
HAL Id: hal-01248554
https://hal.science/hal-01248554

Submitted on 28 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rotation of millimeter-size objects using ordinary light
Olivier Emile, Janine Emile

To cite this version:
Olivier Emile, Janine Emile. Rotation of millimeter-size objects using ordinary light. Optics Letters,
2016, 41 (2), pp.211-214. �10.1364/OL.41.000211�. �hal-01248554�

https://hal.science/hal-01248554
https://hal.archives-ouvertes.fr


Rotation of millimeter-size objects using ordinary light.

Olivier Emile1 and Janine Emile2
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Abstract

The ability to optically rotate bodies offers new degrees of control of micro-objects

with applications in various domains including micro-electromechanical-systems

(MEMS), biomanipulations or optofluidics. Here we demonstrate the optically induced

rotation of simple asymmetric two-dimensional objects using plane waves originating

either from ordinary laser sources or from black body radiation. The objects are floating

on an air/water interface. We observe a steady state rotation depending on the light

intensity and on the asymmetry of the object. We interpret this rotation in terms of

light diffraction by the edges of the object. Such systems could be easily implemented

in optofluidic devices to induce liquid flow without the need for special light sources.

OCIS Codes (050.4865) Optical vortices; (350.4855) Optical tweezers or optical

manipulation; (260.3160) Interference
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Since 1992, there has been a renew of interest for the angular momentum of

light [1, 2]. Asides from fundamental considerations, they are many potential

applications as, for example, in astrophysics [3], in optical tweezers for biological

manipulations [2, 4–6], in telecommunications [7–9], or in quantum optics [10–14].

The light beams are generally produced either from dedicated optical elements such

as dove prisms and lenses or from the diffraction of particular gratings [1, 15]. We

have recently shown experimentally that such beams could also be produced by

the diffraction of plane waves from two-dimensional asymmetric objects [16]. We

have then conjectured that, due to the law of angular momentum conservation,

the diffracting object must acquire angular momentum and start to rotate.

The rotation of small objects by light sources has many applications in various

domains including MEMS [2, 17], biomanipulation [5, 6] or optofluidics [18, 19]. Up

to now, two major schemes have successfully enabled such rotations, based either

on the linear momentum or on the angular momentum of light. The first scheme

takes advantages of specially shaped three-dimensional objects and the scattering

of ordinary light [20–22], whereas, the latter, relies either on the spin [23–26] or on

the Orbital Angular Momentum (OAM) [27–29] of light from dedicated sources,

coupled with the absorbing or birefrigent optical properties of the object. One may

then wonder whether it could possible to rotate ordinary objects with ordinary

light. The aim of the letter is thus to investigate the rotational properties of

asymmetrical objects floating in a water tank and lighted up by ordinary sources.

The experimental set-up is sketched on figure 1. The rotating objects are 1.5-mm

radius two-dimensional paddle wheels printed on 2-mm radius symmetric disks

cut out an ordinary laser printer transparency. They could also be called cams or

ratchet wheels. The printed paddle wheels have up to eight blades. The printed

surfaces of the paddle wheels are constant whatever the number of blades on

our printings. The disks, are floating on a tank filled with ordinary water at a

temperature of 20oC. The water enables the disks to rotate around their own axis
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in the plane of the air/water interface.

Since the disks are symmetrical, the rotation cannot be attributed to the Brow-

nian motion observed for self-propelling asymmetrical particles [30]. Besides, we

are neither interested in the surface deformation [31] by capillary interactions nor

in the frictional resistance of the fluid surrounding the object that can be found

with asymmetric objects [32]. Moreover, this shape minimizes the friction between

the object and the water flow around it. The light comes out an optical fiber con-

nected either to a 980 nm-laser diode (IDIL) or a cold light source (Schott 1500

LCD) generating black body radiation. The fiber is fixed to a mechanical sup-

port that can be translated in the plane of the table in order to track the paddle

wheel. The rotation is detected with a camera that is also sensitive to the 980 nm

radiation.

Figure 2 shows the rotation of a three blades paddle wheel (p = 3), for different

times of laser exposure and for a light power of 80 mW at the end of the fiber.

The rotation speed is clockwise and is of the order of 0.1o/s. Because the transient

regime is in the microsecond range, like for submillimeter- sized objects in liquid

or at air/liquid interface [20–24, 27], the steady-state rotation is easily observed by

a standard camera. Contrarily, for centimeter size objects suspended in air [33],

the accelerating regime is mainly evidenced. Then the fluid, the size of the object

and the experimental environment influence the rotational dynamics. The optical

fiber is set so that the light impinges perpendicular to the air/water interface and

illuminates the paddle wheel uniformly.

