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Preface

The Hyperboloidal Foliation Method presented in this monograph is based
on a (3 + 1)—foliation of Minkowski spacetime by hyperboloidal hypersur-
faces. It allows us to establish global-in-time existence results for systems
of nonlinear wave equations posed on a curved spacetime and to derive
uniform energy bounds and optimal rates of decay in time. We are also
able to encompass the wave equation and the Klein-Gordon equation in a
unified framework and to establish a well-posedness theory for nonlinear
wave-Klein-Gordon systems and a large class of nonlinear interactions.

The hyperboidal foliation of Minkowski spactime we rely upon in this
book has the advantage of being geometric in nature and, especially, invari-
ant under Lorentz transformations. As stated, our theory applies to many
systems arising in mathematical physics and involving a massive scalar
field, such as the Dirac-Klein-Gordon system. As it provides uniform en-
ergy bounds and optimal rates of decay in time, our method appears to be
very robust and should extend to even more general systems.

We have built upon many earlier studies of nonlinear wave equa-
tions or Klein-Gordon equations, especially by Sergiu Klainerman, Demetri
Christodoulou, Jalal Shatah, Alain Bachelot, and many others. The cou-
pling of nonlinear wave-Klein-Gordon systems was first understood by
Soichiro Katayama who succeeded to establish an existence theory of such
systems.

Importantly, in developing the Hyperboloidal Foliation Method, we were
inspired by earlier work on the Einstein equations of general relativity by
Helmut Friedrich, Vincent Moncrief, and Anil Zenginoglu.

We are very grateful Soichiro Katayama for observations he made to the
authors on a preliminary version of this monograph.

Last but not least, the authors are very grateful to their respective
families for their strong support.

Philippe G. LeFloch and Yue Ma
Paris, September 2014
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Chapter 1

Introduction

1.1 Background and main objective

We are interested in nonlinear wave equations posed on the (3 + 1)-
dimensional Minkowski spacetime and, especially, in models arising in
mathematical physics and involving a nonlinear coupling with the Klein-
Gordon equation. A typical example is provided by the Dirac-Klein-Gordon
equation. (Cf. Section 1.5, below.) Our study is also motivated by the Ein-
stein equations of general relativity when the matter model is a massive
scalar field. The Klein-Gordon equation also describes nonlinear waves
that propagate in fluids or in elastic materials.

The so-called ‘vector field method’ was introduced by Klainerman
(1980, 1985, 1986, 1987). It is based on weighted norms defined from the
conformal Killing fields of Minkowski spacetime and Sobolev-type argu-
ments, and yields a global-in-time, well-posedness theory for the initial
value problem for nonlinear wave equations, when the initial data have
small amplitude and are “localized”, that is, compactly supported.

This method relies on a bootstrap argument and on an analysis of the
time decay of solutions. It applies to quadratic nonlinearities satisfying the
so-called ‘null condition’ introduced by Klainerman and Christodoulou. A
vast literature is now available on nonlinear wave equations. (Cf. Section 1.4
for further references.) As far as coupled systems of wave and Klein-Gordon
equations are concerned, the current state-of-the-art is given by a recent
work by Katayama (2012a) who succeded to extend the vector field method.

In this monograph, building upon these earlier works, we introduce a
novel approach, which we refer to as the ‘hyperboloidal foliation method’
and we establish a global-in-time existence theory for a broad class of
nonlinear wave-Klein-Gordon systems. In short, by working with suit-
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ably weigthed spacetime norms, we are able to cover the large class of
quadratic nonlinearities, also recently treated by Katayama (2012a)), while
our method demands limited regularity on the initial data and provides
sharp bounds on the asymptotic profile of solutions. The hyperboloidal
foliation method introduces a novel methodology, which takes its roots in
an observation®™ by Hoérmander (1997) for the Klein-Gordon equation.

Let us denote by [] the wave operator’ in Minkowski space. For our
purpose in this monograph, a simple (yet challenging) model of interest is
provided by the following two equations which couple a wave equation with
a Klein-Gordon equation

[(Ju = P(du, 0v),

(1.1.1)
v+ v = Q(du, v),

where the unknowns are the two scalar fields u,v. This model describes
the nonlinear interactions between a massless scalar field and a massive
one. Here, the nonlinear terms P = P(0u,dv) and @Q = Q(du,dv) are
quadratic forms in the first-order spacetime derivatives du, 0v, and account
for self-interactions as well as interactions between the two fields.

Recall that global-in-time existence results for nonlinear wave equations
(without Klein-Gordon components) is established when the nonlinearities
satisfy the null condition. (Cf. (1.2.4c), below.) On the other hand, the
vector field method applies also to the nonlinear Klein-Gordon equation, as
shown by Klainerman (1985). Recall also that the global existence problem
for the nonlinear Klein-Gordon equation was also solved independently by
Shatah (1985) with a different method.

However, when one attempts to tackle coupled systems of wave and
Klein-Gordon equations like (1.1.1), one faces a major challenge due to
the fact that one of the conformal Killing fields associated with the wave
equation (the scaling vector field denoted below by td; + rd,) is not a
conformal Killing field for the Klein-Gordon equation and, therefore, can
no longer be used in the vector field analysis. Katayama (2012a) succeeded
to circumvent this difficulty and established a global existence theory for
a class of coupled systems which includes (1.1.1). His method relies on a
novel L*-L* estimate. (See Section 1.4 for further historical background.)

*recalled in Section 2.1, below
TOur convention here is []:= 0:0¢ — Zzzl 0a0aq .
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1.2 Statement of the main result

The new method we provide in the present monograph relies on a fully
geometric foliation. It is ‘robust’ as it is expected to be applicable to large
classes of curved spacetimes and nonlinear hyperbolic equations.

We state here the main result that we will establish in this monograph.
We are interested in the Cauchy problem for the following large class of
nonlinear systems of wave—Klein-Gordon equations:

Chw; + Ggo‘ﬁ(w, ow)0a0sw; + ciw; = Fi(w, ow),

wi(B + 1,z) = w;q, (1.2.1)

Orwi(B + 1,x) = w;q,
in which the unknowns are the functions w; (1 < i < ng) defined on
Minkowski space R3*! and w;y, w;; are prescribed initial data. Through-
out, Latin indices a, b, ¢ will take values within 1,2, 3, while Greek indices
a, B, take values within 0, 1, 2, 3. Einstein’s convention on repeated indices

is in order throughout.
We assume the symmetry conditions

Gl =G QI =Gl (1.2.2)
and, for definiteness, the wave-Klein-Gordon structure
= 0, 1 <1< 9o,
ci Jo (1.2.3)
20—7 jO+1<Z<n0a

where o > 0 is a (constant, positive) lower bound for the mass coefficients of
Klein-Gordon equations. We decompose the “curved metric” coefficients
Ggo‘ﬂ (w, 0w) and the interaction terms F;(w, dw) in the form

GIP (w, dw) = AI*PM* 0wy, + BI*P Ry, (1.2.4a)

Fi(w, ow) = P,iaﬁjk(?awjé’gwk + Q?jkwké’awj + R{kijk, (1.2.4b)
in which we can restrict the summation in (1.2.4a) and (1.2.4b) to the

range j < k. For simplicity in the presentation of the method and without

genuine loss of generality, we focus on quadratic nonlinearities and assume
that the coefficients A7*P7% BIaPk pabik Q% and RI* are constants.

In order to simplify the notation, we adopt the following index conven-
tion:

all indices i, 7, k, [ take the values 1,...,ng,

Atake the values 1, ..., jo,

all indices 7,7, k, [
il

all indices 7, J, k, [ take the values jo + 1,...,ng.
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It is also convenient to write
;= Wi

for the components satisfying wave equations, or wave components for
short, and, analogously,

Vy 1= Wy

for the components satisfying Klein-Gordon equations, or Klein-Gordon
components.
Our main assumptions are the null condition for wave components

JoByk j08k 7k
A%o‘m fafﬁf»y — Bgaﬁ faﬁ,b’ — faﬂj fafﬁ =0

whenever (£y)? — 2(5“)2 =0, (1.24c)
and the non-blow-up condition
BIoPk — pik — RIF . (1.2.4d)
Moreover, we impose that
Q* — 0, (1.2.4¢)

which is our only genuine restriction™ required for the present implementa-
tion of the hyperboloidal foliation method. We emphasize that

the null condition in (1.2.4c) is imposed for the quadratic forms

associated with the wave components only,

and that no such restriction is required for the Klein-Gordon components.
We observe! that (1.2.4d) combined with the symmetric condition

(1.2.2) leads to the following restriction on Bgaﬁk:

Pa Bk .
Tk _ 0, (1.2.5)

This class of systems was also studied in Katayama (2012a) by a completely
different approach.

We are now in a position to state the main result that we establish in
the present monograph with the Hyperboloidal Foliation Method.

*When this condition is violated, solutions may not have the time decay and asymp-
totics of solutions to linear wave or Klein-Gordon equations in Minkowski space.
Tas pointed out to the authors by S. Katayama
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Theorem 1.2.1 (Global well-posedness theory). Consider the initial
value problem (1.2.1) with smooth initial data posed on the spacelike hyper-
surface {t = B + 1} of constant time and compactly supported in the ball
{t = B+ 1; |z| < B}. Under the conditions (1.2.2)—(1.2.4), there exists a
real g > 0 such that, for all initial data w;gy,w;; : R® — R satisfying the
smallness condition

D wioll s ey + |wis |l sy < €o, (1.2.6)

the Cauchy problem (1.2.1) admits a unique, smooth global-in-time so-
lution.  In addition, the energy of the wave components —that is,
2ir1<3 Emoei (s, Zuz) defined in Section 2.1 below— remains globally bounded
i time.

In the special case ng = jg, the system (1.2.1) contains only wave equa-
tions and the statement in Theorem 1.2.1 reduces to the classical existence
result for quasilinear wave equations satisfying the null condition. Our
method is somewhat simpler than the classical proof in this case, as we will
show in Chapter 6. In the opposite direction, if we take jo = 0, the sys-
tem under consideration contains Klein-Gordon components only, and our
result reduces to the classical existence result for quasilinear Klein-Gordon
equations.

An outline of this monograph is as follows. In Chapter 2, we introduce
some basic notations on the hyperboloidal foliation and the associated en-
ergy, and we formulate our bootstrap assumptions. Chapter 3 is devoted to
the derivation of fundamental properties of vector fields and commutators
and their decompositions, which we will use throughout this book.

In Chapter 4, we discuss the null condition in the proposed semi-
hyperboloidal frame and we derive preliminary estimates on first- and
second-order derivatives of the solutions. In Chapter 5, we present some
technical tools and, especially, a Sobolev inequality on hyperboloids and a
Hardy inequality along the hyperboloidal foliation.

At this juncture, in Chapter 6 we apply our method to scalar semilinear
wave equations and we provide a new proof of the standard existence result
for such equations

We pursue our analysis, in Chapter 7, with fundamental estimates in the
L* and L? norms, which follow from our bootstrap assumptions. Chapter 8
is devoted to controlling certain ‘second-order derivatives’ of the wave com-
ponents (in a sense explained therein), while Chapter 9 deals with quadratic
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terms satisfying the null condition and also discusses additional estimates
that mainly rely on the time decay of solutions.

Next, in Chapter 10, we derive L? estimates for nonlinear interaction
terms and, therefore, complete our bootstrap argument.

Finally, for the sake of completness, in Chapter 11 we sketch the local-
in-time existence theory. Furthermore, the bibliography at the end of this
book provides the reader with further material of interest.

1.3 General strategy of proof

In this section, we present several key features of our method, while referring
to Chapter 2 for the relevant notions (hyperboloidal foliation, bootstrap
estimates, etc.).

e Hyperboloidal foliation.
Most importantly, in this book we propose to work with the fam-
ily of hyperboloids which generate a foliation of the interior of the
light cone in Minkowski spacetime. (Cf. (2.1.4), below.) In con-
trast with other foliations of Minkowski space which are adopted in
the literature, the hyperboidal foliation has the advantage of being
geometric in nature and invariant under Lorentz transformations.
It is therefore quite natural to search for an estimate of the energy
defined on these hypersurfaces, rather than the energy defined on
flat hypersurfaces of constant time, as is classically done.

e The semi-hyperboloidal frame.
Furthermore, to the hyperboloidal foliation we attach a semi-
hyperboloidal frame (as we call it), which consists of three vectors
tangent to the hyperboids plus a timelike vector. This frame has
several advantages in the analysis in comparison with, for instance,
the ‘null frame’” which is often used in the literature and, instead,
is defined from vectors tangent to the light cone. Importantly, the
semi-hyperboloidal frame is regular (in the interior of the light cone,
which is the region of interest), while the null frame is singular at
the center ({r = 0}, say).

e Decomposition of the wave operator.
We also introduce a decomposition of the wave operator [] with
respect to the semi-hyperboloidal frame, which yields us an expres-
sion of the second-order time derivative d;0; of the wave compo-



Introduction 7

nents in terms of better-behaved derivatives. (Cf. Proposition 2.2.1,
below.)

e The hyperboloidal energy.
Our method takes advantage of the full expression™ of the en-
ergy flux induced on the hyperboloids in order to estimate certain
weigthed derivatives on the hyperboloids. This appears to be es-
sential in order to encompass wave equations and Klein-Gordon
equations in a single framework.

e Sobolev inequality on hyperboloids.
In order to establish decay estimates (or L™ estimates) on the
solutions, we must control various commutators of fields and of
operators and, next, apply suitable embedding theorems. To this
purpose, we rely on a Sobolev inequality on hyperboloids, first
derived by Hérmander (1997).

e Hardy inequality on hyperboloids.
Furthermore, we also need a new embedding estimate, that is, a
Hardy inequality on hyperboloids, which we establish in this book
and is essential in eventually deriving an L? estimate on the ‘metric
coefficients’. Section 5.3 for a precise statement.

e Bootstrap strategy and hierarchy of energy bounds
Our bootstrap formulation below consists of a hierarchy of energy
bounds, involving several levels of regularity of the wave compo-
nents and the Klein-Gordon components. This rather involved
bootstrap argument is necessary (and natural) in order to handle
the coupling of wave equations and Klein-Gordon equations: the
derivatives of different order of Klein-Gordon components enjoy
different decay behaviors and different energy bounds.

We refer to Chapter 2 for further details and continue with several
observations concerning the scope of Theorem 1.2.1.

1. As stated in the theorem, the energy of the wave components, that
is, the quantity E,, ., (s, Zu;) (defined in Section 2.1) remains globally
bounded for all |I]| < 3, that is, up to fourth-order derivatives. Hence, the
wave components have not only ‘small’ amplitude but also ‘small’ energy.
At the end of Chapter 2, we also establish that the standard flat energy
(that is, the quantity |0aZ7u;(t, )| 12(rs) defined at the end of Chapter 2,
below) is also uniformly bounded for all times. Standard methods of proof

*In constrast, Hormander (1997) only sought for a control of the zero-order term of
the energy.
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lead to possibly unbounded high-order energies.

2. We also emphasize that, in Theorem 1.2.1, the initial data belong
to HS, while Katayama (2012a) assumes a very high regularity on the
initial data (that is, a bound on the first 19 derivatives). In this latter
paper however, the initial data need not be compactly supported, but have
sufficient decay in all spatial directions.

3. In principle, H* would be the optimal regularity in order to work with
a uniformly bounded metric and to apply the vector field technique: namely,
to guarantee the coercivity of, both, the flat and the hyperboloidal energy
functionals, we need a sup-norm bound of the second-order derivatives the
‘curved metric’ terms Gf op (w, 0w). In spatial dimension three, Sobolev’s
embedding theorem H™ < L* holds, provided m > 3/2. Allowing only
integer exponents, we see that H* would be optimal.

4. Certain nonlinear interaction terms may lead to a finite time blow-up
of the solutions, especially

UsU5,  UO0qlU7, U5,  UpOqUy

and are, therefore, naturally excluded in Theorem 1.2.1.

5. In short, by denoting by () an arbitrary quadratic nonlinearity and by
N an arbitrary quadratic null form and by using the notation u, v for arbi-
trary wave/Klein-Gordon components, the terms allowed in Theorem 1.2.1
for wave equations are

Q,v), Qv,av), Qv,du), Q(v,30v) Q(v,d0u),
Q(0v,0v), Q(dv,du), Q(dv,ddv), Q(dv,d0u),
Q(0u, dov),
N(u,00u), N(0u,du), N(0u,dou),

while, in Klein-Gordon equations, we can include the terms
Qv,v), Qv,av), Qu,du), Q(v,a0v), Q(v,d0u),
Q(0v,0v), Q(dv,du), Q(dv,ddv), Q(dv,d0u),
Q(0u,dov), Q(0u,du), Q(du,d0u).

1.4 Further references on earlier works

For a background on the vector field method and the global well-posedness
for nonlinear wave equations, in additional to the references cited earlier,
especially the pioneering paper Klainerman (1980), we refer to the text-
books Hormander (1997) and Sogge (2008). Additional background on
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nonlinear wave equations is found in Strauss (1989). We do not attempt
to review the large literature and only mention some selected results, while
referring the reader to the bibliography at the end of this monograph.

As already mentioned, the first results of global existence for nonlinear
wave equations in three spatial dimensions were established by Klainerman
(1986) and Christodoulou (1986) under the assumption that the nonlin-
earities satisfy the null condition and when the equation is posed in the flat
Minkowski space. A (very) large literature is available for equations posed
on curved spaces and, once more, we do not try to be exhaustive. We re-
fer to Lindblad (1990), Klainerman and Sideris (1996), Klainerman and
Selberg (1997), Klainerman and Machedon (1997), Bahouri and Chemin
(1999), Tataru (2000, 2001, 2002), Alinhac (2004, 2006), Lindblad and
Rodnianski (2005), and Lindblad, Nakamura, and Sogge (2012).

The Klein-Gordon equation on curved spaces was also studied in Bach-
elot (1994, 2011).

Since the decay of solutions to the (linear) Klein-Gordon equation is
t~%2 in dimension d > 1, the decay function t~%? is not integrable in di-
mension two and specific arguments are required in two dimensions: Delort,
Fang, and Xue (2004) have treated quadratic quasilinear Klein-Gordon sys-
tems in two space dimensions and, more precisely, coupled systems of two
equations with masses satisfying mq # 2mo and mo # 2m; with general
nonlinearities. Furthermore, Delort, Fang, and Xue (2004) could treat the
case of equality when the null condition is assumed. This work simplified
and generalized (by including resonant cases) the earlier works by Ozawa,
Tsutaya and Tsutsumi (1995, 1996), Tsutsumi (2003a,b) and Sunagawa
(2003, 2004). See also Katayama, Ozawa, and Sunagawa (2012) for the
algebraic characterization of the null condition and the asymptotic behav-
ior of solutions, as well as Kawahara and Sunagawa (2011) for a condition
weaker than the null condition.

More recently, Germain (2010) revisited the global existence theory in
dimension three for coupled Klein-Gordon equations with different speeds
and systematically analyzed resonance effects. Systems of wave equations
for different speeds were also studied by Yokohama (2000) and Sideris and
Tu (2001) under the null condition. See also Hoshiga and Kubo (2000),
Katayama (2013), Katayama and Yokoyama (2006), and Kubota and
Yokoyama (2001).

On the other hand, Klein-Gordon equations in one space dimension are
treated by quite different methods. (Cf. Delort (2001); Sunagawa (2003);
Candy (2013).)
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The problem of global existence for coupled systems of wave and Klein-
Gordon equations have attracted much less attention so far in the literature.
In addition to the references already quoted, let us mention Bachelot (1988)
who first treated the Dirac-Klein-Gordon system. Furthermore, results on
the blow-up of solutions were established by John (1979, 1981) and, more
recently, Alinhac (2000).

More recenty, a novel method to study nonlinear wave equations (appli-
cable also to other dispersive systems) was introduced in Shatah (2010),
Germain, Masmoudi, and Shatah (2012), Pusateri and Shatah (2013),
Pusateri (2013), and Bernicot and Germain (2014), which is based on an
analysis of space-time resonances. See also the review by Lannes (2013).

Hyperboloidal foliations were used first by Friedrich (1981, 1983, 2002)
in order to establish a global existence result for the Einstein equations. His
proof was based on a conformal transformation of the Einstein equations
and an analysis of the regularity of its solutions at infinity. This was moti-
vated by earlier work by Penrose (1963) on the compactification of space-
times. This idea was later developed by Frauendiener (1998, 2002, 2004)
and Rinne and Moncrief (2013). The importance of hyperboloidal folia-
tions for general hyperbolic systems was emphasized in Zenginoglu (2008,
2011) in order to numerically compute solutions within an unbounded do-
main. The general standpoint in these works is that, by compactification of
the spacetime, one can conveniently formulate an ‘artificial’ outer boundary
and numerically compute asymptotic properties of interest.

