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The Global Nonlinear Stability of Self-Gravitating Irrotational

Chaplygin Fluids in a FRW Geometry

Philippe G. LeFLOCH* and Changhua WEI

Abstract

We analyze the global nonlinear stability of FRW (Friedmann-Robertson-Walker) spacetimes
in presence of an irrotational perfect fluid. We assume that the fluid is governed by the so-called
(generalized) Chaplygin equation of state p = ,;Lj relating the pressure to the mass-energy
density, in which A > 0 and « € (0, 1] are constant. We express the Einstein equations in wave
gauge as a systems of coupled nonlinear wave equations and by performing a suitable conformal
transformation, we are able to analyze the global behavior of solutions in future timelike directions.
We establish that the (34 1)-spacetime metric and the mass density and velocity vector describing
the evolution of the fluid remain globally close to a reference FRW solution, under small initial
data perturbations. Our analysis provides also the precise asymptotic behavior of the perturbed
solutions in the future directions.
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Introduction

1.1 Main objective

=~ Q0 =

oo

Recent cosmological observations predict that our Universe is currently enjoying a phase of accelerated
expansion, which could be described for instance by introducing the notion of dark energy. An analysis
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based on the Big Bang model reveals that our Universe is spatially flat and consists of 70 percents
of dark energy (with negative pressure), while the remaining 30 percents consist of dust matter (i.e.
cold dark matter plus baryons), as well as negligible radiation. It has been predicted that the dark
energy may be responsible for the present acceleration of our Universe. These predictions from physics
rely on several possible theories of dark energy. One possibility is to include a cosmological constant
in the Einstein equations, while another quite interesting approach models the matter content as a
Chaplygin gas or, more generally a generalized Chaplygin gas (GCG) or a modified Chaplygin gas
(MCG). In the past decade, these models have been studied extensively by elementary methods of
analysis and via numerical simulations. For a more detailed description of these models, we refer to
[1-3, 6, 8-10, 16, 22] and the references therein.

In this paper, we consider the nonlinear future stability of self-gravitating fluids governed by the
(generalized) Chaplygin equation of state and, therefore, analyze the global existence problem for the
Einstein-Euler system.

Definition 1.1. A generalized Chaplygin gas, by definition, is a perfect fluid governed by the

equation of state
AQ

pe 1.1
o (1.1)

relating the pressure p = p(p) to the mass-energy density p > 0 of this fluid, where A is a positive
constant and « € (0, 1]. This is known as a Chaplygin gas when a = 1.

The Einstein-Euler system for a generalized Chaplygin gas read as follows:
GHv — fw’,

o (1.2)

v, T* =0,

where G" = Richv — %éﬁ“” is Einstein’s curvature tensor of an unknown metric g = g, dx"da",
while Ric,, and R are the Ricci and scalar curvature of g, respectively, and V,, denotes the covariant
derivative of g. Here, T"” denotes the stress energy tensor

T = (p+p)aa’ + pg"” (1.3)

where p denotes the energy density, p = p(p) denotes the pressure and is given by (1.1), u =
(@, ,u%) denotes the unit, future-directed, timelike 4-velocity, gh” is the inverse of g,,. As is
standard, we use Einstein’s summation convention, i.e. we sum over repeated lower and upper in-
dices.

We are interested in irrotational full fluids, namely, under the equation of state (1.1), fluid such

that there exists a potential function ¥ allowing us to express the stress energy tensor in form
T = (p+ p)u'u” + pg"

Fﬁ@@@@_ ~at1

e e, (1.4)
e — h2a \oat+1ight? ,
([—h“;;l)ail ( ) g

2
= Aa+1[7a(j»1

where [ is a constant depending only on the initial data of the state variables and h= —%Vg“\llg”\ll >
0. The derivation of (1.4) from (1.1) will be presented in Section 2.2, below.

It is well-known that there exists a particular family of solutions to (1.2), that is, the Friedmann-
Robertson-Walker cosmological spacetimes, and our main result in the present work can be simply
described as follows.

Theorem 1.2 (The nonlinear future stability of Friedmann-Robertson-Walker spacetimes. Prelimi-
nary version). The FRW solutions to the Einstein-Euler system for a generalized Chaplygin gas are
nonlinearly stable toward the future, when the initial data set prescribed on an initial hypersurface is
a small perturbation of this FRW solution.



A more technical version of the above theorem will be provided below after we will introduce
some necessary notations. At this junction, we want to recall some eariler work on the Einstein-Euler
system, especially for the expanding spacetimes of interest in the present work.

1.2 Background on the problem

One natural problem one may ask is whether or not our universe dominated by above models is stable.

Due to the importance of this problem in mathematics and physics, it attracts a lot of attention in

general relativity and great improvements have been made on the Einstein-Euler equations with

positive cosmological constant in recent years. We will describe these improvements clearly below.

While we still know nothing on the future nonlinear stability of our universe dominated by Chaplygin

gas (or GCG, MCQG) in 143 spacetime dimensions, that is one motivation for us to study this problem.
The Einstein-Euler equations with positive cosmological constant read

GHv — v _ AGH,

v (1.5)
vV, T =0,

where A > 0 denotes the positive cosmological constant. One advance for equation (1.5) with metric
(??) and stress energy tensor (1.3) is focused on the fluid with equation of state

p= Cs2p7 (16)
where Cy > 0 denotes the speed of sound. When Cy; = 0, it is called the dust universe, and when

Cy, = \/g , it is used to describe the radiation universe.

There are mainly two approaches to deal with the Einstein-Euler system (1.5) mathematically:
working with the given spacetime metric, or alternatively working with a conformally equivalent
metric. Both approaches play an important role in the mathematical theory of general relativity. The
well-known family of Friedmann-Lemaitre-Robertson-Walker (FLRW) solutions to (1.5) represents a
homogeneous, fluid filled universe that is undergoing accelerated expansion. Rodnianski and Speck
[19] established the future global stability of a class of FLRW solutions under the assumption of

zero vorticity and 0 < C; < \/g The so-called wave gauge approach in [19] was first used by

Ringstrém in [18] who treated scalar fields without positive cosmological constant: THY = JHUH¥ T —
[%ﬁuyg“\llg”\lf + V(¥)]g"”. The presence of V(¥) plays an analogue role as A, under the assumption
that V(0) > 0, V'(0) =0, V" (0) > 0. The main observation in these papers is two-fold: on one hand,
the Einstein-nonlinear scalar field system can be formulated as a system of nonlinear wave equations
provided one introduces generalized wave coordinates, inspired by the standard wave coordinates
used earlier (for instance in Lindblad and Rodnianski [13] for the vacuum case, revisited recently in
LeFloch and Ma [11]); on the other hand, the problem under consideration describes the expansion
of the universe, and the expansion provides one dispersive terms, which leads to exponential decay
for solutions. Later, Speck (and collaborator) [7, 20] proved that above nonlinear stability result
%7
Liibbe and Valiente Kroon [14] have shown the desired stability property by relying on Friedrich’s
conformal method [4, 5] —an approach entirely different from the method in [7, 19, 20]. More recently,
a very efficient method was proposed by Oliynyk [15], which combine the conformal method with wave

coordinates in order to handle the case 0 < Cy < \/I with non-vanishing vorticity. One advantage

remains true even for a fluid with non-vanishing vorticity when 0 < C < \/g . When C; =

3
of the latter method is that, under a conformal transformation, the whole Einstein-Euler system

can be turned into a symmetric hyperbolic system (with singular terms) and solutions defined on
finite interval of time. The singular terms enjoy good positivity properties and, by a standard energy
estimate, one can then get the global nonlinear stability of a family of FLRW solutions and established
the asymptotic behavior of perturbed solutions in the far future. Finally, we recall that, in the regime

Cs > /%, Rendall [17] has found some evidence for instability.



