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A spectacular solver of low-Mach multiphase
Navier-Stokes problems under strong stresses

Philippe Angot, Jean-Paul Caltagirone and Pierre Fabrie

Abstract We present the main features and sharp numerical applications of the
fast vector penalty-projection methods (VPPε ) [1, 2, 3], based on three key ideas
explained further. In particular, we proposed new fast Helmholtz-Hodge decompo-
sitions of L2-vector fields in bounded domains by solving vector elliptic problems
penalized with suitable adapted right-hand sides [4]. This procedure, used as an
approximate divergence-free velocity projection step, yields a velocity divergence
vanishing as O(ε δ t), δ t being the time step. It only requires a few iterations of
preconditioned conjugate gradients whatever the spatial mesh step h, if the penalty
parameter ε is chosen sufficiently small up to machine precision, e.g. ε = 10−14.
These methods prove to be efficient, fast and robust to accurately compute incom-
pressible or low Mach multiphase flows under strong stresses: large mass density,
viscosity or anisotropic permeability jumps, strong surface tension inducing large
interface deformations, or with open boundary conditions, whereas other methods
either cannot reach the suitable mesh convergence and run slower or simply crash.

1 Introduction: time-splitting methods for Navier-Stokes

We consider the numerical solution of unsteady incompressible viscous flows with
variable density in a bounded domain Ω ⊂ R3, the frontier ∂Ω := Γ = ΓD ∪ΓN
(ΓD∩ΓN = /0) being subjected to a Dirichlet boundary condition v = vD on ΓD and a
given traction stress vector σ(v, p)·n :=−pn+µ(∇v+(∇v)t)·n = g on ΓN . Many
splitting projection methods [8] of Chorin-Temam’s type require, at each time step
tn = nδ t, the solution of the pressure Poisson equation to get the divergence-free
velocity field vn+1 from a standard first-order velocity prediction step giving ṽn+1:

div
(

δ t
ρn+1 ∇φ

n+1
)
= div ṽn+1,

∇φ
n+1·n|ΓD = 0, φ

n+1
|ΓN

= 0.
⇒

 ρ
n+1 vn+1− ṽn+1

δ t
+∇φ

n+1 = 0,

φ
n+1 = pn+1− pn, divvn+1 = 0.

(1)
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However, our experience with many Navier-Stokes solvers leads us to formu-
late the following conjecture. We cannot prove it rigorously, but several arguments
explained further are likely to confirm it; see also [5] for a more precise analysis.

Conjecture 1 (Numerical solution of Navier-Stokes equations). The main
drawbacks of splitting projection methods arise from the introduction of the
scalar pressure Poisson equation (1) involving a spatial derivative of mass
density which inherently limits the consistency by degrading the original vec-
tor formulation of the Navier-Stokes problems.

This yields the first crucial point considered in the development of the new family
of vector penalty-projection (VPP) methods.

Key idea 1 (Vector-penalty projection methods for Navier-Stokes equations.)
To keep a fully vector formulation of the numerical methods for the solution of
Navier-Stokes problems, it is essential to compute at each time step an accurate
and curl-free approximation of the pressure gradient, and then reconstruct the pres-
sure field if necessary. Thus, the primary unknows should be the velocity and pres-
sure gradient vectors (v,∇p). This is the objective of the VPP methods proposed in
[1, 2, 3] to directly calculate the curl-free component v̂n+1 := vn+1− ṽn+1 of ṽn+1.

It is not so surprising remembering that Euler1 introduces the so-called Euler equa-
tions from the works of Bernouilli2 and D’Alembert3 by defining Fp :=−∇p as the
pressure force which induces the fluid motion.

2 Fast Helmholtz-Hodge decompositions in bounded domains

For a given vector field v∈L2(Ω) := L2(Ω)3, later chosen as the predicted velocity
(−ṽn+1), let us now consider the orthogonal Helmholtz-Hodge decomposition :

v = vφ +vψ , with vφ = ∇φ , vψ = rotψ, divψ = 0, vψ ·n|Γ = 0. (2)

The last normal boundary condition is necessary to ensure the L2-orthoganality and
thus the uniqueness of the components vφ and vψ , the scalar potential φ and vector
potential ψ being determined up to an additive constant. Then, for v ∈Hdiv(Ω) we
have in Ω , supposed to be at least connected and possibly simply connected :{

divvφ = divv, rotvφ = 0,
vφ ·n|Γ = v·n on Γ .

and

{
rotvψ = rotv, divvψ = 0,

vψ ·n|Γ = 0 on Γ .
(3)

1 Leonhard Euler, Principes généraux du mouvement des fluides (1755)
2 Daniel Bernoulli, Hydrodynamica (1738)
3 Jean Le Rond d’Alembert, Traité de dynamique (1743 & 1749)
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Key idea 2 (Fast Helmholtz-Hodge decompositions of L2-vector fields.)
The curl-free component vφ and the divergence-free (solenoidal) component vψ of
v satisfying (3) can be accurately and efficiently calculated with a penalization
method by respectively solving the vector penalty-projection problem (V PPn) and
the rotational penalty-projection (RPPτ ) problem below, as proposed in [4].

