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In this paper, we consider three problems about signs of the Fourier coefficients of a cusp form f with half-integral weight:

-The first negative coefficient of the sequence {a f (tn 2 )} n∈N , -The number of coefficients a f (tn 2 ) of same signs, -Non-vanishing of coefficients a f (tn 2 ) in short intervals and in arithmetic progressions, where a f (n) is the n-th Fourier coefficient of f and t is a square-free integer such that a f (t) = 0.

Introduction

Throughout we let k 1 be an integer and assume N 4 to be divisible by 4. Fix a real Dirichlet character χ modulo N. We write S k+1/2 (N, χ) for the space of cusp forms of weight k + 1/2 for the group Γ 0 (N) with character χ. The space S 3/2 (N, χ) contains unary theta functions. Let S * 3/2 (N, χ) be the orthogonal complement with respect to the Petersson scalar product of the subspace generated by these theta functions ([20, Section 4] and [START_REF] Cipra | On the Niwa-Shintani theta-kernel lifting of modular forms[END_REF]Section 4]). For convenience, we put S * k+1/2 (N, χ) = S k+1/2 (N, χ) when k 2. Each f ∈ S * k+1/2 (N, χ) has a Fourier expansion (1.1)

f(z) = n 1 a f (n)e 2πinz
(ℑm z > 0).

Let f ∈ S * k+1/2 (N, χ 0 ) be a cusp form with trivial character χ 0 , square-free level and real coefficients a f (n). Suppose that f lies in the plus space, that is, a f (n) = 0 when (-1) k n ≡ 2, 3 (mod 4), see [START_REF] Kohnen | Values of L-series of modular forms at the center of the critical strip[END_REF][START_REF] Kohnen | Fourier coefficients of modular forms of half integral weight[END_REF]. Bruinier and Kohnen [START_REF] Bruinier | Sign changes of coefficients of half integral weight modular forms[END_REF] gave the conjectures with empirical evidence, which may be, however, out of present reach. Alternatively, they considered the sign changes of a f (n) when n runs over specific sets of integers, such as {tn 2 } n∈N , {tp 2ν } ν∈N and {tn 2 t } t square-free . Here t is a positive square-free integer such that a f (t) = 0, p denotes any fixed prime and n t is an integer determined by t (cf. [2, Theorems 2.1 and 2.2]). In particular, they proved that the sequence {a f (tn 2 )} n∈N for a fixed square-free t has infinitely many sign changes. Recently, Kohnen, Lau and Wu [START_REF] Kohnen | Fourier coefficients of cusp forms of half-integral weight[END_REF] have proved some quantitative results on the number of sign changes in this sequence.

In this paper, we shall consider the following problems:

• The first negative coefficient of the sequence {a f (tn 2 )} n∈N ;

• The number of coefficients a f (tn 2 ) of same signs;

• Non-vanishing of coefficients a f (tn 2 ) in short intervals and in arithmetic progressions.

Denote by n f the smallest integer n such that (1.4) a f (tn 2 ) < 0 and (n, N/2) = 1.

The first aim of this paper is to give an upper bound of n f . By using the Shimura lift of f [START_REF] Shimura | On modular forms of half integral weight[END_REF] and developing the method of [START_REF] Kowalski | On modular signs[END_REF][START_REF] Lau | The first negative coefficients of symmetric square Lfunctions[END_REF], we can prove the following result.

Theorem 1. Let k 1 be an integer, N 4 an integer divisible by 4 and χ be a real Dirichlet character modulo N. Suppose that f ∈ S * k+1/2 (N, χ) is a Hecke eigenform and t 1 is a square-free integer such that a f (t) > 0. Assume that its Shimura lift is not of CM type. In the above notation, we have

n f ≪ (k 2 N) 9/20 ,
where the implied constant is absolute.

Remark 1. The exponent 9 20 can be reduced to 3 8 if we do more numerical computation as in [START_REF] Matomäki | On signs of Fourier coeffcients of cusp forms[END_REF].

In order to study the number of coefficients a f (tn 2 ) of same signs, we introduce the counting functions:

(1.5)                          N * f (x) := n x a f (tn 2 ) =0 1, N + f (x) := n x a f (tn 2 )>0 1, N - f (x) := n x a f (tn 2 )<0 1.
By using the method of [START_REF] Matomäki | Sign changes of Hecke eigenvalues[END_REF] based on multiplicative function theory, we establish the following result.

