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Riemannian Laplace distribution on the space of
symmetric positive definite matrices

Hatem Hajri, Ioana Ilea, Salem Said, Lionel Bombrun and Yannick Berthoumieu

Abstract

The Riemannian geometry of the space Pm, of m×m symmetric positive definite
matrices, has provided effective tools to the fields of medical imaging, computer vi-
sion, and radar signal processing. Still, an open challenge remains, which consists in
extending these tools to correctly handle the presence of outliers (or abnormal data),
arising from excessive noise or faulty measurements. The present paper tackles this
challenge by introducing new probability distributions, called Riemannian Laplace dis-
tributions on the space Pm. First, it shows that these distributions provide a statistical
foundation for the concept of Riemannian median, which offers improved robustness
in dealing with outliers (in comparison to the more popular concept of Riemannian
centre of mass). Second, it describes an original expectation-maximisation algorithm,
for estimating mixtures of Riemannian Laplace distributions. This algorithm is ap-
plied to the problem of texture classification, in computer vision, which is considered
in the presence of outliers. It is shown to give significantly better performance with
respect to other recently proposed approaches.

1 Introduction

Data with values in the space Pm, ofm×m symmetric positive definite matrices, play
an essential role in many applications, including medical imaging [1, 2], computer
vision [3, 4, 5, 6, 7], and radar signal processing [8, 9]. In these applications, the loca-
tion where a dataset is centered has a special interest. While several definitions of this
location are possible, its meaning as a representative of the set should be clear. Per-
haps, the most known and well-used quantity to represent a centre of a dataset is the
Fréchet mean. Given a set of points Y1, · · · , Yn in Pm, their Fréchet mean is defined to
be

Mean(Y1, · · · , Yn) = argminY ∈Pm

n∑
i=1

d2(Y, Yi) (1)

1



where d is Rao’s Riemannian distance on Pm [10, 11].
Recently, a new distribution on (Pm, d) has been introduced [12, 13]. This distri-

bution called Riemannian Gaussian distribution depends on two parameters Ȳ ∈ Pm
and σ > 0. Its density with respect to the Riemannian volume form dv(Y ) of Pm (see
formula (13) in Section 2) is

1

Zm(σ)
exp

[
−d

2(Y, Y )

2σ2

]
(2)

where Zm(σ) is a normalising factor depending only on σ (and not on Ȳ ). For the
Gaussian distribution (2), maximum likelihood estimate (MLE) for the parameter Ȳ
based on observations Y1, · · · , Yn corresponds to the mean (1). In [13], a detailed
study of statistical inference for this distribution was given and then applied to the
classification of data in Pm showing that it yields better performance, in comparison
to recent approaches [2].

When a dataset contains extreme values (or outliers), because of the impact of
these values on d2, the mean becomes less useful. It is usually replaced with the
Riemannian median

Median(Y1, · · · , Yn) = argminY ∈Pm

n∑
i=1

d(Y, Yi) (3)

The Gaussian distribution on Pm also loses its robustness properties. The aim of the
present paper is to remedy this problem by introducing the Riemannian Laplace dis-
tribution while maintaining the same one to one relation between MLE and the Rie-
mannian median. This will be shown to offer considerable improvement in dealing
with outliers.

This paper is organised as follows.
Section 2 reviews the Riemannian geometry ofPm, when this manifold is equipped

with the Riemannian metric known as the Rao-Fisher, or affine invariant metric [10,
11]. In particular, it gives analytic expressions for geodesic curves, Riemannian dis-
tance and recalls the invariance of Rao’s distance under affine transformations.

Section 3 introduces the Laplace distribution L(Ȳ , σ) through its probability den-
sity function with respect to the volume form dv(Y )

p(Y |Y , σ) =
1

ζm(σ)
exp

[
−d(Y, Y )

σ

]
Here σ lies in an interval ]0, σmax[ with σmax < ∞. This is because the normalising
constant ζm(σ) becomes infinite for σ ≥ σmax. It will be shown that ζm(σ) depend only
on σ (and not on Ȳ ) for all σ < σmax. This important fact leads to simple expressions
of MLEs of Y and σ. In particular, the MLE of Ȳ based on a family of observations

2



Y1, · · · , YN sampled from L(Ȳ , σ) is given by the median of Y1, · · · , YN defined by (3)
where d is Rao’s distance.

Section 4 focuses on mixtures of Riemannian Laplace distributions on Pm. A dis-
tribution of this kind has a density

p(Y |(ωµ, Y µ, σµ)1≤µ≤M ) =

M∑
µ=1

$µp(Y |Y µ, σµ) (4)

with respect to the volume form dv(Y ). HereM is the number of mixture components,
$µ > 0, Y µ ∈ Pm, σµ > 0 for all 1 ≤ µ ≤ M and

∑M
µ=1$µ = 1. A new EM (expecta-

tion maximisation) algorithm which computes maximum likelihood estimates of the
mixture parameters ($µ, Ȳµ, σµ)1≤µ≤M is provided. The problem of order selection of
the number M in (4) is also discussed and performed using the Bayesian Information
criterion (BIC) [14].