1.3 Nonlinear stability property in wave coordinates

We thus study the Einstein-Euler system (1.2) with the stress energy tensor (1.4). In order to describe
our ideas and main results clearly, we must fix our notations at first. The spacetime that we consider
are of the form (0,1] x T3. For the coordinates, we use z* (i=1,2,3) to denote the spacial coordinates
and use #° = 7 to denote the time coordinate. We always use the Greek indices to denote the
spacetime coordinates that run form 0 to 3 and Latin indices to denote the spacial coordinates that
run from 1 to 3. In this system of coordinates, when we say the fluid velocity is future directed, we

mean that
u” < 0. (1.7)

As Oliynyk in [15], we do not consider the original metric g directly, but instead consider the confor-
mally transformed metric

Guv = e_zq)gp,w or gwj = e2q>§“y7 (18)

where
O = —1In(7). (1.9)

Under the conformal transformation (1.8) and (1.9), the equations (1.2) that we consider in this paper
is the following Cauchy problem

GH = TH = ' ®TH + 2(VIV"® — VIOV D) — (20,® + |VD|2) g,
VT = —6T"'V,® + g T g"'V . ®, (1.10)

9#V|‘r=1 = ggy($)7 87_glw|7_=1 = gllw(x)a aH\IJ|T=1 = mu(l‘)

Remark 1.3. Above initial data set (g5" (), g{""' (), m,(x)) can not be chosen arbitrarily. They must
satisfy the Gauss-Codazzi equations, which are equivalent to (G#° — T*%)|,—; = 0. Furthermore, they
will also satisfy the wave coordinates condition Z*|,—; = 0, the precise definition of Z* can be found
in Section 3.1.

We know that there exist a family of FRW solutions (77, ¥(7)) to the original Einstein-Euler
equations of GCG (1.2). 7 takes the following form

1 1 LN
=3 <_ w2 () dr* + ;(dﬂf) ,

where
1 B Lda(t) o a(t)

“aty YT e @ T alty

for some scale factor a(t) with ¢ € [0, +00). Under conformal transformation, the conformal metric g
can be seen as small perturbations to the conformal background metric 7 which is given by

3
L o i\2
n:—EdT —l—;(dm) .

Define the densitized three-metric g = det(§im )3 g*, where g, = (¢") ™1, and introduce the variable

00 00 7700 ij
a=g" —n" + 3 In(det(g")).

With above notations, our main result can be described as follows.



Theorem 1.4 (The nonlinear future stability of Friedmann-Robertson-Walker spacetimes. Statement
in wave coordinates). Suppose k > 3, gh”(z) € H*(T?), ¢t (z), m,(z) € H*(T?) for all x € T3.
Then there exists a small parameter ¢ > 0, such that if the initial data sets satisfy the constraint
equations of Remark 1.3 and

gt = " Wllgzess + 198" = 0™ (D[ re + [Impu () = 0, ¥ (1) e <€,

then there exists a unique classical solution g"*, ¥ € C?((0,1] x T?) to the conformal Einstein-Euler
system of GCG (1.10) and it has the following regularity

g" € C°(0, 1], H*F1(T?)) N C°([0, 1], H*(T?)) N C*((0, 1], H*(T?)) n C*([0, 1], H*~H(T?))

and
9, W € C°((0,1], H*(T?)) n C°([0, 1], H*1(T%)).

The solution also satisfies
9" (1) = 0" (T) | e + 987 (1) = Bt (T) | e + 1009 (1) = U (7)] g+ < C,

for some positive constants C. Moreover, there exists v* € H*~1(T3), such that the solution for all
7 € [0, 1] satisfies

1079 (7) = 2771 (g% (7) = °* (7)) + |l -1 < Ceer,
10-g% () = 77 (g™ (1) = n°* ()l aze-1 + 10:g° (7) [ -1 < —Cerlnr,
la(7) = a(O)l[ e + 10ra(7) [ < Cer,
g™ () — g7 (0) | e + ||5Tg (g < O,
10,9(7) = 0,0 (0)|[ -1 < Cer,
10-9(0) = 0-¥(0) | x—r < Ce,
||<9 YO)ae—r < Ce

with, furthermore,
pp(0) = a.

Remark 1.5. 1. The above results show that in the future of the Einstein-Euler equations of GCG,
the speed of sound is v/« especially for Chaplygin gas, it means that the speed of sound is equal to
the speed of light. This phenomenon is very interesting and quite different from the problem of a fluid
moving in a Universe with positive cosmological constant A.

2. When a = 1, the Euler system is linearly degenerate, while when 0 < o < 1, this system is
genuinely nonlinear and shocks generally form in finite time, no matter how small the perturbations
are in the flat Minkowski spacetime. Our result shows that the spacetime expansion stabilize the fluid
and prevent the formation of shocks.

The main idea of the proof is turning system (1.10) into a symmetric hyperbolic system under
appropriate wave coordinates Z* = 0. Here we would like to see some differences between our paper
and Oliynyk’s and others’ mentioned above. Firstly, we consider the nonlinear future stability of
the nontrivial FRW solutions, thus, we need to choose different coordinates, which can be seen as
a generalization of Oliynyk’s work; second, for irrotational fluids, we have to choose an appropriate

conformal factor in order to solve the difficulty brought by the degeneracy of the enthalpy \/ﬁ

An outline of this paper is as follows. In Section 2.1, we give some preliminaries on the notations
and norms used in this paper. Sections 2.2 and 2.3 are aimed at giving the detailed formulation of the
problem and studying the properties of the FRW background solutions. Section 3 is the main part of
the whole paper, we present our choice of coordinates in Section 3.1. In Sections 3.2, 3.3 and 3.4, we
turn the whole system into a symmetric hyperbolic system and analyze the structure of this system.
Sections 3.5 and 3.6 contain the proof of the main results.



2 Formulation of the problem

2.1 Notation

Greek indices p range from 0 to 3, while Latin indices ¢ range from 1 to 3. Repeated lower and upper
indices means summation with their corresponding metric. For the metrics in this paper, we use ¢
and 7) to denote the original metric and original background metric respectively; we also use g and

7 to denote the conformal metric and the conformal background metric. f, f, I' and T denote the
Christoffel symbols with respect to g, 7, g and 7, respectively, similar conventions are used for the

curvature tensors ﬁ, ﬁ, R, R and the norms E, E, h and h, whose square root denotes the physical
quantity “enthalpy”.

For convenience, we use A ~ B to denote the equivalence relationship between A and B, which
means that there exists a positive constant C' > 1, such that % < B <L CA. 0, =0 and 0,, = Ogs
are the partial derivatives of the original spacetime and the conformal spacetime. Similar definitions
are used for the covariant derivatives V and V.

For a function u(t, z), we define the following standard sobolev norms

1

lalt, @) gy = ( / |u<t,x>|2dx) ,

k
||u(t?l‘)||H’€(T”) = Z ||Dlu(t7 x)Hl?(T”)a
I=0

and |[u(t, )| poe 13y 1= esssup,eps [u(t, z)l.