Theorem 2. Let k 1 be an integer, N 4 an integer divisible by 4 and χ be a real Dirichlet character modulo N. Suppose that f ∈ S * k+1/2 (N, χ) is a Hecke eigenform and t 1 is a square-free integer such that a f (t) = 0. Assume that its Shimura lift is not of CM type.

(i) For any ε > 0, we have

(1.6) N * f (x) = ρ f x 1 + O f,ε (log x) -1/4+ε for x → ∞, where δ f (n) is the characteristic function of the integers n such that a f (tn 2 ) = 0 and (1.7) ρ f := p 1 -p -1 ν 0 δ f (p ν )p -ν > 0.
(ii) For x → ∞, we have

(1.8) N ± f (x) = 1 2 ρ f x 1 + O f,ε (log x) -1/4+ε .
Here the implied constants depend on f and ε.

Remark 2. (i) If N/2 is square-free, the assumption of a non-CM Shimura lift in Theorem 2 will automatically hold and hence can be omitted.

(ii) This theorem shows that the variant of (1.2) for {a f (tn 2 )} n∈N holds and improves Theorem 2 of Kohnen, Lau and Wu [START_REF] Kohnen | Fourier coefficients of cusp forms of half-integral weight[END_REF].

In order to measure the non-vanishing of a f (tn 2 ), we introduce, as in [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF],

i f (n) := max{j 1 : a f (t(n + i) 2 ) = 0 for 0 < i j}
with the convention that max ∅ = 0. We hope to get a non-trivial bound of type i f (n) ≪ f,θ n θ for some θ < 1 and all n 1. Clearly a stronger form of the problem is to find y as small as possible (as a function of x, y = x θ with θ < 1) such that #{x < n x + y : µ(n) 2 = 1 and a f (tn 2 ) = 0} ≫ f,θ y, where µ(n) is the Möbius function and the implied constant can depend on f and θ.

We have the following result.

Theorem 3. Let k 1 be an integer, N 4 an integer divisible by 4 and χ be a real Dirichlet character modulo N. Suppose that f ∈ S * k+1/2 (N, χ) is a Hecke eigenform and t 1 is a square-free integer such that a f (t) = 0. Assume that its Shimura lift is not of CM type.

(i) For every ε > 0, x x 0 (f, ε) and y x 7/17+ε , we have

x < n x + y : µ(n) 2 = 1 and a f (tn 2 ) = 0 ≫ f,ε y.
In particular for any ε > 0 and all n 1, we have

i f (n) ≪ f,ε n 7/17+ε .
(ii) For every ε > 0, x x 0 (f, ε), y x 17/38+100ε and 1 a q x ε with (a, q) = 1, we have x < n x + y : µ(n) 2 = 1, n ≡ a (mod q) and a f (tn 2 ) = 0 ≫ f,ε y/q.

Here the implied constants depend on f and ε.

Remark 3. This theorem can be proved with the help of the B-free number method as in [START_REF] Kowalski | Small gaps in coefficients of L-functions and B-free numbers in short intervals[END_REF][START_REF] Wu | Distribution of Hecke eigenvalues of newforms in short intervals[END_REF]. Our principal tools are some estimates for multiple exponential sums (see [START_REF] Kowalski | Small gaps in coefficients of L-functions and B-free numbers in short intervals[END_REF]Proposition 5] and [START_REF] Wu | Distribution of Hecke eigenvalues of newforms in short intervals[END_REF]Proposition 2.1]). J. G. van der Corput is a pioneer on this domain. On the occasion of his 125th birthday, it is a pleasure for us to write this paper to commemorate the outstanding contribution he made to the number theory.
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Background

For f ∈ S * k+1/2 (N, χ), let t 1 be a square-free integer such that a f (t) = 0. The Shimura correspondence [START_REF] Shimura | On modular forms of half integral weight[END_REF] lifts f to a cusp form f t of weight 2k for the group Γ 0 (N/2) with character χ 2 . Also it gives a vital relation between their Fourier coefficients, (2.1)

a ft (n) := d|n χ t,N (d)d k-1 a f t n 2 d 2 ,
where χ t,N denotes the character

(2.2) χ t,N (d) := χ(d) (-1) k t d ( (-1) k t d is Legendre's symbole) and (2.3) f t (z) := n 1 a ft (n)e 2πinz (ℑm z > 0).
(f t is called the Shimura lift of f associated to t.) Furthermore, if f is a Hecke eigenform, then so is the Shimura lift of f. In fact, in this case,

f (z) := a f (t) -1 f t (z) (2.4)
is a normalized Hecke eigenform independent of t (i.e. the first coefficient of Fourier is equal to 1), and the arithmetic function n → a f (tn 2 ) is multiplicative in the following sense (cf. [20, (1.18)]):