According to previous calculations [16], the diffracted light in the shadow of

the paddle wheel carries orbital angular momentum with a topological charge ℓ

that is proportional to the number of blades p. Moreover, in this case, the phase

of the diffracted beam, in a plane parallel to the interface, rotates counter clock-

wise. Due to the law of angular momentum conservation, a torque (mechanical

angular momentum) on the paddle wheel must counterbalance this light orbital an-
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gular momentum generation. The disk should then rotate clockwise, as observed.

More generally, every asymmetrical plane object should rotate. For example, we

found experimentally that besides for various paddle wheels, a drawing mimicking

a lemna minor shape, a maple seed, an insect’s egg, or any two-dimensional asym-

metrical object indeed rotates (see figure 1). Such objects can also be obtained

by aggregation of nanoparticles in dipalmitoylphosphatidylcholine monolayers [34]

modeling lung surfactant monolayers.

Following the preceding argument, a reverse paddle wheel should rotate the

other way around. Let us thus reverse the object floating on the water. The

diffracted beam then carries angular momentum with opposite topological charges.

Its phase rotates clockwise. Thus the object rotates counter clockwise as can be

noticed on figure 3. Note that a two-dimensional object like a printed paddle wheel

cannot be chiral. However, when this object is floating on an interface between

two media with different optical indices, one can always draw the normal to the

interface. This floating asymmetric plane object becomes thus chiral when taking

into account the interface.

Because the topological charge of the diffracted beam is proportional to the

number of blades on the wheel [16], one would then expect the rotation speed to

increase with this number, for a given constant surface of the paddle wheel printed

on the disk. This is experimentally evidenced, in figure 3. We have plotted the

rotation speed versus time for different paddle wheels up to p = 6. One clearly

sees that the rotation speed increases with p. However, the variation seems not to

be linear, especially for high p values.

Figure 4 shows the experimental rotation speed versus the number of blades up

to p = 8. The rotation speed saturates and even decreases, having a maximum

value around p = 6. We have also calculated numerically the electric field ~E(~r)

at a distance D from the mask and at a distance r from the axis, using Fresnel
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diffraction

~E(~r) ∝

∫∫

ei
~k(~r−~r′)T (~r′)

√

D2 + |~r − ~r′|
2
~E(~r′)r′dr′dθ′ (1)

where ~E(~r′) is the radial dependence of the incident beam amplitude impinging

on the mask and T (~r′) is the mask transmission. Typically, T (~r′) = 0 on the mask

and T (~r′) = 1 otherwise. ~k is the wave vector. Assuming a Gaussian distribution

of the amplitude of the incident field one can write

~E(~r′, θ) = E0e
−

r
′2

w
2 ~e0 (2)

where w is the beam waist and ~e0 is the light polarization. One can note that

since the mask is invariant under a 2π/p rotation, the field at a distance D has

the same invariance, i.e.

~E(r, θ + 2π/p) = ~E(r, θ) (3)

where θ is the azimuthal angle.

From equation 1, we have numerically extracted the OAM of the field and the

torque. Then, considering E0 as the only adjusting parameter for all the paddle

wheels, we have plotted on figure 4, the rotation speed versus the number of

blades. The experimental values and the calculated ones superimposed exactly,

confirming the saturation effect. This saturation could be attributed to the fact

that the intensity of the diffracted beam decreases when increasing p, for a given

surface of the paddle wheel. The ratchet character of the paddle wheel is then

less pronounced when increasing p. One could not totally exclude a damping

by the water and a transfer of angular momentum to the fluid. However, here,

the diffracting figure is printed on a symmetric disk floating on the water that

minimizes the interaction with the water flow. It is thus more likely that this

saturation is due to the decrease of asymmetry of the diffracting picture when

increasing p.

From equation 1, the diffracted amplitude is proportional to E0, the incoming

amplitude, as always for diffraction effects. Then the torque must be proportional
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to the light intensity. We find experimentally a linear variation of the rotation

speed with the laser power, as could be expected. We have checked with a polarizer,

that the light impinging on the object is linearly polarized, with a fixed direction.

Then, the rotational effect cannot be attributed to the spin angular momentum of

light, nor to a rotation of the linear polarization [23, 24]. It could not be due to

thermocapillary propulsion observed for asymmetric microgears neither [35] since

the paddle wheel we used is printed on a disk which symmetry excludes such

effects.