2.2 Stress energy tensor for irrotational fluids
In this section, we focus on the derivation of the irrotational energy momentum tensor T+ For

isentropic fluids, the pressure is given by

_Op
p=ng-—p, (2.1)

where n denotes the number of particles per unit volume. We also have
Vu(ni) = 0.
In this paper, we consider the generalized Chaplygin gas, whose equation of state is given by

A2

o (2.2)

p =
where A is a positive constant and 0 < o < 1.
a+1 2
By solving a simple ODE (2.1), we have p®*1 — A% = J(1)n®*!, where J(1) = % depends
only on the initial data of the state variables (p,n) at 7 = 1. Define the enthalpy in the original

spacetime by
T _ptp . A? et
\/E: :JO‘+1(1) (1_[)C¥+1) 5

then




Denote Ja (1) = I, then

A T [T
p= iy (2.3)
(- )=+t
and
A2 2 o ~atl. _a
p=——=—AF] a1 (] — h2a )a+1, (2.4)

pa
By above two equalities (2.3) and (2.4), we can easily get
A [T RS

+p= —
pwr (I — h%& )

and

_ o
ut = ———.
Vh
Based on the normalization condition §,,u"u” = —1, andu® < 0, in our spacetime, we have
gl ) ’ 9

h = —G,0"e" >0, 90 >0.

Thus, we can define our stress energy tensor as follows

N Bz QRO ~ai1
THY _ (P +p) i +pg/LV Aa+1 I~ 5T W — ([ —h 221)a+1 gltu (25)
2a a+1
At the same time, we have
- > o —AT+3R%

T=g,T" =—p—p+4dp=Aat1] =41 (2.6)

T atl 1

(I h2a )a+1.

Remark 2.1. 1. Tt is easy to choose appropriate initial data for the state variables (p,n) such that

I — h%& > 0 to ensure the hyperbolicity of the fluid equation.
2. For the existence of the potential function ¥ and further results concerning analysis of irrota-
tional fluids, we refer to [12, 19, 21].

2.3 The class of Friedmann-Robertson-Walker spacetimes

In this section, we study some properties of the background FRW solutions. At first, we are ready
to give the detailed information of our spacetime. The metric endowed by the original spacetime
(0,1] x T3 is

g = gudatda”, (2.7)

which can be seen as the perturbation of the following metric

~_ 1 1
AN

3
= dr? + Z(dxl)2> , (2.8)
i=1




where 7 = ﬁ and w(t) = %, for some scale factor a(t) with ¢t € [0,400). Obviously

= —7w(t)dt.
Note in passing that the metric (2.8) is equivalent to

3
ds® = —dt* + a’(t) Y _(dz")?,

i=1

which is the original model studied in physics.

As discussed in Section 1.3, we do not work with the spacetime metric (2.7) directly but instead

use the conformally transformed metric

G = € Gy, (2.9)
where ® = —In(7). We will consider above g (2.9) as a small perturbation of the following metric
1 2 . i\2
1=t ;(daz )2, (2.10)

which is the conformal transformation of (2.8). Under above conformal transformations, the Einstein

equations are equivalent to

GH = TH = APTH 4 2(VIVY D — VFOV D) — (20,8 + [V|2) g,
V. TH = —6T"V,® + g T gV ..

Expanding the first equation of (2.11), we have by inserting TH defined by (2.5)

—2RW = —AVIVYP +4VHOVY P — Q[Dq(b + 2|V<I>|3
) Lo _Fat AT S S U
+ AT Tfleﬂ)}gw —2¢*? - +~a+21 1 ’
2 (I — hS&)aet (I —h=a)e+t

or equivalently

—2R,, = —4V,V,®+4V,0V,d —2(0,® + 2|VE|?
1 o 21— R A [ a1 )5 9,00,
4 ZAaT _Wlelem]gW _9 ~a+21 { _
2 (I — h2a )+t (I — h%5a s+t

(2.11)

(2.12)

(2.13)

Now we consider the background FRW solution to (2.11). Assume that there exists ¥(7,z) = ¥(7)

satisfies (2.11) with background metric (2.10). Then it is easy to see that

h = —7ip0d OTW = 0T)2.
N000" WO 22 (07V)
_oatl
~ 2a 2 2 iLH
TO0 — AGTi [~ at1 h 7;10 Jr(],hm* )D‘LHTQ’U)Z 7
(I—-h" )=
T% =0
and
_atl

T = AT [ o5 |—(I—h " )atir2| 6%,



Furthermore, we have

=\ 1
FW = 57700(877700)56\5253 =

_8Tw

A 50 <0
" 00,0,

then

- =« =« o =A —a ~o

RHV = 6O¢F,U,l/ - 8HFOCV + F(XAF,UJ/ - FM}\A(XV - O

With above preparations, we have the following important lemma, which are the represent formulas
of the background FRW solutions.

Lemma 2.2. There exists a family of solutions (w(7), (7)) to (2.11)-(2.13), and the solutions satisfy
the following
7 (IK)=%1 76
(14 Kr30+e) i
B (IK)a+1 3oty
T (14 Kr30ta))att
AF [aFT (2.14)
3w” = I p—
(I—h"" )
_atl
Asdi-atip °
dhw = — _atl )
~ 2« 1
2(I —h = )=+

where K is a constant depending only on the initial data.

=

Proof. At first, we consider the 0-th component of the fluid equations, we have by neglecting Asr [ %

VI = 9T + 9,7 + 2T, T
2wl 20, w 2wl
B aT ia;rl 1 B w ia;l 1
(I—h )= (I—h )&
:a;»l
6 Y 22 =55 o
T o7 = )=+ 2 w?
(I—-h )=
_atl
2 h " =% a
el B R U A L
(I—h " )ae
Solving above ODE, we easily get
—atl
1 3n "
170, _afl = _ofl ) (2.15)

(I—h " )am (I—h"")am

(2.15) is equivalent to
_ _atl
IT0;h =6ah(I —h ")
By setting
gt
E=h
we have
Id¢  3(a+1)dr (2.16)
EI-¢) T '



Solving (2.16), we have
TK 73t

$= T R

where K = 15(51()1) and thus,
= (1K)t 6o

h= —.
(14 Kr3a+D)Zf

Obviously, we have

(IK)a+1r3atly
(1+ Kr30+e))att’
The i-th components of the fluid equations hold obviously.

Now we consider the Einstein equations.
At first, from R;; = 0, we have

0T = (r2w’h)? =

T2 T 72 272 =%t
(I—h )=a+
Combining (2.19) with Rgp = 0, we have
_l-o
2 o ~ %a ~ —~ —
1 o-w 4 2A°+T [ a+1 0, Vo, U
MG -t T
T TW T ~3%a (_1
(I—h et

From (2.19), (2.20) and d,w = — 2% we easily get

TWw ’

2 1

2 AGFI Jafl
3w — — _aft ; 0,
(I—h 2% yat1
2 o —otl
Aat+I] a+ip 2«

—Ow = —otl

= 1
2(I—h 2% )yo+1

The lemma holds by combing (2.17), (2.18) and (2.21).

Corollary 2.1. By the above lemma and via a Taylor expansion, we see that when T — 0,

2
3’[1.)2 — AStT ~ T3(o¢+1)’

3(a+1
—dpw ~ 73atl)

0 () ~ 7542,

0w ~ 3ot

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

The asymptotic behavior above plays very important roles in the analysis of the source terms in

Section 3.4.