(2.5) a f (tm 2 )a f (tn 2 ) = a f (t)a f (tm 2 n 2 ) if (m, n) = 1. Write (2.6) λ f (n) := a f (t) -1 a ft (n)n -(2k-1)/2 , a * f (n) := a f (t) -1 a f (tn 2 )n -(k-1/2) . Clearly λ f (n) is the n-th normalized Fourier coefficient of f (i.e., λ f (1) = 1) and the function n → a * f (n) is multiplicative.
Further we introduce the following notation:

(2.7)

L := log(C 0 kN) and N k := p L 2 or p|(N/2) p,
where C 0 is an absolute large constant. Write

                 L(s, f ) := n 1 λ f (n)n -s , L(s, a * f ) := n 1 a * f (n)n -s , L(s, χ t,N ) := n 1 χ t,N (n)n -s ,                  L ♭ (s, f ) := ♭ n 1 λ f (n)n -s , L ♭ (s, a * f ) := ♭ n 1 a * f (n)n -s , L ♭ (s, χ t,N ) := ♭ n 1 χ t,N (n)n -s ,
where ♭ means that the sum runs over square-free integers n satisfying (n, N k ) = 1.

Lemma 2.1. Let k 1 be an integer, N 4 an integer divisible by 4 and χ be a real Dirichlet character modulo N. Suppose that f ∈ S * k+1/2 (N, χ) is a Hecke eigenform and t 1 is a square-free integer such that a f (t) = 0.

(i) We have

(2.8) L(s, f ) = L(s + 1 2 , χ t,N )L(s, a * f ), for all s ∈ C; and (2.9) L ♭ (s, f ) = L ♭ (s + 1 2 , χ t,N )L ♭ (s, a * f )L f (s), for σ > 1 2
, where the Dirichlet series L f (s) converges absolutely for σ > 1 2 and (2.10)

L f (s) ≍ ε 1 (σ 1 2 + ε).
Here the implied constant depends only on ε.

(ii) For any ε > 0, we have

(2.11) L(σ + iτ, χ t,N ) -1 ≪ ε -1

and

(2.12)

L ♭ (σ + iτ, χ t,N ) -1 ≪ ε -2
for σ 1 + ε and τ ∈ R, where the implied constants are absolute.

(iii) For any ε > 0, we have

(2.13) |L(σ + iτ, a * f )| ≪ ε N(k + |τ |) 2 max{(1-σ)/2, 0}+ε and 
(2.14) |L ♭ (σ + iτ, a * f )| ≪ ε N(k + |τ |) 2 max{(1-σ)/2, 0}+ε for σ 1
2 + ε and τ ∈ R, where the implied constants depend only on ε. Proof. In view of the definition (2.6), the formula (2.1) is equivalent to

(2.15) λ f (n) = d|n χ t,N (d) √ d a * f n d .
Clearly this formula implies (2.8) for σ > 1. By analytic continuation, this relation is true for all s ∈ C since L(s, f ) and L(s

+ 1 2 , χ t,N ) are entire. Put g(n) := χ t,N (n)µ(n) 2 / √ n and h(n) := a * f (n)µ(n) 2
, where µ(n) is the Möbius function. Define the multiplicative function ℓ(n) by the relation

(2.16) λ f (n)µ(n) 2 = (g * h * ℓ)(n).
In view of (2.15), we have ℓ(p) = 0 for all primes p. Next we shall prove that there is an absolute constant C such that (2.17)

|ℓ(p ν )| C ν
for all primes p and all integers ν 2. In fact, the definition of ℓ(n) allows us to write

0 = λ f (p ν )µ(p ν ) 2 = ν 1 +ν 2 +ν 2 =ν g(p ν 1 )h(p ν 2 )ℓ(p ν 3 ) = ℓ(p ν ) + ℓ(p ν-1 )(g(p) + h(p)) + ℓ(p ν-2 )g(p)h(p)
for all primes p and all integers ν 2. This implies

(2.18) |ℓ(p ν )| (|g(p)| + |h(p)| + |g(p)h(p)|) max{|ℓ(p ν-1 )|, |ℓ(p ν-2 )|}.
In view of the definition of g(n) and of h(n) and [ 

f (s) := n 1 (n,N k )=1 ℓ(n)n -s = p∤N k 1 + ν 2 ℓ(p ν )p -νs and we have L f (s) ≍ ε 1 for σ 1 2 + ε thanks to the fact that p ∤ N k implies p L 2 (log C 0 ) 2 100C 2
, since we have supposed that C 0 is a large constant. Here the implied constants in the ≍ ε -symbol depend only on ε.

