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Dynamics of self–gravitating fluids in Gowdy-symmetric
spacetimes near cosmological singularities

Florian Beyer1 and Philippe G. LeFloch2

December 2015

Abstract

We consider self-gravitating fluids in cosmological spacetimes with Gowdy symmetry on T 3 and, in
this set-up, we solve the singular initial value problem for the Einstein-Euler equations, when initial
data are prescribed on the hypersurface of singularity (which can stand in the past or in the future of
this hypersurface). We specify initial conditions for the geometric and matter variables and we identify
the asymptotic behavior of these variables near the cosmological singularity. Our analysis exhibits
a condition on the sound speed, which leads us the notion of sub-critical, critical, and super-critical
regimes. Smooth solutions to the Einstein-Euler systems are constructed in the first two regimes, while
analytic solutions are obtained in the latter one.
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1 Introduction

1.1 Main objective of this paper
Our objective is to provide a mathematically rigorous analysis of a class of solutions to the Einstein equations,
describing non-homogeneous matter spacetimes when the matter content is a perfect compressible fluid. We
attempt here to elucidate the coupling between the spacetime geometry and the matter content which is
determined by the Einstein equations. Due to the limitation of the mathematical techniques available for
the Einstein equations, it is reasonable to restrict attention to a class of spacetimes enjoying some symmetry
and focus on Gowdy symmetry, that is, we assume that the spacetimes admit two commuting, spacelike
Killing fields and that the spatial topology is the 3-torus T 3.

Our main result is then an existence theory for the Einstein-Euler system, which can be formulated as
a nonlinear system of hyperbolic equations and is analyzed here in the neighborhood of the cosmological
singularity. This singularity takes place on a hypersurface t = 0 on which the time variable t ≥ 0 is
normalized to vanish. By prescribing a suitable initial data set for the geometry and matter variables on the
singularity, we are able to prove the existence of a broad class of spacetimes, having well-specified asymptotic
behavior as the singularity is approached. For definiteness, in our presentation the spacetime singularity
lies in the past, so that the volume of the spacelike slices of the spacetime is increasing from zero, as the
time evolves.

Several parameters are playing a key role in our analysis. First of all, the geometry is characterized by
the so-called Kasner exponent (precisely defined below) in the direction of the fluid flow

p1 ∈ [−1/3, 1). (1.1)

This exponent determines the rate at which the spacetime is shrinking or expanding in the direction of the
fluid flow (relatively to the volume of the spacetime slices, which tends to zero if the time variable is taken
to decrease to t = 0).

Second, we assume that the fluid is isothermal and polytropic and, specifically, that its pressure P = P (ρ)
is a linear function of the mass-energy density ρ ≥ 0, i.e.

P = (γ − 1) ρ, γ ∈ (1, 2), (1.2)

in which cs = (γ − 1)1/2 represents the sound speed and, by assumption, does not exceed the light speed
normalized to be 1. The limit case γ → 2 is referred to as a stiff fluid for which the sound speed and light
speed coincide, while the limit case γ → 1 leads us to the so-called zero-pressure model – a rather degenerate
model exhibiting high concentration of matter. Attention is focused here on the most physically relevant
interval γ ∈ (1, 2), although some remarks will also be made below in the limiting cases. Finally, from the
geometric parameter p1 and the fluid parameter γ, we introduce our critical exponent

Γ =
c2s − p1

1− p1
. (1.3)

The analysis performed in the present paper suggests us to introduce the following terminology:

Sub-critical fluid flow Γ > 0. This is the main regime of interest, and the fluid asymptotically
comes to a rest with respect to an observer moving orthogonally to the foliation slices, and the matter
does not strongly interact with the geometry.

Super-critical fluid flow Γ < 0. In this regime, the (un-normalized) fluid vector becomes asymp-
totically null as one approaches the singularity, and the fluid model breaks down. The sound speed is
smaller than the characteristic speed √p1 associated with the geometry so that, at least at a heuristic
level, the dynamics of the fluid is dominated by the geometry.

Our main theorem in this paper concerns the sub-critical regime and concerns Gowdy symmetric solutions
to the Einstein equations. The behavior in the critical case Γ = 0 will be found to be quite similar to the
sub-critical regime, but yet it will necessary to analyze it separately. On the other hand, the super-critical
case will be handled in the space of analytic functions only.

We find it convenient to distinguish between three problems of increasing technical difficulty:
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• fluids evolving on a Kasner background (see below),

• fluids evolving on an asymptotically local Kasner spacetime (in a sense defined below),

• and self-gravitating fluid flows solving the fully coupled Einstein-Euler equations.

Our objective, for each problem, is to identify the asymptotic behavior of the fluid variables, as one ap-
proaches the singularity, and establish an existence theory for the singular initial value problem.

Theorem 1.1 (Compressible perfect fluids in Gowdy-symmetric spacetimes near the cosmological singu-
larity. Preliminary version). Consider isothermal, perfect compressible fluid flows and suppose the problem
is set on the 3-torus T 3 on a Kasner background or, more generally, on a Gowdy-type background, or else
consider a self-gravitating fluid governed by the Einstein-Euler system under Gowdy symmetry on the torus
T 3. Then, the singular initial value problem with suitable data prescribed on the initial hypersurface of sin-
gularity admits a solution in wave coordinates with a time function t > 0 normalized to vanish on the past
singularity t = 0. This solution has a well-defined asymptotic behavior (which we describe in detail below).

Let us now continue the discussion in more technical terms. We are seeking for (3+1)–dimensional, mat-
ter spacetimes (M, g) with spatial topology T 3, satisfying the Einstein–Euler system in Gowdy symmetry.
Einstein’s field equations read

Gαβ = κTαβ , (1.4)

where κ > 0 is a constant (which we assume to be unity in all of what follows) and all Greek indices α, β, . . .
describe 0, . . . , 3. Here, Gαβ := Rαβ − (R/2)gαβ denotes the Einstein curvature, Rαβ the Ricci curvature,
and R = Rα

α the scalar curvature. The stress–energy tensor Tαβ describes the matter content and, for
perfect compressible fluids, reads

Tαβ = (ρ+ P )uαuβ + P gαβ , (1.5)

where the scalar field ρ and the unit vector field uα represent the mass–energy density and the velocity vector
of the fluid, respectively. The pressure P is the prescribed function given in (1.2). The Euler equations read

∇αTαβ = 0, (1.6)

where ∇α is the covariant derivative operator associated with the metric gαβ .
The vacuum case corresponding to ρ ≡ 0 and, therefore, to the vacuum Einstein equations Rαβ = 0

has received much attention and, under the above symmetry assumption, the class of spacetimes under
consideration is known as the Gowdy spacetimes on T 3, first studied in [19]. Later, a combination of
theoretical and numerical works has led to a clear picture of the behavior of solutions to the initial value
problem for the vacuum Einstein equations as one approaches the boundary of the spacetimes; see [18, 22]
and, for a proof of the so–called strong censorship conjecture in this class [34, 35].

Much less is known about the Einstein–Euler equations under Gowdy symmetry. Yet, theoretical work
on the initial value problem was initiated in [6, 27], and global existence was established by LeFloch and
Rendall [26]. The late-time asymptotics of Einstein-Euler models without symmetry assumptions in the
expanding time direction with a positive cosmological constant was studied in [33, 31, 36, 29]. In the
present paper, we are interested in solutions to the Einstein–Euler equations when data are imposed on the
singularity, as we explain below.

Self-gravitating fluid models with a linear pressure-density relation P = c2sρ are the basis of modern cos-
mology and the “standard model”. While this model is highly consistent with observations, its assumption of
isotropy and spatial homogeneity (and linearized perturbations thereof) has raised concerns in the scientific
community in recent years [11]. Since our results here now partially confirm some aspects of the so-called
BKL conjecture [7, 8], in particular that the dynamics should be rather anisotropic at the singularity, it
is expected that the standard model is not an accurate description of the early universe close to the big
bang singularity. This may be different if there is a fundamental massless scalar field in nature, in which
case the dynamics at the singularity may be fundamentally different as it has been proven recently in [37].
Our results here also support the outstanding strong cosmic censorship conjecture in the Einstein-fluid case
which has been proven for Gowdy symmetric spacetimes so far in the vacuum case only [34, 35].

We build here on earlier investigations by Rendall and co-authors on Fuchsian techniques, which were
later applied to more general models [21, 24, 12, 4, 15, 20]. These Fuchsian techniques were restricted to the
class of analytic solutions. The first attempt to overcome this restriction was made in [30]. A series of papers
[9, 10, 1, 2, 3] led to a Fuchsian theory which applies to a general class of quasilinear hyperbolic equations
without the analyticity restriction; see also [14] for a theory with slightly more restrictive conditions.
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1.2 Outline of the main results
Our main contributions in this paper are as follows:

• Field equations.
In Section 2, we begin by displaying the partial differential equations of interest which describe
Einstein–Euler spacetimes in Gowdy symmetry. Since our method relies on the well-posedness of
the Cauchy problem and on energy estimates it is necessary to extract fully hyperbolic evolution
equations from the Einstein–Euler system. For the Euler equations, we use the formalism which was
independently introduced by Frauendiener [17] and Walton [43] which yields quasilinear symmetric
hyperbolic evolution equations of the form

0 = Aδαβ∇δvβ

for the fluid vector field vα. For the Einstein equations we use the (generalized) wave formalism which
leads to quasilinear evolution equations of wave type for the Lorentzian metric gαβ in the schematic
form

�ggαβ = Q(∂g, ∂g) + matter terms.

In order to deal with these equations and formulate a singular initial value problem, we must signifi-
cantly revisit the available Fuchsian analysis, and carefully investigate the asymptotic behavior of the
metric and fluid variables as one approaches the singularity. Our study consists of formulating the
Einstein-Euler systems as first–order nonlinear hyperbolic equations.

• Asymptotic behavior of fluid flows on fixed background spacetimes.
Our first result, in Section 3 below, concerns the evolution of a homogeneous fluid on fixed background
spacetime, specifically a Kasner spacetime, which is a vacuum, cosmological, homogeneous, but highly
anisotropic solution of Einstein’s vacuum equation with M = (0,∞)× T 3 and

g = t
k2−1

2

(
− dt2 + dx2

)
+ t1−kdy2 + t1+kdz2, (1.7)

with t ∈ (0,+∞) and x, y, z ∈ (0, 2π). The free parameter k ∈ R is often referred to as asymptotic
velocity. With respect to the more conventional Gaussian time coordinate

τ =
4

k2 + 3
t
k2+3

4 (1.8)

and by some irrelevant rescaling of the spatial coordinate x, this metric takes the form

g = −dτ2 + τ2p1dx2 + τ2p2dy2 + τ2p3dz2,

with the Kasner exponents

p1 = (k2 − 1)/(k2 + 3), p2 = 2(1− k)/(k2 + 3), p3 = 2(1 + k)/(k2 + 3). (1.9)

Except for the three flat Kasner cases given by k = 1, k = −1, and (formally) |k| → ∞, the Kasner
metric has a curvature singularity at t = 0. The results obtained in this simple setting are then
used to analyze the dynamics of Gowdy-symmetric fluids on the much larger class of asymptotically
local Kasner spacetimes in Section 4. By solving the initial value problem with data prescribed on
the singularity (i.e., the singular initial value problem), we establish the existence of a large class of
singular fluid flows for the case Γ > 0 in Theorem 4.2, Γ = 0 in Theorem 4.3 and Γ < 0 in Theorem 4.4.
The density of the fluids blows up with a well specified rate, while the behavior of the fluid velocity
vector depends crucially on the sign of the quantity Γ in Eq. (1.3).

• Asymptotic behavior of self–gravitating fluids.
Next, in Section 5, we investigate the coupled Einstein–Euler system and generalize our conclusions
above, by allowing now the geometry and the fluid evolution to be coupled. This leads to Theorem 5.1
and Theorem 5.2 in the case Γ > 0 and to Theorem 5.3 and Theorem 5.4 in the case Γ = 0. Our
asymptotics are consistent with the motto that “matter does not matter” (an important ingredient of
the BKL conjecture [7, 8]) as one approaches the singularity which we analyze qualitatively in addition
to the notion of “velocity term dominance” [16, 23]. For reasons explained in Section 4.4 we do not
discuss the case Γ < 0 here.
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In summary, the present work provides the first mathematically rigorous investigation of self–gravitating
fluids in inhomogeneous spacetimes in a neighborhood of the cosmological singularity, while only the corre-
sponding problem near isotropic singularities was studied in earlier works such as [5] and [41] (see also [39],
[40], and [28]). Our study has allowed us to identify specific parameters (such as the exponent Γ) and their
values. In future studies, numerical experiments could be useful to further elucidate the identified critical
behavior and to overcome some of the restrictions of the existing theoretical techniques.

2 Formulation of the Einstein-Euler system

2.1 The relativistic Euler equations
It will be convenient to rely on the symmetrization of the relativistic Euler equations which was inde-
pendently introduced by Frauendiener [17] and Walton [43]. This approach allows one to write the Euler
equations explicitly as a symmetric hyperbolic system of partial differential equations (PDEs). We mostly
restrict attention to the equation of state Eq. (1.2). Let us begin by considering an arbitrary (sufficiently
smooth) symmetric (0, 2)-tensor field of the form

Tαβ = f(x) vαvβ + g(x) gαβ , (2.1)

where vα is a smooth future-pointing timelike (not necessarily unit) vector field and

1

x
:= v :=

√−vαvα. (2.2)

The function f and g are smooth but otherwise completely arbitrary so far. In all of what follows, gαβ is
a smooth Lorentzian spacetime metric which is used to raise and lower indices in the usual way. A simple
calculation reveals that

∇βTαβ = Aδαβ∇δvβ ,
provided we set Aδαβ := f ′x3vαvβv

δ + fvδgαβ + fgδβvα + x3g′vβgδα. As usual, ∇α denotes the covariant
derivative operator associated with the metric gαβ , while a prime denotes a derivative with respect to x.
We can conclude that Tαβ is divergence free if and only if

0 = Aδαβ∇δvβ . (2.3)

The divergence free condition would thus lead us to a symmetric hyperbolic1 evolution system (2.3) with
unknowns vα provided the following anti-symmetric part vanishes identically:

Aδ[αβ] = 0,

which is equivalent to
f − x3g′ = 0, (2.4)

i.e.
Aδαβ = f ′x3vαvβv

δ + f(vδgαβ + 2gδ(βvα)). (2.5)

The abstract tensor field Tαβ can now be identified with the energy momentum tensor of a perfect fluid
with 4-velocity uα, pressure P , and energy density ρ, provided we set

g = P, vα = vuα, f/x2 = ρ+ P. (2.6)

Let us differentiate the third equation with respect to x

f ′

x2
− 2

f

x3
=

dρ

dP
P ′ + P ′ =

(
dρ

dP
+ 1

)
P ′,

where ρ = ρ(P ) is an arbitrary isentropic equation of state. Notice that P ′ can be expressed by Eq. (2.4),
given that g = P and we find

f ′ =

(
1

c2s
+ 3

)
f

x
, (2.7)

1The other essential condition for hyperbolicity, namely that the matrix in front of the time derivative of the unknown field
is positive definite, is not yet discussed in this section. We will return to this issue later in this paper.
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where the sound speed cs is defined by c2s := dP
dρ . For the equation of state Eq. (1.2) we obtain c2s = γ − 1.

This analysis allows us to now rewrite the conditions Eqs. (2.3) and (2.5) in the form

0 =
1

f
Aδαβ∇δvβ ,

1

f
Aδαβ =

3γ − 2

γ − 1

vαvβ
v2

vδ + vδgαβ + 2gδ(βvα), (2.8)

respectively. We have thus arrived at a symmetric hyperbolic system for the evolution of the components
of the vector field vα, and by construction this system is equivalent to the Euler system ∇βTαβ = 0 with
the equation of state Eq. (1.2). Furthermore, as we check it below, the field vα contains all the information
about the fluid (that is, its unit velocity field and its mass energy density).

Next we express the energy momentum tensor Tαβ in terms of vα. For a general equation of state
P = P (ρ), Eqs. (2.4) and (2.6) together with g = P result in

dP

dx
=

f

x3
=
ρ(P ) + P

x
.

This is an ordinary differential equation (ODE) where the unknown P is considered as a function of x. This
can readily be integrated and hence

x

x0
= Φ(g(x)), with Φ(P ) := exp

(∫ P

P0

dP̃

ρ(P̃ ) + P̃

)
,

where x0 and P0 are so far arbitrary constants. The function Φ is often called Lichnerowicz index in the
literature. For our linear equation of state Eq. (1.2), we obtain

Φ(P ) =

(
P

P0

) γ−1
γ

and therefore g(x)
g(x0) =

(
x
x0

) γ
γ−1

, which gives us g(x) = P0x
γ
γ−1 for some possibly different constant P0. From

Eq. (2.4), we then find
f(x) = P0

γ

γ − 1
x

3γ−2
γ−1 .

The energy momentum tensor can therefore be written as

Tαβ = P0

(
γ

γ − 1
v

2−3γ
γ−1 vαvβ + v−

γ
γ−1 gαβ

)
. (2.9)

Finally we observe that the physical fluid variables uα, ρ and P can be computed from the vector field
vα as follows:

uα =
vα

v
, P = P0v

− γ
γ−1 , ρ =

P0

γ − 1
v−

γ
γ−1 = Tαβu

αuβ ; (2.10)

recall here the definition of v in Eq. (2.2). Without loss of generality we set P0 = 1 from now on. Notice
that while this formulation of the Euler equations also applies to the borderline case γ = 2, it breaks down
for γ = 1 due to the presence of factors 1/(γ − 1) in the formulas above. Notice also that the vacuum case
ρ→ 0 is recovered in the limit v →∞.

2.2 The Einstein equations in generalized wave gauge
We start with Einstein’s field equations

Rαβ = Tαβ −
1

2
gαβT, (2.11)

where T := Tα
α is the trace of the energy momentum tensor Tαβ , and introduce the following generalized

Einstein equations

Rαβ +∇(αDβ) + Cαβ
γDγ = Tαβ −

1

2
gαβT, (2.12)
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where

Dα := Fα − Γα, (2.13)

Γγδα :=
1

2
(∂γgδα + ∂αgδγ − ∂δgγα) , (2.14)

Γδ := gγαΓγδα, (2.15)

and gγα are the components of the inverse metric. The terms Fβ are the gauge source functions which are
freely specifiable sufficiently regular functions of the coordinates xα and the unknown metric components
gαβ (but not of derivatives). The quantities Cαβγ are assumed to be symmetric in the first two indices, but
apart from that are free functions of xα, gαβ and first derivatives. Notice that none of the terms Dα, Fα
and Cαβγ are components of a tensor in general. The expression ∇βDα is a short hand notation for

∇βDα = ∂βDα − ΓβδαDγgδγ .

We interpret Eqs. (2.12) as “evolution equations” since they are equivalent to a system of quasilinear
wave equations

− 1

2
gγε∂γ∂εgαβ

+∇(αFβ) + gγεgδφ (ΓγδαΓεφβ + ΓγδαΓεβφ + ΓγδβΓεαφ) + Cαβ
γDγ

− Tαβ +
1

2
gαβT = 0,

(2.16)

which, under suitable conditions, has a well-posed initial value problem for Cauchy data gαβ (Lorentzian
metric) and ∂tgαβ . The solutions are Lorentzian metrics in a neighborhood of the initial time surface.

Suppose that gαβ is any solution to the evolution equations Eq. (2.12) for some chosen gauge source
functions with the quantities Dα of the form Eq. (2.13). It is clear that gαβ is an actual solution to the
Einstein equations Eq. (2.11) if and only if Dα all vanish identically. Furthermore, assuming the energy
momentum tensor Tαβ is divergence free, we can derive a system of equations for Dα, that is,

∇α∇αDβ +Rβ
εDε + (2∇αCαβγ −∇βCεεγ)Dγ + (2Cαβ

γ − Cεεγδαβ)∇αDγ = 0, (2.17)

which is a linear homogeneous system of wave equations and is referred to as the constraint propagation
equations or the subsidiary system. Recall that ∇α is the Levi-Civita covariant derivative of gαβ and Rαβ
is the corresponding Ricci tensor. We thus conclude that the terms Dβ are identically zero (and hence the
solution gαβ of the evolution equations is a solution to Einstein’s equations) if and only if the Cauchy data
on the initial hypersurface satisfy Dβ = 0 and ∂tDβ = 0. Motivated by this observation, we refer to Dβ as
the constraint violation quantities and to the conditions Dβ = 0 and ∂tDβ = 0 at the initial time as the
constraints of the Cauchy problem.

Let us make a few further remarks on the constraints. From initial data gαβ and ∂tgαβ prescribed at the
initial time t∗ we can calculate the terms Γα at t∗. The constraint Dβ = 0 implies that these quantities must
match the initial values of the gauge source functions; cf. Eq. (2.13). It follows that this condition is not a
restriction on the Cauchy data but rather on the gauge source functions because for any Cauchy data we
can find gauge source functions whose initial values match the terms Γα at t∗. This suggests that Dα = 0 is
not a physical restriction but merely a gauge constraint. In contrast to this, the constraint ∂tDα = 0 turns
out to be a restriction on the Cauchy data but not on the gauge source functions. In order to see this, we
first realize that the values of the terms ∂tΓα at t∗ can be calculated from the sole Cauchy data (and hence
it can be checked if this constraint is satisfied) if we assume that the evolution equations hold at t∗. This
is so because the constraint ∂tDα = 0 contains second time derivatives of the metric at t∗ which can only
be computed via the evolution equations. However, when all these second time derivatives in the constraint
are expressed using the evolution equations, it turns out that all terms involving the gauge source functions
drop out completely. In fact, we find that the relationship

Gα0 = −1

2
g00gαβ∂tDβ (2.18)

is valid at t∗. Hence the constraints ∂tDα = 0 are equivalent to the standard Hamiltonian and momentum
constraints, and we therefore refer to them as the physical constraints, in order to distinguish them from
the gauge constraints above.