Proof. The first and second asymptotic behavior can be obtained directly from (2.14). The third
asymptotic behavior can be derived by differentiating w directly and use (2.17). For the last, we have

52w — 8 (_g) _ O ww (1)?

TW TW (Tw)? 723

10

~ T3a+1.



Remark 2.3. Since we have confined 7 € (0, 1], which means that we set initially a(0) = 1. Thus,
we have to prove that when ¢ — oo, a(t) — 4+o00. From (2.14), there must exist two positive constants

A; and A, such that

A1 <w(t)=zg3 SAQ,

then by comparison theorem of ODE, e#1* < a(t) < e“2. It is obvious that a(t) = 400, when t — 4-o00.

3 Proof of the nonlinear stability property

3.1 The wave gauge

Our first task is to introdude appropriate coordinates. For the background metric 77, we have

=0 1 w
Fygy=——4+—
00 T Tw?’
and . )
T L g0y ~ w
Ly = —577 Ornii = i
Then, we obtain
I =7"Ty + 7T, = —21w?* — 71,
and
2@?0 2uw? _w
T T
Direct calculations show that .
=1

For the conformal metric 1, we have

On the other hand, under conformal transformation (2.9)
I = gofTh ;= 2VF® + 27T

Define the wave coordinates as

2 [ )
M =TH4+YHF =TH4+ = <g,u0+(w2+’;})56t> =Tr 4 2 <g/ye()Jr
T T

A .
g) for convenience.

In (3.5), we have denoted w? + £ by

AT
e

)

Remark 3.1. 1. By results in Zenginoglu [23], we see that if initially Z# = 0, then Z* = 0 in the

whole evolution of the Einstein-Euler system.

=u
2. From (3.5), we can see that Y* = —2VH#® — ¢2®I" . From (3.1)-(3.4) we see that for the
background metric n, Z# = 0. This fact is very important for the disappear of the linear parts of the

conformal Einstein and conformal fluid equations (1.10).

3. When w? = % with A a positive constant, this is exactly the case considered by Oliynyk [15].

11



3.2 The reduced conformal Einstein equations

With the wave coordinates Z* defined by (3.5), we can consider the following equivalently reduced
conformal Einstein equations by assuming Z#|,—; =0

—2R™ 4+ 2VWZY) 4 ARV ZR = —4VIVYD + VIOV D
it

2] — hza

2

1 o
— 2|0.®+2IVP|2 + —AaFi] asT = "7 2% v
AT [T L e ORI U
2" —r o : (3.6)
(I — h%5a o+t
With )
A = 1) Ly g and VHZY) = 5(V#‘ZV + VvV,
we have
2V(“ZV) = QV(HI‘V) + VHYY + YVYH
2A . 2A
= avir) o, (220 (giogy o grogy - 220y e guigrg
37 31
and
Az = (_I‘(#(S:) +Y(#5Z))(FK +Y")
4A 4A2
= —THDY) 4 4VrOVYD — #(V“@(SS + VY®6)) + %5{;56’.

The Einstein equations (2.12) become

2A(7) 20-A(T)

—2RM 4 2VUTY) - DHTY = 0rg"" — = (985 + 97°5)
T

4N (T AT 4N(T) o . 2 AT
( ) <gOO+ ( )>5556’ (2)90156H5i)7ﬁgﬂ (gOO+ ( ))

372 3

w

A(r) _

Expanding the left hand of above and inserting =

v v 4w? , 4
_gm\aﬁa)\gu — 78.,-9” _ ?@OO + w2)6g(50 _ -
2 2w w w
_ = _uv e 00 2y _ 2%/ 00 2 INspsv ng
=97 +w) = —5 (g7 +w' + )5 — —drg

2 5. v 2W gi(uer) W 20, A(T)
- ?w Wiy oy — ﬁg oy ;" — ﬁgu T T3

2 3u I
* ﬂ(3w2+2_‘4011] Tt | ¢

2 o ~leax >
AeFT [T o+ f 730 OHUOY T »
— 2" (I ’i’]/oﬂrl) 1 +Q*F (g,@g)
_ hes ot

(9"°08 + g"°0%)

12



2w?
2
729

or equivalently

—8

4w2 v 2 7 v
—5 (6" +w?)ag — —g%is ey

(g™ w?) + M

—g0:0A(g" — ") = —0-(¢" — ") — —5- (9 + w®)5 05
4U} v 2 v 1y
0’6(“6 ) T2g“ (g% + w?) 4 MHv. (3.7)
We have
~ w2
MM = MM + "0, 05" + 278777”"
. 2w L, W » » 20 o, v
= ("™ =000 — g (6% + w0 — —0n(g" ") = 5 g0y
’Li} v 12 287'A(T) v v v
*ﬁ(gﬂ ") — 3 ((9”0 — ")y + (9" —n 0)55)
P j l%L“ o
+ﬁA%+1]_%+1 ] %wr :izi : g™
(I —h  )est
_l—«a
0 REEORTONY b OMTOYT
Aa+1 ] ha2+1 o¢~1+»1 —efl
: (I—h " )=+
+Q" (g,0g9) — Q" (n, (3.8)

Remark 3.2. 1. In above, Q"¥(g,0g) are _quadratic in 09 = (0xg"¥) and analytical in g = (g"").
Thus, in M*", each term contains g — n or ¥ — ¥, which will be proved later.

2. Equatlon (2.12) is equivalent to (3.7), provided that Z# = 0. On the other hand, the background
solution (n, ¥(7)) defined in Section 2.3 satisfies (3.7) obviously, since Z* = 0 for the metric 7, which
is also the reason for the disappear of the linear parts of (3.8)

The main part of this paper is turning the Einstein-Euler system of GCG into a symmetric hyper-
bolic system, thus we make this process clear in the following.
Recall the densitized three metric defined in Section 1.3

g = det(gin) g7, (3.9)
where
Jim = (glm)—17
and the variable )
q=g" +w?— %ln(det(gpq)). (3.10)
It is easy to check that N L
0,8 = (det(gpq))* Ly} 09" (3.11)
where i
L, = 88} — S
Obviously, L;fn is trace-free, i.e.,
L7 g™ =0.

1m9
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Define

uOV _ gOl/ _ 7701/
27 ’
3(g0u _ nOV)
ugy = 0, (gOV - 7701/) - o )
u?u _ 81‘ (gOy _ 7701/)7
uij _ gij o 5ij’
qu] = altg.j7
u = q,
u, 0.9.

At first, we consider the equation satisfied by g°* — n#.