Next we prove the assertion (ii). Since χ 2 t,N = χ 0 , Theorem II.8.7 of [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF] with χ = χ t,N gives us

L(σ, χ 0 ) 3 |L(σ + iτ, χ t,N )| 4 |L(σ + i2τ, χ 0 )| 1
for σ > 1 and τ ∈ R. On the other hand, for σ 1 + ε and τ ∈ R we have trivially

|L(σ, χ 0 )| + |L(σ + i2τ, χ 0 )| 2ζ(1 + ε) ≪ ε -1 ,
where the implied constant is absloute. The inequality (2.11) follows immediately.

For σ > 1, we have

L ♭ (s, χ t,N ) = p∤N k 1 + χ t,N (p) p s = L(s, χ t,N )G χ t,N (s),
where the Dirichlet series of

G χ t,N (s) := p|N k 1 - χ t,N (p) p s p∤N k 1 - χ t,N (p) 2 p 2s
converges absolutely and so G χ t,N (s) ≫ ε N -ε in the half-plane σ 1 2 + ε (with the implied constant depending only on ε) and G χ t,N (s) ≫ ε for σ 1 + ε (here the implied constant is absolute). Now the inequality (2.12) follows immediately from (2.11).

Finally we treat the assertion (iii). Under our hypothesis, f is a newform of weight 2k for the group Γ 0 (N/2) with character χ 2 . Thus we have the convexity bound

(2.20) L(s, f ) ≪ ε N(k + |τ |) 2 max{(1-σ)/2, 0}+ε
for σ 1 2 + ε and τ ∈ R (see [18, page 202, (1.22)] or [7, page 4, (1.12)]), where the implied constant depends only on ε.

For σ > 1, we have

L ♭ (s, f ) = p∤N k 1 + λ f (p) p s = L(s, f )G f (s),
where the Dirichlet series of

G f (s) := p|N k 1 - λ f (p) p s p∤N k 1 - λ f (p) 2 p 2s
converges absolutely and so G f (s) ≪ ε (kN) ε in the half-plane σ 1 2 +ε (as |λ f (p)| 2 by Deligne's inequality [START_REF] Deligne | La conjecture de Weil, I, II[END_REF]). Using the convexity bound (2.20), we can derive

(2.21) L ♭ (s, f ) ≪ ε N(k + |τ |) 2 max{(1-σ)/2, 0}+ε
for σ 1 2 + ε and τ ∈ R. Here the implied constants in the ≪ ε -symbol depend only on ε.

By (2.8), (2.11) and (2.20), we get (2.13). Similarly we can derive (2.14) from (2.9), (2.10), (2.12) and (2.21).

The second lemma will be needed in the proof of Theorem 2.

Lemma 2.2. Let k 1 be an integer, N 4 an integer divisible by 4 and χ be a real Dirichlet character modulo N. Suppose that f ∈ S * k+1/2 (N, χ) is a Hecke eigenform and t 1 is a square-free integer such that a f (t) > 0. Assume that its Shimura lift f t is not of CM type. Then for any ε > 0, there is a constant x 0 (f, ε) such that

p x a f (tp 2 )<0 1 1 2 -ε x log x for x x 0 (f, ε). Proof. Taking n = p in (2.15), it follows that a * f (p) = λ f (p) - χ t,N (p) √ p •
In view of the hypothesis that a f (t) > 0 and (2.6), we have

p > ε -2 and λ f (p) -ε ⇒ a * f (p) < 0 ⇒ a f (tp 2 ) < 0. Thus p x a f (tp 2 )<0 1 ε -2 <p x λ f (p) -ε 1.
Now the required inequality is an immediate consequence of the Sato-Tate conjecture (proved by Barnet-Lamb, Geraghty, Harris and Taylor [START_REF] Barnet-Lamb | A family of Calabi-Yau varieties and potential automorphy. II[END_REF]).

The next lemma comes from the first part of Theorem 15 in Serre [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF], which is the key tool for the proof of Theorem 3.