7



2.3 Spacetimes with Gowdy symmetry
For the purpose of this paper, we restrict to spacetimes with U(1)×U(1)-symmetry. A 4-dimensional smooth
oriented time-oriented Lorentzian manifold (M, gαβ) with M ∼= R×T 3 is said to be U(1)×U(1)-symmetric
provided there is a smooth effective action of the group U(1) × U(1) generated by two linear independent
smooth commuting spacelike Killing vector fields ξα1 and ξα2 . It can be shown that we can identify these
Killing vector fields with two of the three spatial coordinate vector fields everywhere, say, ∂y and ∂z, if the
gauge source functions and the terms Cαβγ do not depend on y and z and if the fluid vector commutes with
the Killing vector fields; we impose this condition explicitly later, but simply assume it implicitly for this
discussion here. In all of what follows we make the following explicit choice

F0(t, x, g) = −1

t
, F1(t, x, g) = F2(t, x, g) = F3(t, x, g) = 0, (2.19)

the coordinates given by these gauge source functions can be shown to agree with wave coordinates asymp-
totically at t→ 0 up to a relabeling of the time coordinate. A more detailed discussion can be found in [3].
It is also motivated there that a useful choice for the terms Cαβγ is

C00
0(t, x) =

3 + k2(x)

2t
, C01

1(t, x) = C10
1(t, x) =

1 + k2(x)

4t
,

Cαβ
γ(t, x) = 0 for all other α, β, γ,

(2.20)

for some so far unspecified smooth function k. This is the choice which we shall make in our work here
as well. For these particular choices one can show that the following block diagonal form of the metric is
preserved during the evolution of the Einstein equations (and the Einstein-Euler equations; see the comment
above). By this we mean that if the initial value for the metric and its first time derivative are of that form
then the solution metric of the evolution equations has that form for all times.

Definition 2.1 (Block diagonal coordinates for U(1) × U(1)-symmetric spacetimes). Let (M, gαβ) be a
U(1) × U(1)-symmetric spacetime with M = (0, δ) × T 3 (for some fixed δ > 0). A coordinate chart with
dense domain U ⊂M and range (0, δ)× (0, 2π)3 is called block diagonal coordinates provided the metric
gαβ has the property

g02 ≡ g03 ≡ g12 ≡ g13 ≡ 0 (2.21)

on U and that we can write

g =g00(t, x)dt2 + 2g01(t, x)dtdx+ g11(t, x)dx2

+R(t, x)

(
E(t, x)(dy +Q(t, x)dz)2 +

1

E(t, x)
dz2

)
,

(2.22)

for some smooth functions g00, g01, g11, R, E and Q. Moreover, we assume that these functions extend as
smooth x-2π-periodic functions to the domain (0, δ]× R (these functions are denoted by the same symbols)
such that g00 < 0, g11 > 0, R > 0 and E > 0.

In the following we often refer to such a coordinate chart as “block diagonal coordinates (t, x, y, z)”.
According to the results in [13], one can only find such block diagonal coordinates globally on U(1)×U(1)-
symmetric solutions of the vacuum equations if the twists associated with the two Killing vector fields

κi := εαβγδξ
α
1 ξ

β
2∇γξδi for i = 1, 2

vanish. This is the subclass of Gowdy symmetric spacetime. If a U(1) × U(1)-symmetric metric is given
in the form Eq. (2.22), then one can show κi = 0 and hence that the corresponding spacetime is Gowdy
symmetric. A particular example of block diagonal coordinates are areal coordinates

g01 = 0, R(t, x) = t, (2.23)

and conformal coordinates
g01 = 0, g00 = −g11. (2.24)

In the vacuum case, these gauge choices are consistent with Eq. (2.19) and, in fact, equivalent. In the non-
vacuum case considered here however none of these two gauge conditions is preserved by the evolution. In
particular, non-vanishing values for g01 are always generated even from zero initial data. In fact, Eq. (2.22)
is as close as we can bring any Gowdy symmetric solution to the evolution equations in our gauge to the
standard forms of the Gowdy metric above.
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3 Spatially homogeneous fluid flows on a Kasner background

3.1 Asymptotic behavior near the cosmological singularity
In this section we lay the foundation and provide the heuristic understanding for our rigorous studies of
fluid models in Sections 4 and 5. As a very first step to this end, let us consider fluids only on exact Kasner
background spacetimes Eq. (1.7). This means that we wish to solve the Euler equations on the background
spacetime Eq. (1.7). In this first step, we restrict to spatially homogeneous fluids, i.e., we assume that the
fluid vector is of the form

vα = v0(t)(∂t)
α + v1(t)(∂x)α + v2(t)(∂y)α + v3(t)(∂z)

α. (3.1)

As before we consider the equation of state Eq. (1.2) with parameter γ. In fact, we shall go even further
and restrict to the case

v2 = v3 = 0. (3.2)

This restriction turns out to be necessary in the fully coupled Einstein-Euler case considered in Section 5,
but it is strictly speaking not necessary in the case of fixed background spacetimes. Since however the
discussion here is supposed to be a preparation for the discussion in Section 5, we shall restrict ourselves to
fluids with Eq. (3.2) for the whole paper. We emphasize that it is a-priori not obvious whether solutions of
the Euler equations on Kasner backgrounds with the restriction Eq. (3.2) indeed exist due to the anisotropic
nature of the gravitational field near the singularity. However, it turns out that the Euler equations are
indeed consistent with this restriction.

Under these assumptions, the Euler equations, Eqs. (2.8), are equivalent to the following system of
ODEs:

t∂tv
0 = Γ

((v0)2 + (v1)2)v0

(v0)2 − (γ − 1)(v1)2
, t∂tv

1 = 2Γ
(v0)2v1

(v0)2 − (γ − 1)(v1)2
, (3.3)

where
Γ :=

1

4

(
3γ − 2− (2− γ)k2

)
. (3.4)

This is the quantity Γ which we have identified in Section 1 as being crucial for the whole analysis in this
paper.

Next we attempt to solve this system of ODEs. For the whole paper, let us assume that the fluid is
future directed 2, i.e., v0 > 0, and define

V :=
v1

v0
.

Eq. (3.3) yields

t∂tV =
t∂tv

1

v0
− V t∂tv

0

v0
= Γ

2v0v1 − V ((v0)2 + (v1)2)

(v0)2 − (γ − 1)(v1)2
= Γ

V (1− V 2)

1− (γ − 1)V 2
(3.5)

which can readily be integrated

V (t)

(1− V 2(t))(2−γ)/2
= C1t

Γ with C1 =
V (t0)

(1− V 2(t0))(2−γ)/2
t−Γ
0 , (3.6)

for any t0 > 0 and V (t0) ∈ (−1, 1). Notice that for each fixed t > 0, it follows that (1− V 2(t))(2−γ)/2 → 1
in the limit γ → 2 (which implies Γ → 1). Eq. (3.6) therefore represents the solution to Eq. (3.5) for all
γ ∈ (1, 2]. The other borderline case γ = 1 is however excluded; see the last comment in Section 2.1. Next
we replace v1 in Eq. (3.3) by v1 = v0V and find

t∂tv
0

v0
= Γ

1 + V 2

1− (γ − 1)V 2
. (3.7)

2In the future directed case, the fluid “flows out” of the Kasner singularity at t = 0 which hence represents an initial
singularity. Notice, however, that the Euler equations (and in fact also the coupled Einstein-Euler system) are invariant under
the transformation vα 7→ −vα. Hence, any solution vα of the (Einstein-) Euler equations with v0 > 0 gives rise to a solution
−vα of the (Einstein-) Euler equations with v0 < 0. In the latter case, t = 0 represents a future singularity.
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Let us now assume that V 6≡ 0 which is the case if and only if V (t0) 6= 0 in Eq. (3.6) (the case where V
vanishes identically is discussed separately below). Eq. (3.7) can then be rewritten with Eq. (3.5) as

∂tv
0

v0
=
∂tV

V

1 + V 2

1− V 2
.

Another integration yields

v0(t) = C2
V (t)

1− V 2(t)
with C2 = v0(t0)

1− V 2(t0)

V (t0)
(3.8)

for any v0(t0) > 0. The remaining quantity v1 can be calculated from V by multiplying Eq. (3.8) with V .
Since Eq. (3.6) is an implicit formula for V which cannot be solved explicitly for V , we can hence not

calculate v0 and v1 explicitly. Nevertheless, we can derive expansions about t = 0. To this end, we first
assume Γ > 0. Then Eq. (3.6) together with the bound V (t) ∈ (−1, 1) implies that limt↘0 V (t) = 0.
Eq. (3.6) can then be expanded and we find

V (t) = V (t0)(t/t0)Γ(1 + o(1));

in the following all symbols o(·) refer to the limit t ↘ 0. In the case Γ < 0, Eq. (3.6) together with the
bound V (t) ∈ (−1, 1) implies that limt→0 V (t) = ±1 (unless V ≡ 0 which we have excluded so far, see
below). The full result, which also includes the case V ≡ 0, is summarized in the following theorem.

Theorem 3.1 (Homogeneous fluid flows on a Kasner spacetime). Consider the Euler equations on the
Kasner spacetime Eq. (1.7) given by any value of the parameter k. Choose an equation of state parameter
γ ∈ (1, 2] and let Γ be the quantity determined by Eq. (3.4). For each solution vα of the form Eqs. (3.1) –
(3.2), there either exist constants v∗ > 0 and v∗∗ ∈ R such that

(
v0(t)
v1(t)

)
=



(
v∗tΓ(1 + o(1))

v∗∗t2Γ(1 + o(1))

)
if Γ > 0,(

v∗
v∗∗

)
if Γ = 0,(

v∗t−2|Γ|/(2−γ) + v∗∗
γ

2(γ−1) + o(1)

±(v∗t−2|Γ|/(2−γ) + v∗∗) + o(1)

)
if Γ < 0,

(3.9)

or, there exists a constant v∗ > 0 such that(
v0(t)
v1(t)

)
=

(
v∗tΓ

0

)
for every Γ ∈ R. (3.10)

Notice that the factor 1/(2− γ) in the case Γ < 0 is no problem because γ = 2 is excluded if Γ < 0 (see
Eq. (3.4)). The second case in this theorem, which represents a fluid which is identically at rest is consistent
with the expansions in the first case for V 6≡ 0 if Γ ≥ 0, but it is very different when Γ < 0. Notice that in
the “dynamical system language” of [42], Eq. (3.10) corresponds to the “non-tilted” fluid case on a Bianchi
I (Kasner) background while Eq. (3.9) corresponds to “tilted” fluids; see also [25].

3.2 Physical interpretation: super/sub critical and critical regimes
In this section now we give a physical interpretation of the fluids described by Theorem 3.1. In all of what
follows we ignore the case of a fluid which is “identically at rest”, i.e., we focus on Eq. (3.9). As a reference
frame let us fix the congruence of freely falling observers tangent to the future-pointing timelike unit vector

eα0 = t(1−k
2)/4∂αt = ∂τ ,

where τ is the Gaussian time coordinate Eq. (1.8). Since e0 is the future pointing normal to the homogeneous
hypersurfaces, these observers can be interpreted as being “at rest” in the Kasner spacetimes. We refer to
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these as “Kasner observers” in the following. The energy density of the fluids in Eq. (3.9) measured by these
observers is

Tαβe
α
0 e
β
0 =

O
(
t−

γ
2−γ (1−Γ)

)
if Γ ≥ 0,

O
(
t−

γ−2Γ
2−γ

)
if Γ < 0.

(3.11)

Hence, this energy density blows up for any choice of γ ∈ (1, 2] and k ∈ R, in particular, irrespective of the
sign of Γ, in the limit t↘ 0. The rate of divergence however is different in both cases which suggests that
different physical processes lead the dynamics of the fluid at the singularity in the super- and super-critical
cases.

Another interesting quantity is the relative velocity of the fluid and the Kasner observers. To this end
we fix

eα1 = t(1−k
2)/4∂αx

which is a spacelike unit vector field parallel to flow of the fluid and which is orthogonal to eα0 . This vector
field can be interpreted as the natural spatial unit length scale for the Kasner observers. The just mentioned
relative velocity is then given by

V = −gαβe
α
1 v

β

gαβeα0 v
β

=

{
v∗∗
v∗
tΓ(1 + o(1)) if Γ ≥ 0,

±1 + o(1) if Γ < 0.
(3.12)

Hence, the fluid “slows down” relatively to the Kasner observers in the limit t ↘ 0 when Γ > 0 while it
accelerates towards the maximal possible velocity relative to the Kasner observers, i.e., the speed of light,
in the case Γ < 0 (unless it is at rest identically, see Eq. (3.10)).

Let us also consider the energy density of the fluid measured by observers who are co-moving with the
fluid. This is the quantity ρ in Eq. (2.10) for which we find

ρ =

{
O(t−γ(3+k2)/4) = O

(
t−

γ
2−γ (1−Γ)

)
if Γ ≥ 0,

O(t−γ/(2−γ)) if Γ < 0.
(3.13)

We emphasize that for Γ > 0 the quantities ρ and Tαβeα0 e
β
0 blow up with the same rate as a consequence of

the fact that the two families of observers are parallel in the limit t↘ 0 (which is not the case for Γ < 0).
We can show that if we fix a small spatial volume element orthogonal to the fluid at some event in the
Kasner spacetime, e.g., some 3-space spanned by a basis of spacelike vectors orthogonal to uα at that event,
and let this volume element flow together with the fluid towards the singularity, then ρ(t) = CVol−γ(t) for
some constant C > 0 irrespective of the sign Γ. Here Vol(t) is the 3-dimensional volume of this co-moving
3-space which approaches zero in the limit t↘ 0 irrespective of the sign of Γ. This shows that the blow up
of the fluid energy density is caused by the shrinking of “space” in the Kasner spacetime as one approaches
the singularity. The different blow-up rates for different signs of Γ can hence be understood as a consequence
of the fact that observers co-moving with the fluid have different concepts of “space” depending on whether
they approach the speed zero with respect to Kasner observers in the limit t ↘ 0 (for Γ > 0) or the speed
of light (for Γ < 0).

Notice that if we write γ = c2s + 1 (cs being the sound speed) and use Eq. (1.9) for the Kasner exponent
p1 associated with the spatial x-direction, the quantity Γ in Eq. (3.4) can be rewritten as

Γ =
c2s − p1

1− p1
.

Recall that p1 ∈ [−1/3, 1) and cs ∈ (0, 1). This implies that Γ > 0 corresponds to the case when the speed
of sound cs is large in comparison to the “expansion speed of the spatial x-direction” given p1 while Γ < 0
corresponds to the case when the speed of sound is small. If Γ = 0 the speed of sound of the fluid is in exact
balance with the contraction speed p1. We therefore speak of:

Sub-critical regime: Γ > 0 ⇐⇒ p1 < c2s
Critical regime: Γ = 0 ⇐⇒ p1 = c2s
Super-critical regime: Γ < 0 ⇐⇒ p1 > c2s
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Γ = 0
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Figure 1: The parameter state space.

One could say that the “natural state” of the fluid is to come to a rest at the singularity. This occurs when
Γ > 0 and hence “the spatial x-direction shrinks sufficiently slow” in the limit t ↘ 0 (i.e., p1 is small).
However, when p1 is large and hence “the spatial x-direction shrinks very fast”, the fluid has no time to
come to a rest before it is hit by infinite highly anisotropic gravitational forces at t = 0. The “state space”
of homogeneous fluids on Kasner backgrounds is illustrated in Figure 1.

4 Fluid flows on an asymptotically local Kasner spacetime

4.1 Notion of asymptotically local Kasner spacetime
Before turning our attention to the more challenging problem of a self-gravitating perfect fluid which is
discussed in Section 5, a first situation of interest for this paper is obtained when we restrict ourselves
to perfect fluids on a fixed background spacetime. In anticipation of the results in Section 5 we consider
inhomogeneous Gowdy symmetric singular background spacetimes which behave, in the precise sense of
Definition 4.1 below, like Kasner spacetimes at the singularity. The assumption is that at each spatial
coordinate point x of our local coordinate system, the metric asymptotes to some metric Eq. (1.7) in the
limit t↘ 0. The Kasner parameter k thereby turns into an x-dependent function k(x). For the later results
in Section 5, certain other linear coordinate transformations of Eq. (1.7) are in general necessary which give
rise to the other x-dependent functions in the following definition.

Definition 4.1 (Asymptotically local Kasner spacetime). Suppose (M, gαβ) is a smooth Gowdy symmetric
spacetime and (t, x, y, z) are block diagonal coordinates (Definition 2.1). Choose functions k > 0, Λ∗ > 0,
E∗ > 0, Q∗, Q∗∗ in C∞(T 1) and exponents µ1

[G], . . . , µ
6
[G] > 0 in C∞(T 1). Then, (M, gαβ) is called an

asymptotically local Kasner spacetime with respect to data k, Λ∗, E∗, Q∗, Q∗∗ and exponents µ1
[G],. . . ,µ6

[G]
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provided that for each sufficiently large integer q there exists a constant C > 0 such that∥∥∥t−µ1
[G]

(
g00(t)t−(k2−1)/2 + Λ∗

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ1

[G]t∂t

(
g00(t)t−(k2−1)/2

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ2

[G]

(
g11(t)t−(k2−1)/2 − Λ∗

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ2

[G]t∂t

(
g11(t)t−(k2−1)/2

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ3

[G]g01(t)t−(k2−1)/2
∥∥∥
Hq(T 1)

+
∥∥∥t−µ3

[G]t∂tg01(t)t−(k2−1)/2
∥∥∥
Hq(T 1)

+
∥∥∥t−µ4

[G]
(
R(t)t−1 − 1

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ4

[G]t∂t
(
R(t)t−1

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ5

[G]
(
E(t)tk − E∗

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ5

[G]t∂t
(
E(t)tk

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ6

[G]
(
(Q(t)−Q∗)t−2k −Q∗∗

)∥∥∥
Hq(T 1)

+
∥∥∥t−µ6

[G]t∂t
(
(Q(t)−Q∗)t−2k

)∥∥∥
Hq(T 1)

≤ C

for all sufficiently small t > 0.

It shall be our convention for the whole paper that we do not write x-dependencies of functions inside
spatial norms. We stress however that these spatial norms are defined with respect to the x-coordinate. In
[3], a class of asymptotically local Kasner spacetimes was constructed which solve the vacuum Einstein’s
equations. Hence this class is certainly non-trivial. The reason for not including second time derivatives
in this estimate, which are necessary to calculate for example the curvature tensor, is that estimates for
these can typically be derived when the estimate above is combined with the field equations. In general,
however, if an asymptotically local Kasner spacetime is given which does not satisfy the field equations then
we may not have enough information to calculate the curvature tensor. Clearly, the Kasner spacetime is a
special example of an asymptotically local Kasner spacetime. As for the Kasner spacetime, we expect that
in general asymptotically local Kasner spacetimes have curvature singularities at t↘ 0.

We call a fluid U(1)×U(1) symmetric, or, Gowdy symmetric if the fluid vector field vα commutes with
the Killing vector fields ∂αy and ∂αz in block diagonal coordinates (t, x, y, z) (see Definition 4.1). We shall
continue to make the restriction v2 = v3 = 0 motivated in the context of Eqs. (3.1) and (3.2), and hence
focus on fluids of the form

vα = v0(t, x)(∂t)
α + v1(t, x)(∂x)α. (4.1)

4.2 Fluid flows in the sub-critical regime Γ > 0

Our approach in this section now is driven by the expectation that general solutions of the Euler equations
on asymptotically local Kasner spacetimes of the form Eq. (4.1) should behave like the fluids described by
Theorem 3.1 asymptotically. Our first result shows that a non-trivial class of solutions with this property
indeed exists.

Theorem 4.2 (Compressible perfect fluids in Gowdy-symmetric spacetimes near the cosmological singu-
larity. Sub-critical fluid flow on an asymptotically local Kasner spacetime). Choose arbitrary data k > 0,
Λ∗ > 0, E∗ > 0, Q∗, Q∗∗ in C∞(T 1) and an equation of state parameter γ ∈ (1, 2) such that

Γ(x) :=
1

4

(
3γ − 2− (2− γ)k2(x)

)
(4.2)

is a strictly positive function. Choose an asymptotically local Kasner spacetime (M, gαβ) with respect to the
data above and any exponents

µ1
[G] = µ2

[G] > 0, µ3
[G] ≥ µ1

[G] + Γ, µ4
[G], µ

5
[G], µ

6
[G] > 0 (4.3)

as in Definition 4.1. Moreover, choose fluid data v0
∗ > 0 and v1

∗ in C∞(T 1).

(I) Existence: There exists a constant δ > 0 and a solution to the Euler equations (Eqs. (2.8)), of the
form Eq. (4.1) for some v0 and v1 in C∞((0, δ]×T 1) with the property that, for each sufficiently large
integer q and some exponents 0 < µ1

[F], µ
2
[F], there exists a constant C > 0 such that∥∥∥t−µ1

[F]
(
v0(t)t−Γ − v0

∗
)∥∥∥
Hq(T 1)

+
∥∥∥t−µ2

[F]
(
v1(t)t−2Γ − v1

∗
)∥∥∥
Hq(T 1)

≤ C (4.4)

for all t ∈ (0, δ].
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(II) Velocity term dominance: There exists a solution (v0
{T}, v

1
{T}) to the “truncated Euler equations”

(Eqs. (2.8) where all x-derivatives of the fluid variables are removed) of the form Eq. (4.1) for
v0
{T}, v

1
{T} ∈ C∞((0, δ] × T 1) such that (v0, v1) and (v0

{T}, v
1
{T}) agree at order (1, 1 − Γ); cf. Eq. (4.6)

below. Here, v0 and v1 are the components of vα found in (I).