Utilizing (3.12)-(3.14) and inserting g*

up” 4 3u’ into (3.7), we have

— % = 2ru’, 0;(g" — ) =

—g%0, (ug" 4 3u®) — 2¢%9;(u) + 3u) — g §;ud"
2uw? 4w? 4w? 4
= (@ 4 3u%) — - (2ru®)sk — T (2ru®)s Y — Z g% u® 4+ N1,
T 77
Based on above, we get
—goo&ug“ _ 2g0i8iu8“ _ gijaju?u
Op _ . Op . Op 2
= 3¢%9, (9 2T77 ) 1 6¢%9; (9 2T77 > + ;(27_1100 _ goo)(ugu + SuO“)
8 4
—(21u® — g2 usf — =(27u — g"M)u"s; ”(50) g% a% + NfOm
T 7
Op 0 00,0
— 340 u, +3u*  3g-u +6u%u + 4u®u + 12u%0u
2T T
2900 op Ggoou(m 16u00u0065 + §go0u0055 _ 16u00u0i5(()“5?)
-
8 00 ) 4 R
4 g um(géu(;?) _ 7gouu00 + Mo
T T
Hfﬂ(ugo + 1)) + 6u®iu® + 4u®%u® — 4u®0u + N7 ;=0
- %[_%(ugk + u0k)] + 6uu* 4+ 4uy gk — AuO0yO 4 ]\4%7 k
1] ¢% .
= = 77(ug“ + uo“)} + 6u”u’* + 4u°u O” — 4uu 4 pOH,
T

Now we consider g7 — §", direct calculations give

—g"0,.0,g"

—g™ 0, [(det(gpg)) T L) Org"™)

(det(3pq)) *Lij, (—9™ 009 —

o Ly 2w? m
(e P15, (2-0r(o™

— g™ 0, [(det(Gpg)) S L J0rg"™
Qw2 .
%arg” + (det(gpq

g - .
2 i 4 N
T

14

)L, M

9" 0. [(det(3pq)) S L, 10Ag"™

2 N
nlm) _ ;glm(goo + w2) + Mlm)
g“)‘a,g[(det(

gpq))%Lﬂz]az\glm

(3.19)

(3.20)



We have L y
M = (det(gpq))? Ly, M™ — g0, [(det(Gpq)) 3Ly 10xg™™.
Then by (3.15)-(3.16), we have
—gooﬁTuf)j - ZgOiaiuéj — gpqapuéj
2 iy .
_ ;(27’1100 7900)1161 YL
— 7;90011? + 411001176J + M’Lj. (321)
At last, we consider q, we have by (3.10)

2

w
a}\q — 8)\(900 +’LU2) _ ?gpqakgpq _

A
200030 1 (et(g7)). (3.22)

Then by (3.22)

w2

3
IpaOrg™

8&&\‘1 = 8;%8)\(900 + U}2) -

2worwi§
-

2wdw
!

= 0™ +?) -

2
w
gpqama/\gpq - ?8~gpq8)\gpq

2
2O 5 nfaet (7))

2wdrw
3

9pqOrOrg"? + RY, (3.23)

58\55 In(det(g")) — 58917118%9[)(1

w
3

where

2 2 K
Ra w Do Ong™ — wagwéo

w? 2(0,;w)?
3 3
5265 In(det(g"7)) —

IpgOrgP? — (58‘63 In(det(gP?))
2wd2w

3

2worw

50 9pqOn gl

Thus, we have by (3.17)-(3.18)

w?

3

w? 00 2 2 00/ 00 2 °r00
—2 (97 +w) = g (" +w) + M

—g"0,0ha = —g"0,0\(9% + w?) + —gpgg™0Org"! — g™ RY
Pq 2 pq (00 2 Vil KX P
— g Ipa(——0rg™ — g™ (g™ +w7) + MP) — g™ R

Qw2 00 4 2\%2 . w? R
- Froa-2 () i i

4w,
A0 et g7 — g R
2 ,
;(27_1100 o gOO)aTq o 8(u00)2 + Rq
= —ggooafq +4u9,.q — 8(u)? 4+ R4, 3.24
.

We have
dw30,w

2
RY = N — w?gqupq + In(det(¢")) — g™ RY.

15



From (3.24), we have
—90037110 - 290i81u0 - gijaiuj
2 .
= f;gOOuO + 4u%uy — 8(u)? 4+ R4, (3.25)

From (3.19), (3.21) and (3.25), we easily transform the Einstein equations into the following symmetric
hyperbolic system

uOu uO/L
0 1 0 0
A9 | wt | =-AP | ul | +FN, (3.26)
qu, T uO;A
uf)m 1 uf)m
A9, | ulm ) = Z(—2¢"911 u%m + Fim, (3.27)
and
Ug 1 o
A0 | wy | = =(=2¢")0 [ w; | +F9, (3.28)
u T u
where
_900 0 0 _2g0k _gjk 0
A® = 0 g9 0 |, A= —¢g* o0 0|,
0 0 —g% 0 0 0
2 0 3 —" 0 0
P=|10 46 0], A= 0 3¢7% 0 ;
1 1 00
1 0 0 6uiud 4+ 4u00u8“ — 4001 4 pron
O=|0 0 0 |, F%= 0 ,
0 0 0 0
and
- 4u%uf + M 4u®uy — 8(u®)? + Ra
FY = 0 , Fi= 0
goouém gOOulom

3.3 The conformal fluid evolution

In this section, we transform the conformal fluid equation into a symmetric hyperbolic system. At
first, we choose an appropriate conformal factor for the potential function ¥(r,z).
Define

I = e PP = I, (3.29)

where \ will be determined later. Then

h= =G0V = —r2 A Dg  GrueUY = 20 Dp, (3.30)

16



In terms of h and 9%, from (3.29), (3.30), we have by neglecting some unnecessary constants AsFT[aH

[r2A=1)p) ST

Uorvw

o+l

TH — [ — (r20-Dp)5e )= [ — (7O~ Vh) ]t 2 g (3.31)
and so (A—1) 1 etL
_ Al — 2(A—1 h aT

Then we have by (1.10) and (3.31)-(3.32)

~ 20D pl 5 7 il
v, = v, (AR T OWOW [ a5 s g
e
2(A— 1)h T 2\ — 2(A— 1)h Oov
B T i 1) DS o b
[I (7.2()\ 1)h) 5o ]a+1 [I — (7-2(>\—1)h) 20 ]a+1
—[I = (7 2(A— Uh) S ]a+1279
2(A—1 > v\
_ 6 [F2A-Dp) w7 \1181 . (7_2(,\_1)h)%1]%+17_290u
T\ I — (r20-Dp) SR e
4] — 2(A— l)h i
g AT E (3.33)

-

[ (0 Dm)
From (3.33), we get easily

200-1)p, Lo
v, [ )2 S P
[ — (20D |7
20D Rl 222970 2 _ \) (2 -1 ) S5
— § [ } T Ta+1a - au\Ij+T90V ( )(T a+2 21 .
7\ = (200 5] 1= (r0-Dm) o
Contracting (3.34) with 9, ¥ and using the fact h = =9V 09, ¥ > 0, we have
v (r2O=Dp) 5 r22 gy
P\ = (r2O-DR)E T
6 [ 2()\71)h] 2;” 7_2/\87' (2 _ )\) (7_2(/\71)h) 5a 7_2)\87'
T [I — (r2(A=-Dp)5 atl]aﬂ T I - (r20=Dh)3 atl]oﬁ+1
44\ ( 2(A— 1)h) 2/\37

= 3.35
T [I (7'2()\ 1)h)a+1}a-1%—1 ( )

(3.34)

Expanding (3.35) directly gives

o — H v
[ — (F2O-Dpy 52 (Dg\p_ 1= adnworw \Ilvuvuq;>
e h
L (200 5 220D rg 0 0V, T, 0 + - (A - 1) (720 Dp) A9,
« Oé
4-A=-2(1-1)L=2 -
_ A-D%5 O[T — (2O Vg, (3.36)
T
We choose A such that

1-«

4—A—200—1) =0,

2
and thus A = 3o + 1.
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Remark 3.3. If A = 3a+ 1, then OV has the same asymptotic behavior as the background solution
U(7) when 7 — 0. This property plays very important roles in the non-degeneracy of above wave
equation.