Section 5 is an application of the previous material to the classification of data
with values in Pm which contain outliers (abnormal data points). Assume given a
training sequence Y1, · · · , Yn ∈ Pm. Using the EM algorithm developed in Section
4, it is possible to subvidide this sequence into disjoint classes. To classify new data
points, a classification rule is proposed. The robustness of this rule lies in the fact that
it is based on the distances between new observations and the respective medians of
classes instead of the means [13]. This rule will be illustarted by an application to
the problem of texture classification in computer vision. The obtained results show
improved performance with respect to recent approaches which use the Riemannian
Gaussian distribution [13].

2 Riemannian geometry of Pm
This section introduces necessary background on the Riemannian geometry of Pm ,
the space of symmetric positive definite matrices of size m × m. Precisely, Pm is
equipped with the Riemannian metric known as the affine-invariant metric. First,
analytic expressions are recalled for geodesic curves and Riemannian distance. Then,
two properties are stated, which are fundamental to the following. These are affine-
invariance of the Riemannian distance, and existence and uniqueness of Riemannian
medians.

The affine-invariant metric, called the Rao-Fisher metric in information geometry,
has the following expression

gY (A,B) = tr(Y −1AY −1B) (5)

where Y ∈ Pm and A,B ∈ TY Pm, the tangent space to Pm at Y , which is iden-
tified with the vector space of m × m symmetric matrices. The Riemannian metric
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(5) induces a Riemannian distance on Pm as follows. The length of a smooth curve
c : [0, 1]→ Pm is given by

L(c) =

∫ 1

0

√
gc(t)(ċ(t), ċ(t)) dt (6)

where ċ(t) = dc
dt . For Y, Z ∈ Pm, the Riemannian distance d(Y,Z), called Rao’s dis-

tance in information geometry, is defined to be

d(Y, Z) = inf { L(c), c : [0, 1]→ Pm is a smooth curve with c(0) = Y, c(1) = Z} .

This infimum is achieved by a unique curve c = γ, called the geodesic connecting Y
and Z which has the following equation [10, 15]

γ(t) = Y 1/2 (Y −1/2ZY −1/2)t Y 1/2 (7)

Here and throughout the following all matrix functions (for example, square root,
logarithm or power) are understood as symmetric matrix functions [16]. By definition,
d(Y, Z) coincides with L(γ), which turns out to be

d2(Y, Z) = tr [log(Y −1/2ZY −1/2)]2 (8)

Equipped with the affine-invariant metric (5), the space Pm enjoys two useful
properties, which are the following. The first property is invariance under affine trans-
formations [15, 10]. Recall that an affine transformation ofPm is a mapping Y 7→ Y ·A,
where A is an invertible real matrix of size m×m,

Y ·A = A† Y A (9)

and † denotes the transpose. Denote by GL(m), the group of m × m invertible real
matrices on Pm. Then the action of GL(m) on Pm is transitive. This means that for
any Y, Z ∈ Pm, there exists A ∈ GL(m) such that Y.A = Z. Moreover the Riemannian
distance (8) is invariant by affine transformations in the sense that for all Y,Z ∈ Pm

d(Y,Z) = d(Y ·A,Z ·A) (10)

where Y · A and Z · A are defined by (9). The transitivity of the action (9) and the
isometry property (10) make Pm a Riemannian homogeneous space.

The affine-invariant metric (5) turns Pm into a Riemannian manifold of negative
sectional curvature [17, 10]. As a result, Pm enjoys the property of existence and
uniqueness of Riemannian medians. The Riemannian median ofN points Y1, · · · , YN ∈
Pm is defined to be

ŶN = argminY

N∑
n=1

d(Y, Yn) (11)
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where d(Y, Yn) is the Riemannian distance (8). If Y1, · · · , YN do not belong to the
same geodesic, then ŶN exists and is unique [18]. More generally, for any probability
measure π on Pm , the median of π is defined to be

Ŷπ = argminY

∫
Pm

d(Y, Z)dπ(Z) (12)

Note that (12) reduces to (11) for π = 1
N

∑N
n=1 δYn . If the support of π is not carried by

a single geodesic, then again Ŷπ exists and is unique by the main result of [18].
To end this paragraph, consider the Riemannian volume associated to the affine-

invariant Riemannian metric [10]

dv(Y ) = det(Y )−
m+1

2

∏
i≤j

dYij (13)

where the indices denote matrix elements. The Riemannian volume is used to define
the integral of a function f : Pm → R as∫

Pm
f(Y )dv(Y ) =

∫
. . .