(III) Blow up of the fluid energy density at t = 0: For any sufficiently small ε > 0 and sufficiently
large integer q there exists a constant C > 0 such that∥∥∥∥∥t γ

2−γ (1−Γ)ρ(t)−
(
(v0
∗)

2Λ∗
) γ

2−2γ

γ − 1

∥∥∥∥∥
Hq(T 1)

≤ Ctε (4.5)

for the fluid energy density ρ for all t ∈ (0, δ].

In writing statement (II), and in all of what follows, we say that two fluid vectors (v0, v1) and (ṽ0, ṽ1)

agree at order (µ1
[F], µ

2
[F]) at t ↘ 0 provided that for any smooth exponents µ̃1

[F] < µ1
[F] and µ̃2

[F] < µ2
[F] and

for each sufficiently large integer q, there exists a constant C > 0 such that∥∥∥∥t−Γ−µ̃1
[F]
(
v0(t)− ṽ0(t)

)∥∥∥∥
Hq(T 1)

+

∥∥∥∥t−2Γ−µ̃2
[F]
(
v1(t)− ṽ1(t)

)∥∥∥∥
Hq(T 1)

≤ C, (4.6)

for all t ∈ (0, δ].
Let us make a few remarks. The proof of this theorem is an application of the Fuchsian method

introduced in [9, 1, 2] which we summarize in Section 6. We only mention one particular feature of this
Fuchsian method without going into the details. In particular, Theorem 4.2 is not restricted to the case
of real-analytic data (cf. earlier Fuchsian methods, for example, in [32]). In fact, even the restriction to
C∞-data in the hypothesis of this theorem, which we have chosen here for convenience, can be overcome.
The proof of Theorem 4.2 follows the same arguments as the proofs of Theorem 5.1 and Theorem 5.2 which
we shall outline in Section 5.1. But since it is obviously significantly simpler, we will not discuss the proof
of Theorem 4.2 separately in this paper.

Let us discuss the content of the existence statement (I) of Theorem 4.2. For each choice of fluid data
v0
∗ and v1

∗ consistent with the hypothesis there exists a solution to the Euler equations with the expected
sub-critical asymptotic behavior in the limit t↘ 0 in the sense that the fluid vector v behaves asymptotically
the same as the fluid vector in Theorem 3.1. In fact, one can give bounds for the exponents µi[F] in Eq. (4.4)
and hence can estimate how fast the fluid approaches the sub-critical behavior in the limit t ↘ 0. The
Fuchsian analysis also gives rise to a uniqueness statement which, for the sake of brevity, we omit here.

Let us next elaborate on the content of Statement (II) of Theorem 4.2. The idea, which has a stronger
motivation in the context of Einstein’s equations and the coupled Einstein-Euler equations in the next
section due to the BKL conjecture, is that spatial derivatives in the equations should be negligible in some
sense relative to time derivatives. This is the notion of velocity term dominance. The statement is that
solutions of the full Euler equations and solutions of the “truncated equations”, i.e., the equations without
any spatial derivative terms, agree asymptotically, and the difference decays with some well-defined rate.
Recall here that Γ is always smaller than 1 as a consequence of the condition γ < 2.

Statement (III) is about the expected blow up of the fluid energy density at t = 0. In consistency with
Eq. (3.13) we find that ρ ∼ t− γ

2−γ (1−Γ).
We emphasize that the hypothesis of Theorem 4.2 is compatible with a large class of asymptotically

local Kasner background spacetimes. Only the choice of shift g01 is slightly restricted by Eq. (4.3) which
is therefore only a coordinate restriction on the background spacetime. Theorem 4.2 thus covers the “sub-
critical case” Γ > 0 quite in quite some generality. It is interesting to observe that the estimates which are
needed for the proof break down in the limit Γ ↘ 0 to the critical case. In fact, a series expansion of any
fluid solution asserted by Theorem 4.2 formally breaks down in the limit Γ ↘ 0 as both the powers and
the coefficients of all terms simultaneously approach 0. The critical case Γ = 0 therefore has to be treated
separately, which we do in the next subsection.
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4.3 Fluid flows in the critical regime Γ = 0

Let us now solve the same problem as in the previous section in the critical case Γ = 0. For any γ ∈ (1, 2),
Eq. (4.2) implies

k2 =
3γ − 2

2− γ = const.

In Figure 1 we see that this means k2 ≥ 1. It turns out [35] that asymptotically local Kasner vacuum
solutions with respect to data |k| ≥ 1 only exist in the (half-)polarized case, i.e., if Q∗ = const. We shall
find the same in our analysis of the Einstein-Euler equations in Section 5: Critical self-gravitating fluid
spacetimes must be half-polarized or polarized. In this section here we focus on fluids on fixed background
spacetimes. Even though the (half-)polarization restriction is strictly speaking not necessary to construct
critical fluids on fixed background spacetimes, we nevertheless make this restriction here as a preparation
for the results in Section 5.2.

Theorem 4.3 (Compressible perfect fluids in Gowdy-symmetric spacetimes near the cosmological singular-
ity. Critical fluid flow on an asymptotically local Kasner spacetime). Choose arbitrary data Λ∗ > 0, E∗ > 0
and Q∗∗ in C∞(T 1), a constant Q∗ ∈ R, an equation of state parameter γ ∈ (1, 2) and set

k =

√
3γ − 2

2− γ . (4.7)

Choose an asymptotically local Kasner spacetime (M, gαβ) with respect to the data above and any exponents

µ1
[G] = µ2

[G] > 0, µ3
[G] ≥ µ1

[G], µ4
[G], µ

5
[G], µ

6
[G] > 0 (4.8)

as in Definition 4.1. Moreover, choose fluid data v0
∗ > 0 and v1

∗ in C∞(T 1) such that

v0
∗ > |v1

∗|. (4.9)

(I) Existence: There exists a constant δ > 0 and a solution to the Euler equations (Eqs. (2.8)), of the
form Eq. (4.1) for some v0 and v1 in C∞((0, δ]×T 1) with the property that, for each sufficiently large
integer q and some exponents 0 < µ1

[F], µ
2
[F], there exists a constant C > 0 such that∥∥∥t−µ1

[F]
(
v0(t)− v0

∗
)∥∥∥
Hq(T 1)

+
∥∥∥t−µ2

[F]
(
v1(t)− v1

∗
)∥∥∥
Hq(T 1)

≤ C (4.10)

for all t ∈ (0, δ].

(II) Velocity term dominance: There exists a solution (v0
{T}, v

1
{T}) to the “truncated Euler equations”

(Eqs. (2.8) where all x-derivatives of the fluid variables are removed) of the form Eq. (4.1) for
v0
{T}, v

1
{T} ∈ C∞((0, δ]× T 1) such that (v0, v1) and (v0

{T}, v
1
{T}) agree at order (1, 1) for any sufficiently

small ε > 0. Here, v0 and v1 are the components of vα found in (I).

(III) Blow up of the fluid energy density at t = 0: For any sufficiently small ε > 0 and sufficiently
large integer q there exists a constant C > 0 such that∥∥∥∥∥t γ

2−γ ρ(t)−
((

(v0
∗)

2 − (v1
∗)

2
)

Λ∗
) γ

2−2γ

γ − 1

∥∥∥∥∥
Hq(T 1)

≤ Ctε (4.11)

for the fluid energy density ρ for all t ∈ (0, δ].

Most remarks which we made about Theorem 4.2 in the previous subsection also apply to the theorem
here. The main difference between the critical and the sub-critical case is that the fluid does not come to a
rest asymptotically, i.e., the component v1 does not become negligible in the limit t↘ 0. This is the origin
of the timelike condition Eq. (4.9) and for the fact that both fluid data appear in the estimate Eq. (4.11).
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4.4 Fluid flows in the super-critical regime Γ < 0

Let us next discuss the super-critical case Γ < 0 where the local sound speed of the solution is too small
to compete with the gravitational dynamics at the singularity. It turns out that this problem now cannot
be solved completely with our methods and we want to use this subsection to explain the reason for this in
the case of a Gowdy symmetric (i.e., inhomogeneous) fluid of the form Eq. (4.1) on a fixed exact Kasner
background. In this case the Euler equations are

S0t∂t

(
v0

v1

)
+ S1t∂x

(
v0

v1

)
= f

with

S0 =

(
v0
(
(v0)2 + 3(γ − 1)(v1)2

)
v1
(
(1− 2γ)(v0)2 − (γ − 1)(v1)2

)
v1
(
(1− 2γ)(v0)2 − (γ − 1)(v1)2

)
v0
(
(γ − 1)(v0)2 + (2γ − 1)(v1)2

)) , (4.12)

S1 =

(
v1
(
(2γ − 1)(v0)2 + (γ − 1)(v1)2

)
v0
(
(1− γ)(v0)2 + (1− 2γ)(v1)2

)
v0
(
(1− γ)(v0)2 + (1− 2γ)(v1)2

)
v1
(
3(γ − 1)(v0)2 + (v1)2

) )
, (4.13)

f =
(
Γ(v0)2

(
(v0)2 − (v1)2

)
,−Γv0v1

(
(v0)2 − (v1)2

))T
. (4.14)

The aim is now to construct fluids with the leading-order behavior given by Theorem 3.1 for Γ < 0 in
analogy to our studies of the super- and critical cases in the previous two subsections. To this end we first
observe that without loss of generality we can restrict to the leading-order behavior Eq. (3.9) for Γ < 0
because a solution to the Euler equations with v1 ≡ 0 (which corresponds to Eq. (3.10)) can only exist if
at the same time v0 is a function of t only. Hence this case is already covered completely by Theorem 3.1.
We therefore focus on leading-order terms

v0(t, x) = v∗(x)t−2|Γ|/(2−γ) + v∗∗(x)
γ

2(γ − 1)
+ . . . ,

v1(t, x) = ±(v∗(x)t−2|Γ|/(2−γ) + v∗∗(x)) + . . . ,

(4.15)

for arbitrary smooth data v∗ > 0 and v∗∗.
The idea is next to apply the Fuchsian theory (outlined in detail in Section 6) to this singular initial

value problem. Without going into the details here already, it is an important condition that the matrix S0

in Eq. (4.12) is uniformly positive definite in the limit t ↘ 0 (possibly after a multiplication of the whole
system with some power of t) and symmetric when it is evaluated on fluid vector fields with the leading order
behavior in Eq. (4.15), and that the matrix in front of the space derivatives S1 in Eq. (4.13) is symmetric.
Without mentioning all the technical details here, we derive that

S0 = (3γ − 2)(v∗)
3t

6Γ
2−γ

((
1 −1
−1 1

)
+

 3v∗∗(5γ2−8γ+4)
2v∗(γ−1)(3γ−2)

v∗∗(−7γ2+10γ−4)
v∗(γ−1)(3γ−2)

v∗∗(−7γ2+10γ−4)
v∗(γ−1)(3γ−2)

v∗∗(13γ2−16γ+4)
2v∗(γ−1)(3γ−2)

 t−
2Γ

2−γ

)
+ . . . .

Recall that we focus on the case Γ < 0 and 2 − γ > 0 here. When the Euler system is divided by
(3γ − 2)(v∗)3t

6Γ
2−γ , the eigenvalues of the resulting matrix S0 are 2 +O(t−

2Γ
2−γ ) and O(t−

4Γ
2−γ ). This means

that the before mentioned uniform positivity condition is violated because one eigenvalue approach zero at
t = 0. We could attempt to compensate this by multiplying the system with a suitable time dependent
matrix and thereby obtain a new, now uniformly positive matrix S0. This, however, would destroy the
symmetry of the resulting matrix S1. Due to this, our Fuchsian theory does not apply to this problem.
It is not clear to us if the reason for this is that our Fuchsian method is not good enough or if there is
an actual physical phenomenon which prevents general super-critical inhomogeneous solutions of the Euler
equations from existing. Surprisingly, though, if we restrict ourselves to the very special and restrictive case
of analytic data, it is possible to solve this singular initial value problem in the super-critical inhomogeneous
case. This is the content of the following theorem.

Theorem 4.4 (Compressible perfect fluids in Gowdy-symmetric spacetimes near the cosmological singu-
larity. Super-critical fluid flow on an (exact) Kasner spacetime for real-analytic data). Choose an equation
of state parameter γ ∈ (1, 2) and a Kasner spacetime with parameter k ∈ R (recall Eq. (1.7)) such that

− 1

2
(2− γ) < Γ < 0. (4.16)
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Γ = 0

Γ = −(2− γ)/2

Figure 2: The super-critical regime for inhomogeneous real-analytic data.

Choose fluid data v∗, v∗∗ ∈ Cω(T 1) with v∗(x) > 0 for all x ∈ T 1. Then for any exponent η with

0 < η(x) < min {1,−2Γ/(2− γ), (2(1 + Γ)− γ)/(2− γ)} for all x ∈ T 1, (4.17)

there exists some δ > 0 and a unique solution vα of the form Eq. (4.1) of the Euler equations with

v0(t, x) = v∗(x)t−2|Γ|/(2−γ) + v∗∗(x)
γ

2(γ − 1)
+W0(t, x),

v1(t, x) = ±(v∗(x)t−2|Γ|/(2−γ) + v∗∗(x)) +W1(t, x),

for some remainders W0, W1 in Xδ,η,∞ which are continuous with respect to t and real-analytic with respect
to x on (0, δ]× T 1.

We shall not discuss the proof of this theorem in this paper. It is a direct application of Theorem 1 in
[21]. Notice that the spaces Xδ,η,∞ are introduced in Section 6. An even more surprising outcome than the
pure existence result in the real-analytic case however is the existence of a lower bound for Γ; see Eq. (4.16).
When this inequality is violated, we find that the spatial derivative terms, i.e., the terms multiplied by S1 in
the Euler equations, cannot be neglected in leading order anymore and hence the basic assumption for the
derivation of our leading-order term breaks down. For inhomogeneous fluids, the super-critical phenomenon
therefore makes sense at the very most only in the shaded region of Figure 2.

4.5 Flat Kasner spacetimes
It is well-known that Kasner spacetimes with |k| = 1 are locally flat, and that the apparently singular surface
t = 0 is actually a smooth Cauchy horizon through which the spacetime can be extended analytically. Since
there is no gravitational field, it is therefore not immediately clear why the energy density ρ of the fluids
given by Theorem 3.1 on such backgrounds3 blows up at t = 0. We investigate this question in the following
subsection now.

For definiteness, let us restrict to the specific case k = 1 for which the Kasner metric takes the form

g = −dt2 + dx2 + dy2 + t2dz2.

By the coordinate transformation

t′ = t cosh z, x′ = x, y′ = y, z′ = t sinh z (4.18)
3For brevity, we restrict to exact flat Kasner backgrounds here. Similar results are expected to apply to asymptotically

local Kasner backgrounds with respect to data |k| = 1 at least at a point.
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t′ = 0.025

t′ = 0.2t′ = 0.1

Figure 3: Time evolution of some fluid particles with k = 1, γ = 1.5, v1
∗/v

0
∗|x∗=x′=0 = 1.2, x∗ = 0 and

various values of z∗ (continuous curves), see Eq. (4.19), and position level sets for various values of t′
(dashed curves). The y′-direction is suppressed and the curves are projected into the t′ = 0-surface.

for t > 0, the Kasner metric is transformed into the Minkowski metric

g = −dt′2 + dx′2 + dy′2 + dz′2.

The map (t, x, y, z) 7→ (t′, x′, y′, z′) in Eq. (4.18) therefore embeds the flat Kasner spacetime isometrically
into the Minkowski spacetime. The homogeneous t = const-surfaces (t > 0) in Kasner correspond to the
3-surfaces (t′, x′, y′, z′) in Minkowski space given by

(t′)2 − (z′)2 = t2 and t′ > 0,

which are the standard spacelike hyperboloids. The set of points obtained by taking the limit t↘ 0 of each
curve (t, x, y, z) for constant values x, y and z therefore generates the 2-dimensional plane t′ = z′ = 0 in
Minkowski space. Now, we have Γ = γ − 1 > 0 for |k| = 1 and hence the fluid particles move along curves

c(s) = (t(s), x(s), y(s), z(s)) =

(
s, x∗ +

v1
∗

γv0∗
sγ , y∗, z∗

)
+ . . . , (4.19)

for arbitrary values x∗, y∗ and z∗ and where s is a positive parameter asymptotically in the limit s ↘ 0.
We therefore conclude that the initial state of our fluid solution in the case |k| = 1, from the point of view
of Minkowski spacetime, corresponds to a singular fluid which is infinitely compressed to the 2-dimensional
plane z′ = 0 on the t′ = 0 hypersurface. During the evolution governed by the Euler equations for t′ > 0
(and hence s, t > 0) the fluid particles emanate from this initially singular configuration. In Figure 3 we
illustrate a few examples. In particular, we show how fluid particles emanate from one single point x′ = 0
(the y′-direction is suppressed) on the initial plane t′ = z′ = 0 in Minkowski space and move outwards.
Notice that the fact that all fluid particles move to the right in the figure is a simple consequence of our
choice v1

∗/v
0
∗|x∗=x′=0 > 0. Since there are no gravitational forces, the dynamics of the fluid is completely

governed by internal fluid forces. So we could interpret the fluid solution given by Theorem 3.1 for k = 1
as a non-gravitational (but relativistic) model for the big bang of our universe, i.e., the cosmological fluid
evolves out of a super-compressed initial configuration.

Without going into any details, we mentioned that the situation is significantly different for a self-
gravitating fluid, i.e., when we solve the same problem for the coupled Einstein-Euler equations. Indeed the
same singular super-compressed initial fluid configuration generates a singular Ricci tensor via Einstein’s
equations and hence a curvature singularity at t = 0. In particular, the spacetime, in which the fluid lives,
is then not flat.
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5 Self-gravitating fluids near the cosmological singularity

5.1 Self-gravitating fluids in the sub-critical regime Γ > 0

We are now in a position to state the central results of the present paper for self-gravitating fluids. We begin
with the sub-critical case, and provide a (self-gravitating) analogue to Theorem 4.2 (in which the metric
was fixed).

Theorem 5.1 (Compressible perfect fluids in Gowdy-symmetric spacetimes near the cosmological singu-
larity. Sub-critical self-gravitating fluid flow and existence statement). Suppose that Γ > 0. Choose fluid
data v0

∗ > 0 and v1
∗ in C∞(T 1), an equation of state with adiabatic exponent γ ∈ (1, 2), and geometric data

k ∈ (0, 1), E∗ > 0, Q∗, and Q∗∗ in C∞(T 1) as well as a constant Λ∗∗ > 0 such that

Λ∗(x) := Λ∗∗ exp

(∫ x

0

(
−k(ξ)

E′∗(ξ)
E∗(ξ)

+ 2k(ξ)E2
∗(ξ)Q∗∗(ξ)Q

′
∗(ξ)−

2γv1
∗(ξ)(v

0
∗(ξ))

1−2γ
γ−1

γ − 1

)
dξ

)
, (5.1)

v̂1
∗(x) := v1

∗(x)(Λ∗(x))
2−γ

2(γ−1) , (5.2)

are functions in C∞(T 1). Then, there exists a constant δ > 0 and a solution to the Einstein-Euler equations
(Eqs. (2.8), (2.9), (2.11)) in the gauge given by the gauge source functions Eq. (2.19) which, for some choice
of positive exponents µ1

[G], . . . , µ6
[G], µ1

[F] and µ2
[F], is determined by the following conditions:

(i) First of all, the metric admits the form Definition 2.1 for some functions g00, g01, g11, R, E, and Q
in C∞((0, δ] × T 1), and is asymptotically local Kasner (Definition 4.1) with respect to the data and
exponents above.

(ii) Second, the fluid flow has the form Eq. (4.1) for some v0, v1 in C∞((0, δ]×T 1), and for any (sufficiently
large) integer q there exists a constant C = Cq > 0 such that these functions satisfy∥∥∥t−µ1

[F]
(
v0(t)t−Γ − v0

∗
)∥∥∥
Hq(T 1)

+
∥∥∥t−µ2

[F]
(
v1(t)t−2Γ − v̂1

∗
)∥∥∥
Hq(T 1)

≤ C (5.3)

for all t ∈ (0, δ] where Γ was introduced in Eq. (4.2).

Theorem 5.2 (Compressible perfect fluids in Gowdy-symmetric spacetimes near the cosmological singular-
ity. Sub-critical self-gravitating fluid flow and asymptotic properties). The solutions to the Einstein-Euler
equations constructed in Theorem 5.1 satisfy the following properties as one approaches the cosmological
singularity:

(I) Curvature singularity at t = 0: The metric is singular in the sense that for any sufficiently small
ε > 0 and sufficiently large integer q there exists a constant C > 0 such that∥∥∥∥t 2γ

2−γ (1−Γ)Ric2(t)− 1 + 3(γ − 1)2

(γ − 1)2

(
(v0
∗)

2Λ∗
) 2γ

2−2γ

∥∥∥∥
Hq(T 1)

≤ Ctε

for Ric2 := RαβR
αβ for all t ∈ (0, δ].