Define a function (7, x) such that
oM — MY = Tetlgre, (3.37)

Then by (3.29)

N TK)a+w
T\I] — 3a+1 T‘Il — 3a+1 T ( _ = 3a+1 T . )
d riatly T (a o+ (1+KT3(0‘+1))a+1> 39TL9Te + f(1)) (3.38)
We have _ _
0"V = r3otlyie, (3.39)
Based on (3.37)-(3.39), we have
h = —g()o(aT\If)Q - 290287\116“11 - 9”81\1183\1!
= 7g00f2(7') — 290#‘]0(7')6“@ — 900(876)2 — 290i3i®879 — 9138’@8%) (340)

Remark 3.4. It is obvious that (7, 97 ¥) defined in Section 2.3 is a solution to (3.36), which means
that (n, 7221 f(7)) is the solution to (3.36).

Define
BY = (I— (72(/\71)}1)1;—5)(900 _ 1?70‘@) _ é(72(/\71)h)%Tz(Afl)BT\I@T\I},
B = (1 (g - O Ly 20wt
pi* = (I- (72(/\—1)h)1%5‘)(gjk _ %w _ é(’rz()\_l)h)%T2(/\_1)8j\:[lak\:[l

and similarly

BY = (1 (2O-DR)EE 0 - l-a 57‘1’57‘1’) B l(Tz(,\—nE) e 20D T
(0% (0%
B _ (I - (72(,\—1)5)1;7“)(7701‘ 1 ;a 87\1%61\11) B é(TQ()\—l)E> T 20D TG,
—j —1ta. o 1—adWOFT 1 — l-a N
Bk _ (I— (TQ(A—l)h);—a)(njk _ TQT) _ 5(72(>\_1)h) = 7201 9iGOM T,
where h = —n%09, 00, V.
Define
P, = 0,0 = g0, 0"0©. (3.41)

Expanding (3.36) in terms of O, we have

Booa-,—(a-,—@) + BooaT(goof(T)) + 2BOi8iaT® + 2BOiai(goof(T)>

+B”818]6 + Bijai(gjof(T)) +T=0 (3.42)
and

1—adtwovw
« h

14a

FZV(aFv@ + gnOf(T)) [I - (Tz()\_l)h)ﬁ]

T = _Fn(am@ + gﬁOf(T)) +

18



+ L (r20-np
«

From (3.42), we get

[TQ(A_U(‘)“\I@”\IJFZV((?K@ + grof (7)) + (A = 1)72273n).

B0, py +2B%d;p, + Bioip, =T T, (3.43)
where
T = -T- Booar(goof(T)) - 2BOi8¢(goof(T)) - Bij@i(QjOf(T))
1— a0t Torv B 1ta
= |T(0x0 + guof (7)) = —— ———T%5,(0eO + gro f(7) | [I — (P2~ n)55"]

h
—é(TﬂH)h)% [P2A=DOHTOYITE, (0:0 + gro f (7)) + (A = 1)72* R
—B%0-(g00f (7)) = 2B 0i(g00 f (7)) — B i(gj0 f (7). (3.44)

When we use the background metric 7 instead of ¢ and ¥ instead of ¥ to calculate T , we get T.

Clearly T = 0 since (n, ¥) is the solution to the fluid equation. From (3.36), (3.43) and (3.44), we can
easily rewrite the fluid equation into the following symmetric hyperbolic system

T

Po T -
o, | P | = 0 , (3.45)
P2 0
P3 0
where
BOO 0 0 0 QBOi Bil Bi2 BiS
BO B 0 _Bll _321 _B31 BZ B Bil 0 0 0
- 0 _312 _BQZ _B32 ’ - Bi2 0 0 0
0 _313 _B23 _BSB Bi3 0 0 0

3.4 A key argument for the source terms

In order to analyze the structure of the symmetric hyperbolic system, in this section, we mainly focus
on the source terms of above two subsections, especially the terms M, M M¥ R9 and T — T.
We need the following basic lemmas. At first we have the following algebraic relationship between
-1
g~ and g.

Lemma 3.5. Assume g~! = (g*¥) is a symmetric (1 + 3) x (1 + 3) Lorentz metric with ¢°° < 0 and
(g%) positive definite, then

goo = 90071_612, (3.46)
goi = dgiigzjoo ) (347)
where d? = ginging.
Proof. The proof can be found in Lemmas 1 and 2 of [18]. O
The following two lemmas will be repeatedly used in this section.
Lemma 3.6. Suppose that a; (i =1,--- ,n) and a; (i = 1,--- ,n) are smooth functions, then we have

n

Haifﬁﬁi:iFj(ﬁi,aifﬁi), (348)
i=1 j=1

i=1
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here

where iy, € (1,--- ,n).

Proof. We can get this result by induction. At first, for ¢ = 1, it holds obviously. Assume that (3.48)
holds for ¢ = n — 1, namely

n—1 n—1
I_Iaz Hﬁi— g Fi(a;,a; —a;),
i=1 j=1

then for i = n, we have

n n n—1 n—1
| e | e |
i=1 i=1 i= B

n—1 n—1 n—1
= (an —an)( l_laZ Hal )+ @n( Hal Hal + (a™ —ay) a;
i=1 i=1 =1
n—1 n—1 n—1
= (an— ZF al,al—al))—l—an(ZF](a“az—aﬂ)—!—(a"—an) Hﬁl
j=1 j=1 1=1
n .
= ZF](auafz_az)

The proof of the following result is straighforward

Lemma 3.7. Let f(x) be analytical in the neighborhood of a point Z, and assume that f (T) #0,
then there exists a small parameter §, such that when x € [T — 6, % + §], we have

’

fx) = f(@) ~ f (@)(z - 7). (3.49)
Based on Lemmas 3.5-3.7, we have the following important estimates in terms of the unknowns.

Lemma 3.8. In terms of the unknowns (u%,ud*,u”,u?,q,q,,p,), we have
j
ij ij ij N
g7 =n" o~ w5
w

- - L Qim¥ 50
g =)~ SR e~

2ru® — q),

77
—2 (2u69 + 27uf?5% + (ud® +u®"8Y — q,),
i ij ij i .3(2mu” — q)
Gij —Mij ™~ E F*nY, g% =) + ()" = w0

3 — i3 7
—27'1100 + Zk:l Fk(n777 17 (glj - 777,_7)? (gO - T)O ))

goo — Moo ~ (7902 )
3 - i i
o e PP (i — i), (6% = 1), (9% — n™)
9oi Toq (7700)2 )
OV —9"% = 2ru”p, +n"p,,
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62\1} - alﬁ ~ (g“/ - Uiy)pu + niupuv
3
h — E = Z Fk(ﬁ» 8“@, (gl“’ - nNV)v (8“\11 - 8M@))7
k=1

provided thafc_ [|(u%, u% uid, uLj, q,9d,,; p#)”Loo(.’]‘I‘S) is sufficiently small. In above, (n%)* denotes the
cofactor of " of the positive definite matrix (n*?).