1.5 Examples and applications

The Maxwell-Klein-Gordon system

The theory presented in this book applies to many systems arising in math-
ematical physics, and we present here a few of them. For instance, the
Maxwell-Klein-Gordon system in Coulomb gauge takes the form of a sys-
tem of nonlinear wave equations for real-valued unknown A; and a complex-

valued field ¢
—04; = =S(¢0;9) + |¢]* A; — 0,0, Ao,
—0¢ = 2v=1(— A70;¢ + Agded) + V=10, 409 + (A A® +m?) ¢,

with auxillary unknown Ag given by

AAy = —3(40:9) + |¢|* Ao, (1.5.2)
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supplemented with an elliptic constraint equation imposed on the initial
data

07A; = 0. (1.5.3)

The Dirac-Klein-Gordon system

Consider next the following coupling between the Dirac equation and the
wave or Klein-Gordon equation (with m,o > 0):

3
- \/—To;o Lo 0atp +mip = fololTols9), (1.5.4)

v + o%v = YT K,

in which the unknown are the (C*-valued) spinor field ¥ and the (real-
valued) scalar field v. We have denoted by v' the complex conjugate
transpose of 1. Here, [ is a coupling constant and K a constant 4 x 4
matrix, while the 4 x 4 matrices I', are the so-called Dirac matrices which
are essentially characterized by the commutation conditions

FQFB + FﬁFa = —2Imaﬂ, (1.5.5)

where m,g is the Minkowski metric diag(l, -1, -1, —1) and I denotes the
4 x 4 identity matrix. From the Dirac equation, on can deduce second-order
equations for real-valued unknowns (so that our theory applies): this is
done by composing the Dirac operator with itself (since, roughly speaking,
the Dirac operator is the “square-root” of the wave operator) and then
considering the real and imaginary parts of .

The Einstein equations

Although our theory in its present form does not directly apply to the
Einstein equations of general relativity

Gaog = Tag, (1.5.6)

it is nonetheless motivated by this system and we expect a suitable exten-
sion of our method to apply to (1.5.6). The left-hand side G,z of (1.5.6)
is the Einstein tensor of a spacetime (M, g), that is, a Lorentzian (3 + 1)-
dimensional manifold, while the right-hand side T,3 denotes the energy
momentum tensor of a matter field, which in our context can be assumed
to be a set of massless and massive scalar fields.
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Chapter 2

The hyperboloidal foliation and the
bootstrap strategy

2.1 The hyperboloidal foliation and the Lorentz boosts

We will work with the foliation of the interior of the light cone in Minkowski
spacetime R3*! defined as below.
We introduce the hyperboloidal hypersurfaces

Hs = {(t,z) /t > 0; t* — |2|* = s} (2.1.1)
with hyperbolic radius s > 0, where (t,z) = (t,2%) = (¢,z', 22, 23) de-
note Cartesian coordinates, and we write 72 := |z|? = >, (2%)?. We then
consider the interior of the (future) light-cone

K= {(tz)/|z| <t—1} (2.1.2)

and, with s; > sy > 1, as well as the truncated conical region
Kiso,51] :={(t,x)/|:c| <t—1, (s0)? <t®—|z|* < (s1)%t> O}
_ U (H, A K). (2.1.3)
s0<s<81
This set is thus limited by two hyperboloids and is naturally foliated by

hyperboloids. See Fig. 2.1 for a display of the set K[, 5,1
Taking now s; = 400, we will use the notation
Kiso,400) 1= {(t, x)/|x| <t—1, (30)2 <t?— ]:r|2}
_ U (Hs A K). (2.1.4)
§=80
We refer to Fig. 2.2 for a display of this set.

In the following, we will be interested in functions supported in the
conical region XK, ). Observe that the set K, ) is neither closed nor
open and a function supported in this set, by definition, vanishes near the
future light cone {r =t — 1} but can be non-vanishing on the surface Hs,.

13
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Fig. 2.1 The set K|

50,81]"

The region K n {|z| < t/2} will be also of interest in our estimates
below, when we will investigate the behavior of solutions away from the
light cone. Note in passing that the uniform estimate ¢ < %gs holds in
K {|z] <t/2}.

We consider first the Klein-Gordon equation

I]u+02u=f,

(2.1.5)
U(t,x)lj{so = UO(t,IIJ'), Ut(t,$)|j—cso = U’l(t7x)7

with given 0,59 = B + 1 > 1. Recall that the symbol [] denotes the
wave operator in Minkowski spacetime whose metric has the signature
(1,—1,—1,-1). In (2.1.5), the initial data ug,u; are prescribed and com-
pactly supported in the ball {]:1:| < B } of radius B = sy — 1. The source-
term function f is supported in K, 1), so that, by the principle of prop-
agation at finite speed, the solution u = u(t, x) to (2.1.5) is also supported
in K5, +00)- In the same manner, the solution of the main system (1.2.1)
studied in this monograph is also supported in X[, 44) and vanishes in a
neighborhood of the light cone {r =t— 1}.

Next, let us introduce the hyperbolic rotations or Lorentz boosts
(by rising and lowering the indices with the Minkowski metric with signa-
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Fig. 2.2 The set K{4,,+o0)-

ture (+,—, —, —))
Ly, := —x,00 + x00, = x%0; + t0,, (2.1.6)

which are tangent vectors to the hyperboloids. Denote by 2 the family of
admissible vector fields consisting of all vectors

Lo = 04, Z3iq = Lg. (2.1.7)
Observe that, for any Z, Z’ € 2, the Lie bracket [Z, Z'] also belongs to 2,
so that this set is a Lie algebra. For any multi-index I = (g, a9, ..., Q)

of length |I| := m, we denote by Z! the m-th order differential operator
Z1 = Z,, ... Z,, . Wealso denote by ¢ the m-th order derivative operator
01 := 04,00y - . 0q, (here 0 < o; < 3) and L the m-th order derivative
operator L! := Ly, Lo, - .. Lq,, (here 4 < a; <6).

Since we will be working within X, we have |z%/t| < 1 in X and, there-
fore, the spatial rotations

Qup = %0, — 2°0, (2.1.8)

need not be included explicitly in our analysis, since these fields can be

recovered from & via the identities

s b

X
Oy = Ly — 2L, 2.1.9
b= Lo~ ( )
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Within the cone X, the coefficients =%/t are smooth, bounded, and homo-
geneous of degree zero (see also Lemma 2.2.1).

Now we study the energy associated with the hyperboloidal foliation.
Using d;u as multiplier for the equation (2.1.5), it is easy to derive the
following energy inequality for all s; > sq:

S1 1/2
(Emo(s1,1)"> < (B o(s0,u)) " +J <f & daz) ds, (2.1.10)
So j‘fs

where the energy on the hyperboloids is defined as*

( 3 ((29/)dpu + dau)” + ((51/t)0cu)? + gzuz) d

(2.1.11)
with dz = dr'dr?dr®. Hormander (1997)) established a Sobolev-type
estimate adapted to this inequality (cf. Lemma 7.6.1 therein, or refer to
(5.1.1) in Chapter 5, below) and arrived at the L™ estimate

Epo(s1,u) = J
H

S1

sup t3/2|uf
s1
<C Z ET,W(:;“l,ZIu)l/2

S1 1/2
<C Y Enmgl(so, Z'u)'?+C )] J (f (ZIf)2da:> ds,
So g‘fs

|7]<2 |I]<2

where the summations are over all admissible vector fields in 2. Impor-

tantly, this argument yields the (optimal) rate of decay t—3/2

solutions to the Klein-Gordon equation.

enjoyed by

2.2 Semi-hyperboloidal frame

Our analysis in the present work is based on the semi-hyperboloidal
frame —as we call it— defined by’

0y = 04, 0, :=t""Ly = (2%/t)0¢ + 0a. (2.2.1)

*The subscript refers to the Minkowski metric.
tIn contrast, a standard method relies on the so-called null frame containing two null
vectors tangent to the light cone.



The hyperboloidal foliation and the bootstrap strategy 17

The transition matrices between the semi-hyperboloidal frame and the nat-
ural frame 0p, that is, 0, = ®203 and 0, = \Ilgéﬁ are found to be

1 000 1 000
2'/t100 _1 —z1/t100

®i= 22/t010 ] =t = —z%/t 010 (222)
z3/t001 —23/t00 1

With our choice of frame, the matrices ®, ¥ are smooth within the cone XK.
We adopt the following notation and convention. In order to express
the components of a tensor in a frame, we always use Roman font with
upper and lower indices for its components in the natural frame, while we
use underlined Roman font for its components in the semi-hyperboloidal
frame. Hence, a tensor is expressed as T = T*%0, ® 0s in natural frame,
and as T' = TP J,, ® 0 in the semi-hyperboloidal frame. For example, the
Minkowski metric is expressed in the semi-hyperboloidal frame as

m =m0, ® 0,

with
s2/t? ol /t 2%/t 23/t
1
oy _ | @/t =1 0 0 -
(m™") 2/t 0 —1 0 (2:2:3)
2/t 0 0 -1
and

1 xl/t x2/t z3/t
(m,,,) = o/t (2t/t)? — 1 2t2?/t? xtad/t?
Bl 2?2t 2Pt (2P)2 -1 a2t
o3/t Bl 32?2 (23/1)? -1

(2.2.4)

Similarly, a second-order differential operator T%0,05 can be written
in the semi-hyperboloidal frame, so that by writing 7% = IO‘/B ,@g,@g,
(with obvious notation), we obtain the following decomposition formula for
any function u

T%0,05u =T 0, 05u + TP (0,1 )04 u. (2.2.5)
In particular, for the wave operator, we obtain
Cu = maﬂéaéﬁu + moP (&l\Ifg,)Qﬁlu, (2.2.6)

where we know that m® = (¢? —r?)/t? = s2/t2. This leads us immediately
to the following key identity.
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Proposition 2.2.1 (Semi-hyperboloidal decomposition of []). In
the semi-hyperboloidal frame, the wave operator admits the decomposition

(8/1)2000pu = [lu — m* 0y, u — m*0,0,u — m*d,0,u

2.2.7
— maﬁ (@Q\Pg,)éﬂlu ( )

We will also need the following property.

Proposition 2.2.2. For any two-tensor T defined in the cone X and for
all indices o, B, 1 and admissible field Z, one has

2T 5 3 |2 T

a/,B/
I/ |<|1]

mn XK.

The proof of this result (given below) will rely on the following two
lemmas.

Lemma 2.2.1 (Homogeneity lemma). Let f = f(t,z) be a smooth
function defined in the closed region {t = 1,|x| < t} and assumed to be
homogeneous of degree n in the sense that:

f(pt,pz) =p"f(t,x) forallp = 1/t. (2.2.8)

For all multi-indices Iy, I, the following estimate holds for some positive
constant C(n, 11|, |12}, f):

01212 f(t,2)| < O(n, L], | Lo, f) t111H7 in K ={|z] <t—1}.
(2.2.9)

Proof. We observe that d, f is homogeneous of degree n — 1 and L, f is
homogeneous of degree n. We also observe that if some functions f; are
homogeneous of degree 7;, then the product | [, f; is homogeneous of degree
>.; 1 and then any Z I'f is homogeneous.

We claim that the degree of homogeneity of Z7 f, denoted by 7/, is not
higher than 7. This can be checked by induction, as follows. Namely,
this is clear when |I| = 1. Moreover, assume that for all [I| < m, ZIf is
homogeneous of degree n’ < n, then we now check the same property for
all |I| = m 4 1. Namely, assume that Z! = Z; ZI' with [I’| = m. When
Z1 = On, then Z1f = 0, (ZI/f) and we observe that Z! f is homogeneous
of degree n’ < n. We see that 0, (ZI/ f) is again homogeneous of degree
n” —1<n <n. When Z; = L,, then L, (lef) is homogeneous of degree
n' < n. This completes the induction argument that Z! f is homogeneous
of degree n at most.
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Furthermore, observe that if f is homogeneous of degree 1, then 0%t f
is homogeneous of degree nn — |I;|. This is so since J,f is homogeneous
of degree n — 1. Hence, 0/t Z%2 f is homogeneous of degree n — |I;| and is
smooth within the cone XK.

Next, in order to establish (2.2.9), we take (¢,z) € X and compute

ozl f(t,x) =t~ I+ ol zT (1 2 /t) with ' < 7. (2.2.10)

By a continuity argument in the compact set {t = 1, |x| < 1}, there exists
a positive constant C'(n, |I1], |I2]) such that

sup |6IlZI2f(1,a:)’ < C(n, |1, |12)),

|z|<1

so that, in view of (2.2.10), the desired result is proven. O

We now estimate the coefficients of the matrices ® and W. First, we
observe that z%/t is homogeneous of degree 0 and smooth in the closed
region {t > 1, |z| < t}.

Lemma 2.2.2 (Changes of frame). With the notation above, the fol-
lowing two estimates hold for all multi-indices I, I5:

01 2208 < C(n, | I, | L))t~ in K. (2.2.11)

01 2208 < C(n, ||, | L))t in XK. (2.2.12)
Proof of Proposition 2.2.2. From 7% = To‘/ﬁ,\Pg,‘Pg, we find

Z'TP = ZN (TP wg) = Yz (0w Z2Rr
Ih+I=1

and, therefore,

2T < Y |2h ()| 2
I+1>=1
<c(1) 3 |z,
[I2]<|1]

Here, we have used that |Z7*(¥%,¥%,)| < C(|L1|) which follows from
(2.2.12). O
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2.3 Energy estimate for the hyperboloidal foliation

As presented in Chapter 1, we are interested in the following class of wave-
Klein-Gordon type systems

Cw; + G{aﬁaaaﬁwj + C?wi = F;,

(2.3.1)
wilse,, = wio,  Qwilse,, = wir,

with unknowns w; (1 < i < ng), where the metric G? P (with some abuse of
notation) and the source-terms F; are supported in the cone Xy, 4, and
Wi, w1 are supported on the initial hypersurface H,, nXK. To guarantee the
hyperbolicity, we assume the symmetry conditions (1.2.2). For definiteness,
we may also assume (1.2.3) on the constants c;.

We introduce the following energy associated with the Minkowski metric
on each hyperboloid J:

Em,ci (57 wz)

= J ((atwi)Q + Z:,(ﬁawi)2 + (2xa/,~§)5twiaawz + CQwZ) da
g—CS

a

-I.. (S + ((s/n0mw)* + u? ) da

a

— LCS (Z ((s/t)@awz) + 7 (Sw;)? + 72 Z Qapw; ) 1w >da:

a a<b
(2.3.2)
where we use the notation (2.1.8) and

718 = 0p + ) (x/1)0a. (2.3.3)

When ¢; = 0, we may also write E,,(s,w;) := Ep, o(s,w;) for short.
On the other hand, the curved energy which is naturally associated with
the principal part of (2.3.1) is defined as

Eg.c,(s,w;) == Ep ¢, (s, w;) + ZJ (ﬁ,ﬂulﬁ/@w]GNB)(Ka<3 (1, —z/t)dx
Hs =
— J (Oawidpw;GIP) dz,

S

(2.3.4)
where the second term in the right-hand side involves the Euclidian inner
product of the vectors (6twiagij§a6) and (1, —x/t).

o<a<3
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Proposition 2.3.1 (Hyperboloidal energy estimate). Given a con-
stant k1 > 1 and some locally integrable functions L, M > 0, the following
property holds. Let (w;)1<i<n, be the (local-in-time) solution to (2.3.1) de-
fined on some hyperbolic time interval [so, s1] and suppose that the metric
and source satisfy the following coercivity conditions

’%1_2 Z Emvci (S? wi) < Z EG>Ci (57 wl) < K% Z Emvci (S? wi)? (235)

S
- é‘wﬁw——@Gﬂaé’wlé‘w)dw
U t( CRT g o (2.3.6)
() mCi(Sawi)1/27
and the bound
Y IE 2,y < L(s), s € [s0,51]. (2.3.7)

Recall also that the symmetry conditions (1.2.2) are assumed, that is,
Ggaﬁ = G;-O‘B = G‘gﬁa, and that Fj, Ggaﬁ are supported in K s,1. The
following energy estimate holds (for all s € [so,s1]):

(;Em,ci(svwi)>l/2

< K (;Em,cxso, wi)) v + CK? f ) (L(1) + M(r)) dr,

S0

(2.3.8)

where the constant C' > 0 depends on the the structure of the system (2.3.1)
only.

The following remarks are in order:

e In view of (2.3.2) and (2.3.8), the L? norm of 0, w; and (s/t)d,w;
are uniformly controlled on each hypersurface H,. It is expected
that these weighted expressions enjoy better decay than d,w; itself.

o In view of Y (z/r)((r/t)0q + (z%/7)d¢)w; =t~ Sw;, we see that
the weighted scaling derivative ¢t~ Sw; is also controlled.

e In Chapter 6, we will see that the energy FE,,(sg,w;) on the initial
hyperboloid is controlled by the H! norm of the initial data on the
initial slice t = sg.
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Proof. In view of the symmetry (1.2.2) and by using d;w; as a multiplier,
we easily derive the energy identity

Z%&t(Z(aawl +c; w) 228 c? wzﬁth

= 2 00 (G1°7 0yw;05w;) — Z §at (G170 w;idpw;)

= > 0w Fy + ) (aaagaﬂatwiaﬂwj - %atGg’aﬂaawiaﬁwj).

We integrate this identity over the region Xy, ,; and use Stokes’ formula.
Note that by the property of propagation at finite speed, the solution (w;)
is defined in K[y, 1) and vanishing in a neighborhood of the light cone.

By our assumption on the support of Gg of , we obtain

1
_ Z EG Ci S ’U)Z) — EG,ci (507w’i))

. 1 .
_ Z J (rwi s + 2aGI7P Bpwidgw; — SOGI awidguy; ) dide

_Zf <J (7 /)6 yw; F d:r;)d

. 1 .
+ ZJ (J T/t Ggaﬁﬁtwiﬁgwj — iﬁtGZaﬁaawiﬁgwj> d:L') dr,
which leads us to

d _ jaBa o
o ;EG,Ci(s,wl) _2; st ((s/t)&aGi Oyw; Ogw;

— (8/2t)0,GI*P dwidpw; + (s/t)c?twiFi) dz.
So, with the assumptions (2.3.6) and (2.3.7), we get

(Zrectw) R (S o) v
) (M(s) + |Fz-uL2ms))Em,ci<s,wi)l/z
(X e o0) 40 (TPl (X Eo )
= ¢ (M(s) + L(s)) @ Bpnci(s.w)
< Cry (M(s) + L(s)) ( 2 Eoe.(s, wi))l/{

N

1/2
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which yields

1/2
% <Zi:EG,ci(3awz’)> < Cri(L(s) + M(s)).

We integrate this inequality over the interval [sg, s|] and obtain

mno 1/2
< Z EG,C@' (57 w'L))
=1

no 1/2 s s
< < Z E¢.c; (0, wz)) + Cry J L(T)dr + Cry f M(7)dr.

1=1 S0

By using the condition (2.3.5), this completes the proof. O

2.4 The bootstrap strategy

We are now in a position to outline our method of proof of Theorem 1.2.1.
From now on, we assume that the assumptions therein are satisfied. It will
be necessary to distinguish between three levels of regularity and, in order
to describe this scale of regularity, we will use the following convention on
the indices in use:

)

5
4, (2.4.1)

I: multi-index of order < 3,
which we call admissible indices. Throughout, C,Cy,Cy,C*, ... are
constants depending only on the structure of the system (1.2.1), such as
jo, ]{30, B, C;.
We will use certain norms on the hyperboloids and, so, if u is a function

I*: multi-index of order <
<

IT: multi-index of order

supported in K, 4o0), we set (for s = sp):

1/p 1/p
|u] g,y = (L{ |u(t,a:)‘pd:1;> = <JR3 ’u(\/m’ :13)|pdm> .

) (2.4.2)
The proof of Theorem 1.2.1 relies on Propositions 2.4.1-2.4.3, stated now.
The first proposition below concerns the construction of initial data on the
initial hyperboloid Hp 1, and will be established in Chapter 11.

Proposition 2.4.1 (Initialization of the argument). For any suffi-
ciently large constant Cy > 0, there exists a positive constant €, € (0,1)
depending only on B and Cy such that, for every initial data satisfying

> (lwioll o ey + lwis s re)) < € < e, (2.4.3)

{2
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the local-in-time solution to (1.2.1) associated with this initial data extends
to the region limited by the constant time hypersurface t = B + 1 and the
hyperboloid Hpy1. Furthermore, it satisfies the uniform bound

N Eun(s0, 2" w0;) 2 < Coe. (2.4.4)
J

for all admissible vector fields Z and all admissible indices I*.

Given some constants Cq,e > 0 and § € (0,1/6) and a hyperbolic time
interval [sg, s1], we call hierarchy of energy bounds with parameters
(C1,€,9) the following five inequalities (for all s € [sq, s1] and all admissible
fields and admissible indices):

Em(S,ZIng)l/z < Cres®  for 1 <7< jo, (2.4.5a)

En .o (s, ijvj)l/2 < Ches®  for jo +1 < J< no, (2.4.5b)
E.. (s, ZITug)l/2 < Cres®? for 1 <7< jo, (2.4.5¢)
Emo(s, Z" 0)V2 < Cres®’®  for jo + 1 << ng, (2.4.5d)
Em(s,ZIu;)1/2 < Cie for 1 <7< jy. (2.4.5e)

Observe that (2.4.5e) concerns the wave components only and that the
upper bound is independent of time.
At this juncture, since ¢y = o > 0 for all jo + 1 <7 < ng, we have

B (s, 25 07) < Emc, (s, 25 07) < (¢1/0)2Emo(s, Z5vy),  (2.4.6)

so that the two energy expressions are equivalent.