(II) Blow up of the fluid energy density at t = 0: For any sufficiently small ε > 0 and sufficiently
large integer q there exists a constant C > 0 such that∥∥∥∥t γ

2−γ (1−Γ)ρ(t)− 1

γ − 1

(
(v0
∗)

2Λ∗
) γ

2−2γ

∥∥∥∥
Hq(T 1)

≤ Ctε

for the fluid energy density ρ for all t ∈ (0, δ].

(III) Improved decay of the shift: For any sufficiently small ε > 0 and sufficiently large integer q there
exists a constant C > 0 such that∥∥∥t−(k2+1)/2g01

∥∥∥
Hq(T 1)

+
∥∥∥t−(k2+1)/2Dg01

∥∥∥
Hq(T 1)

≤ Ctε

for the shift g01 for all t ∈ (0, δ].
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(IV) Velocity term dominance: There exists a solution (g{T}, v{T}) in the form stated in Definition 2.1
and Eq. (4.1) of the “truncated Einstein-Euler evolution equations” in the gauge (2.19) (Eqs. (2.8),
(2.9) and (2.16) with Eqs. (2.19) and (2.20) where all x-derivatives of the metric and the fluid variables
are removed) such that g and g{T} agree at order (σ, σ, σ, σ, σ, σ) and (v0, v1) and (v0

{T}, v
1
{T}) agree at

order (σ,max{0, σ − Γ}) for σ = min{1, 2(1− k)}; cf. Eq. (4.6) and below.

(V) Matter matters at higher order: There exists a solution g{V} of the vacuum Einstein evolution
equations in the form of Definition 2.1 in the gauge given by Eq. (2.19) (Eq. (2.16) with Tαβ = 0,
Eqs. (2.19) and (2.20)) such that g and g{V} agree at order (1− Γ, 1− Γ, 1− Γ, 1− Γ, 1− Γ,min{1−
Γ, 2(1− k)}).

In analogy with Eq. (4.6), we say that two metrics g and h which are both Gowdy-symmetric and of
the form Eq. (2.22) agree at order (µ1

[G], µ
2
[G], µ

3
[G], µ

4
[G], µ

5
[G], µ

6
[G]) at t ↘ 0 provided that for any smooth

exponents µ̃i[G] < µi[G], i = 1, . . . , 6, and for each sufficiently large integer q, there exists a constant C > 0
such that ∥∥∥∥t−(k2−1)/2−µ̃1

[G] (g00(t)− h00(t))

∥∥∥∥
Hq(T 1)

+

∥∥∥∥t−(k2−1)/2−µ̃1
[G]t∂t (g00(t)− h00(t))

∥∥∥∥
Hq(T 1)

+

∥∥∥∥t−(k2−1)/2−µ̃2
[G] (g11(t)− h11(t))

∥∥∥∥
Hq(T 1)

+

∥∥∥∥t−(k2−1)/2−µ̃2
[G]t∂t (g11(t)− h11(t))

∥∥∥∥
Hq(T 1)

+

∥∥∥∥t−(k2−1)/2−µ̃3
[G] (g01(t)− h01(t))

∥∥∥∥
Hq(T 1)

+

∥∥∥∥t−(k2−1)/2−µ̃3
[G]t∂t (g01(t)− h01(t))

∥∥∥∥
Hq(T 1)

+

∥∥∥∥t−1−µ̃4
[G] (Rg(t)−Rh(t))

∥∥∥∥
Hq(T 1)

+

∥∥∥∥t−1−µ̃4
[G]t∂t (Rg(t)−Rh(t))

∥∥∥∥
Hq(T 1)

+

∥∥∥∥tk−µ̃5
[G] (Eg(t)− Eh(t))

∥∥∥∥
Hq(T 1)

+

∥∥∥∥tk−µ̃5
[G]t∂t (Eg(t)− Eh(t))

∥∥∥∥
Hq(T 1)

+

∥∥∥∥t−2k−µ̃6
[G] (Qg(t)−Qh(t))

∥∥∥∥
Hq(T 1)

+

∥∥∥∥t−2k−µ̃6
[G]t∂t (Qg(t)−Qh(t))

∥∥∥∥
Hq(T 1)

≤ C

for all t ∈ (0, δ].
Section 7 is devoted to the proofs of both theorems. Let us at this stage only mention that most of the

proof of Theorem 5.1 is an application of the Fuchsian theory presented in [9, 1, 2] which we summarize
in Section 6. We point out that our proofs here introduce some new ideas which make it possible to
circumvent some cumbersome arguments which have been necessary to cover the full interval (0, 1) for k in
earlier treatments of Gowdy solutions with the Fuchsian method in the non-analytic setting [30, 38].

Observe that the restriction to the sub-critical case Γ > 0 here follows automatically from the assumptions
k ∈ (0, 1) and γ ∈ (1, 2); this can also be deduced from Figure 1. In the same figure we see that the critical
and super-critical cases are only possible if |k| ≥ 1. In the same way as in vacuum, this however turns
out to be possible only in the (half-)polarized case, i.e., when Q∗ = const. We discuss the situation in the
critical case in Section 5.2. Similar to the results in Section 4.2 it is interesting to observe that the estimates
underlying the proofs degenerate in the limit Γ ↘ 0. The critical case Γ = 0 therefore has to be treated
again separately (see Section 5.2).

The point of Theorem 5.1 is to establish the existence of singular solutions of the Einstein-Euler equations
which are determined by (up to certain constraints) free data and hence have some prescribed singular
asymptotics with the same degree of freedom as for the Cauchy problem. Nevertheless we do not claim that
this class of solutions is generic within the class of “all solutions”. In any case, we can give quite detailed
estimates for the exponents µ1

[G], . . . , µ6
[G], µ1

[F] and µ2
[F] which we omit from the statement of the theorem

in order to make it more legible (more details can be found in Section 7). These estimates give us a more
detailed description of the behavior of the solution in the limit t ↘ 0, and also give rise to a non-trivial
uniqueness statement for this singular initial value problem. For the sake of brevity we omit such details
from Theorem 5.1. We emphasize the fact that the fluid datum v̂1

∗ in Eq. (5.3) is not prescribed freely, but
is instead given by Eq. (5.2) in terms of another free function v1

∗. This constitutes a significant difference
to the fixed background case. In Section 7.5 we discuss the origin of this.

An interesting consequence of Eq. (5.1) is that spatially homogeneous solutions of Theorem 5.1, namely
solutions where the components of the metric and the fluid only depend on t, only exist if the fluid 4-velocity
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is orthogonal to the symmetry hypersurfaces. This is consistent with the observation in Section 3.1 that
it is a consequence of Einstein’s equations that Gowdy symmetry restricts the fluid to flow only into non-
symmetry directions. If all spatial directions are symmetries, as in the spatially homogeneous case, then
the fluid is not allowed to flow at all.

Let us recall that the block diagonal coordinates in the gauge Eq. (2.19) are in general neither areal
nor conformal coordinates Eqs. (2.23) – (2.24) unless we are in the vacuum case. In particular, the shift
quantity g01 does not vanish except for vacuum. The evolution equations in our gauge are significantly
more complicated than the ones in areal or conformal coordinates and hence are significantly harder to
analyze. The studies of more general coordinate gauges in [3], where we see some of the same issues already
in the vacuum case, was a very useful preparation which enabled us to accomplish the studies here. In
fact the infrastructure which we use to derive the estimates in Section 7 is the same as in that earlier
paper. The reason why we decided to use such an arguably complicated coordinate gauge for our studies
of the Einstein-Euler equations here is of technical nature. In areal coordinates, we did not succeed to
find symmetric hyperbolic evolution equations. While the evolution equations in conformal coordinates
turn out to be hyperbolic, we were not able to close the Fuchsian argument which we employ in our proof.
Generalized wave coordinates, while they yield algebraically complex equations, lead to naturally hyperbolic
equations and, as it turns out from our studies here and the ones in [3], seem to be sufficiently robust for
the Fuchsian method. We hope that the results here and in [3] will be useful also for other future studies,
for example, of U(1)-symmetric vacuum solutions.

Let us now consider Theorem 5.2. Regarding statement (I) it is interesting to recall our comment after
Definition 4.1. Namely, the fact that the solution metric is asymptotically local Kasner, as asserted by The-
orem 5.1, is in general not sufficient to make a statement about the curvature tensor. It is necessary for this
to derive estimates for second time derivatives of the metric components first. Indeed, such estimates follow
almost directly from the Fuchsian theory. Nevertheless, it turns out to be very hard practically to estimate
curvature invariants which are not directly determined by Einstein’s equations, like the Kretschmann scalar.
The problem is the algebraic complexity of the expressions. This is why we give only an estimate for Ric2

here which is easy to calculate as a consequence of Einstein’s equations once we have an estimate for ρ
(statement (II) of the theorem). In fact, Einstein’s equations and the equation of state imply

Ric2 = (1 + 3(γ − 1)2)ρ2.

The fact that this quantity blows up with the specific rate, as asserted by statement (I) of the theorem,
demonstrates curvature blow up at t = 0. We remark that the Ricci scalar R satisfies

R = (3γ − 4)ρ

which hence also blows up unless γ = 4/3 (radiation fluid).
We mention without proof that in the half-polarized case Q∗ = const we can choose k to be an arbitrary

positive function and that the same estimates regarding the blow up of the fluid density and curvature hold.
In particular, the curvature blows up even when k = 1 which is not the case in vacuum. The dynamics of
a perfect fluid which evolves out of a super-compressed initial configuration without gravity described in
Section 4.5 is therefore significantly different when the singular gravitational field of such a configuration is
taken into account for the coupled Einstein-Euler problem.

Part (III) of Theorem 5.2 yields a significantly more detailed description of the shift g01 than the
asymptotically local Kasner property asserted by Theorem 5.1. Recall that the latter states that g01 ∼
t(k

2−1)/2+τ for some τ > 0 while the former states that g01 ∼ t(k
2+1)/2+τ . In the proofs in Section 7 we

find an interesting technical relationship between the decay of the shift and the dynamics of the constraint
propagation quantities Dα. In fact, if the asymptotic constraints of Theorem 5.1 are violated then Part (III)
of Theorem 5.2 does in general not hold. This relationship was discovered first in [3], and it was found to
be essential to establish that the asymptotic constraints on the data are sufficient to guarantee that the
constraint violation quantities vanish identically.

The content of statement (IV) of Theorem 5.2 is that all our solutions demonstrate velocity term domi-
nance (they are AVTD in the sense of [23]). Hence, they can be approximated by solutions of the truncated
equations, i.e., by a system of ordinary differential equations, and the “truncation error” can be estimated
by the exponents provided in statement (IV). It is interesting that this truncation error is large the closer
k is to 1. In the proof we observe that the most significant contributions to this error can come from the
leading term of the quantity Q, i.e., the datum Q∗. If this is constant, i.e., in the (half)-polarized case, then
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the quantity σ in the theorem is unity, and hence the truncation error can be much smaller. In any case,
this result supports one part of the longstanding BKL-conjecture, namely, that generic singular solutions
of the Einstein-matter equations are supposed to exhibit velocity term dominance. Let us make two further
remarks. First we observe that the exponents in statement (IV) of Theorem 5.2 do not always agree with
those in (II) of Theorem 4.2. It makes sense that we find smaller exponents in the former statement because
there, we compare two fluids which do not only differ by the presence of spatial derivative terms but are
also determined with respect to different spacetime geometries (while the geometry is fixed in the latter
statement and hence does not contribute to the truncation error). Lastly, it is interesting that when we
pick a solution of Theorem 5.2 and now consider the solution of the truncated equations with the same
data, then the latter will in general not satisfy the corresponding condition which guarantees Part (III) of
Theorem 5.2. Hence the shift g01 of the solution of the truncated system will in general decay significantly
slower than the shift of the full solution.

Of particular interest now is statement (V). According to this, “matter does not matter” at the singularity,
another integral part of the BKL-conjecture, which, based on our qualitative estimates, we rephrase as
“matter matters at higher order”. It is interesting to observe that the restriction γ < 2, which implies Γ < 1,
is crucial here because our result suggests that “matter matters at leading order” if γ = 2 and hence Γ = 1.
In fact, this case of a stiff fluid (equivalent to a linear massless scalar field), which has been considered in
ground-breaking works [4, 37], has significantly different asymptotics. An interesting aspect of statement (V)
is that g{V} is only assumed to be a solution of the vacuum evolution equations and hence may in general
violate the constraints. In fact it is easy to see that if any solution of the fully coupled Einstein-Euler
equations is supposed to agree with a solution of the vacuum equations in the above sense then they must
both be asymptotically local Kasner with respect to the same data for the metric. However, it is not possible
that both asymptotic constraint equations, first, Eq. (5.1) for the Einstein-Euler metric and, second, the
corresponding equation for the vacuum metric which is obtained from Eq. (5.1) by deleting the last term,
are satisfied for the same data unless v1

∗ = 0. In particular the function Λ∗ in the Einstein-Euler case can
in general not match the function Λ∗ in the vacuum case at every spatial point. We can only match them
at one single point unless the vacuum solution violates the constraints.

Statements (IV) and (V) also allow us to estimate the relative significance of the “velocity term dom-
inance” and the “matter does not matter” properties. Our results here are therefore among the first to
quantify this aspect of the BKL conjecture and thereby uncover some relationship between some of its
ingredients. These results suggest that if 1 − Γ < 2(1 − k), then “matter is less negligible than spatial
derivatives”; this is in particular the case when k is close to zero and Γ is close to 1, i.e., γ is close to 2.
However, if 1 − Γ > 2(1 − k), then “matter is more negligible than spatial derivatives”. This is the case if
k is close to 1 and Γ is close to zero, i.e., γ is close to 1. The borderline case is 1− Γ = 2(1− k), which is
equivalent to

γ =
2
(
k2 + 4k − 1

)
k2 + 3

.

5.2 Self-gravitating fluids in the critical regime Γ = 0

In this section now, we consider the case of self-gravitating critical fluids. Recall that Γ = 0 implies that
k must have the constant value Eq. (4.7) which is always larger or equal 1. In the coupled Einstein-Euler
case now this makes the (half-)polarized condition Q∗ = const necessary for us.

Theorem 5.3 (Compressible perfect fluids in Gowdy-symmetric spacetimes near the cosmological singular-
ity. Critical self-gravitating fluid flow and existence statement). Choose fluid data v0

∗ > 0 and v1
∗ in C∞(T 1)

with
v0
∗ > |v1

∗|, (5.4)

an equation of state parameter γ ∈ (1, 2), and spacetime data Q∗∗,Λ∗ > 0 in C∞(T 1) and constants Q∗ ∈ R
and E∗∗ > 0, such that

E∗(x) :=
E∗∗

(Λ∗(x))1/k
e
− 2γ
k(γ−1)

∫ x
0

(
v0
∗(ξ)v

1
∗(ξ)((v0

∗)
2(ξ)−(v1

∗)
2(ξ))

2−3γ
2(γ−1) (Λ∗(ξ))

− 2−γ
2(γ−1)

)
dξ

(5.5)

is a function in C∞(T 1) with

k =

√
3γ − 2

2− γ . (5.6)
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Then, there exists a constant δ > 0 and a solution to the Einstein-Euler equations (Eqs. (2.8), (2.9), (2.11))
in the gauge given by the gauge source functions Eq. (2.19) which, for some choice of positive exponents
µ1

[G], . . . , µ6
[G], µ1

[F] and µ2
[F], is determined by the following conditions:

(i) First of all, the metric admits the form Definition 2.1 for some functions g00, g01, g11, R, E, and Q
in C∞((0, δ]× T 1), and is asymptotically local Kasner (Definition 4.1) with respect to the given data
and exponents above.

(ii) Second, the fluid flow has the form Eq. (4.1) for some v0, v1 in C∞((0, δ]×T 1), and for any (sufficiently
large) integer q there exists a constant C = Cq > 0 such that these functions satisfy∥∥∥t−µ1

[F]
(
v0(t)− v0

∗
)∥∥∥
Hq(T 1)

+
∥∥∥t−µ2

[F]
(
v1(t)− v̂1

∗
)∥∥∥
Hq(T 1)

≤ C (5.7)

for all t ∈ (0, δ].

Theorem 5.4 (Compressible perfect fluids in Gowdy-symmetric spacetimes near the cosmological singu-
larity. Critical self-gravitating fluid flow and asymptotic properties). The solutions to the Einstein-Euler
equations constructed in Theorem 5.3 satisfy the following properties as one approaches the cosmological
singularity:

(I) Curvature singularity at t = 0: The metric is singular in the sense that for any sufficiently small
ε > 0 and sufficiently large integer q there exists a constant C > 0 such that∥∥∥∥t 2γ

2−γ (1−Γ)Ric2(t)− 1 + 3(γ − 1)2

(γ − 1)2

((
(v0
∗)

2 − (v1
∗)

2
)

Λ∗
) 2γ

2−2γ

∥∥∥∥
Hq(T 1)

≤ Ctε

for Ric2 := RαβR
αβ for all t ∈ (0, δ].

(II) Blow up of the fluid energy density at t = 0: For any sufficiently small ε > 0 and sufficiently
large integer q there exists a constant C > 0 such that∥∥∥∥t γ

2−γ ρ(t)− 1

γ − 1

((
(v0
∗)

2 − (v1
∗)

2
)

Λ∗
) γ

2−2γ

∥∥∥∥
Hq(T 1)

≤ Ctε

for the fluid energy density ρ for all t ∈ (0, δ].

(III) Improved decay of the shift: For any sufficiently small ε > 0 and sufficiently large integer q there
exists a constant C > 0 such that∥∥∥t−(k2+1)/2g01

∥∥∥
Hq(T 1)

+
∥∥∥t−(k2+1)/2Dg01

∥∥∥
Hq(T 1)

≤ Ctε

for the shift g01 for all t ∈ (0, δ].

(IV) Velocity term dominance: There exists a solution (g{T}, v{T}) in the form stated in Definition 2.1
and Eq. (4.1) of the “truncated Einstein-Euler evolution equations” in the gauge (2.19) (Eqs. (2.8),
(2.9) and (2.16) with Eqs. (2.19) and (2.20) where all x-derivatives of the metric and the fluid variables
are removed) such that g and g{T} agree at order (σ, σ, σ, σ, σ, σ) and (v0, v1) and (v0

{T}, v
1
{T}) agree at

order (σ, σ) for σ = min{1, 2(1− k)}.

(V) Matter matters at higher order: There exists a solution g{V} of the vacuum Einstein evolution
equations in the form of Definition 2.1 in the gauge given by Eq. (2.19) (Eq. (2.16) with Tαβ = 0,
Eqs. (2.19) and (2.20)) such that g and g{V} agree at order (1, 1, 1, 1, 1,min{1, 2(1− k)}).

As we explain briefly in Section 7 the proofs of these theorems are significantly simpler than the proof of
the theorems in Section 5.1 mainly due to the (half-)polarization restriction but also due to the fact that k
is constant. Still, most of the remarks regarding the previous theorems also apply here. Notice however that
the free data is chosen differently here and, in particular, the asymptotic constraint Eq. (5.5) is considered
as an equation for the datum E∗ here (while Eq. (5.1) is an equation for Λ∗). In particular the free fluid data
v0
∗ and v1

∗ determine the leading-order of the fluid variables directly, in contrast to Theorem 5.1. Another
difference is the occurence of the timelike condition Eq. (5.4); cf. Eq. (4.9) in Theorem 4.3.
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6 Quasilinear symmetric hyperbolic Fuchsian systems

6.1 Time-weighted Sobolev spaces
In order to measure the regularity and the decay of certain kinds of functions near the “singular time” t = 0,
we introduce a family of time-weighted Sobolev spaces. Letting µ : Tn → Rd be a smooth4 function, we
define the d× d-matrix

R[µ](t, x) := diag
(
t−µ1(x), . . . , t−µd(x)

)
. (6.1)

For functions w : (0, δ]× Tn 7→ Rd in C∞((0, δ]× Tn) we set

||w||δ,µ,q := sup
t∈(0,δ]

||R[µ]w||Hq(Tn), (6.2)

whenever this expression is finite. Here and in all of what follows we interpret w as a column vector. Here
Hq(Tn) denotes the usual Sobolev space of order q on the n-torus Tn, α denotes any multi-index, and
the standard Lebesgue measure is used for the integration. Note that this norm only controls spatial (not
time) derivatives. Based on this, we define Xδ,µ,q to be the completion of the set of all smooth functions
w : (0, δ] × Tn 7→ Rd for which Eq. (6.2) is finite. Equipped with the norm Eq. (6.2), Xδ,µ,q is therefore a
Banach space. A closed ball of radius r about 0 in Xδ,µ,q is denoted by Bδ,µ,q,r. To handle functions which
are infinitely differentiable we also define Xδ,µ,∞ := ∩∞q=0Xδ,µ,q.

In the following, we refer to any quantity µ as above as an exponent vector, or if, d = 1, as an exponent
scalar. If we have two exponent vectors ν and µ of the same dimension, we write ν > µ if each component of
ν is strictly larger than the corresponding component of µ at each spatial point. If µ is an exponent vector
and γ an exponent scalar, then µ+ γ is a short-hand notation for µ+ γ(1, . . . , 1).

In working with d × d-matrix-valued functions, we consider any d-vector-valued exponent µ as before
and then define the space Xδ,µ,q of functions w : (0, δ] × Tn 7→ Rd×d in the same way as before, where we
interpret R[µ]w in Eq. (6.2) as the product between the matrices R[µ] and w.

6.2 Function operators
Formally, a function operator is a map which assigns to each function (0, δ] × Tn → Rd of some class a
function (0, δ] × Tn → Rm of some (possibly different) class. For all of what follows, d and m are positive
integers.