Lemma 2.3. Let g be any normalized Hecke eigenform of integral weight 2 and of level M. Suppose that ℓ(X) ∈ C[X] is any polynomial. Write a g (n) for the n-th Fourier coefficient of g. If g is not of CM type, then

(2.22) p x p∤M, ag(p)=ℓ(p) 1 ≪ g,ℓ,ε
x (log x) 5/4-ε holds for any ε > 0 and all x 2, where the implied constant depends on g, ℓ and ε.

proof of Theorem 1

Let N k be defined as in (2.7). Consider the summatory function

(3.1) S f (x) := n x (n,N k )=1 a * f (n)µ(n) 2 log x n = ♭ n x a * f (n) log
x n .

Upper bound for S f (x).

Proposition 1. Under the condition of Theorem 1, we have

(3.2) S f (x) ≪ ε (k 2 N) 1/4+ε x 1/2
for all x 2, where the implied constant depends on ε only.

Proof. The Perron formula (cf. [21, Theorem II.2.3]) gives

S f (x) = 1 2πi 2+i∞ 2-i∞ L ♭ (s, a * f )
x s s 2 ds.

Moving the line of integration ℜe s = 2 to ℜe s = 1 2 + ε and applying the convexity bound (2.14) for L ♭ (s, a * f ), we obtain the required upper bound (3.2).

Two preliminary lemmas.

In order to establish the required lower bound for S f (x), we need two mean value theorems of multiplicative functions over friable (i.e. smooth) integers coprime with q. For x 1, y 2 and q ∈ N, define Ξ q (x, y) := n x, (n,q)=1 P (n) y µ(n) 2 and Ξ q (x) := Ξ q (x, x),

where P (n) is the largest prime factor of n.

The first lemma is a particular case of [13, Lemma 4.2] with κ = 1.

Lemma 3.1. Let U > 1 be a fixed constant. For some suitable constant C = C(U) depending only on U, we have

(3.3) Ξ q (y u , y) = Π q y u ρ(u) 1 + O U L e+2 q √ log y uniformly for (3.4) q 1, y exp(2CL e+2 q ), U -1 u U,
where L q := log(ω(q) + 3), ω(q) is the number of distinct prime factors of q, ϕ(q) is the Euler totient function and

(3.5) Π q := ϕ(q) q p∤q 1 - 1 p 2 .
Here ρ(t) be the unique continuous solution of the difference-differential equation

(3.6) ρ(t) = 1 (0 t 1), tρ ′ (t) = -ρ(t -1) (t > 1).
The implied constant in the O U -symbol depends only on U.

We now introduce an auxiliary multiplicative function h = h N k ,y defined by

(3.7) h N k ,y (p) :=            0 if p | N k , -2 -cL -1 if p > y and p ∤ (N/2), -cL -1 if √ y < p y and p ∤ (N/2), 1 -cL -1 if L 2 p √ y and p ∤ (N/2), and 
(3.8) h N k ,y (p ν ) := 0 (ν 2),
where L is defined as in (2.7) and the constant c > 0 will be chosen later. The next lemma is the key for giving a lower bound of S f (x).

Lemma 3.2. Let k 1 be an integer and N 4 an integer divisible by 4. Then for any ε > 0, we have, for N k → ∞, (3.9)

n y u h N k ,y (n) log y u n = Π N k y u ρ(2u) -2 log u 1 + O 1 log L uniformly for (3.10) 1 u 3 2 and (k 2 N) 1/100 y (k 2 N) 2 ,
where Π N k and ρ(u) are defined as in Lemma 3.1, and the implied constant in the O-symbol is absolute. In particular ρ(2u) -2 log u > 0 for all u < κ where κ is the solution to ρ(2κ) = 2 log κ. We have κ > 10 9 . Proof. According to the definition of h N k ,y , we have (3.11)

n y u h N k ,y (n) log y u n = S 1 + O(L -1 S 2 ) -(2 + cL -1 )S 3 ,
for all u and y satisfying (3.10), where

S 1 := n y u P (n) √ y h N k ,y (n) log y u n , S 2 := √ y<p y p∤N k n y u /p p∤n h N k ,y (n) log y u pn , S 3 := y<p y u p∤N k n y u /p h N k ,y (n) log y u pn .
For square-free n y u (k 2 N) 3 with P (n) √ y and (n, N k ) = 1, we have

h N k ,y (n) = 1 - c L ω(n) = exp ω(n) log 1 - c L = exp O 1 log L = 1 + O 1 log L ,
where the implied constants are absolute. Thus