Given some constants k1 > 1, C*,C1,e > 0 and § € (0,1/6) and a hyper-
bolic time interval [sg, s1], we call hierarchy of metric-source bounds
with parameters (k1,C*,C1,¢€,9). the following three sets of estimates:

e For all |If| <5,
_ f f f
K1 22Eg,ci(s,Z1 w;) < ZEm,Ci(s,ZI w;) < /@%ZEQQ(S,ZI w;),
(2.4.7a)

: 1 ,
‘ §<aaGgaﬁath”wiaﬁz%j - §§tGga68aZﬂwi85Zﬂwj>daj
j_Cs

< C* (016)23_1+6Em,ci (37 Zluwi)l/z
(Iﬁv S)Em,Q (37 Zluwi)1/27

I
=

(2.4.7b)
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and*
70 0B 7 0 7
;H[Gf 0alp; Z ]wj’|L2(ﬂ-Cs)+7;1HZ Fi”L?(ﬂ{s) (2.4.7¢)

< C*(Cre)?s™1H0 = L(IF) ).
e For all |IT] < 4,

‘ Lo
U §<aaagaﬁatzﬂwiagzﬂw— gathaﬂaaZf*wiaﬂZITWj>dx
S‘Cs

< C* (016)28_1+5/2Em,ci (87 ZITwi>1/2
=: M(IT, S)Em,ci (Sa ZITwi)l/Q

(2.4.8a)
and
no ) ﬁ IT no IT
[G1*700,08, Z" |w, + 7" F;
1;1 H B .7HL2(1}(S) ; H HL2(:HS) (2.4.8b)
< C*(Cre)2s 1192 —. (I 5).
e For all |I] < 3,
5 (0uGI% 0,2 w305 7 s — ~0,GI°P 00 2 305 7 s ) d
g{; aly t4 Uz0g Ufj_§t3 al Uz0B4L Uz |GT
< C* (C1€)28_3/2+25Em(8, ZI’LLg)l/2
—: M(I,8)Eyp (s, Z1u;)"/?
(2.4.9a)
and
no .aﬂ I
2 G 0008, 2" Twj | o a¢
i=1
(2.4.9b)

no -
+ Z HZIFZHLQ(:HS) + HZI (G%aﬁaaagvj) HLQ(g{S)

=1

< C*(Cre)?s™3/2+20 —. (1, 5).
Observe that (2.4.9a) concerns the wave components, only.

Proposition 2.4.2. Fiz some § € (0,1/6). There exists a positive constant
ey such that for all e,C7 > 0 with Cie < 1 and Che < €, there exists a
constant k1 > 1 and a constant C* > 0 (both determined by the structure
of the system (1.2.1)) such that the hierarchy of energy bounds (2.4.5) with
parameters C1, €,d implies the hierarchy of metric—source bounds (2.4.7a) —
(2.4.9b) with parameters k1,C*,C1,¢€,4.

*with the notation (2.4.2)
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The proof of this proposition will occupy a major part of this mono-
graph, especially Chapters 7 to 10. Now we admit this proposition and
give the proof of the main result, which is going to be essentially based on
the following observation.

Proposition 2.4.3 (Enhancing the hierarchy of energy bounds).
Let § € (0,1/6) and let Cy > 0 be a constant and Cy > Cy be a sufficiently
large constant. Then, there exists 1 > 0 such that the following enhanc-
ing property holds. For any solution (w;) to (1.2.1) defined in Ky, 5,1 and
provided, for e € [0, €],

(1) 2521 Em.c, (50, Zﬂwi)l/2 < Coe for all admissible Z and IF,
(2) the hierarchy (2.4.5) holds with parameters (C1,€,d) in the time
interval [so, s1],

then the following improved energy estimates also hold

Em(s,ZIIjug)l/2 < %Cles‘s for 1 <7 < jo, (2.4.10a)

Ep .o (s, Zﬂv]v)l/2 < %C’les‘s for jo +1 < 7 < no, (2.4.10Db)
Em(s,ZITUg)l/2 < %Cles‘w for 1 <7 < jo, (2.4.10c)

En o (s, ZITUJv)l/2 < %01685/2 for jo +1 <7< no, (2.4.10d)
En(s, Z1up)Y? < %C’le for 1 <7< jo. (2.4.10e)

Proof. We will use here the conclusion of Proposition 2.4.2. We assume
that €; is sufficiently small with ¢; < Cy'min{l,€}} such that, for all
€ < €1, the conclusion in Proposition 2.4.2 holds.

Step I. High-order energy estimates. To the equations (1.2.1), we
apply the operator Z! i (with |I¥| < 5 throughout) and obtain

[I(Zﬂwi) + G‘Zaﬁaaﬁg(Zﬂwj) + C?Zﬂwi = [Ggaﬁ&aa/g,Zﬂ]wj +ZIF,
In view of Proposition 2.3.1 and thanks to the conditions (2.4.7a)—(2.4.7c)
implied by Proposition 2.4.2, we find

1/2
LI /
ZEm,ci (S,Z wz)

1/2 s
< /{% (ZEmﬂ(so,ZIuwi)) + Cﬁ%f (L(Iﬁ,r) + M(Iﬁ,TDdT.

S0
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In view of Proposition 2.4.2 combined with the condition (1) in the propo-
sition, we then have

1/2 s
(ZEW,Ci(‘S? ZIﬁUJi)) < H%COG + CR%C*(C&G)ZJ‘ ’7'_1+6d7-_

S0

5(01 —2/6%00)
20C*r2CZ

I* Y2 5
ZET?LCi(S?Z wz) < 50168 y

which leads to the enhanced energy bound

Choosing €1 < we obtain

1
Emo(s, Z8wi) Y% < Epo, (s, 25 w;) V2 < 5Caes’. (2.4.11)

This establishes (2.4.10b)-(2.4.10a).

Step II. Intermediate energy estimates. We will next rely on the
metric-source bounds (2.4.8a)-(2.4.8b) (with |IT| < 4 throughout) given by
the conclusion of Proposition 2.4.2. To the equation (1.2.1), we apply the
operator Z! " and obtain

D(ZITU)Z‘) + G‘Zaﬁﬁaﬁg(Zﬂwj) + c?Zﬂwq; = [Gﬁaﬁéa@g, ZIT]UJJ' + ZITFZ‘.

From Proposition 2.3.1 and thanks to the conditions (2.4.7a) and (2.4.8a)-
(2.4.8b), we find

1/2
(ZEm’Ci(s,ZITwi)>

1/2 s
< K2 (ZEm,ci(so, ZITwi)> + Ok} f (LIt 7))+ MY, 7))dr.

S0

We thus have
S0

1/2 )
(Z Eyne (s, ZITwi)) < £7Cpe + CKIC*(Cre)? f T2,

5(01—2/@%00)

—— 2. we find
4CC*r3CZ

Provided e is sufficiently small so that e; <

t 129
(ZEm,Ci(Sazj wl)) < 501636/27
which leads to the enhanced energy bound

1
Em.o(s, 28 w)Y2 < By e, (s, 25 wy) 2 < 5Cies””. (2.4.12)
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This establishes (2.4.10d)-(2.4.10c).

Step III. Low-order energy estimates. We will now rely on the metric—
source bounds (2.4.9a)-(2.4.9b) (with |I| < 3 throughout). We apply Z7 to
the wave equations in (1.2.1) and obtain

(2 ws) + GLP 0,521 ug) = [GL*P 0,05, Z us — Z1(GI*P 0,05v5) + Z1F.

In view of Proposition 2.3.1 and thanks to the conditions (2.4.7a) and
(2.4.9a)-(2.4.9b), we obtain

(Z E (s, Z%@) v

1/2 s
<H%(ZEW(807ZIU?)> —i—C’/-z%f (LI, 7)+ M(,7))dr

S0

and, therefore,

1/2 .
<2Em(5, ZIU?)) < K1Cohe + C’/{%C*(Clg)QJ F3/2426 g

S0
By recalling that § < 1/6, it follows that

1/2 %2012 2 25—1/2
CC*rICE(B +1)20-Y
I 2 11
( é E..(s,Z u;)) < k7Che + 1/2) =2

N (1—45)(01—2/&'%6’0)
Prov1ded €1 < 4CC*/{§C%(B+1)25_1/2’

for the wave components

we obtain the enhanced energy bound

1
Ep(s, Z1up)'? < 5016
and this establishes (2.4.10e).

Step IV. In conclusion, by assuming that

5(01 - 2’£%CO) (1 - 45)(01 — 2K%CO) e —l)
ACC*kICE 7 ACC*RICE(B + 1)20-1/27 707 71 )7

all conditions (2.4.10) are satisfied and the proof is completed. O

€1 < min(

Observe that (2.4.7a), (2.4.7b), (2.4.8a), and (2.4.9a) concern only the
“metric” G‘Zaﬁ and depend mainly on L® bounds on the solution and its
derivatives: these bounds will be established in Chapter 9. On the other
hand, the inequalities (2.4.7c), (2.4.8b), and (2.4.9b) are L? type estimates
and will be derived later in Chapter 10.

We complete this chapter with a proof of our main result —by assuming

that Propositions 2.4.1 and 2.4.2 are established.
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Proof of Theorem 1.2.1. Let (w;) be the unique local-in-time solution
o (1.2.1) associated with the initial data (w;g, w;;). Given our assumption

on the support of (w;g, w;;) and according to the property of propagation
at finite speed, this solution (w;) must be supported in the region K, 4o

As guaranteed by Proposition 2.4.1, there exist constants Cjy,€{ such
that, provided |wiol mems) + |wi1|msms) < € < €, we have the energy
bound Eg(so, Zﬂwj)l/2 < Cye.

Let [s0,s*]| be the largest time interval (containing so) on which (2.4.5)
holds with some parameters Cq,e > 0 and 0 € (0,1/6) fixed and for a
sufficiently large constant C; > C. By continuity, we have s* > sq.

Proceeding by contradiction, let us assume that s* < 400, so that at the
time s = s*, one (at least) of the inequalities (2.4.5) must be an equality.
That is, at least one of the following conditions holds:

Em’g(s*,ZIﬁvj)l/QzCles*é forjo+1 7 < ny,

Em(S*,Zﬂug)l/2 = Ches*®  for 1 <7< jo,
Emo(s®, 2 0:) Y2 = Cues™®?  for jo + 1 < J < no, (2.4.13)
Em(S*,ZITug)l/Q _ 0168*5/2 for 1 < ]0,

Ep(s*, Z1u;)V? = Cre,  for 1 <7< jo.

Yet, according to Proposition 2.4.3 there exists €; > 0 such that, for € < €,
the following enhanced energy bounds also hold:

1 -
Epmo(s” Zﬁ N2 < —0168*6 for jo +1 < J < no,

—_

B (s*, 25 u) Y2 < =Cres™  for 1 <7 < jo,

[\')

E,W,(S*,Zﬂvj)l/2 < 50168*6/2 for jo +1 < j < ny,
1
Em(s*,Zﬂug)l/2 < 50168*6/2 for 1 <7 < jo,

1 ~ .
E,.(s*Z ul)1/2 5016 for 1 <7< jo.

Clearly, this is impossible, unless s* = +o0.

Hence, we have proven that the inequalities (2.4.5) hold for all s €
[s0, +20) and, by the local existence criteria in Theorem 11.2.1 (combined
with Sobolev’s inequality), this local solution extends for all times. By
taking €y := min (66, 61), this completes the proof of Theorem 1.2.1. L]
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2.5 Energy on the hypersurfaces of constant time

To end this chapter, we prove that the wave components of the global-in-
time solutions which we have constructed for (1.2.1) enjoy a uniform energy
estimate also on the standard hypersurfaces of constant time t.

Proposition 2.5.1. Consider the wave components u; of a global-in-time
solution w; satisfying (2.4.5) and (2.4.9) (with €y sufficiently small and
Che < 1). The following estimate also holds for all time t = B + 1:

10: 2" u(t, )| L2 s +ZH5 Z'u(t, )| 2w
(2.5.1)
< 03(3,5, 60)016,

where Cs depends upon d, €y and the structure of the system only.

The proof of this result relies on a modified version of the fundamental
energy estimate, as now stated.

Lemma 2.5.1. Let (u;) be the solution to the Cauchy problem
(s + G1*Pdapu; = F,
’ (2.5.2)
Uz‘|}c50 = U0, atui’}CSO = U0,

where F; and Gga'g are defined in K5, 1), while wi|sc, , Oruilsc,, are sup-
ported in Hg, N K. There exists g > 0 such that, provided

max |G7® Al < eo,
7.77 7ﬁ

there exists a positive constant C = C(€g) such that

2
(natu(to, Masian + 3 o ->||L2<R3>)
(t2+1)/2
CZEG (t, u; +C’ZJ J s/t)‘&tuiFi‘da:ds

(t3+1)/2 . 1 .
+ CJt f (S/t)‘aaGga'BatUiaBUj - §atGga'Baan65Uj‘ dxds.
O S (2.5.3)

Proof. The proof relies on an energy estimate within the region X, :=
{(t,z)||z] <t —1,t0 <t < +/|z[]?+ 3}, which we display in Fig. 2.3. We
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r=t—1_ He

| | -
I [ xT

-1 D 1

Fig. 2.3 The region Xy,

begin from the general identity

3 (50X o) + Lo (Gumtan)

+ 00 (GI* dyu;05u;) — %at(Ggaﬁaauiaﬂuj))

. 1 .
= 2 ﬁt’LL@F@ + Z (%Ggaﬁ&tui&guj - §§tG§a56aui83uj)

and we integrate it within X, with respect to the volume form dtdz.
Applying Stokes’ formula, we find

1
§ZEG(t7u2)
1 ) _
-3 ZJ (Z |8aui|2 + 2Ggoﬁatuiaguj — Gga'gaam@ﬁ?@) (t,-)dx
7 R3 «@

= Z (&tuzFZ + &‘aG{a'Bétuiéguj — %@G{C"B&‘aui&guO dxdt

jcto 1

= s/t O Fy + 00, G2P 005w — lathaﬁﬁauia u; | dzds,
1 B 2 1 B
N

to 7
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where we recall that s = 4/t? — |z|?. This implies

> f <2 |Oqti|? + 2G7°° dpu;05u; — Gg‘aﬂaauiag%-) (t,-)dz
i JR3

(0%

< ZEG(KU@')

+ ZJ (s/t)‘ﬁtuiFi + 8aG‘Za56tui@guj — %@G‘Zaﬂaaui@guJ'} dxds,

which is bounded by

(ta+1)/2
Z Eq(t,u;) + ZL J}C (s/t)|0yui Fy| dwds
7 0

1 s

(13 +1)/2 | .
+ Jt J (5/1)|0a G dyu;05u; — iﬁtG‘Zo‘B@aui@guj} dxds.
0

S

We then observe that
ZJ 12G7%° 0,ui05u; — GI*P dqu;d5u;| da
= JR3

< C max G3a6|2 |10ai(t, )| L2 (rs)

aj7 wB
1a

and thus, provided max; ;o5 |G?*?| is sufficiently small,
ZJ \QGgO'Batuiaﬁuj — G{aﬂaauiaﬁuj\ d.’L‘ 2 H& ’u2 HL2(R3)-
— Jr3

We thus have

- Z Haau HL2 ]R3

S Z JRS (Z |Oatss]” + 2G1°7 0yu;05u; — Gzaﬁﬁauiﬁguj)d:p

[e%

and the desired result is proven.

0

Proof of Proposition 2.5.1. We recall the equations satisfied by the

wave components:

(2 us) + G 0pp(Z1u5) = [GL*P 0005, 2 us — Z1 (GI*P 00 d5v5) + Z1
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and apply (2.5.3), so that
Z, 1002 us(t, )| 2 (w3

(t2+1)/2
CZEG (, AR +C’ZJ J s/t)‘@tZIUgZIFﬂ dxds

(ta+1)/2 ~
+2£ L{ (s/t)‘&tZIUg[G%aﬁé’aé‘g,ZI]uﬂ dxds

~

S

(tg+1)/2 -
+ ZJ J (s/t)‘&tZIUgZI (G%aﬁﬁaagv]v)‘da:ds
7 0

(] t s
(tg+1)/2 ‘ 1 |
+ CZ L f}c(s/t)‘aaG%aﬁatZIuianguj — §@tG%aB5aZIu€aﬂZIuj }dxds.
7 0 s

By (2.4.5e) (which was established within our bootstrap argument and
holds on the time interval [B + 1, +00)), we have

Y Eq(t, Z"u;) < (Che).

Also, the second term in the right-hand side is uniformly bounded, as fol-
lows:

(t241)/2
J J (S/t)‘atZIUaZIFﬂ dxds
to

S

(£241)/2 ) )
< f 1(s/t)0: Z" uz| 2 (3¢, o2 g,y ds
t

0

(t2+1)/2
< C16J 12" Bl 2 (o, ds
t

0

(t241)/2
< CleJ CC*(Che)?s 32295
t

0
< CC*(Che)®(1/2 —28) (B + 1)~ 1/2+20,
The third and fourth terms are bounded in the same manner, that is,

(t5+1)/2 .
f J (s/t)‘@tZIUg[G%aﬁaaaﬁ, Z"uz| dzds
to

< CC*(Che)®(1/2 —28) (B +1)"1/2+20
and

(t241)/2 5
f J (s/t)|0 2" Z" (G%aﬂﬁaﬁgvj)}dxds

< CC*(Cle) (1/2 —20)"Y(B + 1)71/2+2%,
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The last term is bounded by applying (2.4.9a):

(12+1)/2 | y
f f (s/t)|8aG%O‘B§tZIUgﬁgZIuj — iﬁtG%aﬁaaZluﬁ@ZIuj‘ dxds
to

S

< CC*(Cre)®(1/2 — 20)~Y(B + 1)~ 1/2+%,
O



Chapter 3

Decompositions and estimates for the

commutators

3.1 Decompositions of commutators. I

In this chapter, we present technical results concerning the commutators
[X,Y]u:= X(Yu) — Y(Xu) of certain operators X,Y associated with the
set of admissible vector fields Z (cf. Chapter 2) and applied to functions u
defined in the cone X = {|z| < t — 1}. In order to derive uniform bounds,
we will rely on homogeneity arguments and on the observation that all the

coefficients in the following decomposition are smooth within X.

First of all, all admissible vector fields 0., L, under consideration are
Killing fields for the flat wave operator [], so that the following commutation

relations hold:
[0, (I] = 0, [Lo, 0] = 0.
By introducing the notation

[La, 0plu =: ©] 50,u,
[0y Oglu =: t_1£2[3§7u,

[La) Qﬁ]u = QZﬁerua

we find easily that

O4p = —dabdy; O = —03,
.Ib
I7, = dusd3, 1
z? x?
O, =~ =W, Ol = 0 + 6] = —57 + 04,

35

(3.1.1)

(3.1.2a)
(3.1.2b)

(3.1.2¢)

Ezo = 07

(3.1.3)
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where ® and ¥ were defined in (2.2.2). All of these coefficients are smooth
in the cone X and for each index I, the functions Z’II are bounded for all
ITe {@, 0, L}. Furthermore, we can also check that

ab*c*

ng = so that  [Lq,0,] = @fbég = O, (3.1.4)

Lemma 3.1.1 (Algebraic decompositions of commutators. I).
There exist constants HCIJE such that, for all sufficiently reqular function
u defined in the cone XK, the following identities hold for all o and I:

(2! daJu= > 050527 u. (3.1.5)

| 71<I1]

Proof. The proof is done by induction on |I|. When |I| = 1, (3.1.5) is
implied by (3.1.2a). Assume next that (3.1.5) is valid for |I| < k and let
us derive this property for all |I| = k + 1. Let Z! be a product with index
satisfying [I| = k + 1, where Z! = Z, 2" with |I'| = k and Z; is one of the
fields 0., Ly. In view of

(27,00 u = (2127, 8]u = Z1 ([Z", 0alu) + [Z1,0412" u
and
Z([Z27, 0u]u) = Zl< ) 95]@2%) = Y 07210,77,
| T|<k—1 | J|<k—1
we have
(27,0 u= Y. 01)2:0,27u+[Z1,0.)2" u.
|J|<k—1
First of all, if Z; = 0, we have the commutation property
[Z1,04)Z" 1w = 0 and
Nz z7u= 0170,20 77,
| J|<k—1 | J|<k—1
so that (3.1.5) is established in this case.
Second, if Z; = L,, we apply (3.1.2a) and write

N0 L0, Z7u= Y 0 )0 LaZ7ut Y 0L [La, 80,1270

|J|<k—1 |J|<k—1 |J|<k—1
_ I'y J I'Byy J
= > 00 LaZ7u+ D> 0,707,0,77u.
|J|<k—1 |J|<k—1

So, (3.1.5) holds for |[I| = k + 1, which completes the induction argument.
L]
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3.2 Decompositions of commutators. IT and III

Lemma 3.2.1 (Algebraic decompositions of commutators. II).
For all sufficiently reqular functions u defined in the cone X, the follow-
ing tdentity holds:
I
[Z7,051u= > 0750,Z7u, (3.2.1)
| 71<I1]
where the functions ng] are smooth and satisfy in K :

01 272007 | < C(n, 1), 111, | Ia]) 71501, (3.2.2)

Proof. Consider the identity
(27, 051u=[2",@%0,Ju= >, Z"olz"ou+ @}[Z",0,]u.

Iy +Ip=1I
[121<I1]
In the first sum, we commute Z2 and 0~ and obtain
(27, 05lu="> Zh®yo,z"u+ ), Z"eL[Z"™,0,Ju+ ®Y[Z',0,]u
I1+Ix=1I I +Ig=1I
121<I1] [121<I1]
= > Zheye,z%u+ Y. ZMel[Z",0,]u
I1+Ia=1 I1+1x=1
121<I1]
= > zZholo,zPu+ ), (ZMe})0 0.z u.