The following construction gives rise to particularly important examples of function operators. As we
will see, it applies to most, but not all, function operators considered in this paper. Let g be a continuous
function

g : (0, δ]× Tn × U → Rm, (t, x, u) 7→ g(t, x, u),

where U is an open subset of Rd. Let w be from the set Ω of all functions (0, δ]× Tn → Rd whose range is
contained in U . Then we can define a function g(w) : (0, δ]× Tn → Rm as follows

g(w)(t, x) := g(t, x, w(t, x)). (6.3)

Formally, the map w 7→ g(w) therefore assigns to any w ∈ Ω a function g(w). Given any continuous
function g as above, the function operator w 7→ g(w) defined by Eq. (6.3) will be called the function
operator associated with g or the function operator induced by g.

For our purposes we require precise control of the domain and range of our function operator. To this
end we consider the following family of function operators. Notice that this definition is not restricted to
function operators induced by some continuous function g.

Definition 6.1 ((0, ν, q)-operators). Fix positive integers n, d, m and q > n/2. For any real number s0 > 0
or s0 =∞, let

Hδ,q,s0 :=

{
w : (0, δ]× Tn → Rd in Xδ,0,q

∣∣∣ sup
t∈(0,δ]

‖w(t)‖L∞(Tn) ≤ s0

}
. (6.4)

Let ν be an exponent m-vector. We call a map w 7→ F (w) a (0, ν, q)-operator provided:
4By a “smooth" function, we mean a continuous function which sufficiently many derivatives. It is straightforward to check

how many derivatives are necessary in each argument.
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(i) There exists a constant s0 > 0 (s0 =∞ is allowed) such that for each δ′ ∈ (0, δ] and w ∈ Hδ′,q,s0 , the
image F (w) is a well-defined function (0, δ′]× Tn → Rm in Xδ′,ν,q.

(ii) For each δ′ ∈ (0, δ] and q′ = q, q − 1, there exists a constant C > 0 such that the following local
Lipschitz estimate holds

‖F (w)− F (w̃)‖δ′,ν,q′ ≤ C (1 + ‖w‖δ′,0,q′ + ‖w̃‖δ′,0,q′) ‖w − w̃‖δ′,0,q′ (6.5)

for all w, w̃ ∈ Hδ′,q,s0 .

Let us make a few remarks:

1. Let g be any, say, smooth function (0, δ]× Tn×U → Rm as before. We consider the induced function
operator w 7→ g(w) (recall Eq. (6.3)). In order to show that this is a (0, ν, q)-operator we need to be
able to choose s0 in Definition 6.1 so that the ranges of the functions w “fit” into the open set U . If
this can be done and if Condition (i) holds for δ′ = δ, then it automatically holds for every δ′ ∈ (0, δ].
We shall often make use of this fact without further notice.

2. If w ∈ Bδ,0,q,s0/Cq,n where Cq,n is the Sobolev constant, then

sup
t∈(0,δ]

‖w(t)‖L∞(Tn) ≤ Cq,n sup
t∈(0,δ]

‖w(t)‖Hq(Tn) ≤ s0.

Hence, w ∈ Hδ,q,s0 .

3. (0, ν, q)-operators w 7→ F (w) are uniformly bounded in the following sense: Let w be an arbitrary
function in Bδ,0,q,s̃0 for some sufficiently small s̃0 > 0. Due to the previous remark, the map w 7→ F (w)
is well-defined and

‖F (w)‖δ,ν,q ≤ ‖F (0)‖δ,ν,q + C‖w‖δ,0,q ≤ ‖F (0)‖δ,ν,q + Cs̃0.

Definition 6.2 ((µ, ν, q)- and (µ, ν,∞)-operators). Fix positive integers n, d, m and q > n/2. Let ν be an
exponent m-vector and µ be an exponent d-vector. We call any map w 7→ F (w) a (µ, ν, q)-operator if the
map w 7→ F (R[−µ]w) is a (0, ν, q)-operator. We call the map w 7→ F (w) a (µ, ν,∞)-operator if w 7→ F (w)
is a (µ, ν, q)-operator for each q ≥ p for some p > n/2 with a common constant s0 for all q ≥ p.

In the “smooth case” q =∞, observe that we do not make any assumption about the dependence of the
constant C in Condition (ii) on q. Moreover, while we formally restrict s0 to be the same for all q in this
case in Definition 6.2, this is not actually a restriction since s0 is only a bound on the L∞-norm. In several
situations in our discussion in this paper, the “source” exponent µ and the differentiability index q are clear
from the context. Then we say that a function operator w 7→ F (w) is o(1) if there exists an exponent ν > 0
such that F is a (µ, ν,∞)-operator.

Let us finally discuss a particularly important family of function operators which are induced by special
functions g. First suppose that m = 1 and that the function g(t, x, u) is a polynomial with respect to the
third argument where each coefficient function is of the type (0, δ]× Tn → R in Xδ,ν,∞ for some exponent
scalar ν. The induced function operator w 7→ g(w) is called a scalar polynomial function operator. If m > 1
and each component of g induces a scalar polynomial function operator, then the induced function operator
is called vector (or matrix) polynomial function operator. Next suppose that h0 is a scalar-valued function in
Xδ,η,∞ for some scalar exponent η such that 1/h0 ∈ Xδ,−η,∞. Let w 7→ g1(w) and w 7→ g2(w) be two scalar
polynomial function operators and assume that w 7→ g2(w) is a (µ, ζ,∞)-operator for a scalar exponent
ζ > 0. Then, the operator

w 7→ h(w) :=
g1(w)

(1 + g2(w))h0
(6.6)

is called a scalar rational function operator. Analogously we define vector (or matrix) rational function
operators. Finally let us consider any constant γ ∈ R and set g(t, x, u) = (1 +u)γ . In this paper, we refer to
the induced function operator of this function as well as to any polynomial and rational function operator
as a special function operator . It turns out that this class covers all function operators which appear in this
paper.
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6.3 Quasilinear symmetric hyperbolic Fuchsian systems
Let us now be specific about the most general class of equations for which our Fuchsian theory applies. In
general, we consider systems of quasilinear PDEs for the unknown u : (0, δ]× Tn → Rd:

S0(t, x, u(t, x))Du(t, x) +

n∑
a=1

Sa(t, x, u(t, x))t∂au(t, x) +N(t, x, u(t, x))u(t, x)

= f(t, x, u(t, x)),

(6.7)

where each of the n + 1 maps S0, . . . , Sn is a symmetric d × d matrix-valued function of the spacetime
coordinates (t, x) ∈ (0, δ]× Tn and of the unknown u (but not of the derivatives of u), while f = f(t, x, u)
is a prescribed Rd–valued function of (t, x, u), and N is a d × d-matrix-valued function of (t, x, u). Here
and in all of what follows, we interpret u and f as column vectors. We set D := t ∂t = t ∂∂t = x0 ∂

∂x0 , while
∂a := ∂

∂xa for5 a = 1, . . . , n. At this point the reader may wonder why the zero–order term N(t, x, u)u is
included in the principal part and not in the source f(t, x, u). We leave these terms separate since, later
on, f(t, x, u) is considered as terms of “higher order” in t at t = 0 while the term N(t, x, u)u contains terms
of the same order as the “principal part”, see below, in t. We list the precise requirements for Sj , N and f
below. This is the class of equations studied in detail in [1] (in the case n = 1) and in [2] (for general n).

In contrast to the Cauchy problem for Eq. (6.7), which seeks a function u that satisfies Eq. (6.7) and
that equals a specified function u[t0] : Tn → Rd at t = t0 > 0, the singular initial value problem seeks a
solution to Eq. (6.7) with prescribed asymptotic behavior in a neighborhood of t = 0. More specifically, one
prescribes a “leading order term" u∗, which may be either a function or a formal power series on (0, δ]×Tn,
and one looks to find a solution u such that w := u−u∗ decays to insignificance relative to u∗ at a prescribed
rate in a neighborhood of t = 0. More precisely, for a choice of a leading order term u∗ and parameters
δ, µ and q (which can be finite or infinite), the singular initial value problem consists of finding a unique
solution u = u∗ + w to the system Eq. (6.7) with remainder w ∈ Xδ,µ,q.

Definition 6.3 ((Special) quasilinear symmetric hyperbolic Fuchsian systems). The PDE system of the type
Eq. (6.7) is called a quasilinear symmetric hyperbolic Fuchsian system around a specified smooth leading-
order term u∗ : (0, δ]×Tn → Rd for parameters δ > 0 and µ if there exists a positive-definite and symmetric
matrix-valued function S0

0(u∗) ∈ C∞(Tn) and a matrix-valued function N0(u∗) ∈ C∞(Tn), such that all
following function operators are o(1):

w 7→ N(u∗ + w)−N0(u∗), (6.8)

w 7→ S0
1(u∗ + w) := S0(u∗ + w)− S0

0(u∗), (6.9)
w 7→ tSa(u∗ + w), (6.10)
w 7→ R[µ]F(u∗)[w]. (6.11)

If all the function operators are special, then the PDE system is labeled a special quasilinear symmetric
hyperbolic Fuchsian system.

6.4 Further structural conditions
Suppose that M : (0, δ] × Tn → Rd×d is any continuous d × d-matrix-valued function. Suppose µ is some
d-vector-valued exponent. A matrix-valued function M is called block diagonal with respect to µ provided

M(t, x)R[µ](t, x)−R[µ](t, x)M(t, x) = 0,

for all (t, x) ∈ (0, δ]× U . Let µ be a d-vector-valued exponent which is ordered, i.e.,

µ(x) =
(
µ(1)(x), . . . , µ(1)(x)︸ ︷︷ ︸

d1-times

, µ(2)(x), . . . , µ(2)(x)︸ ︷︷ ︸
d2-times

, . . . , µ(l)(x), . . . , µ(l)(x)︸ ︷︷ ︸
dl-times

)
, (6.12)

where
5In all of what follows, indices i, j, . . . run over 0, 1, . . . , n, while indices a, b, . . . take the values 1, . . . , n.
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• l ∈ {1, . . . , d},

• µ(i) 6= µ(j) for all i 6= j ∈ {1, . . . , l},

• d1, . . . , dl are positive integers with d1 + d2 + . . .+ dl = d.

Then a continuous d × d-matrix-valued function M is block diagonal with respect to µ if and only if M is
of the form:

M(t, x) = diag
(
M (1)(t, x), . . . ,M (l)(t, x)

)
, (6.13)

where each M (i)(t, x) is a continuous di × di-matrix-valued function. Moreover, if ν is any other d-vector-
valued exponent with same ordering as µ, i.e.,

ν(x) =
(
ν(1)(x), . . . , ν(1)(x)︸ ︷︷ ︸

d1-times

, ν(2)(x), . . . , ν(2)(x)︸ ︷︷ ︸
d2-times

, . . . , ν(l)(x), . . . , ν(l)(x)︸ ︷︷ ︸
dl-times

)
,

for the same integers d1, . . . , dl, then M is also block diagonal with respect to ν.

Definition 6.4 (Block diagonality). Choose a finite integer q > n/2 + 2 and a constant δ > 0. Suppose
that u∗ is a given leading-order term and µ is an exponent vector. The system (6.7) is called block diagonal
with respect to µ if, for each u = u∗+w with w ∈ Xδ,µ,q for which the following expressions are defined, the
matrices Sj(u∗ +w) and N(u∗ +w) (more precisely, their induced operators), and all their relevant special
derivatives, are block diagonal with respect to µ.

For all of the following we want to assume that the system (6.7) is block diagonal with respect to µ (see
Definition 6.4) and that µ is ordered. Hence all matrices in the principal part have the same block diagonal
structure as in Eq. (6.13). In particular, the matrix

N = N (u∗) :=
(
S0

0(u∗)
)−1

N0(u∗) (6.14)

is block diagonal with respect to µ. Here we note that since (by Definition 6.3) S0
0(u∗) is invertible, it follows

that N is well-defined. Then
Λ := (λ1, . . . , λd) (6.15)

is the vector of (possibly complex valued) eigenvalues λi of N which are sorted by the blocks of N .

6.5 The Fuchsian theorem
Theorem 6.5. Suppose that Eq. (6.7) is a special quasilinear symmetric hyperbolic Fuchsian system around
u∗ with the choice of the parameters δ, µ as specified in Definition 6.3 and that µ is ordered. Suppose that
Eq. (6.7) is block diagonal with respect to µ and that

µ > −<Λ, (6.16)

where Λ is defined in Eq. (6.15). Then there exists a unique solution u to Eq. (6.7) with remainder w := u−u∗
belonging to Xδ̃,µ,∞ for some δ̃ ∈ (0, δ]. Moreover, w is differentiable with respect to t and Dw ∈ Xδ̃,µ,∞.

The proof of this theorem has essentially been given in [1]; cf. Theorem 2.21 there. The statement of the
theorem there significantly simplifies thanks to the restriction to special function operators here. In fact,
the additional technical requirements in the theorem in [1] hold for all members of this class of function
operators.

7 Existence theory for self-gravitating fluids

7.1 First-order reduction of the Einstein-Euler system
We now consider the Einstein evolution equations, Eq. (2.16), with gauge source functions Eq. (2.19), with
Eq. (2.20) and with the non-vanishing energy momentum tensor Eq. (2.9). The function k here is so far
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unspecified; later it will agree with the data k in Theorem 5.1 and the function k in Definition 4.1. These
evolution equations are of the form

1∑
γ,δ=0

gγδ∂xγ∂xδgαβ = 2Ĥαβ , (7.1)

where

Ĥαβ :=∇(αFβ) + gγδgεζ (ΓγεαΓδζβ + ΓγεαΓδβζ + ΓγεβΓδαζ)

+ Cαβ
γDγ − Tαβ +

1

2
gαβT.

(7.2)

In consistency with Definition 2.1, the remaining unknown metric variables in the parametrization given by
Eq. (2.22) are g00(t, x), g11(t, x), g01(t, x), R(t, x), E(t, x) and Q(t, x). The first step of our discussion is to
convert our second-order evolution system (7.1) – (7.2) to first-order symmetric hyperbolic form. To this
end, we set

U[G] := (U1
[G], . . . , U

6
[G])

T , (7.3)

where, for each i = 1, . . . , 6, we define

U i[G] := (U i,−1
[G] , U i,0[G] , U

i,1
[G] )

T (7.4)

with

U1,−1
[G] = g00, U1,0

[G] = Dg00 − αg00, U1,1
[G] = t∂xg00, (7.5)

U2,−1
[G] = g11, U2,0

[G] = Dg11 − αg11, U2,1
[G] = t∂xg11, (7.6)

U3,−1
[G] = g01, U3,0

[G] = Dg01 − αg01, U3,1
[G] = t∂xg01, (7.7)

U4,−1
[G] = R, U4,0

[G] = DR− αR, U4,1
[G] = t∂xR, (7.8)

U5,−1
[G] = E, U5,0

[G] = DE − αE, U5,1
[G] = t∂xE, (7.9)

U6,−1
[G] = Q−Q∗, U6,0

[G] = DQ− α(Q−Q∗), U6,1
[G] = t∂x(Q−Q∗). (7.10)

with some constant α to be fixed later. Q∗(x) is some (so far freely) specified smooth function which shall
later be matched to the data of Theorem 5.1. The original system of wave equations implies the following
first-order system for this vector U[G]

S0
[G]DU[G] + S1

[G]t∂xU[G] = f[G], (7.11)

with
S0

[G] := diag(s0, . . . , s0), S1
[G] := diag(s1, . . . , s1), (7.12)

and

s0 :=

1 0 0
0 1 0

0 0 −U1,−1
[G] /U2,−1

[G]

 , s1 :=

0 0 0

0 −2U3,−1
[G] /U2,−1

[G] U1,−1
[G] /U2,−1

[G]

0 U1,−1
[G] /U2,−1

[G] 0

 . (7.13)

The lengthy expression for f[G] in Eq. (7.11) can be obtained explicitly from the above, but we refrain from
writing it down here.

The Euler equations (2.8) are already of first-order form which we write symbolically as

S0
[F]DU[F] + S1

[F]t∂xU[F] = f[F], (7.14)

with U[F] := (v0, v1)T . Again, the explicit expression for S0
[F], S1

[F] and f[F] follow from the above.
For large parts of our discussion it is convenient to adopt the following operator notation

L[G](Ũ)[U[G]] := S0
[G][Ũ ]DU[G] + S1

[G][Ũ ]t∂xU[G] +N[G]U[G] (7.15)

and
L[F](Ũ , Ṽ )[U[F]] := S0

[F][Ũ , Ṽ ]DU[F] + S1
[F][Ũ , Ṽ ]t∂xU[F] +N[F]U[F] (7.16)
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for some so far unspecified matrices N[G] and N[F]. The right-hand side of Eq. (7.11) is written as

f[G] +N[G]U[G] =: F[GV][U[G]] + F[GF][U[G], U[F]] (7.17)

where all matter terms in Eq. (7.2) (i.e., the last two terms there) are put into F[GF][U[G], U[F]] and all other
terms in Eq. (7.2) are put into F[GV][U[G]] (for instance in the vacuum case, we therefore have f[G] +N[G]U[G] =
F[GV][U[G]]). Finally, the right side of Eq. (7.14) is written as

f[F] +N[F]U[F] =: F[F][U[G], U[F]]. (7.18)

The following three systems shall play a major role:

1. The vacuum Einstein evolution system:

L[G](U[G])[U[G]] = F[GV][U[G]] (7.19)

for the 18-dimensional unknown U[G].

2. The Euler system on the fixed background spacetime given by some prescribed U[G]:

L[F](U[G], U[F])[U[F]] = F[F][U[G], U[F]] (7.20)

for the 2-dimensional unknown U[F].

3. The fully coupled Einstein-Euler evolution system:

L[G](U[G])[U[G]] = F[GV][U[G]] + F[GF][U ],

L[F](U )[U[F]] = F[F][U ]
(7.21)

for the 20-dimensional unknown
U := (U[G], U[F])

T .

7.2 The singular initial value problem
Next we formulate a singular initial value problem which matches the statement of Theorem 5.1. The
first step for this is to choose appropriate leading-order terms. The concept of asymptotically local Kasner
spacetimes in Definition 4.1 and the choice of the first-order variables in Eqs. (7.3) – (7.10) suggest the
following leading-order terms

U∗[G] := (U∗
1
[G], . . . , U∗

6
[G])

T (7.22)

where, for each i = 1, . . . , 6, we define

U∗
i
[G] := (U∗

i,−1
[G] , U∗

i,0
[G], U∗

i,1
[G])

T (7.23)

with

U∗
1,−1
[G] = −Λ∗t

(k2−1)/2, U∗
2,−1
[G] = Λ∗t

(k2−1)/2, U∗
3,−1
[G] = 0, (7.24)

U∗
4,−1
[G] = t, U∗

5,−1
[G] = E∗t

−k, U∗
6,−1
[G] = Q∗∗t

2k, (7.25)

and, for each i = 1, . . . , 6,
U∗

i,0
[G] = DU∗

i,−1
[G] − αU∗i,−1

[G] , U∗
i,1
[G] = 0. (7.26)

Observe that the data of Theorem 5.1 are used to build these expressions. We emphasize that the leading-
order terms for the shift U∗3,−1

[G] = g01 and all spatial derivative variables U∗i,1[G] are chosen to be zero. This
choice for the shift is consistent with Definition 4.1. In the case of the spatial derivative variables, it turns
out that the possibly more intuitive, but also more complicated choice U∗i,1[G] = t∂xU∗

i,−1
[G] has no advantages

in our analysis and leads to the same results. Colloquially speaking, the equations are able to determine
this leading-order term by themselves; it is not necessary to prescribe it.
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For later convenience, we also define

κ̂[G] :=
(

(k2 − 1)/2, (k2 − 1)/2, (k2 − 1)/2; (k2 − 1)/2, (k2 − 1)/2, (k2 − 1)/2;

(k2 − 1)/2, (k2 − 1)/2, (k2 − 1)/2; 1, 1, 1;−k,−k,−k; 2k, 2k, 2k
) (7.27)

and

µ̂[G] :=
(
µ1

[G], µ
1
[G], µ

1
[G] + η;µ1

[G], µ
1
[G], µ

1
[G] + η;

µ1
[G] + η, µ1

[G] + η, µ1
[G] + 2η;µ4

[G], µ
4
[G], µ

4
[G] + η;

µ5
[G], µ

5
[G], µ

5
[G] + η;µ6

[G], µ
6
[G], µ

6
[G] + η

) (7.28)

for so far unspecified smooth functions µi[G] > 0 and η ≥ 0. The particular structure and purpose of these
exponent vectors and, in particular, the role of the function η shall be explained later.

For the leading-order term of the fluid, the results in Sections 3 and 4 suggest

U∗[F] :=
(
v0
∗t

Γ, v1
∗t

2Γ
)T

(7.29)

as the leading order term. Similarly we define

κ̂[F] := (Γ, 2Γ), µ̂[F] := (µ1
[F], µ

2
[F] − Γ). (7.30)

We must observe here that the quantity v1
∗ in Eq. (7.29) is called v̂1

∗ in Theorem 5.1 (this is not a problem
for Theorem 5.3). We shall see that v1

∗ in Eq. (7.29) is completely free as long as we only consider the
evolution equations. Once we also require that the constraints are satisfied, this quantity cannot be chosen
freely anymore. This however becomes relevant only later in our proof. For the time being we therefore use
the variable names in Eq. (7.29).