The transfer mechanism is very different from what have been reported up to

know in the literature (see for example [2] for a review). It is not due to spin

angular momentum transfer neither to OAM, nor to alignment as for birefringent

objects. Since the object is a two dimensional object, the rotation could not

be induced via linear angular momentum transfer. There is no need for special

polarization nor particular phase varying fields nor dedicated objects. Indeed the

transfer mechanism is due to the diffraction of a simple and ordinary plane wave

by the edges of the printed picture. It could be performed with every asymmetric

picture. Note that this transfer mechanism can also rotate symmetric objects. For

example, in our case, the object is symmetric and transparent. The diffraction

from the edges of a asymmetric printed structure on a transparency makes the

whole object to rotate.

Could the effect be also observed with natural light, like for an asymmetrical

object, such as bacteria, colloidal particles or macromolecules, under sunlight ex-

posure? We have replaced the laser diode source by the blackbody radiation from

a cold lamp used in a microscope system. We have plotted in figure 5, the rota-

tion speed for a three blades (p = 3) paddle wheel versus the temperature of the

blackbody. We have also measured the radiation power at the end of the fiber. We

found that it varies linearly with the temperature within our temperature range.

The rotation speed is linear versus the optical power as for the laser diode, despite
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some water flows in the tank. They are probably due to temperature gradients

(typically 5 K/cm) caused by the absorption of part of the radiation power by the

water.

The driven rotation of this paddle wheel can thus even be performed with

ordinary light. The induced torque is applied perpendicular to the object, on the

object axis like with mechanical motors, but without any contacts. The rotation

we report is performed with an asymmetric diffracting paddle wheel. It could be

implemented on any support that could be symmetric or not. Besides, there is

no restriction concerning the number of blades. For example, we have performed

rotation of a p = 1 paddle wheel which more looks like a cam or a bacteria

(see fig.4). Moreover, although in our case the object is floating at an air/water

interface, the experiment could be performed with an underwater object since the

transfer mechanism is only governed by diffraction.

The rotation frequency we report here seems very low, of the order o 5.10−4

Hz, compared with the rotation rates of micro-objects [23, 24, 27, 35] which are

of the order of few hertz. However, let us scale our experiment to 1µm diameter

objects. Assuming a drag coefficient proportional to the diameter (4 mm here),

and focalizing the light from few centimeters (here) to few microns, one would gain

a 4.103 factor on the drag coefficient and nearly a factor of 6 on the light efficiency

transfer. One would find a 12 Hz rotation frequency for a 80 mW laser. Such rota-

tions could find applications in optofluidic devices to optically drive micromotors

that would generate liquid flows without the need for special absorbing, reflecting

or birefringence properties of the micromotor.

Finally, this rotation of asymmetrical two-dimensional objects floating on an

air/liquid interface may shine some new light in the unsettling problem of the

homochirality of life [36–38]. Dealing actually with the reverse problem, let us

consider the sunlight, and rotating macromolecules or colloidal particles on an

air/liquid interface. One could not totally exclude that the combination of light
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and rotation may induced some asymmetry on initially symmetrical objects that

then leads to chirality.
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FIG. 1. Experimental set up. Various two-dimensional asymmetrical objects (lemna

minor: free floating plant, bacteria, Daphnia: genus of small planktonic crustacean,

paddle wheels with p = 1 and −8), floating on a tank full of water, start to rotate under

the influence of ordinary light coming out of an optical fiber.
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t=250s, ∆θ=-32 t=290s, ∆θ=-38 t=370s, ∆θ=-51
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FIG. 2. Rotation of a paddle wheel with three blades versus time. The position of

the asymmetrical printed object is recorded for six different times. The yellow doted

line indicates one of the axes of the object. The red dotted line indicates the initial

orientation of this axis.
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FIG. 3. Rotation of various paddle wheels versus time. Rotation of paddle wheels with p

paddles with positive (p > 0) and negative (p 6 0) orientations. The curves for positive

and negative paddle wheels are exactly symmetric. The rotation speed increases with

the number of paddles. The error bars are within the points. Note that the paddle

wheels have all the same surface.
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FIG. 4. Angular speed of rotation of paddles. a) Rotation speed versus number of blades.

Circle experimental values, open diamonds calculated values. Since the experimental

and numerical points exactly superimposed, the diamonds are only visible for p = 5 and

p = 7. The solid line is a guide for the eye.
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FIG. 5. Linear variation of the rotation speed of the p = 3 paddle wheel versus temper-

ature (top) and versus optical power (bottom). The error bars are within the points.
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