Il+12 I Il+12 I
[T2]<|T] [J]<|I2]

Hence, Q,Iy?‘, are linear combinations of Z* @} and G%O‘Zh @ with |I;] < [I]

and |Iz| < |I|, which yields (3.2.1). Note that Hfff‘ are constants, so that
o3z (0522 Zz1 @) = 220"z 21 @)

and, by (2.2.11), we arrive at (3.2.2). O

Lemma 3.2.2 (Algebraic decompositions of commutators. III).

For all sufficiently reqular functions u defined in the cone X, the follow-
ing identities hold:

(2" 0 u= ) olbZ’u+t™t D pl10,27u (3.2.3)
7]<I1] |77l <1]

where the functions JI} and pé} are smooth and satisfy i K:

0" Z" 0| < C(n, |1], |1, L))t~ (3.2.4a)

01 2% (7| < C(n, 1), | 1], | L)t~ (3.2.4b)
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Proof. We proceed by induction. The case |I| = 1 is easily checked from
(3.1.2b), (3.1.2¢) and (3.1.4). Assuming that (3.2.3) with (3.2.4a) and
(3.2.4b) hold for |I| < k, we consider indices |I| = k + 1. To do this,
let Z! be a product of operators with index |I| = k4 1. Then, Z! = 2, 2"
with |I’| = k and the following holds:

[ZI,QC]U = [ZlZIlaéc] = Zl([ZII7Qc]u) + [Zl’Qc]ZI/u'
Case 7| = 04. In this case, we write
Zl([ZI/7Qc]u>
- aa< Mo ooltezu+tt )] pﬁfﬁ,avzj'u>
|J|<[1'] IJ’|<|I’|
= > dalelNeZ7u+ D) oltoenz’u+ D] 0lP[0a,8,]2”
| J|<[1'] | J|<[1'] | JI<|1']
+0ut™ Y (pI)ozTurt D) dalpl))0s 27
|| <|I'| |J'|<|T'|
+t! pCJ,8 AR
|J/|<|I'|

For the third term, we recall (3.1.2b) and write
oMo, 0,127 u =t el T, 0,27 u.
Hence, we find
2 (17" 2,Ju)
= > (el 27u+ D) oltoenzlu+tt D) olPTl 0,2

| J|<|I'| | J]<|I'| | T|<|I']
+ Ot ™t Z (pCJ,)é 77w+t Z Oa (pcj,)ﬁ 77
PARSIY PARSIY
Y a0z
PARSIY

1 . . . ’
We conclude that, when Z; = 0,, 0, are linear combinations of d,07

and crgj]b with |J| < |I’|. For all 811Z12, we have

:aaaflz%cj + )] efgaﬁahzféagﬂ.
[131<I2|
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By applying the induction assumption, we find

0,01 25261t < C(n, I, I, T')t =111,
so that

011 22 (8,01 0)| < C(n, I, I, T')¢ 1.
Similarly, ol ? satisfies the same estimate and we see that, in this case, I?,
satisfies the desured estimate.

Note that pgj are linear combinations of the following terms:
P N P N s

Observe that El s are linear combinations of ®5 and recall the estimate
(2.2.11), we see that each term can be controlled by C(n, Iy, I, I)t~111l,

Case 21 = L. In this case, we write

2:([2",2.]u)
= Lq( 2 ol 8bZJu+t ! Z pﬁj,a ZJ/)

|J|<|I’ IJ’|<|I’|
= Z (LaUcJ )QbZJu+ Z 8bL ZJU+ Z La,a]
|J1<|1"| |J|<[1"] |J|<[1']
+ 7 (tLat™Y) ALY
\J’IZII’\
1Y (Lapl))0, 27wt pro L2 u
[T/ | <[1"] PANSIY
_ I’
+t! Z PesLa, 05127
|J/|<[1"]

In the right-hand side, we apply (3.1.2c) on the third term and (3.1.2a) on

the last term, and observe that the coefficient of the fourth term
a

tLo(t7") = —x? e
We have /
Zy([2",0,]u)

= Y (LoD Zut 3 olfoLuZut ¥ ol}65,0.27u

<11 |71<11 71<11
—1,1,0 J
+1v, pcj,é Z
|771<11
+t71 Y (Lapf)oyz u st Y plRo L.z
|71<11 771<I1

+tt 2 pévﬁ@g,yﬁgZ‘]/u.
| |<|I']
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We also recall that

(21,07 v = [La,0.]2" v = ©°_0,72" u.

—C

We observe that o4 are linear combinations of L,o!?, o', ¢'?@¢, and
©° . The estimate on the first two terms is a direct consequence of the
induction assumption (3.2.4a). On the other hand, the third term is esti-
mated as follows:

ohztoltes, = Y ahzloltolizies,.
Is+I4=1I;
I5+16:I2
The first factor is bounded by the induction assumption (3.2.4a), and the
second factor can be bounded by (2.2.12), by observing that ©¢, is a linear
combination of \Ifg. In the same manner, we get the desired estimate on

©° . So, (3.2.4a) is established in the case Z; = Lq, |I| = k + 1.

I : o r I'y I
In the same way, p, ) are linear combinations of VOp. . Lap. ), p..,

péjﬁ@gw. The second and the third terms are bounded by the induction
assumption (3.2.4b). The first term is estimated by applying (2.2.12) and
the induction assumption (3.2.4b). For the last term, note that @gv are
linear combinations of \Ifg/ and constants. Hence, by applying (2.2.12) and
the induction assumption (3.2.4b), the desired bound is reached. Finally,
by combining these estimates together, (3.2.4b) is established in the case
|I| =k + 1, which completes the argument and, consequently, the proof of
Lemma 3.2.1. L]

3.3 Estimates of commutators

The following statement is now immediate in view of (3.1.5), (3.2.1), and
(3.2.3).

Lemma 3.3.1. For all sufficiently reqular functions u defined in the cone
K, the following estimates hold:

12", 0, Ju| + |[2", dalu| < C(n, 1)) D] |0sZ7ul, (3.3.1)
B,|J|<I

12 0, Jul < C(n, 1)) > |82 ul+Cn, 1)) Y |t710, 27|,
b,|J1|<|I| v, J2|<|I|
(3.3.2)
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Furthermore, from (3.1.5), (3.2.1), and (3.2.3), we deduce the following
estimates. Recall our convention Z! = 0 in case we write |I| < 0.

Lemma 3.3.2. For all sufficiently reqular functions u defined in the cone
K, the following estimates hold:

(2", 0a0p]u] < C(n,[1]) ) |00y Z7ul, (3.3.3)

¥,y
[J]<|1]

127, 0,051u| + (27, 8,0, Ju] <C(n, 1)) Y. [0.0,27ul
1<

Cn, [INt™" ] [0,27u].

¥
[J2]<|1]

(3.3.4)

Proof. 1. To derive (3.3.3), we write
[ZI, &ﬁg]u = Oy ([ZI, 8@]u) + [ZI, 8a]05u

and, by applying (3.1.5), the first term in the right-hand side can be written
as

(VAR ( >, 050,27 ) > 0550a0,27u,

IJI<I1] |JI<1]

which is bounded by C(n,|I])Y, as |0a0sZ”u|. The second term is esti-

|J]<1|
mated as follows:

[Z7,0.)0pu = )] 0:50,Z705u

1<I1]

00,0577 u+ > 0.70,[27,05]u

1<I1] 1<I1]

IATNIVALESDY 9”5( > ew,agz'f’>
1<I1] 1<I1] 71<1]

0 0szu+ Y. 011045,0,0527 u.

|J|<|I] | 71<I1]

177 ]<]J]

This latter expression is bounded by C(n,|I DZ\JT 2 00037 u|, and
(3.3.3) is established.
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2. We now derive (3.3.4) and we begin by considering [Z7,0,05]u. By
(3.2.1) and (3.2.3), we have

[Zjaéaéﬂ]u
= Qa[ZI?Qﬂ]u + [ZI?QCL]QBU

( 050 ZJ> >, al5e. 77 dgu+t™h > ooy 27 dgu

|JI<|1] |JI<1] |JI<I1]
= > 2,050, 27 u+ Y 0570,0,27u
| TI<|1] |TI<]
+ Z ol é’ZJé’Bqut 1 Z pi 6ZJ05U
|J|<|1]| |7]<|1]
thus
[21,8,05]u
= >, 88550, Z7u+ Y, 050,0,7"u
|J|<|1]| | JI<|1]
+ > 0l50.05Z7u+ > ol50.(127 . 050u) + 71 D paoy 27 dgu
|JI<|] | JI<|] |JI<|]

and, therefore,

[Z7,0,05]u
= > 8.050,Z27u+ Y 0570,(92 0,27 u)

1<} 1<11]

+ > 0l50.05Z7u+ > ol50.(127 . 050u) + 71 D patoy 27 dgu
1<) 71<I1] 1<}
= > 00,0, 27u+ Y 0l50.0527u

1<11] 1<)

+ 3 0530,(9)e, Z0ut Y 2,05,0,27u
RARSP |J]<]|1|

+ > 0252.(127,851u) +t71 > paydyZ7dsu.
1<) 1<

(3.3.5)
Here, the first and second terms can be bounded by >, 5 ;<1 10,0327 ul.
By recalling that |Qa\11ﬂ < C(n)t~! and |Qaﬁé7] < C(n,|I])t™1, the third
and fourth can be bounded by C(n, |I[)t ™' 3 |7, 1</ 10,Z72ul.
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So, we focus on the fifth term:

>, 0a50:([27,051u)

|7]<I1]
I J
= > aa3Qc< > 0530, u>
|71<I1] |7 <1J]
= > 0l50.(05) )0+ Y, 0l5057,0.0vu
\lJ{|I<‘IlTI|\ \lJJ’|I<||IJ|\
I J J !
= D 0l50.(050) 0w+ Y, 085057,0.(V) 2 ),
[J|<|I] [J|<|I|
I/ 1<|J] lJ/ <] 7]

SO

>, 0552127, 05]u)

|J<[1]
_ I J’Y J’y
= > olse. (05 )0u+ D ol5077.0. (%)),
|J|<|I| [J1<|I|
[/ <] J] [/ <]J]
Jy
+ > 505,07 0.0.,u
[J]<|T]
[J <] J|

Similarly, the first two terms can be bounded by
Cn, It Y 10,27
v, J2|<| 1]
and the last term is bounded by >4 71 10,0527 ul.

For the last term in (3.3.5), we perform the following calculation:

Z pé 0 Zjﬁﬁu

| JI<1]
=t Z pé?IaWQﬁZJ“JFt_l 2 Pﬁ‘%([z‘]v@ﬁ]“)

| <1 |J]<[1]
Y (P as 2 )+t Y peyey (8550527 )
| J|<I1| |J]<[1]
Z pi \11*85 05 Z7u 4t Z pi O~ \I/ﬂ 0p Z'u
|J1<|1] | JI<[1]

+t_1 Z i}eﬁjza 55ZJu+t ! Z pi}@ QBJ/ a5ZJ/U
|J]<[1] | JI<I1]

The desired estimates on these terms are immediate thanks to (3.2.4b),
(3.2.2), and the fact that |6a\11g | < CtL
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Now, in order to control [Z!,0_0d,]u, we consider the identity
[Zlﬂéaéb]u = [Zlaébéa]u + [Zla [Qouéb]]u'

The estimate on the first term in the right-hand side is already done.
concentrate on the second term, via the following calculation:

(2", [0 03] ]u

(21, @305, 0] ]u — [27, 8,@505]u

= [Zl,t_1¢§F7gb5 Ju— [ZI,qu)gaﬁ]u

= > Zh(t'eNry,) 2o u+ t T RNy, (27,0, ]u

a=—f3b
I1+Ig=1
[T2]<|1]

— Y, ZM(2,@5) 2% 0pu — 2,85[ 2", 0p]u

Il+12=1
[T2]<|I]

and thus
[ZI7 [Qavéb]]u
= > Zh(t'eir},)0, 2"

I +Ip=1I
[To|<[I]

+ > Zh (A )27, 0 ]u + T eAY, (27, 0, Ju
I +Iy=1
[T2|<|I|

— >, ZM(2y®5) 052"
I1+Is=1I
[T2|<|I|

— Y ZB(0,@8)[2", d]u — 8,68[ 2", 0p]u.
I1+Ix=1
[To|<|I|

So, we have
(2", [0, 03 ]]u

= >, Zh@telry,) e zu+ ). Zh (' elry,) (2", oy

a=pb
I1+1Iy=1I I1+I2=I
[Tg]<|I]
= D, ZM(@®)0s 2~ Y, 2" (2,20)[2", 05)u.
I|11+‘I2|?I I +1Ix=1
21<

We observe that the function t_lq)gEgb and 0,®? are homogeneous of de-
gree —1 and are smooth in the closed region {t > 1, |z| < t}.
By Lemma 2.2.1, we have

20 (+ 820,) | <Cln. 1

2 (2,82)] <C(n, 1)t~



Decompositions and estimates for the commutators 45

We conclude with
127, [0 p)]u| < Cn, | It DT [05270),

Y
[JI<|T]

and this completes the proof of (3.3.4). O

Lemma 3.3.3. For all sufficiently reqular functions u defined in the cone
K, the following estimates hold:

27 ((s/D)2au)| < |(s/0)0aZ"u + Cln, 1) ) |(5/0)8527u|.  (3.3.6)
BTI<I1]

The proof of this lemma will rely on the following technical remark.

Lemma 3.3.4. For all index I, the function
2= (t/s)Z1 (s/t) (3.3.7)
defined in the closed cone X = {|x| <t —1}, is smooth and all of its deriva-

tives (of any order) are bounded in K. Furthermore, it is homogeneous of
degree n with n < 0.

We admit here this result and give the proof of (3.3.6), while the proof
of (3.3.7) is given afterwards.

Proof of Lemma 3.3.3. We observe that
(27, (s/t)oaJu =D Z"(s/t) Z"dqu+ (s/t)[Z",0a]u

I1+Ig=1I

[I1]<|I]
= > ZB(s)[ZM0uut D) Z"(s/t)dnZ"u
I1+Ip=1I I1+Ig=1I

[I1]<|I] [I1]<]|T]

+ (s/t)[ 2, dau
= N sz e+ Y ZB(s/t)dazh.

11-1—1221 Iy +Ix=1
[Ty |<|I]

By applying (3.3.7), we find
Z Z12(s/t) [Z7, 04 ]u

I1+1x=1

< Z ‘ZIQ(s/t)‘ ‘[Zh, 6a]u‘

I1+1x=1

<C(n,|I|) 2 ’(s/t)&aZJu|

|JI<|1]

and

> Z%(s/t)0aZMu
IN+Is=TI
[T11<II]

<Cn, 1) Y, |(s/t)daZ”ul.

| JI<|1]
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Proof of Lemma 3.3.4. We consider the identities
(t/s)La(s/t) = —z/t,
(t/s)0q(s/t) = —:1:“/52, (t/s)o:(s/t) = |:1;|2s_2t_1.

In the cone X = {|z| < t — 1}, the functions 2%/s?, |z|?s~2t~1, and 2%/t
_2t_1

(3.3.8)

are smooth and bounded, while £%/s? and |z|*s are homogeneous of

degree —1, and z%/t is homogeneous of degree 0. All of their derivatives (of
any order) are bounded in X. We have proved (3.3.7) in the case |I| = 1.

For the case |I| > 1, we use an induction on |I|. Assume that for
|I| <k, (3.3.7) holds. For an operator Z! with |I| = k+ 1, we suppose that
z! = 7, Z" where |I'| = k and we have

(t/5)Z" (s/t) = (t/$) 12" (s/t) = Zu((t/9) 2" (/1)) = Zu(s/) 2" (5/1),
where Z; can be 0, or L,. By the induction assumption and (3.3.8), the
second term is a smooth function and is homogeneous of non-positive de-
gree, while all of its derivatives are bounded in K. We focus on the first
term and, by the induction assumption, (t/s)Z! (s/t) is smooth, homoge-
neous of non-positive degree, and is bounded in K. We need to distinguish
between two different cases, as follows.

Case Z; = 0,. In this case, Z; ((t/s)ZI/ (s/t)) is homogeneous of degree less
than or equal to —1, and by the induction assumption, all of its derivatives
are bounded in K.

Case Z; = L,. In this case, Zl((t/s)ZI/(s/t)) is homogeneous of degree
less than or equal to 0.

Z1(t/5)Z7 (s/t)) = 220, ((t/s)Z (s/t)) + tda((t/s)ZT (s/1)).
Denote by f(t,x) = ﬁa((t/s)ZI/(s/t)) and recall that f(¢, x) is homogeneous
of degree  with n < —1 so

[t @) = (t/2)" f(2,22/t).
Recall that f(2,z) is bounded when |z| < 2. Recalling that ¢t > 1, we get
104 ((t/5)Z7 (s/t))] = | f(t,x)] < C(n, I')t" < C(n, I')t™?
thus
1Z1((t/5) 27 (s/8))| < C(n, I') (1 + |2%| /1)

Taking into consideration the fact that in X, |2%| < ¢, the desired result is
proven. L]



Chapter 4

The null structure in the
semi-hyperboidal frame

4.1 Estimating first-order derivatives

In this chapter, we derive various estimates on null quadratic or cubic forms.
Recall that a quadratic form 7%? Oau0gv acting on the gradient of functions
u, v is said to satisfy the null condition if, for all null vectors ¢ € R?, i.e. all
vectors satisfying (£0)% — >, (€4)? = 0, one has

TP¢ 5 = 0. (4.1.1)

Similarly, a cubic form A®P7¢,£5€, is said to satisfy the null condition if,
for all null vectors, one has

APIE L8, =0, (4.1.2)

All the terms of interest will be linear combinations of factors d,u dgv,
0, uda0pv, and ud,dgv. Throughout, the notation s* = t* — 72 is in order.

Proposition 4.1.1. IfTo‘Bfafg 18 a quadratic form satisfying the null con-
dition, then for every index I there exists a constant C(I) > 0 such that

2 — 2

t2

‘ZIZOO{ < C(I) = C(I) (s/t)* in the cone K. (4.1.3)
Similarly, if a cubic form Aa*f””fafgfw satisfies the null condition, then for
every index I there exists a constant C(I) > 0 such that

t2—7’2

‘ZIAOOO} < C(I) >

= C(I)(s/t)* in the cone K. (4.1.4)

The proof will be based on a homogeneity lemma stated now, which
concerns homogeneous functions defined “near” the light cone in {r = t—l}.

47



48 The hyperboloidal foliation method

Lemma 4.1.1 (Homogeneity lemma). Let f be a smooth function de-
fined in the closed set {t = 1} n {t/2 < r < t}. Assume that f is homoge-
neous of degree n in the sense that
fpt,px) =p"f(L,z/t),  t2<|z[<t, pt=1, t=>1
The following estimate holds:
‘ij(t,x)‘ < C(n, |[I])t" in the region {r = t/2} n K. (4.1.5)

The proof is similar to the one of Lemma 2.2.1 and is omitted.

Proof of Proposition 4.1.1. We use the notation —w, = w?® = z%/|z|
and wy = w® = 1, so that (wp)*—,,(wa)? = 0. We consider the component
IOO and write

T%° = T°W0 WY = TP Y — TP wawgs
= TP (WU — wawg).

First, we consider the region “away” from the light cone. When r < t/2,
we have

ZNTPwuy) = Y TPzl Z 0y,
I1+1s=1
Applying Lemma 2.2.1, we obtain
ZH(TPR0 )| < D) K|Zh 0|20 < C(n, [T K (s/t)*(t/s)?
I+I1s=1

for some constant K > 0. Recall that when 0 < r < t/2, we have (t/5)? <
4/3 so in the region {r < t/2} n K,

| ZH (TP w0 Wh)| < CO(n, 1)K (s/t)?.
Second, in the region {r > t/2} n X, we have
7% = TP (VUG — wawp)
and, thus,
Z'T% = TP 2T (W WY — wawg).

When a = 8 = 0, we have (‘Ifglll% — wawﬂ) = 0. When « =a > 0,5 = 0,
we have

ZI(\I/g\If% —wawg) = —Z' (wa(1 = (1/1)))

-— 3 Zhu ZI2<—t_T)
a / .

I +1s=1
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When a« =a > 0, § =0 > 0, we obtain
zexb  xtzb
2 2 )

ZI(\IIglllg — wawB) = ZI<

= Y Zhw,Zluw,z" (1 + %) Zhs (?)
I+ Ix+I3+14=1

We focus on the estimates of Z'w,, Z' (14 %) and Z’ (). By Lemma

4.1.1, Z'w, and Z'(1 + ) are bounded by C(n, |I]). For the estimate of

Zl(t;’”), we write

t—r st

and then
ZNE=-n)t) = >, ZU(t/(t+r)Z"(s/t) 2" (s/t).
I+ Ix+13=1
We observe that ¢/(t + r) is smooth in {t > 1} n {t/2 < r < t} and is
homogeneous of degree 0. We have
20 (t/(t+ )| < C(1)
and the term Z'2(s/t) is bounded by C(|I])(s/t), thanks to Lemma 3.3.4.
We conclude with

127 ((t/r)/t)] < C(ID)(s/t)*.

Next, we have the following result concerning null quadratic forms.

Proposition 4.1.2 (Estimate of null forms). For all null quadratic
form TP o, udsv with constant coefficients T*? and for any index I, one
has
12N (TP dquogv)| < CK(s/t)®> >, |Z"owuz"0)|

[Ty [+ 12| <1

Ok Y (2Rt g + |27 auz"a,0)),
L4 1T)<I

with K = max, g ‘T“B‘.