Proof. At first, from the definition of g¥ and q, i.e. (3.9)-(3.10), we have

3(27—\100 —q)

det(g7) =e™ w7, (3.50)
and oo
.. 27u — ..
gzj =€ w2 qu‘]. (351)
Then we have by (3.51)
Go_ i o e G i
g n = € w g n
27u% g ij ij ij 27u%0 g
= e o (g7 —n")+nY(e v —1)
. . 27u% — q
~ u¥ + UUT.
And we have
. . 27u00_ .. .
aA(gU _771]) = aA(e w? qg” _77”)
i 80 ij
~ a4+ TR 9ru® - g) + L (2069 + 2r0,u® — qy).
TW w
Since 9,u’ = w and 9;u’ = uf° we obtain

o 20n 6%
(g7 =n7) ~ ui+=— (2’ —q)

" i
+E(2u006?\ + 27u?5% + (ud? +u)s8 —q,).
According to (3.50) and (3.51), we have

(@) (¢Y)
Gij = det(g) = 63(%“0207‘1) . (3.52)

w

From (3.52), we easily see

(g”)* y
95 = Mii = oy — @M7)

e w?

(97)" = ()" + ()" (1 = 55
= 3(27uf0—q)

e w2
2
i i y 3(27u’ — q)
k

- L oy ()

In the second equality, we have used Lemma 3.5, since (¢%)* = (¢71) x (¢71).
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—2
Before we estimating go, — 70, we have to estimate d?, obviously, d” = 0, thus

=2

d?> —d

Utilizing (3.53) and Lemma 3.5, we have

- - 1 7 1
goo — Moo = g0 — &2 00— 7
700 — o0 _EQ iy
=
(o~ @)~ )
—2ru® 4+ 550 PR (g0 — mig)s (9% — 1))
(g%0 — 700 4 00 — 42) (00 — G%)
—2ru® 4+ 350 PR (gag — 1), (9% — 1)
(7902

and

Goi — Toi = 9i59% . 1™
0i = 701 a2 — g 2 00

. . 9o .
g%niin% —n%0g;:9% + g;;9%d” — min°id?
—2
(d? — g%)(d" —n")
3 _ . .
> FEn,n 1, (67 — 0%, (gi5 — miz), (9% — ™))
(n90)2 '

For the fluid variables, we have the following
IV — 9™V =070 = (¢" —1°)9,0 +n"9,0 = 27ru”p, +1"p,.
8“11 _ az@ _ (giu _ niu)ay@ + niuay@ _ (giu _ niu)py + niypw

and

3
=gi9" 9" = nim”n® = F* 07" (gi — mig)s (6% = 1™).
k=1

(3.53)

3
h—h = —gud" VPV + 1, 0"T"T = Y F*(0,0"T, (g — 1), (9"T — 8T)).

k=1

O

Remark 3.9. Above lemma shows that when [|(u®, ud#,u”’,u, q,q,,p, )| L~(rs) is sufficiently
small, the differences between the unknowns and the background solutions are small and depend
only on the unknowns and 7. Thus, for convenience of analysis, we denote the differences by

H(T7 u) = {f(7—7 u)‘f(77 0) = 0}

with u = (u%, u% u¥, uLj, q, qu,pu) and f(7,u) denote smooth functions, which are regular with

T €[0,1].

Now, we turn to estimate the source terms, from the representation of the source

Einstein equations, the most difficult part is to estimate the following two terms:

—y()E T3
(I = (R)55)™ (1= (b)) e

22
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and B o _ o
(h)= 9"WOMT  (h)'= OMTOMT

(T—(R)5) ™ (1 ()55 ) e
Based on Lemmas 3.5-3.8, we estimate (3.54)-(3.55) as follows.

(3.55)

Lemma 3.10. Assume that ||u| ;- (rs) is sufficiently small, we have

_é() aﬁll é( - 73(a+1)H(’r, u)
(I—(h)=)a (1 (h)L)T

and
(h) 5 Moy (h) ' D TOMT
(= ()5 (1= ()% )=

~ (73a+5 + 7_60¢+8)I{(7_) u)_

Proof. From (3.29), (3.30) and A = 3 + 1, we see that h = r6%h, h = 767 and
Gy = egey, GG - et gig

Then direct calculations give

[0 I-3m)%
(I—(h)5)a ([ — (h)%5 )k
_a+tl

1 atl 2a o
i 73t [ 55 h1 ] N (I—T?’(a“)ﬁz%l)
(5 = (roon) 5 )i

y (I - 7_3(a+1)ﬁﬁ)a$1 — - :3(o¢-|r1)5‘%l + T3(a+1)(ﬁa£ et )]ﬁ
I — 3+ RS ([ — 73+ )], e )7
[( ) )]
_% 3(a+1) [h“;’f _h st } (I o 7_3(a+1)EQ22 ) 3“‘*1) (haztl - haztl)
(I — (r6ah) s )aet (I — 73t 50 ) (1 — Ts(a+1)ha2tl )=

~ 73(‘3‘+1)H(T, u).

In the fifth line, we have used Lemma 3.7 with f(z) = 257 and in the last line we have used
f(z) = 2% and Lemma 3.8.
For (3.55), we have

(h)== oMoy (h)'5 0 WDV
(I— (R)5)=T ([ — (B)5 )=
_l-a
A T e A T
(I — 73t p 5t v

P QU grG(] — 73 DR I Y (1 - ety Sy )

a1 1

[ = P DR ) ([ — ot 5
_l-a
| erato U 75 0 S L TR 7520

(I —_ Td(aJFl)haztl )%
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14a

P60t T nTgr B[R — b
1

(a+ 1[I — 73@+DR 2% (T — rdlatD %) =
~ (395 L 5 H (7 ).

+

In the fifth line, we have used Lemma 3.7 with f(z) = =T and in the last line we have used Lemma
3.6 and 3.8. .

Since Q** (g, d0g) is quadratic in (9¢g"”) and analytical in (g**), by Lemmas 3.6 and 3.8, we easily
get the following statement.

Lemma 3.11. We have
QMV(g’ 89) - Quy(na 877) ~ H(T7 u)

The other terms in M w M and R4 can be easily expressed by the unknowns u, we neglect the
detailed analysis for those terms but give the lemma to conclude the analysis of these source terms.

Lemma 3.12. Assume that [[ul/z(7s) is sufficiently small, then we have the following equivalent
relationship.

M ~  2ru®8Zw?s), — —wuooéf)‘ ( o 4 3ulr) — wuozéé"zsg)
T T T
9 .
WO 4 (w? + %)(uo“é(‘)’ +ust)

(2rBett _9pat ) ATS 155 H (7, u) + H(7,u)
MY ~ ——0; Y _ I (g% — nW
—0:(9" =) = (9" —n")

(273t — 27'60‘+4)A%+1 I~ H(r,u) + H(7,u)

~ H(r,u),
M = (det(gap)) 3 Lil, M'™ — g"*,.((det(gas)) Ly, )0r (g™ — 0'™)
~ H(t,u),
R . w? 4wd,
R ~ MOO 3 gqupq + wT w(27’1100 _q)
o, w? 2worwi§
+g *(—*&egpq@x (g"1 —nP?) — %gpq% (g7 — nP?)
 2wdrw wx [ 200;w)? 4+ 20w .
2O Rapn(a )+ g (A2 o — g))
~ H(r,u).

Remark 3.13. The regularity of above source terms with respect to 7 can be derived directly from
Corollary 2.1.

Now what remains is to estimate the source term of the fluid equation T-T.