S 1 = 1 + O 1 log L n y u , (n,N k )=1, P (n) √ y µ(n) 2 log y u n = 1 + O 1 log L y u 1- log y u t dΞ N k (t, √ y) = 1 + O 1 log L y u 1 Ξ N k (t, √ y) t dt.
Here the implied constants are absolute. By Lemma 3.1 with (q, y, y u ) = (N k , √ y, t), it follows that

y u 1 Ξ N k (t, √ y) t dt = 1 + O log e+2 L √ L Π N k y u 1 ρ log t log √ y dt,
where the implied constant is absolute. By making the change of variables t = y u-v/2 and by partial integration, we deduce

y u 1 ρ log t log √ y dt = y u (log √ y) 2u 0 y -v/2 ρ(2u -v) dv = y u ρ(2u) - 1/ √ L 0 + 2u 1/ √ L y -v/2 ρ ′ (2u -v) dv = y u ρ(2u) 1 + O 1 √ L ,
where the implied constant is absolute. Combining these estimations, we find that (3.12)

S 1 = 1 + O 1 log L y u Π N k ρ(2u),
where the implied constant is absolute.

Similarly we can write S 3 = S ′ 3 -S ′′ 3 , where

S ′ 3 = 1 + O 1 log L y<p y u n y u /p (n,N k )=1 µ(n) 2 log y u pn = 1 + O 1 log L y<p y u y u /p 1- log y u pt dΞ N k (t) = 1 + O 1 log L y<p y u y u /p 1 Ξ N k (t) t dt = 1 + O 1 log L y u Π N k y<p y u 1 p = 1 + O 1 log L y u Π N k log u, and 
S ′′ 3 ≪ y<p y u p|N k n y u /p (n,N k )=1 µ(n) 2 log y u pn ≪ y u Π N k y<p y u p|N k 1 p ≪ y u-1 Π N k ω(N k ) ≪ y u Π N k (log L) -1 ,
where we have used the following estimates :

ω(N k ) ≪ log N k ≪ L 2 ≪ y(log L) -1 since y (k 2 N) 1/100 .
Here the implied constants are absolute. These imply that (3.13)

S 3 = 1 + O 1 log L y u Π N k log u,
where the implied constant is absolute. Finally we have

(3.14) S 2 √ y<p y n y u /p, (n,N k )=1 µ(n) 2 log y u pn = √ y<p y y u /p 1- log y u pt dΞ N k (t) = √ y<p y y u /p 1 Ξ N k (t) t dt ≪ y u Π N k √ y<p y 1 p ≪ y u Π N k ,
where the implied constants are absolute.

Inserting (3.12), (3.14) and (3.13) into (3.11), we get (3.9).

3.3.

Lower bound for S f (x). From (2.15), the inversion formula of Möbius allows us to deduce

(3.15) a * f (n) = d|n µ(d)χ t,N (d) √ d λ f n d .
Taking n = p ν , it follows that

(3.16) a * f (p ν ) = λ f (p ν ) - χ t,N (p) √ p λ f (p ν-1 ). Thus (3.17) a * f (p ν ) 0 ⇔ λ f (p ν ) χ t,N (p) √ p λ f (p ν-1 ) ⇒ λ f (p ν ) - ν √ p ,
where we have used the Deligne bound. Since f is a newform of weight 2k for the group Γ 0 (N/2) with character χ 2 , for each prime p ∤ (N/2) there is a unique real θ f (p) ∈ [0, π] such that (3.18) λ f (p ν ) = sin((ν + 1)θ f (p)) sin θ f (p) (ν 1).

Let y f > 0 be the largest integer such that

(3.19) a * f (n) 0
for n y f and (n, N/2) = 1.

We now proceed to establish a lower bound for S f (x) by using the assumption of positivity (3.19). For primes L 2 p y f with p ∤ (N/2), we thus have a f (tp 2 ) 0. From (3.17) and (3.18) with ν = 1, it follows that

λ f (p) = sin(2θ f (p)) sin θ f (p) - 1 √ p - 2 L •
Hence, there is an absolute positive constant c 1 > 0 such that θ f (p)

π 2 + c 1 L . Furthermore, if L 2 p
√ y f and p ∤ (N/2), we have

λ f (p 2 ) = sin(3θ f (p)) sin θ f (p) - 2 √ p - 2 L • This implies that θ f (p) π 3 + c ′ L and λ f (p) 2 cos π 3 + c ′ L 1 - c 2L ,
where c > 0 is an absolute positive constant. In view of (3.16) with ν = 1 and the definition of h N k ,y (p), it is clear that