∫
f(Y ) det(Y )−

m+1
2

∏
i≤j

dYij (14)

where the integral on the right hand side is a multiple integral over the m(m + 1)/2

variables, Yij with i ≤ j. The integral (14) is invariant under affine transformations.
Precisely ∫

Pm
f(Y ·A)dv(Y ) =

∫
Pm

f(Y )dv(Y ) (15)

where Y ·A is the affine transformation given by (9). It takes on a simplified form when
f(Y ) only depends on the eigenvalues of Y . Precisely, let the spectral decomposition
of Y be given by Y = U† diag(er1 , · · · , erm)U , where U is an orthogonal matrix and
er1 , · · · , erm are the eigenvalues of Y . Assume that f(Y ) = f(r1, . . . , rm), then the
invariant integral (14) reduces to∫

Pm
f(Y )dv(Y ) = cm ×

∫
Rm

f(r1, · · · , rm)
∏
i<j

sinh

(
|ri − rj |

2

)
dr1 · · · drm (16)

where the constant cm is given by cm = 1
m! ×ωm × 8

m(m−1)
4 , ωm = πm

2/2

Γm(m/2)
and Γm is

the multivariate Gamma function given in [19].

3 Riemannian Laplace Distribution on Pm

3.1 Definition of L(Ȳ , σ)

The Riemannian Laplace distribution on Pm is defined by analogy with the well-
known Laplace distribution on R. Recall the density of the Laplace distribution on
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R,

p(x|x̄, σ) =
1

2σ
e−|x−x̄|/σ

where x̄ ∈ R and σ > 0. This is a density with respect to the length element dx on R.
The density of the Riemannian Laplace distribution on Pm will be given by

p(Y | Ȳ , σ) =
1

ζm(σ)
exp

[
−d(Y, Ȳ )

σ

]
(17)

Here, Ȳ ∈ Pm, σ > 0, and the density is with respect to the Riemannian volume
element (13) on Pm. The normalising factor ζm(σ) appearing in (17) is given by the
integral ∫

Pm
exp

[
−d(Y, Ȳ )

σ

]
dv(Y )

Assume for now this integral is finite for some choice of Ȳ and σ. It is possible to
show that its value does not depend on Ȳ . To do so recall that the action of GL(m) on
Pm is transitive. As a consequence, there exists A ∈ Pm such that Ȳ = I.A where I.A
is defined as in (9). From (10), it follows that d(Y, Ȳ ) = d(Y, I.A) = d(Y.A−1, I). From
the invariance property (15)∫

Pm
exp

[
−d(Y, Ȳ )

σ

]
dv(Y ) =

∫
Pm

exp

[
−d(Y, I)

σ

]
dv(Y )

The integral on the right does not depend on Ȳ which proves the above claim.
The last integral representation and formula (16) lead to the following explicit expres-
sion

ζm(σ) = cm ×
∫
Rm

e−
|r|
σ

∏
i<j

sinh

(
|ri − rj |

2

)
dr1 · · · drm (18)

where |r| = (r 2
1 + · · ·+ rm2 )

1
2 and cm is the same constant as in (16).

A distinctive feature of the Riemannian Laplace distribution on Pm, in comparison
to the Laplace distribution on R, is that there exist certain values of σ for which it can
not be defined. This is because the integral (18) diverges for certain values of this
parameter. This leads to the following definition.

Definition 3.1. Set σm = sup{σ > 0 : ζm(σ) < ∞}. Then for Ȳ ∈ Pm and σ ∈ (0, σm),
the Riemannian Laplace distribution on Pm, denoted by L(Ȳ , σ), is defined as the probability
distribution on Pm whose density with respect to dv(Y ) is given by (17), where ζm(σ) is
defined by (18).

As a first example of this definition, consider the case m = 2. In this case, the exact
value of σ2 is

√
2. In fact ζ2(σ) is finite for all σ <

√
2 as follows from the inequality
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sinh( |r1−r2|2 ) ≤ 1
2e
√

2|r|. In order to check ζ2(
√

2) =∞, it is necessary to show∫
R2

exp(− |r|√
2

+
|r1 − r2|

2
)dr1dr2 =∞

This is indeed true, because, up to a constant, the last integral is greater than∫
r1≥−r2,r2≤0

exp

(
−|r|+ (r1 − r2)√

2

)
dr1dr2 ≥

∫
r1≥−r2,r2≤0

exp
(
−
√

2r1 −
√

2r2

)
dr1dr2 =∞

by integrating with respect to r1 and then r2.

3.2 Sampling from L(Ȳ , σ)

The current paragraph presents a general method for sampling from the Laplace
distribution L(Ȳ , σ). This method relies in part on the transformation properties of
L(Ȳ , σ), which are given in the following Proposition.

Proposition 3.2. Let Y be a random variable in Pm . For all A ∈ GL(m),

Y ∼ L(Ȳ , σ) =⇒ Y ·A ∼ L(Ȳ ·A, σ)

where Y ·A is given by (9). Moreover,

Y ∼ L(I, σ) =⇒ Y −1 ∼ L(I, σ)

The proof of this proposition follows that of proposition 5 in [13] and is omitted.
The following algorithm describes how to sample fromL(Ȳ , σ) where 0 < σ < σm.

For this, it is first required to sample from the density p on Rm defined by

p(r) =
cm

ζm(σ)
e−
|r|
σ

∏
i<j

sinh

(
|ri − rj |

2

)
, r = (r1, · · · , rm).

