions and the window dynamics of
each connection, namely

Since this system is not tractable in general, we will consider asymptotic results in the ratios
of the bandwidth–delay products with respect of the buffer size.

We first assume that are very small. After a transient period, the buffer is
never empty and the RTT are roughly the same (equal to the queueing delay). In particular,
the difference between window sizes vanishes as in §3.1, and by Little’s law, we get in the
steady state,

INRIA



Comparison of TCP Reno and TCP Vegas via Fluid Approximation 25

Now assume that are very large. In this case, the buffer is almost always
empty and the RTT are roughly equal to the propagation delays. Hence, we have in the
steady state,

and by Little’s law,

Thus in the case of large bandwidth-delay products, TCP Reno significantly discriminates
against connections with larger propagation delays, as already observed in [7].

Finally, we consider the case of connections (denoted with a prime) with small
bandwidth-delay products, and connections with large bandwidth-delay products, still
denoted by . We use the same approximations as above, namely

and

From previous analysis, the connections with small propagation delays have the same win-
dow dynamics, and thus will have the same throughput in the steady state, roughly equal to

. In addition, the buffer occupation satisfies the differential equation

As in §3.1, the steady state of the system is periodic with period

On the other hand, since the window sizes of the connections with large propagation delays
increase linearly, respectively at rates , we have

where are the window sizes of these connections when a loss occurs. Since
the average throughput of connection is given by

we finally get

RR n° 3563
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Numerical example. Consider as above a bottleneck of speed packets/s, with
a buffer size of packets. The parameter is equal to 1/2. Figure 11 shows the
throughput evolution of connections with small propagation delays ( ms,

ms), starting from the initial window sizes , , and a single
connection with a large propagation delay ( ms), starting from the initial window
size . By simulation [12], we find the following bandwidth sharing in the
steady state:

and

As expected, both connections with small propagation delays receive roughly half of the
available bandwidth, whereas the third connection receives only a small fraction of it,
namely
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Figure 11: Discrimination of TCP Reno against connections with large propagation delays
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5.2 TCP Vegas

As in §3.2, we first note that if the windows stabilize, there is a unique possible equilibrium
, characterized by the equations

so that

In particular, each connection receives the same throughput in the steady state, what-
ever its propagation delay, and there is a total of packets buffered at the bottleneck
node, as in the case of homogeneous connections. Thus is clearly a necessary
condition for stabilization. We guess that this condition is also sufficient. However, we will
prove only the following partial result. By convention, we assume that .

Stabilization. Assume that at time , the connections , are in equilib-
rium, that is

If , the windows stabilize in finite time, that is there exists such that

Proof. From the expression

(18)

we get using (5),

Hence, a sufficient condition for , to remain equal to is that

But in this case, we have
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In particular, previous condition is satisfied, no loss can occur due to the fact that ,
and converges in finite time to . Thus in the steady state, the buffer occupation of each
connection is equal to , and the window sizes are equal to , where in view of
expression (18),

Example. Consider the same example as above, where TCP Vegas connections
with propagation delays ms, ms and ms, start with initial window
sizes , , and . As shown in Figure 12, after a transient
period, the available bandwidth is equally shared between the 3 connections.
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Figure 12: Fairness of TCP Vegas
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6 Conclusion
We have used a fluid approximation to compare the efficiency of the flow control of TCP
Reno and TCP Vegas. Since these protocols differ essentially in their steady behavior (due
to different congestion avoidance phases), we have focused on long-term performance crite-
ria such as the average throughput and the average buffer occupation. The main conclusion
is that TCP Vegas, the window mechanism of which consists in stabilizing the window size
to the optimal value plus a number of “extra” packets comprised between and , is much
more stable, efficient and fair than TCP Reno. It is clear that the model used for the analysis
is an idealized representation of a TCP connection, as explained in Section 2. However, it
gives some insights on the steady behavior of both protocols for sufficiently large windows
(so that the discrete nature of the window mechanism may be neglected), and for large file
transfers (so that the steady state described in Section 3 may be effectively reached).

Another interesting result is that the window mechanism TCP Vegas is much more con-
servative than that of TCP Reno, and that in the worst case, TCP Vegas behaves exactly as
TCP Reno, namely when the number of connections sharing the same bottleneck is larger
than , where is the buffer size of this bottleneck. As a result, the performance of the
Internet cannot a priori be damaged by the use of TCP Vegas instead of TCP Reno. On the
other hand, the main expected benefits of TCP Vegas are the following:

• Since the buffers are not filled up by TCP Vegas connections, the queueing delays
in the Internet may be significantly decreased, and this would be of great interest,
especially for real-time applications. As illustrated by Figure 9, this effect should be
significant when the bandwidth–delay product of the link is small;

• When the bandwidth–delay product of the link is large, TCP Vegas fully utilizes the
available bandwidth, whereas TCP Reno utilizes only a fraction of it (see Figure 10).
Equivalently, the buffer requirements of TCP Vegas do not depend on the bandwidth–
delay product of the link, but only on the number of connections sharing this link,
which is a much more convenient and realistic design rule.