The next step in the proof of Theorem 5.1 (and Theorem 5.3) is to solve the singular initial value problem
of Eq. (7.21) of the form

U[G] = U∗[G] +W[G], U[F] = U∗[F] +W[F] (7.31)

for remainders
W[G] ∈ Xδ,κ̂

[G]
+µ̂

[G]
,∞, W[F] ∈ Xδ,κ̂

[F]
+µ̂

[F]
,∞ (7.32)

for some constant δ > 0. With the short-hand notation

U := (U[G], U[F])
T , U∗ := (U∗[G], U∗[F])

T , W := (W[G],W[F])
T ,

κ̂ := (κ̂[G], κ̂[F]), µ̂ := (µ̂[G], µ̂[F]),
(7.33)

and the convention that we do not write the leading-order term functions explicitly unless it is the only
term in some expression (as it is the case, e.g., for the second term of the following expressions), we formally
define reduced source term operators

W[G] 7→ F[GV][W[G]] := F[GV][W[G]]− L[G](W[G])[U∗[G]] (7.34)

and
W 7→ F[F][W ] := F[F][W ]− L[F](W )[U∗[F]] (7.35)

from Eqs. (7.17) and (7.18). In this notation the coupled Einstein-Euler evolution system Eq. (7.21) now
takes the form

L[G](W[G])[W[G]] = F[GV][W[G]] + F[GF][W ],

L[F](W )[W[F]] = F[F][W ].
(7.36)

We remark that Eq. (7.36) only makes sense once leading order terms and exponents have been chosen
as above. When we refer to the evolution equations in the form Eq. (7.36) or to individual operators in
Eq. (7.36) we shall always assume that these choices have been made. In particular, we shall always consider
κ̂[G] and µ̂[G] as given by Eqs. (7.27) and (7.28) in terms of a smooth function k and smooth exponents µi[G]

and η. In the same way we consider κ̂[F] and µ̂[F] as defined by Eq. (7.30) from the function Γ given by
Eq. (4.2), γ ∈ (1, 2) and exponents µi[G]. We shall also always consider U∗[G] and U∗[F] as defined in terms of
smooth functions Λ∗, E∗, Q∗∗, v0

∗ and v1
∗ by Eqs. (7.22) – (7.26) and Eq. (7.29). In addition, the function

Q∗ shall always be considered as smooth.
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7.3 Estimates on function operators
In order to apply the Fuchsian theory to our singular initial value problem, Theorem 6.5 requires that the
function operators in our equations satisfy the estimates of the quasilinear symmetric hyperbolic Fuchsian
property (recall Definition 6.3). These estimates need to be proven under suitably general conditions in
order to complete the arguments. In fact, we will see that the same estimates need to be applied at various,
sometimes quite different stages of the proof and hence the hypotheses must be sufficiently general and
flexible. On the other hand, however, since one has to analyze algebraically complex expressions, it is often
impossible to obtain such estimates under hypotheses which are too general. We therefore attempted to
find a good balance between flexibility and feasibility in the following presentation.

The main idea of the proofs of these estimates is to exploit the fact that all function operators which
occur in the Einstein-Euler equations are special in the sense of Section 6 (see the end of the paragraph on
function operators). Given leading-order terms and assumptions for the exponents, simple algebraic rules
can be used to rigorously determine the leading terms and the estimates of interest. Because some of our
function operators consist of hundreds of terms and sometimes subtle cancellations from all kinds of terms
are crucial, we have programmed these algebraic rules into a computer algebra system. The computer is
able to apply these rules repeatedly to all these terms efficiently. We stress that this yields fully rigorous
estimates; no numerical approximation of any sort is used. More details on our computer algebra code are
discussed in [3].

We shall present the details of these estimates in the case Γ > 0 only. The following lemmas hence lay
the foundation for the proofs of Theorem 5.1 and Theorem 5.2. Regarding the case Γ = 0, we shall only
make a few brief comments which are relevant for the proof of Theorem 5.3 (and Theorem 5.4). We remark
that we shall only give as much information on these estimates here as is needed for the later arguments.

Principal part matrix operators Let us start with the matrix operators which constitute the principal
part of the evolution equations, i.e., the terms S0

[G], S1
[G], S0

[F] and S1
[F], see Eqs. (7.12) – (7.13), and Eqs. (2.8).

Lemma 7.1 (Estimates for S0
[G] and S1

[G]). Choose functions k and Λ∗ in C∞(T 1) with Λ∗ > 0, and smooth
exponent functions µi[G] > 0 and η ≥ 0. Then, for any sufficiently small constant δ > 0, the function operator

W[G] 7→ S0
[G][W[G]]− 118

is a (κ̂[G] + µ̂[G], ζ
(0)
[G] ,∞)-operator for some ζ(0)

[G] > 0, i.e., it is o(1), where 118 represents the 18 × 18-unit
matrix. Moreover,

W[G] 7→ tS1
[G][W[G]]

is a (κ̂[G] + µ̂[G], ζ
(1)
[G] ,∞)-operator with

ζ
(1)
[G] = (∞, 1, 1, . . . ,∞, 1, 1), (7.37)

which is hence in particular also o(1).

Recall the paragraph after Definition 6.2 for the definition of the o(1)-symbol. In order to write an
analogous result for the principal part matrices of the Euler equations, we first define

S0
0[F] := diag

(
v0
∗Λ∗
γ − 1

, v0
∗Λ∗

)
. (7.38)

This matrix is clearly positive definite so long as Λ∗, v0
∗ > 0 and γ > 1.

Lemma 7.2 (Estimates for S0
[F] and S1

[F]). Choose functions k, Λ∗, v0
∗ and v1

∗ in C∞(T 1) with Λ∗, v0
∗ > 0,

a constant γ ∈ (1, 2) such that Γ > 0 (cf. Eq. (4.2)), smooth exponent functions µi[G] > 0, η ≥ 0, and

µ1
[F] ≤ µ2

[F], 0 < µ1
[F] < min{2Γ, µ1

[G]}.

Then, for any sufficiently small constant δ > 0, the function operator

W 7→ S0
[F][W ]− S0

0[F]

is a (κ̂ + µ̂, ζ
(0)
[F] ,∞)-operator for some ζ(0)

[F] > 0, i.e., it is o(1). Moreover,

31



W 7→ tS1
[F][W ]

is a (κ̂ + µ̂, ζ
(1)
[F] ,∞)-operator with

ζ
(1)
[F] = (1, 1), (7.39)

which is hence in particular also o(1).

Reduced source term operators We continue with the reduced source term operators F[GV][·], F[GF][·]
and F[F][·] defined in Eqs. (7.17), (7.18), (7.34) and (7.35). First we specify the matrices N[G] and N[F] now
which appeared the first time in the definitions Eq. (7.15) and (7.16). In agreement with [3], we set

N[G] := diag (n01, nR, nE , nQ) (7.40)

where

n01 =



−α −1 0 0 0 0 0 0 0
1
4b

2 −b− α 0 −b 2 0 0 0 −4
0 0 −α− 1 0 0 0 0 0 0
0 0 0 −α −1 0 0 0 0
0 0 0 1

4b
2 −b− α 0 0 0 −2

0 0 0 0 0 −α− 1 0 0 0
0 0 0 0 0 0 −α −1 0
0 0 − 3

2 0 0 − 1
2

1
4b

2 −b− α 0
0 0 0 0 0 0 0 0 −α− 1


, (7.41)

b := k2 − 2α− 1, and

nR =

 −α −1 0
(α− 1)2 α− 2 0

0 0 −α− 1

 ,

nE =

 −α −1 0
(α+ k)2 α+ 2k 0

0 0 −α− 1

 ,

nQ =

 −α −1 0
α(α− 2k) α− 2k 0

0 0 −α− 1

 ,

and

N[F] := diag
(
−Γ

v0
∗Λ

γ − 1
,−2Γv0

∗Λ

)
. (7.42)

Next we point out that the only source term operator which depends on the Q-quantity is F[GV][·] (or
F[GV][·]). We shall realize later that Q plays an important role for the analysis and sometimes has to be
treated differently than the other quantities. In order to anticipate such issues, we split the operator up as
follows:

F[GV][U[G]] =: F
(1)
[GV][U[G]] + F

(2)
[GV][U[G]] (7.43)

where the first operator is constructed from the full operator by replacing each Q′∗ and each Q′′∗ by zero.
The second operator therefore covers all terms which have been deleted in the first one. Then by Eq. (7.34),

F[GV][W[G]] = F[GV][U∗[G] +W[G]]− L[G](U∗[G] +W[G])[U∗[G]]

= F
(1)
[GV][U∗[G] +W[G]]− L[G](U∗[G] +W[G])[U∗[G]]︸ ︷︷ ︸

=:F(1)

[GV]
[W

[G]
]

+F
(2)
[GV][U∗[G] +W[G]]. (7.44)

Hence F (1)
[GV][W[G]] does not contain any Q′∗ and Q′′∗ terms in the same way as F (1)

[GV][U[G]]. These operators
are now split up even further. Let

Π := diag
(

1, . . . , 1︸ ︷︷ ︸
15 entries

, 0, 0, 0
)
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and set

F (1,1)
[GV] [W[G]] := F

(1)
[GV][Π(U∗[G] +W[G])]− L[G](Π(U∗[G] +W[G]))[U∗[G]], (7.45)

F (1,2)
[GV] [W[G]] := F (1)

[GV][W[G]]−F (1,1)
[GV] [W[G]]. (7.46)

Hence the first operator is completely free of Q-terms while the second operator is free of only Q′∗- and
Q′′∗ -terms. Analogously we set

F
(2,1)
[GV] [U[G]] := F

(2)
[GV][Π(U[G])], (7.47)

F
(2,2)
[GV] [U[G]] := F

(2)
[GV][U[G]]− F (2,1)

[GV] [U[G]]. (7.48)

So, in total we have

F[GV][W[G]] = F (1,1)
[GV] [W[G]] + F (1,2)

[GV] [W[G]] + F
(2,1)
[GV] [U∗[G] +W[G]] + F

(2,2)
[GV] [U∗[G] +W[G]]. (7.49)

We remark that in the half-polarized case Q∗ = const, we have

F[GV][W[G]] = F (1,1)
[GV] [W[G]] + F (1,2)

[GV] [W[G]],

while in the fully polarized case Q = Q∗ = const, we have

F[GV][W[G]] = F (1,1)
[GV] [W[G]].

Even though the following results also hold in these special cases, the main focus is the general case. In
consistency with our previous conventions we shall often not write the leading term function U∗[G] explicitly
in the last two terms of Eq. (7.49).

Recall the definition of R[·] in Eq. (6.1).

Lemma 7.3 (Estimates for F[GV][·]). Choose functions k,Λ∗, E∗, Q∗, Q∗∗ ∈ C∞(T 1) with Λ∗, E∗ > 0 and
0 < k < 1, and smooth exponent functions µi[G] > 0 and η ≥ 0. Then for any sufficiently small constant
δ > 0:

(i) The operator
W[G] 7→ R[κ̂[G] + µ̂[G]]F (1,1)

[GV] [W[G]]

is a (κ̂[G] + µ̂[G], ζ
(1,1)
[GV] ,∞)-operator for some exponent vector ζ(1,1)

[GV] > 0 provided

η < 1, µ5
[G], µ

6
[G] < 1− η, µ1

[G] < min{µ4
[G], µ

5
[G]}.

(ii) The operator
W[G] 7→ R[κ̂[G] + µ̂[G]]F (1,2)

[GV] [W[G]]

is a (κ̂[G] + µ̂[G], ζ
(1,2)
[GV] ,∞)-operator for

ζ
(1,2)
[GV] = (∞, 2k − µ1

[G],∞,∞, 2η + 2k − µ1
[G] + 2µ6

[G],∞,∞, 2k − µ1
[G] + µ6

[G],∞,
∞,∞,∞,∞, 2k − µ5

[G],∞,∞,min{2η + µ1
[G], µ

5
[G] − µ6

[G]}, µ1
[G]) > 0

provided
µ1

[G], µ
5
[G] < 2k, µ6

[G] < µ5
[G].

(iii) The operator
W[G] 7→ R[κ̂[G] + µ̂[G]]F

(2,1)
[GV] [W[G]]

is a (κ̂[G] + µ̂[G], ζ
(2,1)
[GV] ,∞)-operator for

ζ
(2,1)
[GV] = (∞,∞,∞,∞, 2(1− k)− µ1

[G],∞,∞,∞,∞,
∞,∞,∞,∞, 2(1− k)− µ5

[G],∞,∞, 1 + η − 2k + µ1
[G] − µ6

[G],∞)

provided
η < 1, µ1

[G] < min{µ5
[G], 1− η}, µ5

[G], µ
6
[G] < 2(1− k). (7.50)

We have ζ(2,1)
[GV] > 0 under the additional restriction

1 + η − 2k + µ1
[G] − µ6

[G] > 0. (7.51)
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(iv) The operator
W[G] 7→ R[κ̂[G] + µ̂[G]]F

(2,2)
[GV] [W[G]]

is a (κ̂[G] + µ̂[G], ζ
(2,2)
[GV] ,∞)-operator for

ζ
(2,2)
[GV] = (∞,∞,∞,∞, η + 1,∞,∞, 1− η − µ6

[G],∞,
∞,∞,∞,∞, 1 + η − µ5

[G] + µ6
[G],∞,∞,∞,∞) > 0

provided
η < 1, µ1

[G] = µ6
[G] < 1− η, µ5

[G] < 1 + η + µ1
[G].

A remarkable fact is that F (2,1)
[GV] [·] violates the o(1)-property required by the Fuchsian theorem (as part

of Definition 6.3) unless Eq. (7.51) is satisfied. This will play an important role below. By definition this
operator vanishes if Q∗ = const. So this issue disappears in the (half-)polarized case and consequently the
analysis becomes significantly simpler. The terms which are responsible for the extra condition Eq. (7.51)
in the 17th component of F (2,1)

[GV] [·] are

tQ′∗
g01

g11

(
2
DE

E
+ 1

)
− 2tQ′∗

g00

g11

t∂xE

E
. (7.52)

Next we discuss the operator which represents the matter terms in Einstein’s equations.

Lemma 7.4 (Estimates for F[GF][·]). Choose functions k,Λ∗, E∗, v0
∗, v

1
∗ ∈ C∞(T 1) with Λ∗, E∗, v0

∗ > 0, a
constant γ ∈ (1, 2) such that Γ > 0 (cf. Eq. (4.2)), and smooth exponent functions µi[G] > 0, µi[F] > 0 and
η ≥ 0. Then, for any sufficiently small constant δ > 0, the function operator

W 7→ R[κ̂[G] + µ̂[G]]F[GF][W ]

is a (κ̂ + µ̂, ζ[GF],∞)-operator with

ζ[GF] = (∞, 1− Γ− µ1
[G],∞,∞, 1− Γ− µ1

[G],∞,
∞,min{1− Γ, 1− η − µ1

[G], 1− Γ− η + µ2
[F] − µ1

[G]},∞,
∞, 1− Γ− µ4

[G],∞,∞,∞,∞,∞,∞,∞) > 0,

provided

η < 1, µ1
[G] < min{1− Γ, 1− η, 1− Γ− η + µ2

[F]}, µ4
[G] < 1− Γ,

µ1
[F] < min{2Γ, µ1

[G]}, µ1
[F] ≤ µ2

[F].

We recall here that Γ is always smaller than 1 as a consequence of the assumption γ < 2.
Finally, we discuss the source term of the Euler equations. We consider the operator F[F][·] defined in

Eq. (7.35) and

W 7→ F{T}[F][W ] :=(S0
[F](U∗ +W ))−1

(
F[F][W ] + S1

[F](U∗ +W )t∂xU∗[F]

)
+
(
N{T}[F] − (S0

[F](U∗ +W ))−1N[F]

)
W[F]

(7.53)

which we shall use to study truncated versions of the Euler equations, see for example Eq. (7.58) below.
Here,

N{T}[F] := diag (−Γ,−2Γ) . (7.54)

Lemma 7.5 (Estimates for F[F][·]). Choose functions k,Λ∗, E∗, v0
∗, v

1
∗ ∈ C∞(T 1) with Λ∗, E∗, v0

∗ > 0, a
constant γ ∈ (1, 2) such that Γ > 0 (cf. Eq. (4.2)), and smooth exponent functions µi[G] > 0, µi[F] > 0 and
η ≥ 0. Then, for any sufficiently small constant δ > 0, the function operator

W 7→ R[κ̂[F] + µ̂[F]]F[F][W ]

is a (κ̂ + µ̂, ζ[F],∞)-operator for some ζ[F] > 0 provided

µ1
[F] < min{1, 2Γ, µ1

[G], µ
4
[G]}, µ1

[F] ≤ µ2
[F] < min{1, η + µ1

[G],Γ + µ1
[F]}, (7.55)

and the function operator
W 7→ R[κ̂[F] + µ̂[F]]F{T}[F][W ]

is a (κ̂ + µ̂, ζ{T}[F],∞)-operator for some ζ{T}[F] > 0 provided

µ1
[F] < min{2Γ, µ1

[G], µ
4
[G]}, µ1

[F] ≤ µ2
[F] < min{η + µ1

[G],Γ + µ1
[F]}. (7.56)
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7.4 Solving the evolution equations
The next task in our discussion is to solve the singular initial value problem Eqs. (7.31) and (7.32) of
Eq. (7.36) using Theorem 6.5 and the estimates obtained in the previous section. Before we do this, however,
we want to give a quick argument why this can be done directly (as opposed to the indirect approach below)
only under quite restrictive conditions. First we observe that the block diagonal condition of Theorem 6.5
requires that η = 0 (see Eq. (7.28)). Part (iii) of Lemma 7.3 then yields the condition 1−2k+µ1

[G]−µ6
[G] > 0

which is necessary to guarantee that the operator W[G] 7→ F
(2,1)
[GV] [W[G]] is o(1). Since µ6

[G] > 0, this implies
that µ1

[G] > 2k− 1. The inequality µ1
[G] < 2(1− k) from Eq. (7.50) is only compatible if 0 < k < 3/4. This is

a disappointing result because we expect from the vacuum case [34] that the permitted range for k should
be the interval (0, 1) in the fully general non-polarized case (if the solution happens to be polarized (or
half-polarized) we should be allowed to choose k in the set of all real (or positive real) numbers).

It is interesting to realize that all previous studies of the (non-analytic) Gowdy vacuum case [30, 38, 3]
arrived at the same disappointing restriction for k in an intermediate step of their respective proofs. In
particular this problem has nothing to do with the fluid. The idea, which was first introduced in [30] and
then further developed in [38], is to replace the original leading-order terms in Section 7.2 by sequences
of successively improved leading-order terms. By including more terms in these leading-order functions a
larger subinterval of (0, 1) becomes allowed for the function k. In the limit of infinitely many terms, the
whole interval is obtained. This iterative approach however has the particular drawback that it requires
cumbersome calculations for the far more complex equations which we consider here. This was already
observed in the vacuum case in [3] where the equations are also far more complex than in [30, 38] as a
consequence of more general gauge conditions. Because of this, this idea was not carried out in [3].

The basic (slightly over-simplified, see below) idea of our new approach is very natural and it is to
prove Theorem 5.1 together with statement (IV) of Theorem 5.2 — as opposed to first proving Theorem 5.1
and then Theorem 5.2 separately. More specifically, we shall not solve the singular initial value problem
outlined in Section 7.2 for the evolution equations directly (this is why our new approach could be labeled
as indirect). Instead we shall first construct solutions of the singular initial value problem in Section 7.2
only to a truncated form of the evolution equations. These are almost the “truncated equations” considered
in statement (IV) of Theorem 5.2; see Step 1 below. For reasons we explain later it does not seem to
be possible to use the actual “truncated evolution equations” for this argument. Only after this has been
achieved, we shall consider the full evolution equations in Step 2 below. The singular initial value problem,
which we consider there, is defined by using the solutions in Step 1 as the leading-order terms. It turns out
that this indeed resolves the technical problem above and allows us to consider the full interval (0, 1) for
k. Roughly speaking, in this way we provide an “improved leading-order term” for the singular initial value
problem in full analogy to the iterative approach by [30, 38] in Step 1 which is used then used in Step 2,
but in a completely non-iterative fashion.

We have mentioned before that the analysis is significantly simpler in the (half-)polarized case, i.e., when
Q∗ = const. Now we can understand one particular reason for this claim. Since the restriction k ∈ (0, 3/4)

found above is a consequence of the operator F (2,1)
[GV] [·], which is identically zero in this case, the problem

disappears when Q∗ = const.
As in Section 7.3, we continue to give details for the case Γ > 0 and only a few remarks regarding the

case Γ = 0.

Step 1. Solving the partially truncated equations As discussed above this step is only necessary
in the fully non-polarized case Q∗ 6= const. It is therefore essential for the proof of Theorem 5.1 (and
Theorem 5.2). As discussed in Section 5, the critical case Γ = 0 corresponds to the (half-)polarized case,
i.e., it requires Q∗ = const, where this step can be skipped (Theorem 5.3 and Theorem 5.4).

Let us recall the operator versions of the fully coupled Einstein-Euler equations Eq. (7.21) and their
“reduced version” Eq. (7.36). The partially truncated equations are defined as

L[G](U[G])[U[G]]− S1
[G][U[G]]t∂xU[G] = F[GV][U[G]] + F[GF][U ],

(S0
[F][U ])−1

(
L[F](U )[U[F]]− S1

[F][U ]t∂xU[F]

)
= (S0

[F][U ])−1F[F][U ],
(7.57)

whose reduced version is

L[G](W[G])[W[G]]− S1
[F][W[G]]t∂xW[G] = F[GV][W[G]] + S1

[F][W[G]]t∂xU∗[G] + F[GF][W ],

DW[F] +N{T}[F]W[F] = F{T}[F][W ],
(7.58)
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with Eqs. (7.53) and (7.54). Essentially, these partially truncated equations are derived from the full
evolution equation by removing all those spatial derivative terms which are multiplied with the matrices
S1

[G] and S1
[F]. Notice however that this system still involves:

1. The derivatives of Q∗ as part of F
(2)
[GV][·] (see Eq. (7.44)) — for the “fully truncated system” which we

consider for the study of the “velocity term dominance” property later we need to replace the term
F[GV][W[G]] in Eq. (7.58) by F (1)

[GV][W[G]].