This can be done by a usual metropolis algorithm [20].
It is also required to sample from the uniform distribution on O(m), the group of

real orthogonal m×m matrices. This can be done by generating A an m×m matrix,
whose entries are i.i.d with normal distribution N (0, 1), then the orthogonal matrix
U , in the decomposition A = UT with T upper triangular, is uniformly distributed on
O(m) [19] (p. 70). Sampling from L(Ȳ , σ) can now be described as follows.

1. Generate i.i.d samples (r1, · · · , rm) ∈ Rm with density p.

2. Generate U from a uniform distribution on O(m).

3. X ← U†diag(er1 , · · · , erm)U .

4. Y ← X.Ȳ
1
2 .

Note that the law of X in step 3 is L(I, σ); the proof of this fact is similar to Propo-
sition 6 in [13]. Finally, the law of Y in step 4 is L(I.Ȳ

1
2 = Ȳ , σ) by Proposition (3.2).
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3.3 Estimation of Ȳ and σ

The current paragraph considers maximum likelihood estimation of the parameters
Ȳ and σ, based on independent observations Y1, . . . , YN from the Riemannian Laplace
distribution L(Ȳ , σ). The main results are contained in Propositions 3.3 and 3.6 below.

Proposition 3.3 states the existence and uniqueness of the maximum likelihood
estimates ŶN and σ̂N of Ȳ and σ. In particular, the maximum likelihood estimate ŶN
of Ȳ is the Riemannian median of Y1, . . . , YN , defined by (11). Numerical computation
of ŶN will be considered and carried out using a Riemannian sub-gradient descent
algorithm [8].

Proposition 3.6 states the convergence of the maximum likelihood estimate ŶN to
the true value of the parameter Ȳ . It is based on Lemma 3.5 which states that the
parameter Ȳ is the Riemannian median of the distribution L(Ȳ , σ) in the sense of
definition (12).

Proposition 3.3 (MLE and median). The maximum likelihood estimate of the parameter Ȳ
is the Riemannian median ŶN of Y1, . . . , YN . Moreover, the maximum likelihood estimate of
the parameter σ is the solution σ̂N of

σ2 × d

dσ
log ζm(σ) =

1

N

N∑
n=1

d(Ȳ , Yn) (19)

Both ŶN and σ̂N exist and are unique for any realisation of the samples Y1, . . . , YN .

Proof of Proposition 3.3. The log-likelihood function, of the parameters Ȳ and σ, can be
written as

N∑
n=1

log p(Yn| Ȳ , σ) =

N∑
n=1

log

(
1

ζm(σ)
e−

d(Ȳ ,Yn)
σ

)

= −N log ζm(σ)− 1

σ

N∑
n=1

d(Ȳ , Yn)

As the first term in the last expression does not contain Ȳ ,

argmaxȲ

N∑
n=1

log p(Yn| Ȳ , σ) = argminȲ

N∑
n=1

d(Ȳ , Yn)

The quantity on the right is exactly ŶN by (11). This proves the first claim. Now
consider the function

F (η) = −N log(ζm(
−1

η
)) + η

N∑
n=1

d(ŶN , Yn), η <
−1

σm
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This function is strictly concave, since it is the logarithm of the moment generat-
ing function of a positive measure. Note that limη→ −1

σm

F (η) = −∞ and admit for
a moment that limη→−∞ F (η) = −∞. By the strict concavity of F , there exists a
unique η̂N < −1

σm
(which is the maximum of F ) such that F ′(η̂N) = 0. It follows that

σ̂N = −1
η̂N

lies in (0, σm) and satisfies (19). The uniqueness of σ̂N is a consequence
of the uniqueness of η̂N . Thus the proof is complete. Now it remains to check that
limη→−∞ F (η) = −∞ or just limσ→+∞

1
σ log(ζm( 1

σ )) = 0. Clearly

∏
i<j

sinh

(
|ri − rj |

2

)
≤ AmeBm|r|

where Am and Bm are two constants only depending on m. Using this, it follows that

1

σ
log(ζm(

1

σ
)) ≤ 1

σ
log(cmAm) +

1

σ
log

(∫
Rm

exp((−σ +Bm)|r|)dr1 · · · drm
)

(20)

But for some constant Cm only depending on m,∫
Rm

exp((−σ +Bm)|r|)dr1 · · · drm = Cm

∫ ∞
0

exp((−σ +Bm)u)um−1du

≤ (m− 1)!Cm

∫ ∞
0

exp((−σ +Bm + 1)u)du =
(m− 1)!Cm
σ −Bm − 1

Combining this bound and (20) yields limσ→+∞
1
σ log(ζm( 1

σ )) = 0.

Remark 3.4. Replacing F in the previous proof with F (η) = − log(ζm(−1
η )) + ηc where

c > 0 shows that the equation

σ2 × d

dσ
log ζm(σ) = c

has a unique solution σ ∈ (0, σm). This shows in particular that σ 7→ σ2 × d
dσ log ζm(σ) is a

bijection from (0, σm) to (0,∞).