The importance of this estimate lies on the factor (s/t)? in front of the
component Z1ouZ20;v. As we will see later, the derivative d, enjoys
better L* and L? estimates in our framework. The derivatives of direction
d; do not always have enough decay, and the factor (s/t)? precisely allows
us to overcome this potential lack of L? and L® decay.
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Proof. The proof is based on a change of frame. In the semi-hyperboloidal
frame we have

T“ﬁaauﬁgv = Iaﬂéauﬁﬁv
= TY0,udv + IObﬁtquv + Iaoéaué’tv + Iaanquv.
We have
z! (To‘ﬂﬁaué’gv)
=7 (Iaﬁéauéﬁv)
= 21 (T"0uow) + 2" (T dwudyv) + Z" (T*°0,uow) + Z' (T°0,ud,v)
=: Ri+ R>+ R3 + Ry4.

Recalling the null condition satisfied by the null form under consideration
and by Proposition 4.1.1, we get

Ri< X 125 2% (om) 2% (0w)
I +Ix+13=1
<CK (s/t)? Z |Zh§tu‘ ’Zb&tv‘.
[ 11 ]+ 2| <]

The term R, are estimated directly. Recalling that by Lemma 2.2.2,
1ZIT*P| < C(I)K, we find

[Rol < D [Z25(T) 27 (0su) 2" (0pv)]

b
Il+12+13:l

<SCK ). |Z"(6wu) 2" (2pv))-

b
[Ty |+112]<|T]

The terms R3 and R, are estimated similarly and the proof is complete. [

4.2 Estimating second-order derivatives

We can also deal with second-order derivatives B*?0,dsu, with constant
B8 Recall that a second-order operator is said to satisfy the null condition
if

3
B*¢a63 =0 when & — ) &i&i = 0.

=1
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Proposition 4.2.1. Let Baﬁaaaﬁ be a second-order operator satisfying the
null condition with constants B*® bounded by K. One has

21 (B 0,05u)|
<Cn, [INK(s/t)* > Z'(00u) + Cn, [INK >, Z"(3,00u)

|11 [<[1] TR

K
+ C(n, |I|)7 2 12" (Our)).
a1 |<|1]
Proof. We have
B 0405u =B 0,05u + B0, (04 )4 u
=B"0,0yu + B*0,0,u + B 0,0, u + B*0,0,u
+ B0, (V) 2401
Recall that, for a null quadratic form, |Z7B| < C(n, |J|)K(s/t)* and
1Z2'B®00u| < ). |2™BY| |2 000l
Li+Ta=1
<C(n, [IDK(s/t)* > [Z2"o0wu).
<1
Also, from Lemma 2.2.2, we have |Z/B| < C(n,|I])|B| and
21 (BRc0w)| < D) |28 |2 2,0]
11+?2=1
<C(n,[INK )] |Z"3,01ul.
ni=i)
For the term Z7 (EOb&thu) by applying (3.1.2) we have
‘ZI(EObathu)‘ < Z ‘ZIQEbO{ ‘ZI1athu|
I1+1x=1
<C(n, [INK Y |Z"0d,u|
1311
and
‘Zh@tébﬂ <‘Zth8tu‘ + }Zh [Qb,at]U|
<|Z"0,0u| + | Z" (7' g, 04u)|
<|ZMaom| + 3, |21 (17'05,) 20 00u)
Is+14=15
<|Zhoyow| + ™t > |20l

>
[I31<|I1]
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Here, we have used the estimate |Z7(¢7'L3,)| < C(n,|J|)t™! because
t_lng is homogeneous of degree —1. So we have proven that
12" B0, 0ul < C(n, [INK ) |Z"3,00ul+C(n, 1Kt Y |Z"0,ul.

1] |11 11]
The term Z' (ﬁaanQbu) is estimated as follows:
121 (B™2,0,u)| < C(n, 1) ), |Z2™=B™||2"2,0ul

a,b

I1+Ig=1
<C(n,JIDK > |z"8,0ul.
nit=r
The term Z! (Baﬁéa (\I/gl)éﬁ,u) is estimated by applying the decay rate
supplied by Z‘]}&’a (\I/g/)‘ < C(n,|J|)t~1. This completes the proof. O

As a direct corollary, the following estimates hold.

Proposition 4.2.2. Consider a bilinear form B*ud,dzv acting on the
function u and the Hessian of v and suppose that the quadratic form
Baﬁaaaﬂ satisfies the null condition. The following estimates hold:

|27 (B*Pudadpv)| <C(n, [INK(s/t)* > |Z"u||2"6100]

|12 |+ 12| <] 1|
+Cn, [INK ). |Z"u||Z2"0,0,v|
a,b

[T [+[12]<|T]
+Cn, |[INK >, |Z"u]|Z2"0,04v]
14 al< )

+C(n, |[I)Kt™! Z | ZM | |Z720,40],
111412 1<11)

[Z", B*Puda05]v| <C(n, [I|) K (s/t)? Z | ZM | |Z2720,0,0]

11 [+[12]<|T]
[T2|<|1]

(4.2.1a)

+ C(n, |I|)KZ Z ‘leuHZI?Qaéﬁv‘

a,B 11+ I2]<|1]
[T2|<|T]

+ C(n, |I|)KZ Z ‘ZhuHZIQQaQbU‘

a,b 1]+ I2]<|I]
[Tg|<|T]

+Cn, | INKt > |Z"u||Z" 050

[T+ I2]|<|T]
[I2]<|I],8

(4.2.1b)
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Proof. We first establish (4.2.1a):
21 (BPudydgv) =21 (B*Pud,d40 + B*Puda Y d40)
= >, ZBBY¥Zzhuz™,0,v
I +Ix+13=1
+ Y BYPzhwzBo,W] 27050 = Ry + R,
I+ Ix+13=1
in which R; can be estimated as follows:
Ry= Y,  ZPB*Zhuz™9,04v
I+ Ix+13=1
= Z ZISEOO ZIlqu@t&tv
I +Ix+13=1I
+ Z 718 B0 71y, ZI2Qa8t'v
I +Ix+13=1
+ > ZBBYZzhuz"80,v
I +Ix+13=1
+ > ZBBYZhuz0,0,0.
ILi+Ix+I3=1

Since |ZI§°‘6‘ < C(n, |[I))K and |ZTBY| < C(n, |I|)(s/t)?, we have
[Ri| <C(n, |INK (s/t)* > |Z"ul|Z"™0,0,0|

I+ 2 |<]
ClnJINK ), |2"u||Z2"2,0,0]
14T 1<
C(n, |I)K 2 Z1u||Z2720,0,v].
|I1\+|12\<\1\
Observe now that |2/, %5 | < C(n, |I|)t™", then Ry is bounded by

Rel < ) |BaﬁHZhuHZISa\1/ 112040
I+ 1Ix+13=1
Cn,[INKt™" > [Z2hu)|]2"0,0)].

«

[Ty ]+112]<|1]

In view of Z20,v = Z"2 (0% dyv) = 2140 Z50,v and that Z14T¢ is
bounded, the estimate (4.2.1a) is proven.
Next, in order to derive (4.2.1b), we observe that

[Z7, Bo‘ﬁuﬁa@ﬂ]v = [Zl,ﬁaﬂuéaéﬁ]v + [Z1, Baﬁuﬁa\llgléﬁ,]v =: R3 + Ry.
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The term Rg3 is decomposed as follows:
[Z', B*ud,d4]v
= > zBB zhuz"0,0,v+ B u[Z', 0,050

I1+Io+13
[T2]<|T]

=: R5 + Rg.

The term Rj is estimated as follows:

Rs= > ZBBYzhuz™0,04u

Il+12+13
[I2]<|I]
= >, ZBB™zhuz"™d0m
I1+Io+13
[I2]|<|T]
+ >, ZBBYzhuz0,0m+ ), ZBB™ZMuz"8,0,v
11+I2+13 Il+I2+13
[I2]<|I] [I2]<|I]
+ > ZBBYZhuz™9,0,,
I1+19+13
[Io|<|I]
thus
I 00 I I
[Rs| < >, |Z"B%||Z2"u]|Z2"0:010|
Il+12+13=1
[Io|<|I]
bOY B |z 20,00
11+IQ+I3ZI
[I2]<|I]
0b
+ ) 2B |20 |20
I1+1o+I3=1
[I2|<|I]
) |Z2hB| 2"l 22,0,
I]_+12+I3=I
[I2]|<|T]
hence

|Rs| <C(n, |[INK(s/t)* > |Z"u]|Z2"0:000]

1| +1I2]<|1]
[I2|<[I]

+Cm, | INK > |Z"u]|Z2"0,0,v|

[I1]+11I2]|<|1]
[I2]<|I]

+Cn, | INK > |Z"u]|Z2"0,0,|

[I1]+11I2]|<|1]
[I2]<|I]



The null structure in the semi-hyperboidal frame 55

The term Rg is decomposed as follows:
B*u[z",0,05v =B™u[Z', 8,0,]v + B*°u[Z", 8,0:]v
+ B®u[Z!,8,0,]v + B®u[Z*,3,0,]v.
We apply (3.3.3) and (3.3.4) and that |B*| < C(s/t)?:
1B u[Z",0,04]v]
= |§00u[ZI, ﬁtﬁt]v\ + ]anu[ZI,Qaét]ﬂ
+ |B™u[Z',8,0,]v| + |B**u[Z", 0,0,]0|
< Cn, [INK (s/t)*|ul Y, 270,00

/!

Yy
|1I'|<|1|
Cn, INKu| Y. [2,05Z" 0|+ Cln, [INKt  u| > |0,2"0).
a,B Yy
[I1]<|I] [I1]<|I|

The term R4 is estimated as follows:
(2, B*Puo, U} 04 Jv
= Y BYZzhuzB0,%5 Z"0,v + B*Pud, VG (2,04 0.

Il+12+13:I
[T2]<|I]

Thanks to the additional decreasing rate in |ZI Ou \If ‘ n, |[I|)t~, the
first term is bounded by

Cn,[INKt™" > 2" ]|2"050).

[T [+]I2|<|T]
I2]<|I],8’

The second term is estimated by (3.3.2) and the additional decreasing rate

supplied by ’Zlﬁ \IJ'B | n,|I|)t~t. Tt can also be bounded by
Cn,[INKt™" > |Z2"u|]|2"050).
11| +IT2] <]
121<I11,8
This completes the proof of (4.2.1b). O

4.3 Products of first-order and second-order derivatives

The third type of null form we treat is a null quadratic form acting on the
gradient and the Hessian, as now stated.

Proposition 4.3.1. Consider a quadratic form acting on the gradient of
u and the Hessian of v, that is, Ao‘m&yuaaﬁgv, for functions u,v defined
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in the cone K, and suppose that A®PY satisfies the null condition. The
following estimate holds for any index I:

|1 Z1 (AP 0,u0,05v)]

<Cm,[IDK(s/t)> >, [Z2"owuz"000]
11|+ |12 <] |

+ C(n, |I|)K(Ql(I, u,v) + Qa(1, u,v)),

where
N(Luv)= > [Zhoul|ZRa50.0+ D) |Z2"Mo,u]|Z2"0,0,]
a.B,y o,y
111+ T2 1< 1] 111+ I2]<]1]
bY [zhal |2 a0
<
and

Qo(I,u,v) <t ! Z |21 0,u Z12050)].

.8,
11| +IT2] <]
Proof. We observe the following change of frame formula:
APV 0,u8,050 = AP0 1,050 + APV 0,uds (U5 ) gu
=: Ri(u,v) + Ra(u,v).

The term Z! Ry can be estimated as follows. Recall that |Z70, (\I/g,)| < %,
then

ZH(AP10,u0 (V5 )dgw) = Y. APYZha wZ0,0 270, (9],
Il+12+Ig=I

which can be estimated as

|2 (AP 0,ud0 (U5 )2p0)| < CEE Y1 2R 0,uZ’d50] = Qs
14175 1<1]
The term R; can be estimated as follows:
Ry =A*""0 ud,04v
=A"00,40,0,v
+ A%¢0 uodpw + A 0ud, 0 + A°0,ud 0w
+ A"0,u0,0,v + A0 ud0yv + A0 ud, 0w + A0 ud) v
=:R3(u,v) + Ra(u,v),
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where
R3(u,v) := A%00,10,0,v

and Ry(u,v) denotes the remaining terms. We have ZIR; = ZIR3 +
Z'R,. To estimate |Z'R3|, we observe that A®%7 is a null cubic form
so by Proposition 4.1.1, |Z1 A% < C(s/t)?. We find

ZN (A 0orow) = > Z13A%0 21 ou 27 6,0,0,
I +1x+13=1
so that
|27 (A% 0ud,0)| < C(n, |INK (s/t)* > |Z"0u Z2"6,0,0).
|12+ 12| <|1]

To see the estimates on Z! R4 terms, we just remark that by Lemma 2.2.2,
|Z1 A*PY| < C(n,I)K. We can control Z! Rs by Q.

Finally, by combining the estimate on Ro, R3 and Ry, the desired result
is established. 0

The fourth type of terms we need to control is the commutator between
ZT and a null quadratic form.

Proposition 4.3.2. Consider a null quadratic form acting on the gradient
of function u and on the Hessian matriz of v, that is, A*PV0,ud,dsv, for
functions u,v defined in the cone X. The following estimate holds:

(27, AT 0 u0,05]0| <CK (s/t)* > |Z2"20uZ"6,0,]

[I2|+[I3]<|1I],
[I3|<|I|

+CK Y. > |Z"0.uZ%0,0,0]

c,a,B 2l +II3]<|1],
|131<|1]

+CK Y. > |Z"0,uZz’0,0,0]

c,a,B 2l +II3]<|1],
|131<|1]

+CK Y. > |Z"0,uZ’0,0.0]

c,a, B 21+II3]<I|I],
[13]<|I]

+tICK DY Y 0,27 ude 2.
o,y |I2[<[I]-1
Tyl+[12]<|1]

Proof. We use the change of frame formula

AP0 100050 = AP0 10,050 + A%V 0,u 80 (T ) 2
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and find

[Z7, A%PY 0 100 05]v
_ [ZI,AO{B’YQWUQQQQ]U 4 [ZI,AO‘B’Y&YU&Q (‘I’g/)éﬁl]v
=: Ri(I,u,v) + Ra(I,u,v).

We first decompose R;([,u,v) as

(27, A0 ud,d5]v
= > ZBA 2R (0,u) 2" (2,0v) + A0 u[ZT,0,05]v

Io+Ig+Iy=1I,
[T3|<|1]

=: R3(I,u,v) + Ry(I,u,v),
while R3(I,u,v) is decomposed as

R3 (Ia u, ’U)
= Z ZIALAOOOZ[2 8,5qu3 0t8tv

I2+13+I4=I,

[I3]<|I]
+ Y, ZhAYzRouz oo+ ), ZMA™ZR0uz" 00,0
12+13+I4:I, 12+I3+I4:I,

[T3|<|T] [T3]<|T]
+ > ZBAZRowzB 0,00+ ). 2B A ZR 0 uZ0,0,v
Io+Ig+Iy=1I, Ig+I3+Iy=1I,

[T3]<|I] [I3]<|I]
+ > ZNAYZRouzB, 0w+ ), ZMAMZR0uZ"0,0,
12+13+I4:I, 12+13+I4:I,

[T3]<|I] [T3|<|I|

+ > ZBAZR0.uz"0,0,0.

Io+Ig+Iy=1I,
[T3|<|1]

We observe that A is a null cubic form and, by Proposition 4.1.1, and
therefore

|27 A7 < C(I)K (s/t)*.
By Lemma 2.2.2, we have

|ZI4AC¥IB’Y| < K
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The term R3(I,u,v) is estimated as follows:

|Rs(1,u,v)]
<SCK(s/t)> > |Z™0wuZ’00.v|

[I2]|+[I3]<|I],

so that

[I3]<[I]
+CK Y |ZPouzo0n|+CK Y |Z270uZ"60,0]
o] +II3]<|1], I2|+13]<|1],
I3]<[I] [I3]<[I]
+CK Y |ZPowzBo0m| +CK Y |Z0uZ" 00,0
o] +II3]<|1], 2|+ 13|11,
I3]<[I] [I3]<|I]
+CK Y |ZPouzo,00+CK Y |20z’ 0,0,v|
o] +II3]<|1], 2|+ 13|11,
I3]<[I] [I3]<[I]
+CK Y |ZP0uz8,0,0],
2|+ I3|< |11,
I3]<[I]
[Rs(I,u,0)| <CK(s/t)*> > |Z™0uZ’ 0,00
Ilz\‘;r\lfs\il\f\y
31<

+CK Y, Y |Z"R0.uz"0,040]

e, B 2l +II3]<I1],
|131<|1]

+CK Y, Y |Z"0,uZ’,040]

e, B 2l +II3]<|1],
|131<|1]

+CK Y > |ZR0,uZ’0,0,0].
c,a,B 2|+ I3|<|1],
[Ig]<|I]
The term Ry4(I,u,v) is also decomposed as:
Ry(I,u,v) =A%0,u[ZT, 0,0,]v + A0, u[ZT, 0,0:]v
+ AY00,u[ 27, 0,0, ]v + A0 2, 0,0, ]v
+ A% u[Z!,8,0,]v + A0 u[Z, 0,0 |v

+ AaboatU[ZI, Qaéb]v + Aabcécu[zla Qaéb]v'

Thanks to the null condition, we have

|Ra(I,u,v)| <CK(s/t)*0u|[Z, 00, ]v| + CK |0 u[Z", 040 ]v]
+ CK|owu[Z', 0,0, v + CK|ou[Z, 0,04]v|
+ CK|o,u[Z',0,0,]v] + CK|0.u[Z",0,0:]v]
+ CK‘&tu[ZI,QaQb]U‘ + CK\QCU[ZI,QQQZ)]’U}.
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Observe now that thanks to the commutator estimates (3.3.3) and (3.3.4),
we have

0,ulZ, 0:0:]v| < C Z |0, udadsZ! |,

|1/\<m 1
0,ulZ", 0,010 < C Z 00ud, 052" v| + Ct71 > 2,ués Z" 0|
|I’|<|I| 1 II’\l\I\
and
0,u[Z!,840.]v] < C Z |0,ud 052" v + Ct1 Y |8,ud 2" ],
II’\<\I\ 1 \I’ILIII

We also note that >, [0,ul < CY, [0aul, so that |R4(I,u,v)| is bounded
by
|R4(Iv u,v)|
<CK(s/t)® Y |0ubadpZ”v|+CK > |0.udadsZ" v|

o,B a,B,c
['|<|I]—-1 ['|<|1]-1

+CK > |0aud dgv|+ CEt™ Y [0qudaZ”v

«a,B,c , Y
I1I'|<|I|—1 [I'|<|T]-1

In conclusion, Ry (I, u,v) is bounded by
|Ri(1,u,v)| <CK(s/t)* Z 12" 0puZ 20,040

[I2]|+[I3]<|I],
[Ig]<|I]

+CK Y, > |Z"R0.uz"0,0,0]

c,a, B H2l+I1I3]<I|1],
[Tg]<|T]

+CK Y, > |Z"0,uZ’0,0,0]

c,a,B 2l +13]<|1],
[131<]1]

+CK Y. > |Z"0,uZ’0,0.0]
c,a,f ‘12‘\-1’—3‘{21;‘”

+tICK Z |0,ud, 2" v

\I’|<|I| 1

Next, we turn our attention to the estimate of Ry(I,u,v):
Ro(I,u,v) =A*P70 u éallfg/ [ZI,Qﬂ,]'v
+ Y APrzho w0 210,01

Il+12+13:I,
[T2]<|I]

=:R5(I,u,v) + Rs(I,u,v).
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To estimate the term Rs(I,u,v), we recall (3.2.1) and the fact that
|6a\I/g ‘ < Ct™1, so that

[AP0,u 0,95 [27, 0510 < CEETY D) |0yudpz’v

By
[/|<[I]-1

In the same way, for Rg(I,u,v) we have

Re(I,u,0) <CKt ™'Y > [052"ué,2"0].
B

;Y H1l+1I2]<[1]
[T2]<|T]

This establishes the desired result. O
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Chapter 5

Sobolev and Hardy inequalities on
hyperboloids

5.1 A Sobolev inequality on hyperboloids

To turn L? energy estimates into L™ estimates, we will rely on the following
Sobolev inequality.

Proposition 5.1.1 (Sobolev-type estimate on hyperboloids). Let u
be a sufficiently reqular function defined in the cone KX = {|z| < t—1}, then

for all s > 0 (and with t = /5% + |z|2)

supt¥2u(t, 2) < € 3 |E ulgeer,) (5.11)
Hs L |I]<2

where C > 0 1s a universal constant and the summation in L is over all
vector fields L, = %0y + td,, a = 1,2, 3.

In comparison to Lemma 7.6.1 in Hérmander (1997), observe that the
right-hand side of (5.1.1) does not contain the rotation fields Qg := %0 —
b
x°0,.

Proof. Recall the relation t = 4/s? + |z|? on H, and consider a function
u defined in X, its restriction to the hyperboloid H is, by definition,

ws(x) 1= u(\/s? + |z|?, ).

Fix sp and a point (f, ) on the hyperboloid Hs,, with tg = 4/s2 + |zo|?.