Moreover, the computation can be extremely fast whatever the spatial mesh step
h if the penalty parameter ε > 0 is chosen sufficiently small up to machine precision.
Indeed, these problems take advantage of the splitting penalty method for saddle-
point [2] in order to get adapted right-hand sides when ε → 0, and the effective
conditioning becomes independent of ε and h, as confirmed numerically in [3, 4, 6].

(V PPn)

ε vε
φ −∇

(
divvε

φ

)
=−∇(divv) in Ω

vε
φ ·n|Γ = v·n on Γ

⇒


vε

φ =
1
ε

∇

(
div(vε

φ −v)
)
,

φ
ε =

1
ε

div(vε
φ −v), vε

φ = ∇φ
ε

(RPPτ)

{
ε vε

ψ + rot
(
rotvε

ψ

)
= rot (rotv) in Ω

(rotvε
ψ)∧n|Γ = (rotv)∧n on Γ

⇒


vε

ψ =
1
ε

rot
(
rot(v−vε

ψ)
)
,

ψ
ε =

1
ε

rot(v−vε
ψ), vε

ψ = rotψ
ε

Theorem 3 (Optimal accuracy for (V PPn) and (RPPτ ) problems).
For any v ∈ Hdiv(Ω)∩Hrot(Ω) and all ε > 0, the unique solution vε

φ
or vε

ψ to the
(V PPn) or (RPPτ ) problems respectively, satisfies the optimal error estimates below:

(i) ‖vφ −vε
φ‖1 +‖div(v−vε

φ )‖1 +‖φ −φ
ε‖2 ≤ c1(Ω)‖v‖0 ε,

(ii) ‖vψ −vε
ψ‖1 +‖rot(v−vε

ψ)‖1 +‖ψ−ψ
ε‖2 ≤ c2(Ω)‖v‖0 ε.

Proof. See [4], [5, Sect. 3], Ω being connected or simply connected for (RPPτ ). The
convergence towards 3-D Navier-Stokes weak solutions for constant density is also
proved in [7] for a continuous version of the (VPPε ) method when ε → 0. ut

The condition number κ of the discrete left-hand side operators for these prob-
lems varies as κ =O(1/(ε h2)). Thus, the associated matrices are ill-conditioned in
the usual sense for ε � 1 since the number of iterations of a preconditioned conju-
gate gradient solver verifies Niter ≤ O(

√
κ), which is the bound in the worst case

for an arbitrary right-hand side (Arrhs). However, the amazingly fast convergence
history observed in [3, Fig. 3] and [4, Fig. 2] for these P.D.E. problems with adapted
right-hand sides (Adrhs) can be explained by defining the notion of effective con-
dition number of the whole linear system; see [2, Corollary 1.2 & 1.3]. Indeed, the
linear system itself is extremely well-conditioned in this latter case.

Let us look at a simple example where f ∈ H−1(Ω) or u ∈ H1
0 (Ω) are given:

(Arrhs)

{
ε uε −∆uε = f in Ω ,

uε = 0 on Γ .
or (Adrhs)

{
ε uε −∆uε =−∆u in Ω ,

uε = 0 on Γ .
(4)

In this simple case, since the operator−∆ : H1
0 (Ω)−→H−1(Ω) is a (bi-continuous)

isomorphism between Hilbert spaces, we can even take here ε = 0 and it is clear that
u0 = u and ‖uε − u‖1 ≤ c(Ω)‖u‖0 ε for (Adrhs). Now, let Ah := −∆h, a symme-
tric positive definite matrix, be the discrete Laplacian operator with homogeneous
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Dirichlet boundary condition, e.g. by standard finite differences. Then, the matrix
system Aε,h := ε I +Ah verifies κ := cond2(Aε,h) −→ε→0 cond2(Ah) = O(1/h2).
Nevertheless using Neumann series, since Aε,h = Ah (I+ε A−1

h ), we get the asymp-
totic expansion of the discrete solution uε,h in both cases when ε < 1/‖A−1

h ‖:

(Arrhs)

{
(ε I +Ah) uε,h = fh,

⇒ uε,h = A−1
h fh +O(ε).

or (Adrhs)

{
(ε I +Ah) uε,h = Ah uh,

⇒ uε,h = uh +O(ε).
(5)

Hence for ε � 1, the zero-order term in these expansions is a good approximation
of uε,h, but its computation for (Arrhs) requires the solution of the linear system
Ah u0,h = fh with a condition number as O(1/h2), whereas u0,h = uh for (Adrhs)
and therefore, the effective condition number is bounded independently on both ε

and h in this case.
In [2, Theorem 1.1 & Corollary 1.3], a generalization of such a result is proved

for (V PPn) problems, although the ∇(div) operator is not invertible. A similar result
also holds for (RPPτ ) problems using the identity −∆u = rot(rotu)−∇(divu) for
all vector field u in 3-D.