(3.20) a * f (p) h N k ,y f (p) for all prime numbers p ∤ N k .
Proposition 2. Let k 1 be an integer, N 4 an integer divisible by 4 and χ be a real Dirichlet character modulo N. Suppose that f ∈ S * k+1/2 (N, χ) is a Hecke eigenform and t 1 is a square-free integer such that a f (t) > 0. Assume that its Shimura lift is not of CM type and that (k 2 N) 1/100 y f (k 2 N) 2 . Then we have

(3.21) S f (y u f ) ≫ y u f (log 2 (kN)) -1
for all u < κ, where y f and κ are defined as in (3.19) and Lemma 3.2, respectively, and log r means the r-fold iterated logarithm. Here the implied constant is absolute.

Proof. With the help of (2.5), it is easy to verify that n → a * f (n) is multiplicative. Let g N k ,y f be the multiplicative function defined by the Dirichlet convolution identity (3.20). On the other hand, according to Lemma 3.2, we have

a * f µ 2 = g N k ,y f * h N k ,y f . Then g N k ,y f (n) 0 for all square-free integers n 1 with (n, N k ) = 1, since g N k ,y f (p) = a * f (p) -h N k ,y f (p) 0 for p ∤ N k thanks to
n y u f h N k ,y f (n) log y u f n 0 
for u < κ and sufficiently large y f . But, as g N k ,y f (1) = 1, we infer that

S f (y u f ) = ♭ n y u f g N k ,y f * h N k ,y f (n) log y u f n = ♭ d y u f g N k ,y f (d) ♭ m y u f /d h N k ,y f (m) log y u f dm ♭ m y u f h N k ,y f (m) log y u f m .
Then we get the required lower bound (3.21) by Lemma 3.2 , since we have, by (3.5) and the prime number theorem,

Π N k ≫ ϕ(N k ) N k ≫ (log 2 N k ) -1 ≫ {log 2 (kN)} -1 ,
where the implied constant is absolute. This completes the proof.

End of the proof of Theorem 1.

Without loss of generality, we can assume that y f (k 2 N) 1/100 . Firstly we prove

(3.22) y f ≪ (k 2 N) 2 ,
where the implied constant is absolute.

By the definition of y f , the multiplicativity of a * f (n) and (3.20), we have

S f (y f ) L 2 p =p ′ y 1/3 f (pp ′ ,N/2)=1 a * f (pp ′ ) log y f pp ′ 3(log y f ) L 2 p =p ′ y 1/3 f (pp ′ ,N/2)=1 1 - c 2L 2 ≫ (log y f ) L 2 p y 1/3 f (p,N/2)=1 1 2 - p y 1/3 f 1 ≫ y 2/3
f , where the implied constant is absolute. Combining this with Proposition 1 yields

y 2/3 f ≪ S f (y f ) ≪ ε (k 2 N) 1/4+ε y 1/2 f
where the first implied constant is absolute and the second depends only on ε. Clearly these imply the required inequality (3.22).

In view of (3.22), we can apply Propositions 1 and 2 to write

(3.23) y u f (log L) -1 ≪ S f (y u f ) ≪ ε (k 2 N) 1/4+ε y u/2 f
for u < κ, where the first implied constant is absolute and the second depends only on ε. From (3.23) we deduce that y f ≪ ε (k 2 N) 1/(2u)+ε for 1 u < κ. According to Lemma 3.2, we know κ > 10 9 . Thus y f ≪ (k 2 N) 9/20 , where the implied constant is absolute. This is equivalent to the result of Theorem 1.

Proof of Theorem 2

Consider the function

ε f (n) = sign a f (tn 2 ) :=      1 si a f (tn 2 ) > 0, -1 si a f (tn 2 ) < 0, 0 si a f (tn 2 ) = 0.
By using (2.5), it is easy to check that this function is multiplicative. According to [START_REF] Hall | Effective mean value estimates for complex multiplicative functions[END_REF]Theorem], for any real multiplicative function such that |g(n)| 1, the inequality With the help of Lemma 2.2, a simple integration by parts gives us p x, ε f (p)=-1

1 p = x 2- 1 t d p t, ε f (p)=-1 1 1 2 -ε log 2 x
for any ε > 0 and all x x 0 (f, ε).

Combining these two estimates, we find that (4.1)

n x ε f (n) ≪ f,ε x (log x) K-ε
for any ε > 0 and all x 2.