Lemma 3.14. Suppose that [[ul|ze(7s) is sufficiently small, we have

T —T ~ H(r ).
Proof. As before, this can be derived by checking the following terms

D(grof (1)) — T (0o f(7)),
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7_304+2(hl;—a‘1
B9, (goof(r)) — B 0,(noof (1)),
B%9i(goof (1)) — B i(noof (7)),

B99;(go; f(1)) — B”a(WOJ f(7),
A MWW
T]_"';V(g,iof(T)) I W(nnof( 7)),
P[RS DU UTY, (gu0 f (1)) — BT OMWOULY, (meo f (7))

Above seven terms are easy to analyze based on Lemmas 3.6-3.8. We need to analyze the regularity
of the following term with respect to 7

O-(f(r) =0 ( (JK)=Fw ) - _ (IK) =4 _ (IK)a+1 3a Kwr3et?

(I + Kr3tD))ats w(I + Kr3letD)as (I + Kr3(a+D) dt
According to Corollary 2.1, this term is regular when 7 — 0. O
We conclude sections 3.2-3.4 by an important proposition.

Proposition 3.15. Under the wave coordinates Z* = 0, the whole system (1.10) is equivalent to the
following symmetric hyperbolic system

1
B*9,u = -BPu+ H(r,u) [1,0) x T3,
pa = bt (t,u) [1,0) (3.56)
u=u; inlx T3,
where B*, B and P are defined by (3.26)-(3.28), (3.45) and satisfy the constraints of the general
symmetric hyperbolic system discussed in Section 3.5.

3.5 A class of symmetric hyperbolic systems

Consider the following symmetric hyperbolic system.

B*0,u

1
SBPu+H in [Ty, T3] x T", (3.57)
u = ug in Tp x T, (3.58)

where

(i) To < Ty <0,

(ii) P is a constant, symmetric projection operator, i.e., P’=pP,PT =P,

(iii) w = u(t, z) and H(t,u) are RN-valued maps, H € C°([Tp,0], C>(RY)) and satisfies H(t,0) =
0’

(iv) B* = BH(t,u) and B = B(t,u) are My« n-valued maps, and B*, B € C°([Tp, 0], C=®(RY))
and they satisfy

(B = B*, [P,B]=PB-BP =0,

(v) there exists constants x, v1, 2 such that

—H<B°< B<72]I
Al

for all (¢,u) € [Tp, 0] x RY,
(vi) for all (¢,u) € [Tp,0] x RN, we have

PLB°P = PBP* =0,

25



where Pt =1 — P is the orthogonal projection operator.
We will be able to conclude our argument with tthe help of the following result, whose proof relies
on standard energy estimates; see [15].

Proposition 3.16. Suppose that k > % + 1, ug € H*(T") and assumptions (i)-(vi) are fulfilled.
Then there exists a T, € (Tp,0), and a unique classical solution u € C!([Tp, T,] x T™) that satisfies
u € O[Ty, T.], H*) N CY([Ty, T.], H*~') and the energy estimate

t
1 _
()7 —/T —IPulfe < Ce“CTT(Jlu(To) [7)
0

for all Ty <t < Ti, where C' = C(||[ul o ([zy,1.),17), Y1725 K), and can be uniquely continued to a
larger time interval [Ty, T*) for all T* € (7%, 0] provided [[ul| zoo ((7,,1.),w1.50) < 00.

Moreover, there exists a 6 > 0 such that if ||ug|| g+ < d, then the solution exists on the time interval
[Ty, 0) and can be uniquely extended to [Tp,0] as an element of C°([Tp, 0], H*~1!) satisfying

—t ifk > 1,
[Pu(r)[ g1 < COQ tin(g) ifw =1,
(-t)F  ifr<1
and
t ifk > 1or[B°,P]=0

1 1 -
IP4u(r) — PLu(0)] s sca{ o Heo

for Ty <t < 0.

3.6 Completion of the proof of the main result

Based on the analysis of subsections 3.1-3.5, we have transformed the Einstein-Euler equations of GCG
into a symmetric hyperbolic system (3.56). After a simple coordinate transformation 7 — —7, the
derived system is just the one considered in Section 3.5, thus we can use the main result of the Section
3.5 to get Theorems 1.2 and 1.4 directly under the assumption that the matrix —B° of subsection
3.3 is positive definite. Thus, we need to prove that —BY is positive definite based on the a priori
estimates of Proposition 3.16.

Obviously, from the smallness of the unknowns of Proposition 3.16, we have the following equivalent
relationships

h = —gu0" WOV ~ —goof*(r) ~ h, (3.59)
IV = %9, ¥~ 9"V ~ f(1), (3.60)
OV = ¢g"9,¥ ~ Ce. (3.61)

Thus, we have

— 1fa 1-
“BY ~ (1= (PR (1 —
(0%

1 — 1l
+= (rPODR) AN (f(1))? > 0,

[0
Bk~ (I — (r2A-DpyER (57"“_ 1—aC262>
a  —goof*(7)
_é(TQ()\—l)E) L 20-D2.2 (I _ (7_2()\_1)%) lta )(Sjk

Clearly, from (3.59)-(3.61) and Remarks 2.1, 2.3, —B° is a positive definite matrix. Hence, all the
assumptions of Section 3.5 are satisfied. Then we have by Proposition 3.16

a(7) [l < Ce.
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By Lemma 3.8, we can equivalently get

g™ (7) =" (D) | w4+ 10wg" (7) = Ou™ (7) [ g1 + 109 (7) — 0¥ (7) || e < Ce.

Moreover, based on (3.56), we have the following asymptotic behavior:

N - 1P (ugh (7), uf*(7), u (1) | -1 < —Ceerin(r),
ITI(ug (1), w? (1), u” (7))", M(uo(7), up (), u(r)) | gr-1 < Cer.
And
(I = P)(ug”, u*, u®) T (1) — (I = P)(ug”(0),u*(0), u”(0)) | gr—r < Cer,
(I =) (ug, w, 0) " (r) — (I = I)(ug (0),w (0), 0 (0)) || -1 < Cer,
[[(T = IT) (ug, u, w)" (1) — (I — ) (ug(0), ug (0), u(0))" | zre—r < Cer,
P, — P (0)|[gr—1 < Cer.

Where in (3.63) and (3.64), we have used k = 1 and x = 2 respectively. From (3.62)-(3.68), we have

192 (6%(r) — (7)) = L(5%(7) — 1 (7)gn-s + 1019 ()
[0ra(r)lls-+ + 107 ()
10: (5% (7) - 770“(7)) = 2 (r) =) e

10:a(7) = 0:q(0) | 3=+ + lla(7) — a(0) || 5
+||3igij(7)—3ig”( e+ llg” (7 ) 8" (0| -
10,9(7) = 8, W (0)| 775

10,2 (0) = 0, (0)| i

||<9 Y (0) ] gz

where we have set

P = Tim [0 (g"(r) — (7)) — (g™ (7) — 1 (7))] = lim (u% () —

T—0 T T—0
On the other hand, we have
AT e
pr~ EEE
([ - 7'3(“+1)(—7700f2(7))%) -

IN A

IN

VAN VAN VAN VAN

—Cerln(1),

Cer,
Cer,

Cer,
Cer,
Ce,
Ce,

Thus, when 7 — 0, we have p — A=+ and Dp = 5%21 — a. The proof of Theorem 1.4 is completed.
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