Observe that
Oqws, (T) = Qau(«/sg + |a:|2,x) = 0, u(t,z), (5.1.2)
with ¢ = 4/s2 + |z|? and, therefore,

t0qwg, (z) = td,u(r/sE + |z[2,t) = Lou(t, z). (5.1.3)

63
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Introduce the function g, +,(y) := ws,(zo + to y) and note that

Gso,to (O) = Wsy (mo) = u( \/ 5(2) + |$O|27~T0) = u(tOﬂEO)'

Applying the standard Sobolev inequality to g, +,, we obtain

2
’gsoyto(o)} <C Z f |aIgSO,to(y)|2dyv
B(0,1/3)

|[71<2

where B(0,1/3) < R3 denotes the ball centered at the origin and with
radius 1/3.

Taking into account the identity (with x = x¢ + toy)
acbgso,to (y) = thawso (xO + tOy) = thawso (37)
= tOQau(t, :1:)),

in view of (5.1.2), we see that for all I

0" gso.to () = (tod)'ult, x)

and, therefore,

900 OF <C ¥ | [(to) u(t.n)) Py
1]<2 Y B(0,1/3)

=0ty% ), |(t0) u(t, z))| da.

|7]<2 JB((to,xo),to/a)mfj{so

We can check that
(t00, (toQpwsy)) = 1500 0pws,
= (to/t)?(td,) (0, )ws, — (to/t)*(x*/t) Lyws, .
We also remark that x/t = x§/t + yto/t = (x8/to +y)(to/t), so that, in the

region y € B(0,1/3) of interest, the factor |z®/t| is bounded by C(to/t). We
conclude that for any |I| < 2,

[(tod)Tu| < D L ul(to/t)".

| JI<|]

On the other hand, when |z¢| < tg/2 then ¢y < \%30 and thus

to < Cso < Ch/|z|? + 53 = Ctt,

C' being a universal constant thoughout. When |zg| > tp/2 then in the
region B((to, zo),t0/3) N Hs, we have also

to < Clz| < Cy/|z|? + s¢ = Ct.
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Consequently, it follows that

(tod) u| <C > |L'u| (5.1.4)
|JI<|1]
and
2
‘gSo to yO <Ct03 Z f \(tQ)IU(t,x))’ dx
|[|<2 ($07t0/3)ﬁg’cs
<Cty* )] f LT u(t, )| da,

|[I]<2

which completes the proof of Proposition 5.1.1. LJ

5.2 Application of the Sobolev inequality on hyperboloids

Using now the hyperboloidal energy defined in (2.3.2) and combining Propo-
sition 5.1.1 with the technical estimate (3.3.6), we can deduce various sup-
norm estimates, presented now. For clarity in the presention, we make
use of the notation F,,, (defined in Chapter 2) in order to emphasize
the dependency of the hyperboloidal energy upon the coeffficient ¢ in the
Klein-Gordon equation.

Lemma 5.2.1 (L* estimates on derivatives up to first-order). Ifu
18 a sufficiently reqular function supported in K, then the following estimates

hold:
(a) sup|t1/2s§au‘ <C Z Ep (s, Z1u)'/2,
Hs 171]<2
(b) sup|t*Po,u| < C > En(s, Z'u)'?,
s 7]<2

(c) Sup’0t3/2u‘ <C Z Ep.o(s, ZTu)Y?,
|I|<2

(5.2.1)

where Z stands for any admissible vector field, that is, any of 0n, L,, and
C' is a universal constant.

Remark 5.2.1. Let us illustrate our result with the homogeneous linear
wave equation

Ow =0, wlsy,, =wo, Gw|ay,, =wr, (5.2.2)

where the solution w; is defined in Hp11 n K. Thanks to the energy
estimate in Proposition 2.3.1, the energy E,,(s, Z!w) is controlled by the
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initial energy. By the commutator estimates (3.3.1) and (3.3.2) and by the
Sobolev inequality, we find

Q,u] < 12, |oaw| < CL=3/2+1(s2 — p2)=112, (5.2.3)

which are classical estimates. We emphasize that our argument of proof
is “robust” in the sense that it uses neither the explicit expression of the
solution nor the scaling vector field S = r0, + to;.

Now, we turn our attention to the energy and decay estimates for the
“good” second-order derivatives, that is, derivatives such as d,0,u.

Lemma 5.2.2 (Bounds on second-order derivatives). For every suf-
ficiently regqular function u supported in the cone X, the following estimates
hold:
3/2 3/2 I,N\1/2
sup [t*?50,0,u| + sup [t*?sd,0,u| < C Z En (s, Z u)"=, (5.2.4)
I I, =

J ‘sQaQau}zdaﬁ —|—J ‘sQaQau‘de <C Z En(s, Z"u). (5.2.5)

H FHs |I|§1
Proof. Recalling that d, = t~1L,, we obtain |0,0,u| < t~!|L,0u|. By
Lemma 5.2.1 and the commutator estimate (3.1.5), we obtain (5.2.4). The
second estimate is immediate in view of the expression (2.3.2). O

Remark 5.2.2. Energy estimates and L® estimates for the second-order
time derivative d,0,u will be derived later from the wave equation itself,
thanks to the decomposition in Proposition 2.2.1.

At the end of this section, we state the L* estimates of the solution of
wave equation (i.e. ¢; = 0).

Lemma 5.2.3. If u is a sufficiently reqular function supported in the cone
XK, then for any multi-index J, ifZ|II<IJI+2 By (s, Zu)Y2 < C's® for some
0 = 0, then one has

’ZJU| < Cclt(—2+5)/2(t . T)(1+6)/2 < C//C/t_3/2$1+5, (526)
where C,C",C" are universal constants.

Proof. Using that Z|I|<|J|+2 E,n (s, Z'u)'/? is bounded by C’s? and recall-
ing by Lemma 5.2.1, we find in the cone X

0,2 u| < Ot~ =912 — p)=(1=9)/2,
Then, (5.2.6) follows by integration along radial directions. O



Sobolev and Hardy inequalities on hyperboloids 67

5.3 Hardy inequality for the hyperboloidal foliation

In this section we establish an analogue of the classical Hardy inequality
but generalized to hyperboloidal foliations. This inequality will be used in
order to control L* norms of wave components such as | Z7u| p2(g¢, ).

Proposition 5.3.1 (The hyperboloidal Hardy inequality). For all
sufficiently reqular functions u supported in the cone X, one has

Is™ ull L2,y <Cllsg tul L2, + CZ |12, ull L2 (a¢,)

0y, [ 7 (1emadizc, + 12, ) ar.
(5.3.1)

Before proving this result, we begin with the following modified version
of the classical Hardy inequality.

Lemma 5.3.1. For all sufficiently reqular functions u supported in the cone
X, one has

r~ ull2(ac,) < O ) 120l L2(ac,)-

Proof. As in the proof of Proposition 5.1.1, we consider the function

ws(z) := u(+/s% + |z|?, z), which satisfies
Oaws(z) = duu(+/s% + |z[?, z).

We then apply the classical Hardy inequality to wg and obtain

J lr~tw, (2) Pdr < CJ \Vw,(z)]*de = C’ZJ |0 u(v/s% + 7“2,:1c)|2d:t
R3 R3 o R3
< CZJ |Qau(t, :17)|2d:c.
a YHs

0

Proof of Proposition 5.3.1. We introduce a smooth cut-off function

1, 2/3<r
x(r) =
0, 0<r<1/3

satisfying

and consider the decomposition

Is™ ullzae,) < Ix(r/t)s™ ulzegac,) + |1 = x(r/t))s ™ ul 2 (9c)
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which distinguish between the region “near” and “away” from the light
cone.
The estimate of [[(1 — x(r/t))s™ u|r2(g,) is based on the following ob-
servation:
(1—x(r/t)s ' <Ct™ in the cone X,
so that, by Lemma 5.3.1,
[(1 = x(r/t)us™ 2 (oey < It 1l L2(sc,)

B 5.3.2
< ||T 1UHL2(1}C3) < CZ HQQUHLQ(U’CS)' ( )

The estimate near the light cone is more delicate and to deal with the
term ||x(r/t)s™ ul 2 (g¢,), we proceed as follows: in the region Ky, 5, we
can find a positive constant C'

x(r/t)r
x(r/t) < Cm,
and thus
Ix(r/t)s ™ ull 29,y < Cllr(L+712) 7 2x(r/)s™ ) L2 o)
So, we can focus on controlling this latter term.
To this end, we consider the vector field
t t))?
= (0, _po (/D)
(1 +1r2)s?
defined in K and we compute its divergence
divW
rx(r/t)yu  —2x%x(r/t) urx(r/tu 2x (r/t)r
R S p—
(1 +72)1/2s r(1 + r2)1/2 rs(1+7r2)1/2 (1 +r2)l/2
r2t + 3t 212t 2
— t)) .
((1 + 1r2)2s2 " (1+ 7“2)34) (ux(r/1))

Next, we integrate the above inequality in the region K, ;1 € X n
{so < V/t?2 — r2 < 51} with respect to the Lebesgue measure in R*:

J div Wdzdt
x

[s0,s1]

_ J 3_1(5au (TX(T/t)“ 27 tx(r/?) )da;dt
X

2\1/2 2\1/2
o] 1+ r2)25 (1 + r2)V

/
. 2J 8—1% TX(?"/t)U X (T/t)?“ drdt
. F s+ 12)12 (L4 12)172

= s 1o,u

[s0,s1]

r2t + 3t 224 ,
- t)) dxdt
LC[So,sﬂ((l +172)%s? i (1+ 7“2)84) (ux(r/t))"dz
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thus
f div Wdzdt
K

[s0,s1]

= -9 J: J (s/t)s™! (Gau (1T:<_(:§§2;L28 Tff?iz/)?/z)dxds
_ QJSI J 5/t)s 1Y rx(r/tu X/t

rs(1l+r2)Y2 (1 +r2)1/2

. f | L{S(s/t)< i it;)?;tsz t ir:;;)s4)(ux(r/t))2da:ds

S1
= J (Tl + TQ + T3) dS,
S0

where

e G COR

1+ 7r2)Y2s (1 +72)1/2
rux(r/t)

s(1 4 r2)1/2

~1
<2s

L2(Hs)

ay . —1 2 1/2
x(r/)z%r (1 + r?) /HL@@{S)
rux(r/t)

<Cs™ 1| —22 L2
s(1+r2)V2|,

2 I(s/D2at]2(3c,).

(s)a

e :_28_1L{ (s/)" rx(r/tyu X' (r/t)r

rs(L+12)172 (14 12)172

|| rux(r/t) -1 / —1/2
<Cs —s(l )i L2(%S)Hur z2(acy|rx (/) (1 + r? HLOO(% )
_q| rux(r/t)
<Cs 1| —2L2_ 0 2 ,
S 8(1 + 7"2)1/2 L2(30,) Za: ||—au||L (Hs)
where Lemma 5.3.1 is used. We also observe that T5 < 0.
We write our identity in the form
i (J dideacdt) =Ty + 15+ 15 (5.3.3)
ds Ksg,s]
and obtain
d
— J div W dxdt
ds g(:[s 1]
0t (r/t) (5.3.4)
|l rux(r
<Cs s+ 22 2 (I(s/)all L2(gc.y + 10qulL2(sc.))-

L2(Hs) a
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On the other hand, we apply Stokes’ formula in the region X, , 1, and
find
-
div W dxdt
X [s0,51]
.

= W-ndU+J W -ndo

JH,
r 2 2

= lux(r/t)s 1‘ dr — f lux(r/t)s 1| dz.
Jac, 1+ 12 5, 1+ 72

By differentiating this identity with respect to s, it follows that

d d 7‘2 112
P (Jx d1Vdedt> P <L{ o2 lux(r/t)s™| dac)

[s0,s1]
rux(r/t) d| rux(r/t)
S(1+1r2)V2 | 2igc,yds | s(1 +72)1/2
Finally, combining (5.3.4) and (5.3.5) yields us

d || rux(r/t)
ds|s(1+r2)1/2

(5.3.5)

LQ(%s).

< 51 Y (J2atlzoocy + 2l 2 )
L2(Hy) a

and, by integration over the interval [sg, s],

Hr(l + T2)_1/2x(7“/t)3_1uHL2

(J_Cs)
2\—1/2 —1
< [r(@+ )7 X/ D50 ul 2 o, (5.3.6)
+ CZJ Yll2gul L2 aey + 124wl 2 (ac,))-

In view of Lemma 5.3.1, we conclude that
Ix(r/t)s™ ull 230,
< Cr(1+ %)~ 2x(r/t)s™ ul L2 o,

(5.3.7)
< Clsg ul oo, +02f (120l 2200,y + 120t 220t )

The desired conclusion is reached by combining (5.3.2) with (5.3.7). O



Chapter 6

Revisiting scalar wave equations

6.1 Background and statement of the main result

In this chapter, we revisit the classical global existence theory for scalar
nonlinear wave equations (with initial data imposed on a hyperboloid Hs,,
with sg > 1):
— poaB

(Ju = PP 0 udgu (6.1.1)

U|3{SO = Uo, 3tu|:}cso = Ui,
with smooth initial data wug,u; compactly supported in the open ball
B(0,s0). We denote by B(0,sg) the intersection of the spacelike hyper-
surface H,, and the cone K = {(t,z)/|z| <t—1}. We impose the classical

null condition on the bilinear form P*?, that is,
Po‘ﬁﬁafﬁ — 0 for all £ € R? satisfying —£2 + 253 = 0. (6.1.2)

We are going to revisit this classical problem Witha the hyperboloidal fo-
liation method and we establish that the energy of solutions is uniformly
bounded, while, according to the classical technique of proof, the energy
is only known to be at most polynomially increasing. The hyperboloidal
energy E,, = E,, o was introduced in (2.1.11), while the admissible vector
fields Z € & were defined in (2.1.7).

Theorem 6.1.1 (Existence theory for scalar wave equations).
There exist €9, Ch > 0 such that for all initial data satisfying
Epn(so, ZTu)1? < e < g forall|I| <3, ZeZ, (6.1.3)
the local-in-time solution u to the Cauchy problem (6.1.1) extends to arbi-
trarily large times and, furthermore,
Ep(s, ZTu)'? < Cye forall |I| <3, Ze %, (6.1.4)
and
|Oau(t, )| < Cret=1(t — |z]) Y2, (6.1.5)

71
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6.2 Structure of the proof

We proceed with a bootstrap strategy and, for some large constant C'; > 1,
we assume that, in a time interval [sg, s1] the local solution satisfies the
bound

Z En(s, ZTu)1? < Cie  for s € [sg, s1]. (6.2.1)
Iz
We take
§1 1= sup {s > s/ 2 Ep (1, Z u)Y? < Cye for all 7€ [so,s]}
|1]<3
Ze%

to be the largest such time and we suppose that it would be finite. Since
C1 > 1, by a continuity argument, we know that s; > sq.

Our objective is to establish, for a suitable choice of ¢y, C; > 0, that for
all € < ¢q,

1
Z En(s, ZTu)'? < 5016 for s € [so, s1]- (6.2.2)

|I1<3
ZeZ

This leads us to

1
Z Em(817ZIU’>1/2 < 50167

[T]<3
Ze%¥

and, by continuity,

$1 < sup {s > 50/ Z B (1,7 u) < Cre forall T e [30,3]}, (6.2.3)

|I1<3
ZeZ

which would be a contradiction. We can then conclude that s; = +oo.
Namely, in view of the local-in-time existence theory (cf. Theorem 11.2.1),
the solution u extends to all times.

In other words, our task reduces to proving the following result, and the
rest of this chapter is devoted to its proof.

Proposition 6.2.1. Let u be a solution to (6.1.1) defined in [sg,s1] and
with initial data satisfying

> En(so, Z2'u)'? <e. (6.2.4)

[T]<3
ZeZ

There exist constants Cy,e9 > 0 such that if u satisfies the estimate (6.2.1)
with € < gg, then the estimate (6.2.2) holds.
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6.3 Energy estimate

The following lemma is essentially Proposition 2.3.1 in the special case of
(6.1.1), but for convenience we provide here a direct proof.

Lemma 6.3.1. If u is a solution to (6.1.1) defined in [so,s1], then the
enerqgy estimate

2 En (s, ZTu)Y?

I7]<3
Ze%

. (6.3.1)
< 2 Bn(s0,2'u)' 2+ | 3 |21 (PP 00udpu)| ayg ydr

|[I1<3 S0 |I1<3

Zeor ZeZ

Proof. We apply to the equation (6.1.1) a product Z! with |I| < 3 and,
by recalling the commutation relation [Z7,[J] = 0, we find

[I(qu) = 7! (Po‘ﬁﬁauagu).

By multiplying this equation by d;Z’u and performing the standard energy
calculation, we deduce that the function % := Z'u satisfies

%at <(ata)2 + E(aaa)2> — 04 (0,T0) = Z" (PP 04110 5T) &4,

Integrating this equation in the region Xy, s}, we have

Jx (%a’f((aﬂ)2 + Z((M)Q) — 04 (%am) dtdx

— f ZT (PP 0,ii05u) 64l dida.
N ¢

[sg.s]

[SO ,s]

(6.3.2)

By Huygens’ principle, the solution is supported in the cone X and, in
a neighborhood of the cone {|z| =t — 1} n {sg < 7 < s}, we have u = 0.
By Stokes’ formula, the left-hand side of (6.3.2) reduces to

1

(a7 S @ 2008 o
K, -

g
2 Jyc

where n is the (future oriented) unit normal vector to the hyperboloids and
do is the induced Lebesgue measure on the hyperboloids, with
(t2 + ‘$|2)1/2

n=(t*+ |:(:|2)_1/2(t, —z%), do = ; dx.

(1040 + ) [0ai|?, 20,Ud,10) .ndo,

S0
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Hence, the left-hand side of (6.3.2) reads
1 - ~ PPN
3 L{S <|§tu|2 + Za: |0a ]2 + 276au6tu) dx

1 ~ ~ Tl
~3 J}CSO <\8tu\2 + ; |0a 7] + 278au8tu) dx,
which is $Ey, (s, Z'u) — 2 Ep (s, Z1w).

On the other hand, in the region X[, 5, we use the change of variable
7 = (t? — |z|?)V/? and the identity dtdx = (7/t)drdz, so that the right-hand
side of (6.3.2) becomes

7/t)ouZ! (PP o udgu)dzdr.
B
S0 f}fT

We thus conclude that (6.3.2) is equivalent to

1 1 §
§Em(s, Z) — §Em(so, Zh) = f dsJ (7/t)ouZ” (PP 0qudsu)da.
So J'CT
(6.3.3)
Next, we differentiate (6.3.3) with respect to the variable s and obtain

T

E(r, ZIu)l/zdiE(T, Z1u)'? :f (7/t) 0z’ (PP 0qudsu)da

<[ (/)0 230, 2T (PP daudgu) | 5 -

Recalling the expression of the hyperboloidal energy (2.3.2), we have
E(s,u)'? = ||(t/t)0su| L2(3¢,) and therefore
d

P Z E(s, ZTu)'? < Z HZI(Po‘Bﬁaquu)

|71<3 |I1<3
Ze%¥ Ze%

e,

The conclusion follows by integrating over [sg, s]. O

6.4 Basic L? and L® estimates

In this section, from the bootstrap assumption (6.2.1), we deduce L? and
L™ estimates. First of all, the following lemma is immediate in view of the
expression of the hyperboloidal energy and (6.2.1).

Lemma 6.4.1 (Basic L? estimates). By relying on (6.2.1), the follow-
ing estimate hold for all s € [sg, s1]:

Z 10,2 | 12(3¢,) < CChe, (6.4.1a)

[7]<3
ZeZ
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> (s/)20 2 ul 23,y < CChe, (6.4.1b)

|I1<3
ZeZ

where C' > 0 is a (universal) constant.

Now, we combine Lemma 6.4.1 with the commutator estimates in Lem-
mas 3.3.1 and 3.3.2.

Lemma 6.4.2. By relying on (6.2.1), the following estimate hold for all
s € [so,s1]:

HZHQCLZIQUHLQ(}(S) < C(Cqe fOT all |Il‘ + ’1—2‘ < 3, (6423)

12" ((s/t)09Z"u) | 23,y < CCre  for all ||+ || <3,  (6.4.2b)
where C > 0 is a universal constant.

Furthermore, the following decay estimate is immediate in view of
(6.4.2) and the Sobolev estimate on hyperboloids (5.1.1).

Lemma 6.4.3 (Basic L* estimates). By relying on (6.2.1), the follow-
ing estimate hold for all s € (s, s1]:

||t3/2QaZJUHLoo(g-CS) < CCre  forall |J| <1, (6.4.3a)

\|t1/2sQOZIu]|Loo(g{S) < CCie  forall |J| <1, (6.4.3b)

where C > 0 is a universal constant.

6.5 Estimate on the interaction term

We are now in a position to control the interaction term P*#d,udgu with
the help of the L? bound (6.4.2) and the L* bound (6.4.3).

Lemma 6.5.1. By reyling on the inequalities (6.4.2) and (6.4.3) and by
assuming that the billinear form associated with P®P is a null form, the
following estimate holds for all s € [so, $1]:

|21 (PP 0, udsu) < CK (Cre)?s73/2, (6.5.1)

l1200c.)

where C' > 0 is a universal constant and K = max, g |P*"|.
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Proof. We recall Proposition 4.1.2 which tells us how to estimate a null
form, that is

‘ZI (P‘m@au@guﬂ < OK(s/t)? Z ’Zh&tqu&tu‘
[ [+ 12| <[]
+CK Y, (2R g + |2 5 2" 0,u])

a,p,
[I1]+][I2]<|I|

=:T1 4+ T5,

where K = max,, g |P“?|.