Consider now the numerical computation of the maximum likelihood estimates
ŶN and σ̂N given by Proposition 3.3. Computation of ŶN consists in finding the Rie-
mannian median of Y1, . . . , YN , defined by (11). This can be done using the Rieman-
nian sub-gradient descent algorithm of [8]. The kth iteration of this algorithm pro-
duces an approximation Ŷ k

N of ŶN in the following way.
For k = 1, 2, . . . , let ∆k be the symmetric matrix

∆k =
1

N

N∑
n=1

Log
Ŷ
k−1

N

(Yn)

||Log
Ŷ
k−1

N

(Yn)||
(21)
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Here Log is the Riemannian logarithm mapping inverse to the Riemannian exponen-
tial mapping

ExpY (∆) = Y 1/2 exp
(
Y −1/2 ∆Y −1/2

)
Y 1/2 (22)

and ||Loga(b)|| =
√
ga(b, b). Then, Ŷ k

N is defined to be

Ŷ
k

N = Exp
Ŷ
k−1

N

(τk ∆k) (23)

where τk > 0 is a step size which can be determined using a backtracking procedure.
Computation of σ̂N requires solving a non-linear equation in one variable. This is

readily done using Newton’s method.
It is shown now that the empirical Riemannian median ŶN converges almost surely

to the true median Ȳ . This means that ŶN is a consistent estimator of Ȳ . The proof of
this fact requires few notations and a preparatory lemma.

For Ȳ ∈ Pm and σ ∈ (0, σm), let

E(Y | Ȳ , σ) =

∫
Pm

d(Y,Z) p(Z| Ȳ , σ)dv(Z)

The following lemma shows how to find Ȳ and σ from the function Y 7→ E(Y | Ȳ , σ).

Lemma 3.5. For any Ȳ ∈ Pm and σ ∈ (0, σm), the following properties hold

(i) Ȳ is given by
Ȳ = argminY E(Y | Ȳ , σ) (24a)

That is Ȳ is the Riemannian median of L(Ȳ , σ).
(ii) σ is given by

σ = Φ
(
E(Ȳ | Ȳ , σ)

)
(24b)

where the function Φ is the inverse function of σ 7→ σ2 × d log ζm(σ)/dσ.

Proof. (i) Let E(Y ) = E(Y | Ȳ , σ). According to Theorem 2.1 in [18], this function has a
unique global minimum which is also a unique stationary point. Thus, to prove that
Ȳ is the minimum point of E , it will suffice to check that for any geodesic γ starting
from Ȳ , d

dt |t=0E(γ(t)) = 0 [21] (p. 76). Note that

d

dt
|t=0E(γ(t)) =

∫
Pm

d

dt
|t=0d(γ(t), Z) p(Z| Ȳ , σ)dv(Z) (25)

where for all Z 6= Ȳ [22]

d

dt
|t=0d(γ(t), Z) = −gȲ (logȲ (Z), γ′(0))d(Ȳ , Z)−1

10



The integral in (25) is, up to a constant,

d

dt
|t=0

∫
Pm

p(Z| γ(t), σ)dv(Z) = 0

since
∫
Pm p(Z| γ(t), σ)dv(Z) = 1.

The proof of part (ii) is based on the same techniques as (i) by differentiating the
last integral with respect to σ.

Proposition 3.6 (Consistency of ŶN ). Let Y1, Y2, · · · be independent samples from a Laplace
distribution G(Ȳ , σ). The empirical median ŶN of Y1, . . . , YN converges almost surely to Ȳ ,
as N →∞ .

Proof. Corollary 3.5 in [23] (p. 49) states that if (Yn) is a sequence of i.i.d random
variables on Pm with law π, then the Riemannian median ŶN of Y1, · · · , YN converges
almost surely asN →∞ to Ŷπ , the Riemannian median of π defined by (12). Applying
this result to π = L(Ȳ , σ) and using Ŷπ = Ȳ which follows from item (i) of Lemma 3.5
shows that ŶN converges almost surely to Ȳ .

4 Mixtures of Laplace distributions

The present section introduces the class of probability distributions which are finite
mixtures of Riemannian Laplace distributions on Pm. These constitute the main the-
oretical tool, to be used for the target application of the present paper, namely the
problem of texture classification in computer vision, which will be treated in Section
5.

A mixture of Riemannian Laplace distributions is a probability distribution onPm,
whose density with respect to the Riemannian volume element (13) has the following
expression

p(Y |($µ, Ȳµ, σµ)1≤µ≤M ) =

M∑
µ=1

$µ × p(Y | Ȳµ, σµ) (26)

where $µ are nonzero weights, whose sum is equal to 1, Ȳµ ∈ Pm and σµ ∈ (0, σm)

for all 1 ≤ µ ≤M and the parameter M is called the number of mixture components.
Paragraph 4.1 describes a new EM (expectation maximisation) algorithm, which

computes the maximum likelihood estimates of the mixture parameters ($µ, Ȳµ, σµ)1≤µ≤M ,
based on independent observations Y1, . . . , YN from the mixture distribution (26).