On the other hand, a particular case of [15, Theorem 2] can be stated as follows: Let h be a non-negative multiplicative function satisfying the following This is equivalent to the assertion (i).

Notice that 1 dt

|ε f (n)| + ε f (n) 2 = 1 if ε f (n) =
≪ f 1 (log x) 5/4-ε + x 2 dt t(log t) 5/4-ε ≪ f 1,
where the implied constant depends on f. This implies that the sequence B f verifies the condition (5.1).

  |{n x : a f (n) ≷ 0}| |{n x : a f (n) |{|d| x : d fundamental discriminant, a f (|d|) ≷ 0}| |{|d| x : d fundamental discriminant, a f (|d|) = 0}| = 1 2

1 -

 1 x 2, where K = 0.32867 • • • =cos φ 0 and φ 0 is the unique root in (0, π) of the equation sin φφ cos φ =1 2 π. Applying this result to ε f (n), it follows thatn x ε f (n) ≪ x exp -K p x ε f (p) p ≪ x exp -K p x, ε f (p)=-1 2 p .

2 h

 2 (p ν ) p ν log p ν A,(4.3)where A > 0, κ > 0 and δ > 0 are constants. Then we have (4.4)n x h(n) = C h x(log x) κ-1 1 + O h,δ log 2 ν )p -ν .In view of Lemma 2.3 and the prime number theorem, we immediately see thatp z |ε f (p)| log p = z + O f,ε z(log z) -1/4+ε (z 2).This shows that the non-negative multiplicative function n → |ε f (n)| satisfies the condition (4.2). Since |ε f (n)| 1 for all n 1, the condition (4.3) is verified trivially. Thus (4.4) implies that (4.5)n x |ε f (n)| = ρ f x 1 + O f,ε (log x) -1/4+ε .

  (p)=χ t,N (p)a f (t)p k-1 1 ≪ f x (log x) 5/4-ε ,where the implied constant depends on f. Hence a simple integration by parts gives us

	Thus (2.22) of Lemma 2.3 implies that		
	1 =			
	p x	p x		
	a f (tp 2 )=0 a f t p x, p∈P f 1 p = x 2-= 1 x p x, a f (tp 2 )=0 1 d t p t, a f (tp 2 )=0 1 + 2	1 x	1 t 2	p t, a f (tp 2 )=0
					1,
		0 otherwise.

The estimates (4.1) and (4.5) imply that (4.6)

This is equivalent to the assertion (ii) with sign +. The other case can be treated in the same way.

Proof of Theorem 3

In order to generalize the square-free numbers, Erdős [START_REF] Erdős | On the difference of consecutive terms of sequences, defined by divisibility properties[END_REF] introduced the notion of B-free numbers. More precisely, let

be a sequence of integers verifying the following conditions (5.1)

A positive integer n 1 is called B-free if it is not divisible by any element in B. Many authors studied the distribution of B-free integers. A detailed historical description can be found in [START_REF] Kowalski | Small gaps in coefficients of L-functions and B-free numbers in short intervals[END_REF][START_REF] Wu | Distribution of Hecke eigenvalues of newforms in short intervals[END_REF]. In particular, by using sieve and estimates for multiple exponential sums, the authors of these two papers proved the following results (see [START_REF] Kowalski | Small gaps in coefficients of L-functions and B-free numbers in short intervals[END_REF]Corollary 10] and [START_REF] Wu | Distribution of Hecke eigenvalues of newforms in short intervals[END_REF]Proposition 2], respectively):

• For all ε > 0, x x 0 (B, ε) and y x 7/17+ε , we have

• For all ε > 0, x x 0 (B, ε), y x 17/38+100ε , 1 a q x ε with ((a, q), b) = 1 for all b ∈ B, we have (5.4) |{x < n x + y : n ≡ a (mod q) and n is B-free}| ≫ B,ε y/q.

Here the implied constants depend only on B and ε. Now let P be the set of all primes and define

Clearly if n is B f -free, then n is square-free and by all its prime factors are not in P f . By using (2.5), it is easy to see that a f (tn 2 ) = 0 for all B f -free numbers n. Thus (5.3) and (5.4) imply the first and second assertions of Theorem 3, respectively, if we can show that the sequence B f verifies the conditions (5.1) and (5.2). Firstly, the definition of B f guarantees that the condition (5.2) is satisfied by B f . On the other hand, in view of (2.1), we have a ft (p) = a f tp 2 + χ t,N (p)a f (t)p k-1 .