To estimate the L? norm of each term in T}, we remark that |I1|+ || <
|I| < 3 implies that |I1] < 1 or |I3] < 1. Without loss of generality, we
assume |I5] < 1 and then write

H(s/t)QZI1 RIVAL atuHLQ(%S)

T I (N
< CCres 320 C1e < C(Cre)?s™3/2.

| oo ac.)

The terms in 75 are estimated along the same idea by writing, when
L] <1,
|27 00u Z"205u) s g0, =172 2" 20wt (t/5) (/) 2251 o o
3/2 71 —3/2 I
<Ht 2z 2,uS / (s/t)Z QBUHLQ(}CS)
(S/t)ZIQQﬁuHL2(g.CS)

e LA LT

<C(Cre)?s3/?

and, on the other hand when |I5] < 1,

125 8,0 2000 gy =200t 020
<21 0gus™ Pt s 22 5u] 1y o

:8—3/2 HZII

0att] 1250 tl/%ZbQﬁ“HLw(ﬂfs

<C(Che)?s2,

)
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6.6 Conclusion

Proof of Proposition 6.2.1. Now, we combine the null form estimate
(6.5.1) and the energy estimate (6.3.1), and obtain

rS

Z Em(37ZIU)1/2 < Z Em(307ZIU)1/2+C(Cl€)2 7-_3/2 dr

[I]<3 |I1<3 Jso
Ze% Ze%¥
100
< Z B (s0, Z1u)/? + O (Cye)? 732 dr
< J1
.
<€ + 0(016)2.

In order to conclude, we take C7; > 2 and € < ¢y = 20553, and we find that
1

1
Z En(s, Z1u)'? < 5016.

[11<3
ZeZ

0

The time-asymptotics of the solutions is also clear: (6.1.4) has already
been proved by Proposition 6.2.1. To see (6.1.5), we remark that by Lemma
6.4.3,

|0pu| < Cret ™ 2571 < Cret ™ (t —r)"Y2,  |9,u| < Cret™3/2.

By recalling the relation

xa

Ogt = 0 U — 70tu,

then (6.1.5) follows. In view of the discussion at the beginning of Section
6.2, Theorem 6.1.1 is now established.
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Chapter 7

Fundamental L” and L? estimates

7.1 Objective of this chapter

We begin the discussion of the bootstrap arguments and we suppose that
(2.4.5) holds on some time interval. Our aim is to derive additional es-
timates from these assumptions. In the present chapter, we are able to
deduce several L? and L* estimates on the solution and its derivatives.
These rather immediate estimates will serve as a basis for the following
chapters. The estimates in this chapter are classified into two groups: L?
estimates and L® estimates:

e The L2-type estimates themselves are classified into two genera-
tions:

— The estimates of the first generation are immediate conse-
quences of (2.4.5).

— The estimates of the second generation are deduced from those
of the first generation, by recalling the commutator estimates
(cf. Lemmas 3.3.1 and 3.3.2). These are the L? bounds that
will be more often used in the following discussion.

e The L -type estimates are also classified into two generations:

— The estimates of the first generation follow immediately from
(2.4.5) and the Sobolev inequalities (5.1.1).

— The estimates of the second generation are deduced from the
ones of the first generation and the commutator estimates in
Lemmas 3.3.1 and 3.3.2.

In the following, the letter C' will be used to represent a constant who
depends on the structure of the system (1.2.1), such as the number of
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equations ng, the number of wave components jo, and the Klein-Gordon
constants c;.

7.2 L? estimates of the first generation

From the expression of the energy (2.3.2) and the energy assumption (2.4.5),
the following estimates hold of all [I*| < 5 and |I] < 4:

2 1(5/080 2" wi| oo,y + 2 1(5/02a 2 wil g,y < COres’, (T2.1)

a,t

D100z will gy + D(5/020 2" Wil a5,y < CCres®?, (T2.1D)

22 12a2" wi] gy, < OChes”. (7.2.1c)
21202  wil 5,y < CCres"2, (7.2.1d)
212" 0] oo,y < COres”, (7.2.1e)
22" 0] g,y < COves™, (7.2.1f)

By taking
AN A A
7" —tp, 7" = L,72", 7' =t0,7" = L,Z"

in (7.2.1e) and (7.2.1f), we have especially the following estimates on Klein-
Gordon components for |IT| < 4 and |I] < 3:

Z Hé’aZITU;HLQ(g{S) + Z !‘QQZITU;HLQ(}CS) < CChes?, (7.2.2a)
Z H%ZIUTHH(:HS) + Z HQaZIUTHB(:}(S) < CCies’?, (7.2.2b)
Z HtQQZITU;HLQ(Hs) < CCres?, (7.2.2¢)

7,a
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D lt0aZtvi o gy < CCres™™. (7.2.2d)

7,a

The bound on QaZITv; in (7.2.2a) is derived from the estimate on 0, 21" vy
and the estimates on QGZITU;.
For any |I| < 3, from (2.3.2) and (2.4.5¢) we control the wave compo-

nents:
E H(s/t)@O[ZIugHL2 gy T E H(s/t)QaZIUgHL2 5y < CChe, (7.2.3a)
( S) ( s)

2 M2.2" ) 5, < CCre. (7.2.3b)

7.3 L? estimates of the second generation

By using Lemma 3.3.2, we can commute the vector fields under consider-
ation and, relying on the estimates established in the previous section, we
obtain the following result.

The first group of estimates is obtained by (3.3.1), (3.3.2), and (7.2.1):

S /D27 00w agpy + 2 (/27 00wi] 25, < CCres®, (7.3.12)

e

SN2 dawi ooy + 2N/ 2T 8w 2 g, < CCres’’?, (7.3.1b)

7 2. HZﬂ’QaUJfH 123,y < CCres’, (7.3.1c)
212" 00wl oo,y < COes™?, (7.3.1d)
205 e,y < CChres” (7.3.1¢)
;
22" 03] o, < CCres, (7.3.1f)
;

The second group of estimates follows from (3.3.1), (3.3.2), and (7.2.2):

Z HZIT&)U;HLQ(%S) + Z HZITQQU;HLQ(}CS) < CChes, (7.3.2a)

7,x 7«
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2 2utel oo + D12 0ute] g, < OO, (7.3.20)
Z HtZITQa"U;HLQ(%S) < CCLes®, (7.3.2¢)
262" 200r a5y < CCres™™. (7.3.2d)

The third group of estimates follows from (3.3.1), (3.3.2), and (7.2.3):

D/ 2 0aus| aae,, + 23 1(5/8) 2" Q0] ooy < CCres (7.3.3a)

7,x

Z HZIQaWHm(%S) < CCie. (7.3.3b)

7,a

The fourth group of estimates concerns the second order derivatives.
The first is deduced from (5.2.5), (2.4.5a), and (2.4.5b), while the second is
deduced from (5.2.5), (2.4.5d), and (2.4.5¢), and the last one from (5.2.5)
and (2.4.5e):

Z HSQaQﬁZﬂwiHm(J{S) + Z HSQﬁQaZITwiHm(g{S) < CCres’, (7.3.4a)
a,B,i a,B,

Z HSQQQBZ[UJZ-HLQ(:HS) + Z HSQ,BQGZIwiHLQ(g{S) < CChes®?, (7.3.4b)
a,B,i a,B,i

3 HsQaQﬁZﬂugHLQ(%s) + ) Hsgﬁgaszu;y\p(%s) < CCre, (7.3.4c)
a,B,7 a,B,z

where the order of I” is less or equal to 2. We can also use the commutator
estimates (3.3.4) and obtain

Z HSZITQCLQB“’Z'HH(:HS) + Z HSZITQBQawiHB(g{S) < CCres’, (7.3.5a)
a,B,i a,B,i

2 82" 0a85wil oo,y + 20 1527 0500w a5,y < CCres™?, (7.3.5D)
a,B,i a,f,i

Z HSZIanQBu?H:}cS + Z HsZIbQBQQUgH:HS < OCqe. (7.3.5¢)

aﬂﬁﬁ: CL,B,?
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Finally, we have the L? estimates for the wave components themselves*
for all |I*| < 5 and all |IT] < 4:

Hs_lZIﬁuaHLQ(}CS) < CChes®, (7.3.6a)
Hs_lZITugHLQ(:Hs) < CChes?, (7.3.6b)
Ht_lzluiHLQ(f}{s) < CChe. (736C)

The first two inequalities are direct consequences of (7.2.1a), (7.2.1b),
(7.2.1c), and (7.2.1d) combined with Proposition 5.3.1. The last inequality
is a result of Lemma 5.3.1 combined with (7.2.3Db).

7.4 L* estimates of the first generation

For convenience in the presentation, we introduce a new convention (which
is parallel to the index convention already made in (2.4.1)):
J* index of order < 3,
J' index of order < 2, (7.4.1)
<1

J index of order

Now we give the decay estimates based on the energy assumption (2.4.5)
and the Sobolev-type inequality given in Proposition 5.1.1.

The first group of inequalities is a direct consequence of (5.2.1), (2.4.5b),
and (2.4.5a):

sup <st1/2|8aZ‘]ﬁij + sup (stlp‘QQZﬂij < CChes®, (7.4.2a)
s

S

sg1{1p <st1/2{6aZJijD + Sgl{lp <3t1/2‘QaZJij‘) < CChesd’?, (7.4.2b)

sup <t3/2|QaZ‘]ﬁij < CCes®, (7.4.2c)
X

S

sup (t3/2‘QaZJij|) < CCles®?, (7.4.2d)
Hs

*In (7.3.6a), if we want to be more precise, C = C’'(Cy/Cy + 1+ §~1) where C’ is a
constant depending only on the structure of the system. We see that it also depends on
Co and 6. But as we can assume that 1/12 < § < 1/6 and C; = Cp, we denote it again
by C and regard it as a constant determined by the structure of the system:.
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sup (t3/2|Z‘]ﬁvj|) < CCres’, (7.4.2¢)
s

sup (t3/2|ZJij|) < CCles®?. (7.4.2f)
Fs

The second group of estimates is a special case of the second estimate,
by taking

ZjnzaaZJT, ZJﬁZLaZJT:tQaZJT’
77" = 0,27, 77 =Lz’ =to, 7’
in (7.4.2e) and (7.4.2f):

Sgl{lp <t3/2|6aZJij|) + S}lclp (t?’/Z‘QaZJTUjD < CChes’, (7.4.3a)
sup (£°210627v3]) + sup (7]8,2701]) < CCres, (7.30)
sup <t5/2}QaZﬂvj\> < CCyes, (7.4.3¢)
Sjl{lp (t5/2|QaZJUj|> < CCres®?. (7.4.3d)

The estimates in the third group follow from (5.2.1) (a) and (b) com-
bined with (2.4.5e):

sup <st1/2|5aZ‘]u£|) + sup (st1/2|QaZJuED < CChe, (7.4.4a)
H s

S

sup (t3/2‘QaZJu@D < CChe. (7.4.4b)
Hs

The fourth group concerns the “second order derivative” of the solution.
They are deduced from (5.2.4) and (2.4.5):

sup (t3/2s|QaQaZ‘ﬂwj|) + sup (t3/23|QaQaZJij|) < CCres®, (7.4.5a)
H, Hs

sup (tg/zs‘QaQaZ‘]ij + sup (t3/28|QaQaZJUJj|) < CCres®?,  (7.4.5D)
Hs

S

sup (t3/2s|QaQau§|) + sup (t3/23|QaQau5|) < CChe. (7.4.5¢)
}C g{s

S
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7.5 L* estimates of the second generation

The estimates in this section follow from the first generation L® estimates
established in the previous section, combined with the commutator esti-
mates in Lemmas 3.3.1 and 3.3.2.

The first group of estimates are results of (3.3.1), (3.3.2) combined with
(7.4.2):

s}tép |st1/2ZJﬂ5awj| + Sjl%lp ‘stl/zZ‘]ﬁQawﬂ < CChes?, (7.5.1a)
sup stl/zZJTﬁaw~ + sup stl/zZJTQ w;| < CCLes®?, 7.5.1b
¢ J 3 ]
sup |t3/2Z‘]uQawj’ < CCres®, (7.5.1c)
Hs
sup ‘t3/2ZJTQawj| < CCles®?, (7.5.1d)
sup 32 77%, < CChes®, 7.5.1e
k
sup ‘t3/2Z‘]TUE{ < CChes®?. (7.5.1f)

S

The second group consists of the following estimates. They are results
of (3.3.1), (3.3.2) combined with (7.4.3):

s;clf) |t3/2ZJT(?a'UJv‘ + s;clf) |t3/2Z‘]TQavj{ < CChes’, (7.5.2a)
S;CIE) ‘t3/2Z‘]6avj‘ + Sgl{lf) |t3/QZ‘]Qavj| < CCes®?, (7.5.2b)
sup |t5/QZJTQavj‘ < CCres?, (7.5.2¢)
s;clp |t5/2ZJQav5‘ < CChes®?. (7.5.2d)

The third group consists of the following estimates which are direct
consequences of (3.3.1) and (3.3.2) combined with (7.4.4):

sup ‘stl/ZZ‘]ﬁauj‘ + sup |3t1/2ZJQauj| < CChe, (7.5.3a)
Hs Hs
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sup |t3/2Z‘]Qau5\ < CChe. (7.5.3b)

S

The estimates of the fourth group are deduced from (3.3.4), (7.4.5a),
(7.4.5b), and (7.4.5¢):

sup (t3/2sZJTQaQawj) + sup (tS/QSZJTQaQawj) < CCres?, (7.5.4a)
s Fs

sup (t3/23ZJQaQawj) + sup (t?’/stJQaQawj) < CChes®?, (7.5.4b)
Fs s

sup \st3/2QaQ5u5‘ + sup |8t3/2QaQij| < CCqes. (7.5.4c)
Hs Hs

We finally can write down the decay estimates for the wave components,
which follow from Lemma 5.2.3 combined with (2.4.5):

sup (t3/28_1|Z‘]ﬁu;|> < CCres’, (7.5.5a)
Hs

sup <t3/2s_1|Z‘]Tuﬂ) < CCles®?, (7.5.5b)

S

sup (t3/23_1|ZJUg|) < CChe. (7.5.5¢)

S



Chapter 8

Second-order derivatives of the wave
components

8.1 Preliminaries

The estimates in this chapter concern “second-order” terms 0,032 Tz and
AN 0guy, which will also be used for the control of

Uz On O U5

This chapter is more technical than the derivation of our earlier estimates
and our strategy now is as follows. We are going to analyze the structure
of certain second-order derivatives of the wave components in the semi-
hyperboloidal frame and concentrate first on the component of the Hessian
0000 Z 1 uz or, equivalently, 0;0;Z%u;. Other components have a main part
which can be expressed in terms of this component. Next, we will ana-
lyze 0,0;Z"u; and give a general sketch of the proof, while postponing the
technical aspects to the last two sections.

More precisely, let us first reduce the derivation of an estimating of the
Hessian of ZTu; to an estimate of its component 0000 % Ts.

Lemma 8.1.1. If u is a smooth function compactly supported in the half-
cone KX = {|z| <t — 1}, then for all index I one has

100052 u| < |0:0:Z7u| + CZ 0,082 u| + QZ 10,21l
a,B t ¥

where C is a universal constant.

Proof. We recall the following identity based on a change of frame (be-

87
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tween the natural frame and the semi-hyperboloidal frame):
Iy gh I B I
=00 00,002 u + Z W0 0h0,0,2"u

Z\paqx% i) qu+2xpa\pﬁa 0,27 u + 00 (V5 ) 252 u.
a,b

|<¢a
t

By observing that |0a
[0, &:1(2" u)! <Ot~ ) [0a 2",

we can write

thabz ul + > 10,0,Z"u| <) 10,052 u| + Ct~ 1Z|a Z1u).
a,b a,B

Now we assume that the energy is controlled.

Lemma 8.1.2. Under the energy assumption (2.4.5), the following L* es-
timates hold for all [I'] < 4,|I| < 3 and |I"| <2

‘}33t_28a05ZITUgHL2(g{S) < Hs?’t_28t8t2ﬂu; + CCes?, (8.1.1a)

l120c.)

HSS?ﬁ_Zaa%ZIWHLQ(HS) < H83t_2§t&tZIug + C’C’les‘s/Q, (8.1.1b)

200

54720005 2" wi o g0, < |S*72000, 2" 1] g, + CCre. (8.1.10)

Furthermore, the following L estimates hold for all |J1| < 2 and |J| <

sup |5t 71/20,05 z7' u| < sup |s°t~ 1/28t§tZJTu| + CChes®, (8.1.2a)
s K,
sup |5t 120,052 u| < sup |s37120,0,27u| + CC1es®/?, (8.1.2b)
Hs Fs
sup |53t 7120, 05u| < sup |s*t7120,0,u| + CCte. (8.1.2¢)
S g-(:s

Proof. The estimate (8.1.1a) is a combination of Lemma 8.1.1 and the
estimate (7.3.4a), while (8.1.1b) is a combination of Lemma 8.1.1 and the
estimate (7.3.4b). On the other hand, (8.1.1c) is a combination of Lemma
8.1.1 and the estimate (7.3.4c). For the L™ estimates, we combine Lemma
8.1.1 with (7.4.5). O
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8.2 Analysis of the algebraic structure

The aim of this section is to establish a general control on 0.0;Z u;, by
making use of the identity (2.2.7). Our strategy is to express 0;0; Z u; by
other terms arising in (2.2.7). In this first lemma, we relate 0;0;Z u; to
remaining terms which have faster decay.

Lemma 8.2.1. Let Uy (1) := (8t&‘tZIu1,8t(9tZ1u2,...,(9t§tZIujO)T which
is a jo-vector and L, be the jo- dimensional identity matriz. The following
identity holds:

((s/t)*L;, + G(w, 0w))Up (1)
= ([Z", G?Oatat]uj — Qai(I,w, 0w, 00w) + Z'F; + R(Z"u;))

1<e<jo’
(8.2.1)
700 . . . .
where (G(w, 6w))1<aj<jo = (GI"(w, 6w))1<aj<jo is a jo X jo order matriz,

Qc:(I, w, ow, dow)
= ZH(G2(w, 0w) @, 0u5 + G (w, dw)drdyus + GI™ (w, 0w)d,0yu;)
+ 77 (Ggaﬁ(w, 8w)Qﬁ,u5§a\P§/) + 71 (G%vaﬁ(w, Ow)0adpvy)
and
R(Z"uz) := —m®*000,Z" uy — m® 0,0, 2" uy — m*0,00 2" uz
+m*? (0,95 )25 2 us.
The terms Z!F; and Qg; are bilinear and can be expected to enjoy

better estimates. The term R(Z'u;) contains only “good” second-order
derivatives and can also be expected to enjoy better estimates.

Proof. Recall the identity (2.2.7) with the function Z%u;
(/)00 Z uz =002 uz — m" 000, Z 1z — m™ 0,002 uz
—m™0,0,Z uz + m™” (Qaq)g/)ﬁﬂ/ZIU5 (8.2.2)
=Z"u; + R(ZT, u3).
By equation (1.2.1), the first term in the right-hand side can be written as
07wy = Z 0wy = 27 (G%aﬂ(w, ow) 0o 0pw;) + Z1 (Fr(w, dw)),
where

G%aﬂ(w, W) 0o 0gw; = Ggo"g (w, 0w) 0o 0puz + G%vaﬂ(w, Ow) 0o 0305
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and
G2 (w, 0w)0adpu; = GI*P (w, 0w) 200515 + GI* (w, 0w) 2 5 us0, 15 .
We have
7zt (Gga'g(w, Ow)0adpu;)
= Z1(G2P (w, 0w) 2,0 5uz) + ZT (G (w, 0w)2 100 T )
= 21 (G 0vdvu; + G0, 00u; + GI 010y u5 + G100y u;)
+ 7! (G%AO"B (w, ﬁw)Qﬁ,u]A@a\I/gl)
= Gjoo(w ow)0p0y Z uz + [ 27, Gjoo(w Ow) 0¢ O¢|u;
+ Z1 (G (w, 0w) 0,0y uy + GI™° (w, 0w)d, Opuz + GL™° (w, dw)d, dyu7)
+ Z1(GI (w, 0w) 25 uz0. V1 ).
So we conclude that
07w = — ngo(w, &‘w)&‘tﬁtZluj — [ZI,QgOO(w, Ow) 0¢ O¢|u;
— Z1(GI (w, 0w) 2, 0puz + G (w, dw)drQyuz + GI* (w, 0w) 0y u5)
— Z1(GI (w, 0w) 25450,V ) — Z1 (G (w, 0w)0adpvy)
+ Z1By(w, ow).
Substituting this result into the equation (8.2.2), we obtain
(s/t)20,0, 2 uz + G (w, Ow) 0,0, 2 u;
= —[ZI,Q%AOO(w, Ow) 04 0 Juz
— Z1 (G2 (w, 0w)d,0pu5 — G (w, Ow) &, Qyuz — GL™° (w, dw)d, dyu7)
— ZH(GI* (w, 0w)2puz0a VY ) — ZT (G (w, 0w)dadgvy)
+ Z1 By (w, ow) + R(Z1, uy).
O

Now we derive estimates from the algebraic relation (8.2.1). A first step
is to get the estimate of the inverse of the linear operator (I;, + (t/5)*G).
We can expect that when |(¢/5)2G]| is small, (I;, + (t/s)?>G) is invertible
and we can estimate Uy () from (8.2.1).