Paragraph 4.2 considers the problem of order selection for mixtures of Riemannian
Laplace distributions. Precisely, this consists in finding the numberM of mixture com-
ponents in (26) which realises the best representation of a given set of data Y1, . . . , YN .
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This problem is solved by computing the BIC criterion, which is here found in explicit
form for the case of mixtures of Riemannian Laplace distributions on Pm.

4.1 Estimation of the mixture parameters

In this section Y1, . . . , YN are i.i.d samples from (26). Based on these observations,
an EM algorithm is proposed to estimate ($µ, Ȳµ, σµ)1≤µ≤M . The derivation of this
algorithm can be carried out similarly to [13].

To explain how this algorithm works, define for all ϑ = {($µ, Ȳµ, σµ)},

ωµ(Yn, ϑ) =
$µ × p(Yn| Ȳµ, σµ)∑M
s=1$s × p(Yn| Ȳs, σs)

, Nµ(ϑ) =

N∑
n=1

ωµ(Yn) (27)

The algorithm iteratively updates ϑ̂ = {($̂µ, Ŷµ, σ̂µ)} , which is an approximation
of the maximum likelihood estimate of the mixture parameters ϑ = ($µ, Ȳµ, σµ) as
follows.
I Update for $̂µ : Based on the current value of ϑ̂, assign to $̂µ the new value $̂µ =

Nµ(ϑ̂)
/
N.

I Update for Ŷµ : Based on the current value of ϑ̂, assign to Ŷµ the value

Ŷµ = argminY

N∑
n=1

ωµ(Yn, ϑ̂) d(Y, Yn) (28)

I Update for σ̂µ : Based on the current value of ϑ̂, assign to σ̂µ the new value

σ̂µ = Φ(N−1
µ (ϑ̂)×

∑N
n=1 ωµ(Yn, ϑ̂) d(Ŷµ, Yn)) (29)

where the function Φ is defined in Proposition 3.5.

These three update rules should be performed in the above order. Realisation
of the update rules for $̂µ and σ̂µ is straightforward. The update rule for Ŷµ is re-
alised using a slight modification of the sub-gradient descent algorithm described in
paragraph 3.2. More precisely, the factor 1/N appearing in (21) is only replaced with
ωµ(Yn, ϑ̂) at each iteration.

In practice, the initial conditions ($̂µ0
, Ŷµ0

, σ̂µ0
) in this algorithm were chosen in

the following way. The weights ($µ0
) are uniform and equal to 1/M , (Ŷµ0

) are M dif-
ferent observations from the set {Y1, .., YN} chosen randomly and (σ̂µ0

) is computed
from ($µ0) and (Ŷµ0) according to the rule (29). Since the convergence of the algo-
rithm depends on the initial conditions, the EM algorithm is run several times and
the best result is retained, i.e., the one maximizing the log-likelihood function.
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4.2 The Bayesian Information Criterion

The BIC (Bayesian Information criterion) was introduced by Schwarz to find the ap-
propriate dimension of a model that will fit a given set of observations [14]. Since
then, BIC has been used in many Bayesian modeling problems where priors are hard
to set precisely. In large-sample settings, the fitted model favored by BIC ideally cor-
responds to the candidate model which is a posteriori most probable; i.e., the model
which is rendered most plausible by the data at hand. One of the main features of
the BIC is its easy computation since it is only based on the empirical log-likelihood
function.

Given a set of observations {Y1, · · · , YN} arising from (26) where M is unknown,
the BIC consists in choosing the parameter

M̄ = argmaxMBIC(M)

where
BIC(M) = LL− 1

2
×DF × log(N) (30)

Here LL is the log-likelihood given by

LL =

N∑
n=1

log

(
M∑
k=1

$̂kp(Yn|Ŷk, σ̂k)

)
(31)

and DF is the number of degrees of freedom of the statistical model

DF = M × m(m+ 1)

2
+M +M − 1 (32)

In formula (31), ($̂k, Ŷk, σ̂k)1≤k≤M are obtained from an EM algorithm as stated in
paragraph 4.1 assuming the exact dimension is M . Finally note that in formula (32),
M × m(m+1)

2 (respectively M and M − 1) corresponds to the number of degrees of
freedom associated to (Ŷk)1≤k≤M (respectively (σ̂k)1≤k≤M and ($̂k)1≤k≤M ).

5 Application to classsification of data on Pm
The present section considers the application of Riemannian Laplace distributions to
the classification of data in Pm. It gives an original Laplace classification rule, which
can be used to carry out the task of classification, even in the presence of outliers. It
also applies this classification rule to the problem of texture classification in computer
vision, showing that it leads to improved results in comparison with recent literature.