It is worth noting that this last feature makes TCP Vegas suitable for satellite links.
In this case, the bandwidth–delay product is large, and it is crucial to use all the (costly)
available bandwidth. In addition, losses which are due to buffer overflow must be avoided,
since starting a slow-start phase takes a long time due to long propagation delays. Finally,
since the congestion avoidance phase of TCP Vegas allows the window to decrease (this
is clearly illustrated by Figure 7), it might not be necessary to fix an arbitrary limit to
the window size depending on the bandwidth–delay product, as proposed in [5] with the
window scale option.
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The last issue, which was not addressed in this paper, concerns the deploying of TCP
Vegas in the Internet. It may be argued that due to its conservative strategy, a TCP Vegas
user will be severely disadvantaged compared to TCP Reno users, as illustrated in Figure
13 for the same numerical values as above ( packets/s, ms and
packets). If such a discrimination arises, the only way to incite users to behave “socially”
(that is to use TCP Vegas instead of TCP Reno) would be to adopt a pricing scheme which
penalizes resource-consuming behaviors. However, it is still unclear whether the expected
drop in unnecessary retransmissions due to the conservative window mechanism would not
finally result in a higher “goodput” for TCPVegas users, as observed in [1, 3] by simulations
and measurements in the Internet. If this turns out to be the general case (here analytical
results would be of great help), it is likely that TCP Vegas, which improves both the indi-
vidual utility of the users and the global utility of the network, will gradually replace TCP
Reno.
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Figure 13: Competition between TCP Reno and TCP Vegas
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A Abbreviations
Internet Protocols

IP Internet Protocol
TCP Transmission Control Protocol
FTP File Transfer Protocol
HTTP Hyper-Text Transfer Protocol
NNTP News Network Transport Protocol

Window Dynamics

ACK Acknowledgment
RTT Round-Trip Time
TO Time-Out
RTTmin Minimum Round-Trip Time

B Measurement of RTTmin
Throughout the paper, we have made the assumption that the measurement of the minimum
RTT on which the window mechanism of TCP Vegas is based was perfect. In particular,

was always taken equal to the round-trip propagation delay . In this appendix,
we discuss the validity of this assumption.

First note that the measurement of the propagation delay is robust in the sense that it
concerns a static parameter of the connection4 and it can only improve with time. How-
ever, in the particular (and rare) case where the route changes during the connection time,
the propagation delay may increase and thus be under–estimated by the source, resulting
in a poor utilization of the network resources. To avoid such a misbehavior, one possible
solution would be to evaluate the minimum of the last RTT measures instead of the min-
imum of all RTT measures. But the parameter should then be carefully chosen in order
to discriminate between changes in the route of the packets and transient congestion of the
network. In the general case where the route remains the same during the connection time,
the propagation delay can only be over–estimated (due to the queueing delays), thus cannot
affect the performance of TCP Vegas in terms of utilization of the available bandwidth, but
only in terms of buffer occupation.

4This is not the case of the available bandwidth for instance. The fact that this dynamic parameter of the
connection varies with respect to the intensity of the cross traffic makes its estimation very difficult [6].
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To evaluate the effect of biased measurement on the buffer occupation, we
consider as in Section 3.2 the case of TCP Vegas connections sharing the same link, and
starting respectively at times . We denote by the measure of
connection , and consider the worst case where this measure is equal to the RTT of the
first packet of this connection. In the case , the steady state of these connections
is characterized by the equations:

In particular, the RTT is larger than , thus larger than the round-trip propagation
delay . Denoting by the total window, we have , so that

(19)

Hence, there exists a single equilibrium , and it can be shown as in
§3.2 that for a sufficiently large buffer size, this equilibrium is reached in finite time.

Now assume that at time , connections , are in equilibrium. In this case,
the measure of connection is equal to the RTT in the steady state reached by
connections , namely and

Let us show by induction that

where and for all ,

The property holds for . Assuming that it is true for , we get

and it follows then from (19) that
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Therefore, the buffer occupation in presence of connections is smaller than
. With the assumption of a perfect measurement, we have obtained

a buffer occupation equal to . Thus we can consider that the conclusions of the paper
are not significantly biased by this assumption, as far as the performance criteria are con-
cerned. Concerning the fairness, this last result tends to show that TCP Vegas discriminates
against older connections since their estimation of the propagation delay is more accurate
thus smaller than that of recent connections. In other words, the shortest connections are
favoured, and it may be argued that this is a desirable feature of a transmission control
protocol [10].
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