2. Those first-order variables U i,1 which are defined from spatial derivatives of the original variables.

The reason why we keep the Q′∗- and Q′′∗ -terms here will be explained below. Regarding the variables U i,1[G]

we find that the equations for the 6 quantities U i,1[G] given by Eq. (7.58) are trivial and hence

U i,1[G] ≡ 0 (7.59)

for all i = 1, . . . , 6 is a solution which is compatible with the singular initial value problem in Section 7.2, see
Eq. (7.26). With this the evolution equations of these quantities and the terms themselves can be removed
from our system completely. In fact, in the following when we study Eq. (7.58), we shall always assume
that this has been done.

Let us also comment on the fact that we multiply the second equation of Eq. (7.57) by (S0
[F])
−1. This

would clearly be a harmful thing to do for the original equations because the matrix (S0
[F])
−1S1

[F] is in
general not symmetric. Since this term however does not appear in Eq. (7.58), this conveniently decouples
the principal parts of the two Euler equations. Below a consequence of this is that the block diagonal
condition imposed by the Fuchsian theorem is less restrictive than without this decoupling.

We see that Eq. (7.58) is a system of x-parametrized ODEs. The goal is now to show that we can pick
the exponents µi[G], µi[F] and η in Section 7.2 so that the three conditions of Theorem 6.5 are satisfied: (i)
the system is a special quasilinear symmetric hyperbolic Fuchsian system (Definition 6.3), (ii) the block
diagonal condition holds and (iii) the eigenvalue condition holds. This is achieved straightforwardly using
the estimates in Section 7.3 and we obtain Proposition 7.6 below. The only non-trivial steps of the proof
are to satisfy Eq. (7.51), which with the judicious choice µ1

[G] = µ6
[G] leads to the condition η > 2k − 1, and

the eigenvalue condition µ2
[F] > Γ (see Eqs. (7.54) and (7.30)) which together with Eq. (7.56) leads to the

constraint η > Γ. Moreover, we have η < 1. We stress that we are able to satisfy these inequalities for η and
µ2

[F] only because the block diagonal condition of the theorem turns out to be trivial as a consequence of the
decoupling of the second equation of (7.58) and of the fact that the matrix N[G] in Eq. (7.40), in particular
the sub-matrix in Eq. (7.41), simplifies drastically due to Eq. (7.59).

Proposition 7.6 (Singular initial value problem for the truncated equations). Choose functions k, Λ∗, E∗,
Q∗, Q∗∗, v0

∗ and v1
∗ in C∞(T 1) such that Λ∗, E∗, v0

∗ > 0 and 1 > k > 0, and a constant γ ∈ (1, 2). Choose
smooth functions µi[G], µi[F] and η such that

max{Γ, 2k − 1} < η < 1,
0 < µ5

[G] < min{2k, 2(1− k), 1− η},
0 < µ4

[G] < 1− Γ,
0 < µ1

[G] = µ6
[G] < min{µ4

[G], µ
5
[G]},

0 < µ1
[F] < min{Γ, µ1

[G]},
Γ < µ2

[F] < Γ + µ1
[F].

Then there exists some δ̃ > 0, such that the partially truncated evolution equations, Eq. (7.58), has a unique
solution to the form

U = U∗ +W ,

for some W ∈ Xδ̃,κ̂+µ̂,∞ with U i,1[G] ≡ 0 for all i = 1, . . . , 6. The remainder W is differentiable with respect
to t and DW ∈ Xδ̃,κ̂+µ̂,∞.

We recall again that the two restrictions γ ∈ (1, 2) and k ∈ (0, 1) imply Γ ∈ (0, 1). We remark without
proof that exactly the same result also holds for the fully truncated equations, i.e., Eq. (7.58) where the
term F[GV][W[G]] is replaced by F (1)

[GV][W[G]] = F (1,1)
[GV] [W[G]]+F (1,2)

[GV] [W[G]]. As expected however the hypothesis
of this result for the fully truncated equations is less restrictive in as much as the second inequality in
Proposition 7.6 can be replaced by

0 < µ5
[G] < min{2k, 1− η}.
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Step 2. Modified singular initial value problem for the full equations In the following we shall
refer to solutions of the partially truncated equations, Eq. (7.58), in particular those given by Proposition 7.6,
as U{T}[G] and U{T}[F] with remainders W{T}[G] and W{T}[F]; we shall also write U{T} = (U{T}[G], U{T}[F]) and
W{T} = (W{T}[F],W{T}[F]) as before. Let such a solution be given. As motivated at the beginning of
Section 7.4, the task of this step now is to solve the following “modified” singular initial value problem

U = U{T} +W = U∗ +W{T} +W (7.60)

for the full equations, Eq. (7.36), where U{T} = U∗ +W{T} is considered as the given leading-order term and
W = (W[G],W[F]) is the unknown remainder in some to be specified space. To this end we rewrite the full
equations as follows. Let us start with the Einstein part of the full equations in Eq. (7.21):

0 =L[G](U[G])[U[G]]− F[GV][U[G]]− F[GF][U ]

=L[G](U[G])[W[G]] + L[G](U[G])[U{T}[G]]− F[GV][U[G]]− F[GF][U ]

=L[G](U[G])[W[G]]

− (L[G](U{T}[G])[U{T}[G]]− L[G](U[G])[U{T}[G]])

+ S1
[G][U{T}[G]]t∂xU{T}[G] + F[GV][U{T}[G]] + F[GF][U{T}]

− F[GV][U[G]]− F[GF][U ].

In this calculation we have assumed explicitly that W{T} is a solution to the partially truncated equations,
Eq. (7.57). Using Eq. (7.34) for the definition of the reduced operators6 and Eq. (7.49), and performing the
same calculation for the Euler equations (and using the same short-hand notation as before), we find the
following system:

L[G](W{T}[G] +W[G])[W[G]]

=F (1,1)
[GV] [W{T}[G] +W[G]]−F (1,1)

[GV] [W{T}[G]]︸ ︷︷ ︸
=:O(1,1)

[GV]
[W

[G]
]

+F (1,2)
[GV] [W{T}[G] +W[G]]−F (1,2)

[GV] [W{T}[G]]︸ ︷︷ ︸
=:O(1,2)

[GV]
[W

[G]
]

+ F
(2,1)
[GV] [W{T}[G] +W[G]]− F (2,1)

[GV] [W{T}[G]]︸ ︷︷ ︸
=:O(2,1)

[GV]
[W

[G]
]

+F
(2,2)
[GV] [W{T}[G] +W[G]]− F (2,2)

[GV] [W{T}[G]]︸ ︷︷ ︸
=:O(2,2)

[GV]
[W

[G]
]

+ F[GF][W{T} +W ]− F[GF][W{T}]︸ ︷︷ ︸
=:O

[GF]
[W ]

− (S0
[G][W{T}[G] +W[G]]− S0

[G][W{T}[G]])DW{T}[G]︸ ︷︷ ︸
=:O(P,0)

[G]
[W

[G]
]

− (tS1
[G][W{T}[G] +W[G]]− tS1

[G][W{T}[G]])∂xW{T}[G]︸ ︷︷ ︸
=:O(P,1)

[G]
[W

[G]
]

− tS1
[G][W{T}[G]]∂xU{T}[G]︸ ︷︷ ︸

=:O{T}[G]
[W

[G]
]

,

(7.61)

and

L[F](W{T} +W )[W[F]] = F[F][W{T} +W ]−F[F][W{T}]︸ ︷︷ ︸
=:O

[F]
[W ]

− (S0
[F][W{T} +W ]− S0

[F][W{T}])DW{T}[F]︸ ︷︷ ︸
=:O(P,0)

[F]
[W ]

− (tS1
[F][W{T} +W ]− tS1

[F][W{T}])∂xW{T}[F]︸ ︷︷ ︸
=:O(P,1)

[F]
[W ]

− tS1
[F][W{T}]∂xU{T}[F]︸ ︷︷ ︸

=:O{T}[F]
[W ]

.

(7.62)

6In these definitions of the reduced operators we continue to consider U∗ as the leading-order term and do not replace
it by the new modified leading-order term U∗ +W{T}. This allows us to continue to use the estimates for the operators in
Section 7.3.
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These equations are equivalent to Eq. (7.36) if W{T} is the remainder of a solution to the partially truncated
equations, Eq. (7.58). We will now allow W{T} = (W{T}[G],W{T}[F]) to be any given function in7 Xδ,κ̂+µ̂,∞
which is differentiable with respect to t with DW{T} ∈ Xδ,κ̂+µ̂,∞ for some so far unspecified exponents
µi[G] > 0, µi[F] > 0 and η ≥ 0 assuming that Eqs. (7.27), (7.28) and (7.30) hold. Let us now focus on the
singular initial value problem Eq. (7.60) for Eqs. (7.61) and (7.62) where the remainderW is in Xδ,κ̂+µ̂+ν̂ ,∞
where

ν̂ = (ν̂[G], ν̂[F]) (7.63)

with
ν̂[G] = (ν1, . . . , ν1, ν2, ν2, ν2), ν̂[F] = (ν1, ν1) (7.64)

for some scalar exponents ν1, ν2 > 0; the particular structure of Eq. (7.64) anticipates the restrictions
imposed by the block diagonal condition of Theorem 6.5 as we discuss below. The result which we prove in
this step is the following.

Proposition 7.7 (Modified singular initial value problem for the full evolution equations). Choose functions
k, Λ∗, E∗, Q∗, Q∗∗, v0

∗ and v1
∗ in C∞(T 1) such that Λ∗, E∗, v0

∗ > 0 and 1 > k > 0, and a constant γ ∈ (1, 2).
Choose a smooth function ε with

0 < ε < min

{
2Γ,

1− Γ

4
,

2k

4
,

2(1− k)

4

}
.

Set
η = 0, µ1

[F] = µ2
[F] = ε, µ1

[G] = µ6
[G] = 2ε, µ4

[G] = µ5
[G] = 3ε.

and
ν1 = 1− 4ε,

and choose any smooth function ν2 such that

max{0, 1− 2k} < ν2 < min{1, 2(1− k)} − 4ε.

Choose any function W{T} in Xδ,κ̂+µ̂,∞ which is differentiable with respect to t such that DW ∈ Xδ,κ̂+µ̂,∞.
Then, for some (sufficiently small) constant δ̃ > 0 and some (sufficiently negative) constant α, the singular
initial value problem Eq. (7.60) of Eqs. (7.61) and (7.62) has a unique solution for some remainder W in
Xδ̃,κ̂+µ̂+ν̂ ,∞ where ν̂ is given by Eq. (7.64). The remainder W is differentiable with respect to t and DW
is also in Xδ̃,κ̂+µ̂+ν̂ ,∞.

It is clear that any solution to the partially truncated equation given by Proposition 7.6 satisfies the
hypothesis of Proposition 7.7. The corresponding solution to Proposition 7.7 is therefore a solution to the
original singular initial value problem Eqs. (7.31) and (7.32) of Eq. (7.36). We have therefore shown that
the singular initial value problem of interest indeed has a solution (existence). Notice, however, that it is
in principle possible that there are further solutions to the original singular initial value problem which are
not given by the modified singular initial value problem. Under suitable assumptions this possibility can
be ruled out. However, we are not going to address this uniqueness issue any further in this paper. In
any case, notice that Proposition 7.7 does not yet imply Theorem 5.1; see Steps 3 and 4 and Section 7.5.
Also observe that Proposition 7.7 does not yield statement (IV) of Theorem 5.2 because Proposition 7.7 is
concerned with the partially truncated equations, Eq. (7.58), as opposed to the fully truncated equations
which one gets by replacing the term F[GV][W[G]] in Eq. (7.58) by F (1)

[GV][W[G]] = F (1,1)
[GV] [W[G]] + F (1,2)

[GV] [W[G]].
It is interesting to observe that we are not able to prove an analogous version of Proposition 7.7 for the
fully truncated equations; this becomes clear as we discuss the proof of Proposition 7.7 next. In any case,
observe that we have written the hypothesis of Proposition 7.7 in terms of a single scalar quantity ε. The
loss of generality obtained by this is insignificant and it also simplifies the statement of the proposition.

The proof of Proposition 7.7 makes heavy use of Theorem 6.5 and of the following general lemma which
can be proved with techniques presented in [1].

7For simplicity we set δ = δ̃ here without loss of generality; recall that δ is always considered as some sufficiently small
positive quantity.
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Lemma 7.8. Suppose W 7→ F [W ] is any special (µ̃, ν̃,∞)-operator for any exponent vectors µ̃ and ν̃.
Choose any W0 ∈ Xδ,µ̃,∞. Then

W 7→ F [W0 +W ]− F [W0] (7.65)
is a (µ̃+ τ, ν̃ + τ,∞)-operator for any exponent scalar τ ≥ 0.

First observe that all our function operators are special. We stress however that it is a crucial assumption
(at least at this level of generality) that the quantity τ is an exponent scalar. In our application τ corresponds
to ν̂ which by definition (7.64) can in general obviously not be identified with a scalar (unless ν1 = ν2). We
can therefore only apply this lemma directly to operators which do not depend on U6,−1

[G] , U6,0
[G] and U6,1

[G]

related to the quantity Q (see Eq. (2.22)). In Section 7.3 (cf. in particular the discussion of Eq. (7.49))
we have seen that the only operators in our equations which depend on U6,−1

[G] , U6,0
[G] and U6,1

[G] (and for
which the lemma can therefore not be applied directly) are F (1,2)

[GV] [·] and F (2,2)
[GV] [·]. For these two operators

we shall exploit a useful consequence of Lemma 7.8, namely that the difference operator in Eq. (7.65) is a
(µ̃+ τ, ν̃ + mini∈{1,...,d} τi,∞)-operator if τ is an exponent vector.

Now let us prove Proposition 7.7. We assume that the data satisfy the hypothesis. The main task is to
apply Theorem 6.5 to our modified singular initial value problem. The matrices N[G] given by Eq. (7.40) and
N[F] given by Eq. (7.42) and the other matrices in the principal part are block diagonal (see the discussion
before Definition 6.4) with respect to κ̂, κ̂ + µ̂ and κ̂ + µ̂ + ν̂ (we shall make use of all three) provided ν̂
has the structure Eq. (7.64) and

η = 0, µ1
[F] = µ2

[F]. (7.66)
The eigenvalue condition of Theorem 6.5 is satisfied if

ν1 > Γ (7.67)

and if we choose an arbitrary sufficiently negative constant α (see Eqs. (7.5) – (7.10)). Since W{T} +W is
in Xδ,κ̂+µ̂,∞, we conclude that the principal part matrices of Eqs. (7.61) and (7.62) satisfy the conditions
for a special quasilinear symmetric hyperbolic Fuchsian system (Definition 6.3) provided

0 < µ1
[F] < min{2Γ, µ1

[G]} (7.68)

in addition to the above, as a consequence of Lemma 7.1 and Lemma 7.2.
Next we write down conditions for which the function operators on the right-hand side of Eqs. (7.61) and

(7.62) satisfy the requirements of Definition 6.3. In the following, when we speak of a rescaled operator we
mean that a given operator has been multiplied with R[κ̂[G] + µ̂[G] + ν̂[G]] (for an operator on the right-hand
side of Einstein’s equations) orR[κ̂[F]+µ̂[F]+ν̂[F]] (for an operator on the right-hand side of Euler’s equations)
respectively. If any such rescaled operator turns out to be a (κ̂[G]+µ̂[G]+ν̂[G], ζ,∞)-, a (κ̂[F]+µ̂[F]+ν̂[F], ζ,∞)-,
or a (κ̂ + µ̂ + ν̂ , ζ,∞)-operator, respectively, we say that its image exponent is ζ. We recall that a rescaled
operator is o(1) if its image exponent is positive.

O(1,1)
[GV] [·]: This operator does not depend on U6,−1

[G] , U6,0
[G] and U6,1

[G] . As a consequence of Lemma 7.3
and Lemma 7.8, the rescaled operator is o(1) provided

ν1 ≥ ν2, µ5
[G], µ

6
[G] < 1, µ1

[G] < min{µ4
[G], µ

5
[G]} (7.69)

in addition to the above.

O(1,2)
[GV] [·]: This does depend on U6,−1

[G] , U6,0
[G] and U6,1

[G] and therefore the generalized version of Lemma 7.8
above must be used together with Lemma 7.3. If we assume

µ5
[G] < 2k, µ6

[G] < µ5
[G], (7.70)

in addition to the above, the image exponent of the rescaled operator is

(∞, 2k − µ1
[G] + ν2 − ν1,∞,∞, 2k − µ1

[G] + 2µ6
[G] + ν2 − ν1,∞,

∞, 2k − µ1
[G] + µ6

[G] + ν2 − ν1,∞,∞,∞,∞,
∞, 2k − µ5

[G] + ν2 − ν1,∞,∞,min{µ1
[G], µ

5
[G] − µ6

[G]}, µ1
[G]).

This is positive and hence the rescaled operator is o(1) if

ν1 − ν2 < 2k − µ5
[G] (7.71)

in addition to the above.
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O(2,1)
[GV] [·]: This does not depend on U6,−1

[G] , U6,0
[G] and U6,1

[G] . If

µ5
[G] < 2(1− k) (7.72)

in addition to the above, then the image exponent of the rescaled operator is

(∞,∞,∞,∞, 2(1− k)− µ1
[G],∞,∞,∞,∞,

∞,∞,∞,∞, 2(1− k)− µ5
[G],∞,∞, 1− 2k + µ1

[G] − µ6
[G] + ν1 − ν2,∞).

This follows from Lemma 7.8 and Lemma 7.3. This is positive and hence the rescaled
operator is o(1) if in addition to the above

1− 2k + µ1
[G] − µ6

[G] + ν1 − ν2 > 0. (7.73)

O(2,2)
[GV] [·]: This does depend on U6,−1

[G] , U6,0
[G] and U6,1

[G] . If we assume

µ1
[G] = µ6

[G] (7.74)

in addition to the above, then the image exponent of the rescaled operator is

(∞,∞,∞,∞, 1 + ν2 − ν1,∞,∞, 1− µ6
[G] + ν2 − ν1,∞,

∞,∞,∞,∞, 1− µ5
[G] + µ6

[G] + ν2 − ν1,∞,∞,∞,∞).

This follows from the generalized version of Lemma 7.8 and Lemma 7.3. This is positive
and hence the rescaled operator is o(1) if

ν1 − ν2 < 1− µ5
[G]. (7.75)

O[GF][·]: This operator does not depend on U6,−1
[G] , U6,0

[G] and U6,1
[G] . If we assume

µ4
[G] < 1− Γ,

in addition to the above, then the rescaled operator is o(1) as a consequence of Lemma 7.4
and Lemma 7.8.

O[F][·]: This operator does not depend on U6,−1
[G] , U6,0

[G] and U6,1
[G] . The above conditions suffice to

show that the rescaled operator is o(1) as a consequence of Lemma 7.5 and Lemma 7.8.

O(P,0)
[G] [·], O(P,1)

[G] [·], O(P,0)
[F] [·] and O(P,1)

[F] [·]: Here make use of the fact thatDW{T} ∈ Xδ,κ̂+µ̂,∞ and ∂xW{T} ∈
Xδ,κ̂+µ̂,∞. All the above conditions then suffice to show that each rescaled operator is o(1)
owing to (i) the control of the difference operators in the brackets provided by Lemma 7.1,
Lemma 7.2 and Lemma 7.8 together with the fact that the principal part matrices do not
depend on U6,−1

[G] , U6,0
[G] , U

6,1
[G] , and (ii) the fact that the principal part matrices commute

with R[κ̂[G] + µ̂[G]] and R[κ̂[F] + µ̂[F]], respectively.

O{T}[G][·] and O{T}[F][·]: These operators are o(1) if

0 < ν1 < 1−max{µ1
[G], µ

4
[G], µ

5
[G], µ

1
[F]} and 0 < ν2 < 1− µ6

[G]

in addition to the above. This follows from Lemma 7.1 and Lemma 7.2 and in particular
from Eqs. (7.37) and (7.39). Moreover we use that ∂xU{T} ∈ Xδ,κ̂−ε̃,∞ for any8 and that
the matrices S1

[G] and S1
[F] commute with R[κ̂[G]] and R[κ̂[F]], respectively.

The final task is to check that the definitions of the exponents in terms of ε in the hypothesis of Proposi-
tion 7.7 are consistent with all of the above inequalities. This completes the proof.

We have mentioned before that the proof of the analogous version of Proposition 7.7 for the fully truncated
system fails. Let us quickly point out where this happens. We obtain the corresponding evolution equations
by replacing the definitions of the function operators in Eq. (7.61) as follows

O(2,1)
[GV] [W[G]] := F

(2,1)
[GV] [W{T}[G] +W[G]], O(2,2)

[GV] [W[G]] := F
(2,2)
[GV] [W{T}[G] +W[G]].

When we follow precisely the same steps of the proof for these different equations it becomes obvious that
this leads to much more stringent inequalities on the exponents which can only be solved under restrictive
conditions on the data.