Paragraph 5.1 considers, from the point of view of statistical learning, the classifi-
cation of data with values in Pm. Given data points Y1, · · · , YN ∈ Pm, this proceeds
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in two steps, called the learning phase and the classification phase respectively. The
learning phase uncovers the class structure of the data, by estimating a mixture model
using the EM algorithm developed in paragraph 4.1. Once training is accomplished,
data points are subdivided into disjoint classes. Classification consists in associating
each new data point to the most suitable class. For this, a new classification rule will
be established and shown to be optimal.

Paragraph 5.2 is the implementation of the Laplace classification rule together with
the BIC criterion to texture classification in computer vision. It highlights the advan-
tage of the Laplace distribution in presence of outliers and shows its better perfor-
mance compared with recent approaches.

5.1 Classification using mixtures of Laplace distributions

Assume given a set of training data Y1, · · · , YN . These are now modeled as a realisa-
tion of a mixture modeled as a realisation of a mixture of Laplace distributions

p(Y ) =

M∑
µ=1

$µ × p(Y | Ȳµ, σµ) (33)

In this paragraph, the order M in (33) is considered as known. The training phase
of this data consists in learning its structure as a family of M disjoint classes Cµ, µ =

1, · · · ,M . To be more precise, depending on the family ($µ), some of these classes
may be empty. Training is done by applying the EM algorithm described in paragraph
4.1. As a result each class Cµ is represented by a triple ($̂µ, Ŷµ, σ̂µ) corresponding to
maximum likelihood estimates of ($µ, Yµ, σµ). Each observation Yn is now associated
to the class Cµ∗ where µ∗ = argmaxµω(Yn, ν̂) (recall the definition from (27)). In this
way {Y1, · · · , YN} is subdivided into M disjoint classes.

The classification phase requires a classification rule. Following [13], the optimal
rule (in the sense of a Bayesian risk criterion given in [24]) consists in associating any
new data Yt , to the class Cµ∗ where

µ∗ = argmaxµ
{
N̂µ × p(Yt|Ŷµ, σ̂µ)

}
(34)

Here N̂µ is the number of elements inCµ. Replacing N̂µ withN×$̂µ, (34) becomes
argmaxµ $̂µ × p(Yt|Ŷµ, σ̂µ). Note that when the weights $µ in (33) are assumed to be
equal, this rule reduces to maximum likelihood classification rule maxµ p(Yt|Ŷµ, σ̂µ).
A quick look at the expression (17) shows that (34) can also be expressed as

µ∗ = argminµ

{
− log $̂µ + log ζ(σ̂µ) +

d(Yt , Ŷµ)

σ̂µ

}
(35)
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The rule (35) will be called Laplace classification rule. It favours clusters Cµ hav-
ing a larger number of data points (the minumum contains − log $̂µ), or a smaller
dispersion away from the median (the minimum contains log ζ(σ̂µ)). When choosing
between two clusters with the same number of points and the same dispersion, this
rule favours the one whose median is closer to Yt . If the number of data points inside
clusters and the respective dispersions are neglected, then (35) reduces to the nearest
neighbor rule involving only the Riemannian distance introduced in [2].

5.2 Application to texture classification

This paragraph presents an application of the mixture of Laplace distributions to the
context of texture classification on the MIT Vision Texture (VisTex) database [25]. The
purpose of this experiment is to classify the textures, by taking into consideration
the within-class diversity. In addition, the influence of outliers on the classification
performances is analyzed. The obtained results for the Riemannian Laplace distri-
bution (RLD) are compared to those given by the Riemannian Gaussian distribution
(RGD) [13].

The VisTex database contains 40 images, considered as being 40 different texture
classes. The database used for the experiment is obtained after several steps. First
of all, each texture is decomposed in 169 patches of 128 × 128 pixels, with an over-
lap of 32 pixels, giving a total number of 6760 textured patches. Next, some patches
are corrupted, in order to introduce abnormal data into the dataset. Therefore, their
intensity is modified by applying a gradient of luminosity. For each class, between
0 and 60 patches are modified in order to become outliers. An example of a VisTex
texture with one of its patches and an outlier patch are shown in Figure 1.

(a) (b) (c)

Figure 1: Example of a texture from the VisTex database (a), one of its patches (b) and the corresponding
outlier (c).
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Once the database is built, it is 15 times equally and randomly divided in order to
obtain the training and the testing sets that are further used in the supervised classi-
fication algorithm. Then, for each patch in both databases a feature vector has to be
computed. The luminance channel is first extracted, and then normalised in intensity.
The grayscale patches are filtered using the stationary wavelet transform Daubechies
db4 filter, with 2 scales and 3 orientations. To model the wavelet subbands, various
stochastic models have been proposed in the literature. Among them, the univariate
generalized Gaussian distribution has been found to accurately model the empirical
histogram of wavelet subbands [26]. Recently, it has been proposed to model the spa-
tial dependency of wavelet coefficients. To this aim, the wavelet coefficients located in
a p× q spatial neighborhood of the current spatial position are clustered in a random
vector. The realisations of these vectors can be further modeled by elliptical distribu-
tions [27, 28], copula based models [30, 29], etc. In this paper, the wavelet coefficients
are considered as being realisations of zero-mean multivariate Gaussian distributions.
In addition, for this experiment the spatial information is captured by using a vertical
(2× 1) and a horizontal (1× 2) neighborhood. Next, the 2× 2 sample covariance ma-
trices are estimated for each wavelet subband and each neighborhood. Finally, each
patch is represented by a set of F = 12 covariance matrices (2 scales × 3 orientations
× 2 neighborhoods) denoted Y = [Y1, · · · , YF ].