3 Vector penalty-projection methods for Navier-Stokes equations

Let us now consider the incompressible multiphase Navier-Stokes model during the
time interval (0,T ) and supplemented with suitable initial and boundary conditions:

ρ (∂tv+(v·∇)v)−2div (µ(ρ)d(v))+∇p = f in Ω × (0,T ),
divv = 0 in Ω × (0,T ),

∂tρ +div(ρ v) = 0 in Ω × (0,T ).
(6)

Here, d(v) :=(∇v+(∇v)t)/2 denotes the strain rate tensor and f= ρ g+σst κ nΣ δΣ

includes the gravity force and surface tension on interfaces Σ , κ being the curvature
of Σ and δΣ the Dirac measure supported on Σ , which yields the immersed stress
jump interface condition on Σ : [[σ(v, p)·n]]

Σ
= σst κ nΣ .

Then as proposed in [1, 3], using a phase function ϕ to track the motion and
deformation of Σ by VOF-PLIC or level-set methods, e.g. [10] and the references
therein, the fast (VPPε ) method reads with a first-order linearly implicit scheme:

ρ(ϕn)

(
ṽn+1− ṽn

δ t
+(vn·∇)ṽn+1

)
−2div

(
µ(ϕn)d(ṽn+1)

)
+∇pn = fn,

ρ(ϕn)
v̂n+1− v̂n

δ t
− 1

ε
∇
(
div v̂n+1)= 1

ε
∇
(
div ṽn+1) , with v̂n+1·n|Γ = 0,

vn+1 = ṽn+1 + v̂n+1, velocity and pressure gradient corrections

φ
n+1 = pn+1− pn from: ∇φ

n+1 = ∇
(

pn+1− pn)=−ρ(ϕn)
v̂n+1− v̂n

δ t
ϕn+1−ϕn

δ t
+vn+1·∇ϕ

n = 0.

(7)
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Key idea 4 (Vector penalty-projection methods for variable density flows.)
In the fast (VPPε ) prediction-correction method (7) for non-homogeneous Navier-
Stokes equations, the mass density ρ is only included in the diagonal of the discrete
velocity penalty-projection step and a cheap diagonal preconditioning is therefore
recommended. This ensures not only the space-time consistency with the pressure
gradient correction by keeping a fully vector formulation of the scheme, but also
does not introduce any spatial derivative of ρ . This important feature makes the
robustness of the method insensitive to large variations of density [1, 3].

Besides, the fully vector formulation of (VPPε ) versions with a formally second-
order time scheme yields a natural expression of outflow boundary conditions with
a given stress vector (traction or pseudo-traction). It ensures the optimal second-
order accuracy in time and space, both for the velocity and pressure fields [6].

For low-Mach number flows, typically when M < 0.2, the parameter ε has a
physical meaning since it can be related as below [5] to the Mach number M :=V/c
(V being a given reference velocity and c the speed of acoustic waves), the veloci-
ty divergence vanishing as O(χT ) where χT , χS are the isothermal or isentropic
compressibility coefficients of the fluid and γ := cp/cv ≥ 1:

ε δ t = χT = γ χS =
γ M2

ρ V 2 , or also γ M2 = ρ V 2 (ε δ t)� 1. (8)

4 Sharp test cases with large density jumps or surface tension
The (VPPε ) method, spatially discretized with the finite volume method on the carte-
sian staggered MAC grid or generalized MAC unstructured meshes, was tested and
validated in [1, 3] against usual standard benchmark problems. In particular, the
comparison with the scalar incremental projection (SIP) or Uzawa augmented La-
grangian (UAL) methods was excellent for the first benchmark in [9]; see [3, Fig. 4].

As shown in the video during the talk, we have computed with the (VPPε ) method
combined with VOF-PLIC [10], the dispersed two-phase dynamics of air bubbles in
a liquid melted steel at a temperature of about 850◦C. Here we have a large mass
density ratio ρl/ρg = 8000, a viscosity ratio of µl/µg = 6 and a large surface tension
constant σst = 1.5N/m which induces very large shape deformations of the bubble.
A few results are shown in Fig. 1, either with an initial cylindrical bubble centered
inside the steel column which is then rising along the median, or with a non centered
initial bubble which rises by oscillating from the left to the right side.

Nevertheless for dispersed bubbly flows, it is difficult to compare our numerical
method with others since most of them have difficulties to compute results with a
suitable mesh convergence when the mass density ratio exceeds several hundreds;
see [9, second benchmark]. Thus, to evaluate and validate the robustness of the
(VPPε ) method with respect to large density or viscosity ratios, we computed in [3,
Fig. 5] the motion of a heavy solid ball which freely falls vertically in air with the
gravity force f = ρs g. Here we have : ρs/ρg = 106 and µs/µg = 1017.

Indeed, the SIP method crashes after a few time iterations. The UAL method is
still able to compute the flow but with a larger velocity divergence and the compu-
tation is far more expensive than with (VPPε ).
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Fig. 1 2-D air bubble dynamics in melted steel (at about 850◦C) with (VPPε ) method, ε = 10−8:
cylindrical initial diameter d = 1cm in a steel column L = 3cm×H = 10cm, ρl/ρg = 8000,
µl/µg = 6, σst = 1.5N/m, g = 9.81m/s – Isolines of the VOF-PLIC function at different times:
LEFT: bubble initially centered in the column — RIGHT: bubble initially non-centered.
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