8We require ε̃ > 0 to control logarithms which arise when k is not constant.
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Step 3. The original mixed second-first order system of evolution equations Steps 1 and 2
together yield solutions of the first-order evolution system Eq. (7.36) and thereby of Eq. (7.21). Recall that
Eq. (7.21) was derived from the original Einstein-Euler evolution equations (Eq. (2.16) with Eqs. (2.19) and
(2.20) and Eq. (2.8) with (2.9)), which is a mixed second-first order system, by introducing the first-order
variables Eqs. (7.3) – (7.10). In [3] we have discussed in detail under which conditions solutions of the
first-order system give rise to solutions of the original system (the Euler equations are not discussed in
[3]); the same arguments apply here. Firstly, it follows that under the hypotheses of Proposition 7.6 and
Proposition 7.7, in particular, if α is sufficiently negative, we have the identities

U i,0[G] = DU i,−1
[G] − αU i,−1

[G] , U i,1[G] = t∂xU
i,−1
[G] ,

for all i = 1, . . . , 6. Given this, one can show that

g00 = U1,−1
[G] , g11 = U2,−1

[G] , g01 = U3,−1
[G] , R = U4,−1

[G] , E = U5,−1
[G] , Q = Q∗ + U6,−1

[G] , (7.76)

v0 = U1
[F], v1 = U2

[F], (7.77)

is a solution to the original mixed second-first order system.

Step 4. Better shift decay So far we have only looked at the evolution equations. In order to be able to
analyze the constraint equations and the propagation of constraint violations, it turns out that we require
better decay estimates for the shift g01. The results from Step 3, Proposition 7.6 and Proposition 7.7, imply
so far the existence of some τ > 0 such that

g01, Dg01, ∂xg01 ∈ Xδ,(k2−1)/2+1−τ,∞. (7.78)

In fact, one can show that this holds for any τ > 0. As in the vacuum case [3], this turns out to be insufficient
to control the propagation of constraint violations in the next subsection. Using the same arguments we
find that there exists some (possibly different) τ > 0 such that the stronger estimate

g01, Dg01, ∂xg01 ∈ Xδ,(k2−1)/2+1+τ,∞ (7.79)

holds, provided that, in addition to the hypotheses of Proposition 7.6 and Proposition 7.7, the data satisfy

Λ′∗
Λ∗

= −kE
′
∗

E∗
+ 2kE2

∗Q∗∗Q
′
∗ −

2γv1
∗(Λ∗)

− 2−γ
2(γ−1) (v0

∗)
1−2γ
γ−1

γ − 1
(7.80)

in the case Γ > 0 and
Λ′∗
Λ∗

= −kE
′
∗

E∗
− 2γv0

∗v
1
∗(Λ∗)

− 2−γ
2(γ−1) ((v0

∗)
2 − (v1

∗)
2)

2−3γ
2(γ−1)

γ − 1
(7.81)

in the case Γ = 0 (which requires k = const ≥ 1 and Q∗ = const). As we discuss in detail in the next
subsection, the spatial topology therefore induces the following integral constraint on the data∫ 2π

0

(
−kE

′
∗

E∗
+ 2kE2

∗Q∗∗Q
′
∗ −

2γv1
∗(Λ∗)

− 2−γ
2(γ−1) (v0

∗)
1−2γ
γ−1

γ − 1

)
dx = 0 (7.82)

if Γ > 0 and ∫ 2π

0

v0
∗v

1
∗(Λ∗)

− 2−γ
2(γ−1) ((v0

∗)
2 − (v1

∗)
2)

2−3γ
2(γ−1) dx = 0 (7.83)

if Γ = 0 and Q∗ = const. Observe that this establishes statement (III) of Theorem 5.2 (and of Theorem 5.4).

7.5 Solving the constraint equations
The next step is to study the propagation of constraint violations and thereby to derive conditions under
which the condition Dα ≡ 0 is satisfied; recall the definitions and basic results in Section 2.2. Since
the arguments are very similar to the ones in [3], we only give a short summary and point to the major
differences. Let us choose any solution to the evolution equation constructed in the previous subsection.
The corresponding constraint violation quantities Dα can be then calculated from Eqs. (2.13) and (2.19).
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In general these quantities are not zero but do in fact have some non-trivial evolution described by the
subsidiary system Eq. (2.17) with Eq. (2.20); observe that the matter variables do not enter this system.

Using the same techniques as before a similar discussion as in [3] establishes that the hypotheses of
Proposition 7.6 and Proposition 7.7 together with Eq. (7.80) for Γ > 0 (or Eq. (7.81) in the case Γ = 0)
suffice to show that

D0, DD0 ∈ Xδ,−1+τ,∞, D1, DD1 ∈ Xδ,τ,∞ (7.84)

for some τ > 0 (which is not necessarily the same τ as in Eq. (7.79)) while D2 ≡ D3 ≡ 0; as before we
write δ = δ̃ to simplify the notation. In fact, Eq. (7.80) (or Eq. (7.81), respectively) is the condition that
guarantees that the constraint violation quantities vanish in leading order in the limit t ↘ 0. The task is
now to show that this condition is in fact sufficient to make Dα vanish identically.

Let us now consider the subsidiary system Eq. (2.17) with Eq. (2.20). Since D0 ≡ D1 ≡ D2 ≡ D3 ≡ 0 is
the trivial solution to this homogeneous system, the task is to show that this trivial solution is the unique
solution in the spaces given by Eq. (7.84). If this is true we have established that under the hypotheses of
Proposition 7.6 and Proposition 7.7 together with Eq. (7.80) for Γ > 0 (or Eq. (7.81) in the case Γ = 0),
the constraint violation quantities vanish identically.

The idea is that this uniqueness statement can be obtained by applying Theorem 6.5 to Eq. (2.17) in
the spaces given by Eq. (7.84). As in vacuum, however it turns out that this does not work out because
Theorem 6.5 requires a stronger decay, in other words spaces with larger exponents than in Eq. (7.84), for the
unknowns of Eq. (2.17) in order to establish uniqueness. Technically, the obstacle here is the block diagonal
condition of Theorem 6.5 which requires that the exponents for all the quantities D0, DD0,D1, DD1 must
all be the same. We could therefore use the Fuchsian theory to establish the sought uniqueness property if
we were first able to show that instead of D0, DD0 ∈ Xδ,−1+τ,∞ as provided by Eq. (7.84), we would instead
have D0, DD0 ∈ Xδ,τ,∞.

The trick to achieve this improved estimate is the same as in the vacuum case [3]. We first fix any
function D1 in Xδ,τ,∞ with DD1 ∈ Xδ,τ,∞ (in agreement with Eq. (7.84)). Then we single out the wave
equation for D0 implied by Eq. (2.17) and replace D1 and all of its derivatives everywhere by that fixed
function. Formulating a singular initial value problem for (the first-order reduction of) this simpler equation
in the space D0, DD0 ∈ Xδ,τ,∞ by means of Theorem 6.5 indeed turns out to be successful, mainly, because
the block diagonal condition is less restrictive for this smaller system. Indeed this allows us to conclude
that D0, DD0 ∈ Xδ,τ,∞.

Now the block diagonal restriction for the full subsidiary system, which was the obstacle before, is
no restriction anymore and indeed the argument above establishes that the constraint violation quantities
vanish identically under the conditions above and hence under the hypothesis of Theorem 5.1.

The “asymptotic constraint” Eq. (7.80) for Γ > 0 (or Eq. (7.81) in the case Γ = 0) has played a crucial
role in this argument. Finally now we seek conditions for which this equation has a solution which smoothly
matches the spatial topology. Let us start with the case Γ > 0. In contrast to the vacuum case [3], the
datum Λ∗ also appears on the right hand side of Eq. (7.80) and hence this equation cannot be integrated
directly to determine Λ∗. However, if we replace the free datum v1

∗ by another free datum v̂1
∗ defined by

v1
∗(x) := v̂1

∗(x)(Λ∗(x))
2−γ

2(γ−1) , (7.85)

then Eq. (7.80) becomes
Λ′∗
Λ∗

= −kE
′
∗

E∗
+ 2kE2

∗Q∗∗Q
′
∗ −

2γv̂1
∗(v

0
∗)

1−2γ
γ−1

γ − 1
.

We can now determine Λ∗ by integration, and the global smoothness condition reduces to

0 =

∫ 2π

0

(
−kE

′
∗

E∗
+ 2kE2

∗Q∗∗Q
′
∗ −

2γv̂1
∗(v

0
∗)

1−2γ
γ−1

γ − 1

)
dx.

It is important to remember that the roles of v1
∗ and v̂1

∗ here are opposite to those in the statement of
Theorem 5.1.

In the case Γ = 0 and Q∗ = const, the asymptotic constraint takes the form Eq. (7.81). Since k is
a constant here, it is now possible to consider the data v0

∗, v1
∗, and Λ∗ as free, and to determine E∗ by

integration of Eq. (7.81). This gives rise to Eq. (5.5).
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The proof of Theorem 5.1 (and Theorem 5.3) is now complete. We have also established part (III) of
Theorem 5.2 (and Theorem 5.4) in Step 4 above. We shall not say much about parts (I) and (II), but focus
on parts (IV) and (V) in Section 7.6.

7.6 “Velocity term dominance” and “matter does not matter”
Velocity term dominance Consider any solution (gαβ , v

α) of the Einstein-Euler equations asserted by
Theorem 5.1. Proposition 7.7 establishes that there exists a solution of the partially truncated evolution
equations for which the associated metric given by Eq. (7.76) agrees with gαβ at order (1, 1, 1, 1, 1,min{1, 2(1−
k)}) and the associated fluid vector given by Eq. (7.77) agrees with vα at order (1, 1 − Γ). Part (IV) of
Theorem 5.2 (and analogously for Theorem 5.4) is therefore a consequence of the following result.

Proposition 7.9. Choose functions k, Λ∗, E∗, Q∗, Q∗∗, v0
∗ and v1

∗ in C∞(T 1) such that Λ∗, E∗, v0
∗ > 0

and 1 > k > 0, and a constant γ ∈ (1, 2). Choose smooth functions µi[G], µi[F] and η such that

max{Γ, 2k − 1} < η < 1,
0 < µ5

[G] < min{2k, 2(1− k), 1− η},
0 < µ4

[G] < 1− Γ,
0 < µ1

[G] = µ6
[G] < min{µ4

[G], µ
5
[G]},

0 < µ1
[F] < min{Γ, µ1

[G]},
Γ < µ2

[F] < Γ + µ1
[F].

Let Û = U∗ + Ŵ be the solution of the partially truncated equations, Eq. (7.58), with Ŵ ∈ Xδ̃,κ̂+µ̂,∞
asserted by Proposition 7.6 (identifying δ and δ̃) and U{T} = U∗ +W{T} be the solution of the fully truncated
equations, Eq. (7.58) where the term F[GV][W[G]] is replaced by F (1)

[GV][W[G]], with W{T} ∈ Xδ̃,κ̂+µ̂,∞ (see the

remark after Proposition 7.6). Let gαβ be the metric associated with Û and g{T},αβ be the metric associated
with U{T} via Eq. (7.76). Analogously let vα be the fluid vector associated with Û and vα{T} associated with
U{T} via Eq. (7.77). Then the two metrics agree at order (2− 2k, 2− 2k, 2− 2k, 2− 2k, 2− 2k, 2− 2k) and
the two fluid vectors agree at order (2− 2k, 2− 2k − Γ).

In order to prove this proposition, let us set

W := Ŵ −W{T}

so that U = U∗ + W{T} + W . Observe that W{T} and W are different quantities than the quantities with
the same names in Step 2 of Section 7.4. Nevertheless, the reason why we choose the same variable names
is that they will play exactly the same roles as the corresponding quantities before. This is so because we
can show that the partially and the fully truncated equations imply evolution equations for W which are
very similar to Eqs. (7.61) and (7.62):

L[G](W{T}[G] +W[G])[W[G]]− S1
[F][W{T}[G] +W[G]]t∂xW[G]

= O(1,1)
[GV] [W[G]] +O(1,2)

[GV] [W[G]] + F
(2,1)
[GV] [W{T}[G] +W[G]] + F

(2,2)
[GV] [W{T}[G] +W[G]]

+O[GF][W ]−O(P,0)
[G] [W[G]] + Ô(P,1)

[G] [W[G]]

(7.86)

and
DW[F] +N{T}[F]W[F] = Ô[F][W ] (7.87)

with

Ô(P,1)
[G] [W[G]] := (tS1

[G][W{T}[G] +W[G]]− tS1
[G][W{T}[G]])∂xU∗[G] (7.88)

Ô[F][W ] := F{T}[F][W{T} +W ]−F{T}[F][W{T}]. (7.89)

We shall now solve the singular initial value problem of this system of equations forW ∈ Xδ̃,κ̂+µ̂+ν̂ ,∞ where
all data, the exponent vector µ̂ and the exponent η satisfy the hypothesis of Proposition 7.9. Moreover, we
assume that ν̂ is of the form Eqs. (7.63) and (7.64) for some so far unspecified ν1, ν2 > 0. This discussion
follows the proof of Proposition 7.7 very closely. The proof of Proposition 7.9 however is simpler because
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we can rely on the fact (from the proof of Proposition 7.6) that the exponents µi[G], µi[F] and η satisfy the
correct inequalities. Hence we can focus our attention on ν1 and ν2. As before we study this singular initial
value problem by means of Theorem 6.5. The block diagonal and eigenvalue conditions of this theorem
are satisfied for any ν1, ν2 > 0 provided the other exponents satisfy the hypothesis of Proposition 7.9. We
remark that we use Eq. (7.59) here for the solutions of both the partially and the fully truncated systems
without further notice. It remains to establish the following results.

O(1,1)
[GV] [·]: This operator does not depend on U6,−1

[G] , U6,0
[G] and U6,1

[G] . As a consequence of Lemma 7.3
and Lemma 7.8, the rescaled operator is o(1) provided

ν1 ≥ ν2. (7.90)

O(1,2)
[GV] [·]: This does depend on U6,−1

[G] , U6,0
[G] and U6,1

[G] and therefore the generalized version of Lemma 7.8
above must be used together with Lemma 7.3. The image exponent of the rescaled operator
is

(∞, 2k − µ1
[G] + ν2 − ν1,∞,∞, 2η + 2k + µ1

[G] + ν2 − ν1,∞,∞, 2k + ν2 − ν1,∞,
∞,∞,∞,∞, 2k − µ5

[G] + ν2 − ν1,∞,∞,min{2η + µ1
[G], µ

5
[G] − µ6

[G]}, µ1
[G]).

This is positive and hence the rescaled operator is o(1) if

ν1 − ν2 < 2k − µ5
[G]. (7.91)

W[G] 7→ F
(2,1)
[GV] [W{T}[G] +W[G]]: The image exponent of the rescaled operator is

(∞,∞,∞,∞, 2(1− k)− µ1
[G] − ν1,∞,∞,∞,∞,

∞,∞,∞,∞, 2(1− k)− µ5
[G] − ν1,∞,∞, 1 + η − 2k − ν2,∞).

This follows from Lemma 7.3. This is positive and hence the rescaled operator is o(1) if

2(1− k)− µ5
[G] > ν1, 1− 2k + η > ν2. (7.92)

W[G] 7→ F
(2,2)
[GV] [W{T}[G] +W[G]]: The image exponent of the rescaled operator is

(∞,∞,∞,∞, η + 1− ν1,∞,∞, 1− η − µ6
[G] − ν1,∞,

∞,∞,∞,∞, 1 + η − µ5
[G] + µ6

[G] − ν1,∞,∞,∞,∞).

This follows from Lemma 7.3. This is positive and hence the rescaled operator is o(1) if

1 + η − µ5
[G] > ν1. (7.93)

O[GF][·]: This operator does not depend on U6,−1
[G] , U6,0

[G] and U6,1
[G] . The rescaled operator is o(1) as

a consequence of Lemma 7.4 and Lemma 7.8 if ν1 ≥ ν2.

O(P,0)
[G] [·] and Ô(P,1)

[G] [·]: Here we make use of the fact that DW{T} ∈ Xδ,κ̂+µ̂,∞ and ∂xU∗[G] ∈ Xδ,κ̂−ε̃,∞ for
any ε̃ > 0. All the above conditions then suffice to show that each rescaled operator is o(1)
owing to (i) the control of the difference operators in the brackets provided by Lemma 7.1,
Lemma 7.2 and Lemma 7.8 together with the fact that the principal part matrices do not
depend on U6,−1

[G] , U6,0
[G] , U

6,1
[G] , and (ii) the fact that the principal part matrices commute

with R[κ̂[G]], R[κ̂[G] + µ̂[G]], and, R[κ̂[F]], R[κ̂[F] + µ̂[F]], respectively.

Ô[F][·]: This operator does not depend on U6,−1
[G] , U6,0

[G] and U6,1
[G] . The rescaled operator is o(1) as

a consequence of Lemma 7.5 and Lemma 7.8.
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Hence, we have established that for any choice of data and exponents consistent with the hypothesis of
Proposition 7.9, Eqs. (7.86) and (7.87) (determined by the functions Ŵ and W{T}) has a unique solution
W ∈ Xδ̃,κ̂+µ̂+ν̂ ,∞ for any choice of ν consistent with Eqs. (7.90), (7.91), (7.92) and (7.93). First we want to

argue that this quantity W is indeed the sought function Ŵ −W{T} for which we only know so far that it
is in Xδ̃,κ̂+µ̂,∞. To this end we first observe by small modifications of the above arguments that Eqs. (7.86)
and (7.87) also have a unique solution W in the slightly larger space Xδ̃,κ̂+µ̂+ν̂−ε,∞ for any choice of ν
consistent with Eqs. (7.90), (7.91), (7.92) and (7.93) and any sufficiently small ε > 0. Since Eqs. (7.90) –
(7.93) allow us to pick ν1 and ν2 arbitrarily small we can therefore achieve that

κ̂ + µ̂ + ν̂ − ε ≤ κ̂ + µ̂ + ν̂ .

Uniqueness therefore confirms that the uniquely determined solution W indeed agrees with Ŵ −W{T}. In
order to establish Proposition 7.9 now we need to check that we can choose ν1 and ν2 sufficiently large.
Without loss of generality we can now assume specific values for the exponents. In particular we can choose
µ5

[G] is so small and η so close to 1 (in consistency with the hypothesis of Proposition 7.9) that Eqs. (7.90),
(7.91), (7.92) and (7.93) allow us to pick ν1 and ν2 arbitrarily close to 2 − 2k. The final step is to use
Eqs. (7.76) and (7.77) and thereby to establish that we have

DU i,−1
[G] = U i,0[G] + αU i,−1

[G]

as a consequence of both the partially and the fully truncated equations.

Matter does not matter Finally we are concerned with part (V) of Theorem 5.2 (and analogously
Theorem 5.4). In full analogy to our comparison of solutions of the partially and the fully truncated
systems with the same data in the previous paragraph, we now compare a solution of the Einstein-Euler
evolution equations Ŵ with a solution of the vacuum Einstein evolution equations W{V} determined by the
same data. Let W be given by Proposition 7.6 and Proposition 7.7 for some consistent choice of data and
exponents. Since the vacuum evolution equations are obtained from the Einstein-Euler evolution equations
by deleting the term F[GV][W ] and by ignoring the Euler equations one can convince oneself easily that the
analogous singular initial value problem for this simpler system has a solution W{V} for precisely the same
data and the same exponents.

In analogy to the previous paragraph we write Ŵ = W{V}+W . The equation for W can now be written
in the form of Eq. (7.61) (or Eq. (7.86)) using the same operator names where we only need to replace W{T}
by W{V}:

L[G](W[G])[W[G]] = O(1,1)
[GV] [W[G]] +O(1,2)

[GV] [W[G]] +O(2,1)
[GV] [W[G]] +O(2,2)

[GV] [W[G]]

−O(P,0)
[G] [W[G]]−O(P,1)

[G] [W[G]] + F[GF][W{V} +W ]
(7.94)

This equation is extremely similar to Eq. (7.61) and we now attempt to analyze it under precisely the same
conditions. In the same way as in the proof of Proposition 7.7, the conditions given by Eqs. (7.66), (7.69),
(7.70), (7.71), (7.72), (7.73), (7.74) and (7.75) must hold also here. Since Eq. (7.78) holds for any τ > 0
(we do not require Eq. (7.80) or Eq. (7.81) for this) and since ∂xE ∈ Xδ,−k−τ,∞ for any τ > 0, Eq. (7.52)
implies that the inequality (7.73) can be relaxed slightly

2− 2k − µ6
[G] − ν2 > 0. (7.95)

Only the last term in Eq. (7.94) still has to be analyzed. For that we find the following. If we assume

µ4
[G] < 1− Γ, 0 < µ1

[F] < min{2Γ, µ1
[G]}

in addition to the above, then the image exponent of the rescaled operator is

(∞, 1− Γ− µ1
[G] − ν1,∞,∞, 1− Γ− µ1

[G] − ν1,∞,
∞,min{1− Γ, 1− µ1

[G], 1− Γ + µ2
[F] − µ1

[G]} − ν1,∞,
∞, 1− Γ− µ4

[G] − ν1,∞,∞,∞,∞,∞,∞,∞)
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as a consequence of Lemma 7.4. This is positive and hence the rescaled operator is o(1) if in addition to the
above

ν1 < 1− Γ− µ4
[G].

If we choose the same quantity ε as in Proposition 7.7 and choose the exponents in exactly the same way,
our singular initial value problem for W has a unique solution provided

0 < ν1 < min{1− Γ, 2k + ν2} − 3ε, 0 < ν2 < min{2(1− k)− 2ε, ν1}.

We can now finalize the proof of part (V) of Theorem 5.2 with the same arguments as in the proof of
Proposition 7.9.
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