The estimated covariance matrices are elements of Pm, with m = 2 and therefore
they can be modeled by Riemannian Laplace distributions. More precisely, in order
to take into consideration the within-class diversity, each class in the training set is
viewed as a realisation of a mixture of Riemannian Laplace distributions (equation
(26)) with M mixture components, characterized by ($µ, Ȳµ,f , σµ,f ), having Ȳµ,f ∈
P2, with µ = 1, · · · ,M and f = 1, · · · , F . Since the subbands are assumed to be
independent, the probability density function is given by:

p(Y |($µ, Ȳµ,f , σµ,f )1≤µ≤M,1≤f≤F ) =

M∑
µ=1

$µ

F∏
f=1

p(Yf | Ȳµ,f , σµ,f ). (36)

The learning step of the classification is performed using the EM algorithm pre-
sented in paragraph 4 and the number of mixture components is determined using
the BIC criterion recalled in (30). Note that for the considered model given in (36), the
degree of freedom is expressed as

DF = M − 1 +M × F ×
(
m(m+ 1)

2
+ 1

)
(37)

since one centroid and one dispersion parameter should be estimated per feature and
per component of the mixture model. In practice, the number of mixture components
M varies between 2 and 5, and the M yielding to the highest BIC criterion is retained.
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As mentioned earlier, the EM algorithm is sensitive to the initial conditions. In order
to minimize this influence, for this experiment the EM algorithm is repeated 10 times
and the result maximizing the log-likelihood function is retained. Finally, the classifi-
cation is performed by assigning each element Yt ∈ P2 in the testing set to the class of
the closest cluster µ∗, given by

µ∗ = argminµ

− log $̂µ +

F∑
f=1

log ζ(σ̂µ,f ) +

F∑
f=1

d(Yt , Ŷµ,f )

σ̂µ,f

 (38)

This expression is obtained starting from (35) and (36), knowing that F features are
extracted for each patch.

The classification results of the proposed model (solid red line), expressed in terms
of overall accuracy, shown in Figure 2, are compared with those given by a fixed
number of mixture components (that is for M = 3, dashed red line) and with those
given when the within-class diversity is not considered (that is for M = 1, dotted red
line). In addition, the classification performances given by the RGD model (displayed
in black) proposed in [13] are also considered. For this model, the number of mixture
components is first computed using the BIC, and next it is fixed to M = 3 and M = 1.
For all the considered methods, the classification rate is given as a function of the
number of outliers, that varies between 0 and 60 for each class.

First, the influence of abnormal data on the RGD and RLD models is analyzed as
the number of outlier patches increases. It is shown that the RLD gives progressively
better results than the RGD. Second, the number of mixture components is considered.
It can be noticed that the results are improved by using mixture distributions joint
with the BIC criterion for choosing the suitable number of clusters. In conclusion,
the mixture of RLDs combined with the BIC criterion to estimate the best number of
mixtures components can minimize the influence of abnormal samples present in the
dataset, illustrating the relevance of the proposed method.

6 Conclusions

Motivated by the problem of outliers in statistical data, this paper introduces a new
distribution on the space Pm of m × m symmetric positive definite matrices called
Riemannian Laplace distribution. Denoted throughout the paper by L(Ȳ , σ), where
Ȳ ∈ Pm and σ > 0 are the indexing parameters, this distribution may be thought
of as specifying the law of a family of observations on Pm concentrated around the
location Ȳ and having dispersion σ. If d denotes Rao’s distance on Pm and dv(Y ) its
associated volum form, the density of L(Ȳ , σ) with respect to dv(Y ) is proportional
to exp(−d(Y,Ȳ

σ )). Interestingly, the normalising constant depends only on σ (and not
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Figure 2: Classification results.

on Ȳ ). This allows us to deduce exact expressions for maximum likelihood estimates
of Ȳ and σ relying on the Riemannian median on Pm. These estimates are also com-
puted numerically by means of sub-gradient algorithms. Estimation of parameters in
mixture models of Laplace distributions are also considered and performed using a
new expectation-maximisation algorithm. Finally, the main theoretical results are il-
lustrated by an application to texture classification. The proposed experiment consists
in introducing abnormal data (outliers) into a set of images from the Vistex database
and analyzing their influences on the classification performances. Each image is char-
acterized by a set of 2 × 2 covariance matrices modeled as mixtures of Riemannian
Laplace distributions in the space P2. The number of mixtures, is estimated using the
BIC criterion. The obtained results are compared with those given by the Riemannian
Gaussian distribution, showing the better performance of the proposed method.
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