Lemma 8.2.2. There exists a positive constant €(j, such that if the following
sup-norm estimates

|0u;] < CCret ™ 2571, |ovy| < CCLet™3/28°,

(8.2.3)
lv7] < CCLet™2s% |uy| < CCret=/%s
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hold for Cye < €, then the following estimate holds:

|00, 2" us| <C(t/s)* max {(|[2",G20,0,]uz) + |Qaz (I, w, w, dow)|
1<k<jo
+|Z'Fy| + |R(ZTug) ) }-
(8.2.4)

Remark 8.2.1. (8.2.3) can be guaranteed by the energy assumption (2.4.5)
via the L* estimates (7.5.1), (7.5.2), (7.5.3), and (7.5.5) with C' determined
by the structure of the system.

Proof. By the structure of G(w, dw)

700 4300~k ~ J007k A J00k, 700k
G = A7 Oug + AT 0 vy + By ug + B vy
Taking into account the assumption of (8.2.3),

IGI| < CCye(s/t)?.

When CCie < Ce¢) sufficiently small, the linear operator I; +

(t/5)?G(w, dw) is invertible (viewed as a linear mapping from (R7, || | ) to

itself) and | (L, + (¢/s)?G(w, 0w)) [« is bounded by a fixed constant.
By Lemma 8.2.1, we have

(5/1)20,0, 2 uz
= (L, + (t/8)*G(w, 0w)) ™"
([Z’, G0, u; — Qa(I,w, dw, dow) + Z Fs + R(wa))

1<2<jo
and so
|(s/t)25t8tZIua‘ <C’1rr}2ax (‘[ZI, G%Ooatﬁt]uﬂ +|Qai (I, w, dw, dow)))
<k<jo

+C(|Z'F| + |R(Z"uy))).

O

We need to estimate the terms appearing in the right-hand side of
(8.2.4). We observe that the term [ZI,Ggooﬁtét]uj contains the factor
010+ Z 7 u; which is also a second-order derivative but with |J| < |I|. This
structure leads us to the following induction estimates. Recall again our
convention: Z! = 0 when |I| < 0.
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Lemma 8.2.3. Followed by the notation of Lemma 8.2.1 and 8.2.2, the
following induction estimate holds

|at§tZIU’i|
<Cfs)? Y, (1270w + 122 wi)|0i0 2 )

[I1|+[I2]<|I|
[T11<|I],v,3,4

+C(t/s)* max {Qr;(I,w,ow,dow) + C(t/s)?|Qar (I, w, owdow)|
1<k<jo
+ C(t/s)2|ZIFg] + C’(t/s)2|R(ZIuE)|},
(8.2.5)
where
Qri= >, . (1270w + 12"w;]) (12,05 2" usl + t~(04 Z" ug))
[I1|+1121</I] a,B,~'
[T11<IT],7v,3,3
Proof. This is purely an estimate for the term [Z7, ng Oﬁtﬁt]uj, derived as
follows:
(2", G100y = Y, Z(G]") 2" (0vdrug) + GI[ 2", 21di]ug.

I1+1g=1I
[T1]<|1]

(8.2.6)
We have

|22(GI")| <[ 2" (A7 0, wi) | + | 27 (B i)
<C > (|2B0w| + |2 wy).
151112
The first term of the right-hand side of (8.2.6) is bounded by
¢ Z (|Zl2aij| + |Z12wj|)|atachuj|

[Ty |+ I2]<I1]
[T11<[I|,v,5,3

+C > > (1250w + 127 w]) (10,052 ) + 1[0y 2 ug))

’
[1l+|12l<II] a,B,y
[I11<IIl,7v,3,5

Similarly, the second term of the right-hand side of (8.2.6) is estimated as
follows, by (3.3.3) and Lemma 8.1.1:
(21, 010,]us] < C Z 1000527 u5|
7140

<C Y o 27wl +C Y 10,0577 uj
17| <|1| Rty

+Ctt Y 10,27 .

v
[J]<|T]
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Combined with the following estimate, we have

GI° < C ) (105wy] + |wy]).

2

8.3 Structure of the quadratic terms

The aim of this section is to analyze the structure of the quadratic terms
Qr;, Qc; and Z1F;. We emphasize that some components of these terms
satisfy the null condition and we can use it to make the estimates a bit
simpler, but we prefer to avoid the use of the null structure here in order
to show the independence of these analysis on this structure.

First, we note that the terms ()7, are linear combinations of the follow-
ing terms with constant coefficients with |I;| + |Io] < |I| and |I1| < |{]

27204z | 10,0521 5], | Z720,05] 10,052 w3,
1 Z"2ug | 10,052 wsl, | Z2720g10,052 " w5,
220, ug] 0y 2 ug|, 7220004 21 g,
t_1|Zl2uE| |0y 21 g, 1 1|ZIQUE| [0y Z " ug].
We consider (Qg; and write
Qc; (I, w, 0w, dow)
= Z1 (G2 (w, 0w) @, 0u7 + G (w, dw)drdyus + GI™ (w, 0w)d, 0y u;)
+ 21 (G (w, dw)@ 5 us0a V0 ) + Z1 (GIP (w, 0w) 20 d5vy)
— 71 (AT w2, pus + B0, 00us + AR v:d, 0u;

(8.3.1)

+ BZGOkU%ﬁ Oyu;)
+ 2 (AP 8w drdyuy + B u drdpu; + APEE v dnd,u;
+ BzObkvEﬁtabuJA)
+ 2 (A 0,05 + BE g, dpus + ARG 00,05
+ Q%aka;QaQbuj)
+ 71 (AP0 0 0500 W + BEPRug 05000, 07)
+ AP 0 30,05 + BEPR 00050, 05)

+ 21 (AP0 000505 + ALPTR 00 000505 + BEPF 0 000507).
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Let K := maxa, g.ijx{A7*"" B/*P} and remark that by (2.2.2),
2T AP 4|27 B < C(DK.
We observe that the terms Qg;(I, w, 0w, d0w) are linear combinations
with bounded coefficients of the following terms:

z! (u;@ %u;) z! (UZQaQﬁuJA), z! (u;@tQau]A), zZ! (w&tQau5),
Z'(0,u:0,05u5),  Z'(0,v10,05u5), Z'(Q w0l uz),  Z'(0,v50ed,u5),
I I B’
Z (6 v’ uzﬁﬂ,uj) Z (8a\115 U;QE,UJA),
20,V 0y uzdgug), 21 (020 0500 y),
Z" (704 651{7) ZM(04u700,05v5),  Z'(04v70405vy).
(8.3.2)
For the term Z!'F;, recalling its definition
ZIFg =77 (P;"Bjkaawj&ﬁwk + Q?jkvéaawj + ngv]vvé),
we classify its components into the following groups:
Oquj0puy, 0OaUj0Wk, UViOaWj, VUL
We regard Z!F; as a linear combination with constant coefficients bounded
by K of the following terms:

z! (aau585ug), z! (0avj§5wk),
Z" (vidavs),  Z'(vyvp)-
The estimates on 0,0;Z u; turn out to be the estimates on these terms
listed in (8.3.2) and (8.3.3) and R(Z'u;).

(8.3.3)

8.4 L% estimates

The purpose of the section is to establish the L estimates on 0;0; Z” u; (and
then 0,057 u;) under the energy assumption (2.4.5). We need to combine

estimates on the terms Qr;, Qas, Z7'F and R(Z‘]Tug) with Lemma 8.2.3.
So, we first consider these terms in the following two lemmas.

Lemma 8.4.1. Under the energy assumption (2.4.5), the following esti-
mates hold for any |J1| < 2

1Z7 B < C(Che)2t325119 (8.4.1a)
1Qaz(JT,w, dw, 0ow)| < C(Cre)? 3257149, (8.4.1b)
Qr;(JT, w, dw, dow) < C(Cre)? 3257 1H9, (8.4.1¢c)
IR(Z7 )| < CCet™3/257119, (8.4.1d)
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Lemma 8.4.2. Under the energy assumption (2.4.5), the following esti-
mates hold for any |J| <1

|ZTF| < C(Cre)?t=3/2s7149/2, (8.4.2a)
1Qa:(J, w, 0w, d0w)| < C(Cyre)?t3/257119/2, (8.4.2b)
Qr;(J, w, dw, 00w) < C(Cre)?t3/2571+9/2) (8.4.2¢)
|R(Z7uz)| < CCret 325711972, (8.4.2d)

Lemma 8.4.3. Under the energy assumption (2.4.5), the following esti-
mates hold:

|F5| < C(Cre)’t 32571, (8.4.3a)
1Qc:(0,w, dw, 00w)| < C(Cre)*t=32s71, (8.4.3b)
Qr:(0,w, dw, dow) < C(Cre)*t=3/2s, (8.4.3¢)
|R(uz)| < CCret™/%s7 1, (8.4.3d)

The proofs of these three lemmas are essentially the same. We compute
the relevant terms and express them as linear combinations of some bilinear
terms, then suitably estimate each of them. The difference of the decay rate
between these three lemmas is due to the difference of regularity.

Proof of Lemma 8.4.1. The control of Qg-(JT,w, dw, dow) is obtained
as follows. Recall that Qg,(J', w, dw, d0w) is a linear combination of the
terms listed in (8.3.2) with the index I replaced by J'. We estimate
7z (u;@aﬁtuj) in details:

2 (i) < Y (27|25 0,00
JotJz=Jt
= |U5HZJTQG8,5’LL§{ + \Z'J?ugHZJSQaatuj] + }Z']TU@HQaatuﬂ.
When J; = 0 and J3 = JT, we apply (7.5.5¢) and (7.5.4a); when J3 = 0 and

Jo = JT, we apply (7.5.5a) and (7.5.4c); and when |J5| = 1 and |J3| = 1,
we apply (7.5.5¢) and (7.5.4a);

‘ZJT (wiQa&tuj)‘ < C(Cle)zt_3+6.

For the other terms, we will specify the L™ estimates to be used but
omit the details.
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Here the in the different columns represent the different partitions of
JU = Jy + J3. (a,< b) means |J3| = a, |J3] < b. In the last column, we
specify the decay rate obtained directly by applying the given inequalities
(modulo the constant C(Cie)?). The first coefficient is the one we used for
the first factor, while the second coefficient is used for the second factor:

Products (2,<0) (1,<1) (0,<2) Decay rate
wid,0gu; (7.5.5a), (7.5.4c) (7.5.5¢), (7.5.4a) (7.5.5¢), (7.5.4a) ¢35
v:0,05u; (7.5.1e),(7.5.4c) (7.5.1e), (7.5.4a) (7.5.1¢), (7.5.4a) ¢35 1+2
u;010,u;  (7.5.5a), (7.5.4¢) (7.5.5¢), (7.5.4a) (7.5.5¢), (7.5.4a) =35
v;70:0,u; (7.5.1e), (7.5.4c) (7.5.1e), (7.5.4a) (7.5.1e), (7.5.4a) t~3s71+2
0,070, 05u; (7.5.2a), (7.5.4c) (7.5.2a), (7.5.4a) (7.5.2a), (7.5.4a) t—3s71420
0, u;0,05u; (7.5.1a), (7.5.4¢) (7.5.3a), (7.5.4a) (7.5.3a), (7.5.4a) t~ 25210
Products (2,<0) (1,<1) (0,<2) Decay rate

7.5.3a), (7.5.4a) t=2s72%9

7.5.2a), (7.5.4a) t 351120

0, u7010,u; (7.5.1a), (7.5.4c) (7.5.3a), (7.5.4a) ( ) )
( ) ( )
(7.5.1e), (7.5.2a) 352
( ) ( )

) ( )

( ( ) ( ) )
0., v7010,uz (7.5.2a), (7.5.4c) (7.5.2a), (7.5.4a)
v70,,08v5 (7.5.1e),(7.5.2a) (7.5.1e), (7.5.2a)
( ) ( ) ( 3 ( )

(

7.5.3a), (7.5.2a) t— 251120

O uzdadguy (7.5.1a), (7.5.2a) (7.5.3a), (7.5.2a
t—3825

0,v70,05v5 (7.5.2a), (7.5.2a) (7.5.2a), (7.5.2a) (7.5.2a), (7.5.2a

Taking into account the fact that s < Ct < Cs? and § < 1/6, we conclude
that these terms are bounded by C(Cpe)?t—3/2s= 149

Again, we have the following four terms from @ ¢;, which are estimated
separately:

7z (6a\PgIUgQ5,u5), z/! (0a\I/§/v;Q5,u5),
27 (0a VY Ouzdpug), 27 (0aV Onvsdgius).
By observing that |ZI<9a\II§/’ < C(I)t71, these terms can be estimated by
C(Cre)*t—35%°. We give the proof for Z/1 (804\1!?1@@5,1@):
27 (PaVfwdgu)| < D) 270V | |27 ] |27 050
Jo+J3+Ja=J1

<ct™h Y |27 | 205 u| < Ot Cret BRSOy et T 2T IO
| J2|+]J3|<|J T
— O(Cre)!t735%° < C(Cre)?t3/257 149,
where we recall that § < 1/6, and (7.5.5a) and (7.5.1a) are been used. The
other terms are estimated similarly, and we omit the details and only list

out the inequalities we use for each term and each partition of indices; cf.
Table 1.
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The term @Qr; a linear combination of the terms presented in (8.3.1),
with I; replaced by J; and ¢ = 1,2. Each term is estimated as for Q¢.
We give the list of inequalities we use for every partition |J;| + |J2| < |JT|:
in Table 2 and Table 3 the symbol (a,< b) means |J1| = a,|J2| < b. We
conclude with (8.4.1c).

The estimates on Z7' F; are essentially the same. Recall that 2”7 ! F; is
a linear combination of the terms listed in (8.3.3) with I replaced by J1.
We write in details the estimate of the term Z7' (Oauj0guz), as follows:

|Z‘]T (8au505u%)‘ <|Z‘]T6au5| |0puz| + |0aus] |ZJ1 Opug|
+ Y 1278450127 0puy)

[J1],[T2]<1
Jo+Jg=Jt

<CCiet™ V25710 0 et Y2571
+ CCret~ Y257 OC et 12510
+ CC et V27 CC et~ 267!
<C(Cle)2t_1s_2+5
<C(Cre)tt=3/257149,

For the three partitions of JT = J; + J5, the L™ estimates we use are: when
|J1| = 0 and |J3| < |JT|, we apply (7.5.3a) and (7.5.1a); when |J;| = | Jo| =
1, we apply (7.5.3a) and (7.5.3a); when |J;| = |JT| and |J2| < 0, we apply
(7.5.1a) and (7.5.3a).

For the remaining terms, for each partition of J;, we just list out the
L™ estimates we use (with decay rate modulo a factor C(C1e)?):

Products (2,<0) (1,<1) (0,<2) Decay rate
daus0puy (7.5.1a), (7.5.3a) (7.5.3a), (7.5.3a) (7.5.3a), (7.5.1a) ¢ 's~2+°
Oavy0pwy (7.5.2a),(7.5.1a) (7.5.2a), (7.5.1a) (7.5.2a), (7.5.1a) t~2s71+2
vi0aw; (7.5.1e),(7.5.1a) (7.5.1e), (7.5.1a) (7.5.1e), (7.5.1a) t~2s~ 12
vy (7.5.1e),(7.5.1e) (7.5.1e), (7.5.1e) (7.5.1e), (7.5.1e) ¢=372°

Combined with the condition § < 1/6 and the fact that s < Ct < C's?, the
estimate (8.4.1a) is proved.

On the other hand, the estimate of R(Z71u;) is a direct application of
(7.4.5a). O

A

Proof of Lemma 8.4.2. The proof is essentially the same as that of
(8.4.2), and the main difference lies in the inequalities we use for each term
and partition of the index. We omit the details and present the inequalities
we use, as follows.
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For the estimates of Q¢ (J, w, dw, 00w), the inequalities we use are listed

m:
Products (1,<0) (0,<1) Decay rate
w;:0,05u; (7.5.5¢), (7.5.4¢) (7.5.5¢),(7.5.4b)  ¢~35%/2
vi0,05u; (7.5.1f),(7.5.4c) (7.5.1f),(7.5.4b) ¢ 35710
w;0;0,u;7 (7.5.5¢), (7.5.4c) (7.5.5¢), (7.5.4b)  +7359/2
v;7010,u;  (7.5.1f), (7.5.4c) (7.5.1f),(7.5.4b) ¢ 3s71%0

0, v:0,05u5 (7.5.2b), (7.5.4¢) (7.5.2b), (7.5.4b) ¢35 1+°
) ( ) ) (

( ( )
0.,u:0,05u; (7.5.3a), (7.5.4c) (7.5.3a), (7.5.4b) t—2g2+9/2
Products (1,<0) (0,<1) Decay rate
0,u;0:0,u3 (7.5.3a),(7.5.4¢) (7.5.3a), (7.5.4b) t~2s 210/
0,v:010,u;5 (7.5.2b), (7.5.4¢) (7.5.2b), (7.5.4b) ¢ 35140
0;70,0pvy  (7.5.1f),(7.5.2b) (7.5.1f),(7.5.2b)  t73s°
013000505 (7.5.3a), (7.5.2b) (7.5.3a), (7.5.2b) t~2571+9/2
0,706,005 (7.5.2b), (7.5.2b) (7.5.2b), (7.5.2b) ¢ ~3s°
Terms (1,<0) (0,<1) Decay rate
t=*Z"2u; 273 0g,u; (7.5.5¢), (7.5.3a) (7.5.5¢), (7.5.3a t=3
t=1 220 2% 05u; (7.5.1f),(7.5.3a) (7.5.1f),(7.5.3a) t~3s7179/2
t1 2720, u; 2730 u5 (7.5.3a),(7.5.3a) (7.5.3a),(7.5.3a) ¢ 252
t=1Z720,v; 2720 gou; (7.5.1b), (7.5.3a) (7.5.1b), (7.5.3a) ¢t~ 25~ 2T/

For the term Q7;(J, w, dw, dow), we have the list:

Products (1,<0) 0,<1) Decay rate
0,037  uz Z720,uz;, (7.4.5b), (7.5.3a) (7.4.5¢), (7.5.3a) t~2s2+9/2
04,0327 uz Z720 vy (7.4.5b), (7.5.2b) (7.4.5¢), (7.5.2b) t~3s~1+0

0,052 uz Z72uy,  (7.4.5b),(7.5.5¢) (7.4.5¢), (7.5.5¢)  t73s°
0,032 uy Z72v  (7.4.5b), (7.5.1f) (7.4.5¢), (7.5.1f) 3571 F0
Terms (1,<0) (0,<1) Decay rate
t7 10y 27 uy Z72 0 up (7.4.4a),(7.5.3a) (7.4.4a), (7.5.3a) ¢ 2572
t710, Z71u; 2720 05 (7.4.4a), (7.5.2b) (7.4.4a), (7.5.2b) t 35~ 110/2
t7 10y Z w3 Z72up  (7.4.4a),(7.5.5¢) (7.4.4a),(7.5.5¢)  t73
t710, 27 u; 220, (T.4.4a), (7.5.1f) (7.4.4a), (7.5.1f) ¢t=2s~179/2

~— — —

/7

)

Finally, for the term F; we have
Products (1,<0) 0,<1) Decay rate
datz0guy (7.5.3a),(7.5.3a) (7.5.3a),(7.5.3a) ¢ 152
Oav50swy, (7.5.2b), (7.5.1b) (7.5.2b), (7.5.1b) t~2s71+9
vplow; (7.5.1f),(7.5.1b) (7.5.1f),(7.5.1b) t~2s1%°
vyop  (7.5.10), (7.5.1f) (7.5.1f),(7.5.1f)  ¢73+°
On the other hand, the estimate of R(Z”u) is a direct result of (7.4.5b). [
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Proof of Lemma 8.4.3. The proof is essentially the same as the proof of
Lemma 8.4.1 but much easier. We analyze first Qg;(w, 0w, dow). This is
a direct application of the L® estimates established earlier on the terms
listed in (8.3.2) with I = 0. As done in the proof of Lemma 8.4.1, this gives
the following list (with decay rate modulo C(C1e)?):

Terms (0,0) Decay rate
u;0,05u; (7.5.5¢), (7.5.4¢c) t=3
v:0,05u; (7.5.1e),(7.5.4¢c) t~3s71H0
u;0¢0,u;  (7.5.5¢), (7.5.4c)  t7°
vy d,u;  (7.5.1€), (7.5.4c) t=3s71+°

0, uz0,05u; (7.5.3a), (7.5.4c) t~ 2572
8 v30,05u5 (7.5.2a), (7.5.4c) t 357140
Terms (0,0) Decay rate
0, u:00,u; (7.5.3a), (7.5.4c) 72572
0,v7010,u5 (7.5.2a), (7.5.4c) t~3s
070,055 (7.5.1e), (7.5.2a) t—3325
0,704, 0505 (7.5.3a), (7.5.2a) t~ 257119
0,v700,05v5 (7.5.2a), (7.5.2a) t_3325

The following four terms
0oV usdguz,  0aWh vidguy,  0aVG Oyuidgug,  a VG 05vi05u;

are estimated by taking into account the additional decay supplied by the

factor |\Il | Ct~!. The inequalities we use for each term are listed as
follows:
Terms (0,0) Decay rate
t_luﬁﬂ,uj 7.5.5¢),(7.5.3a t—3

t_layméﬂ,u; 7.5.3a), (7.5.3a t_2 —2

(7-5.5¢), ( )
t~lvydgu; (7.5.1e),(7.5.3a) t3s

( ) ( )
t=10, 0705 u; (7.5.2a), (7.5.3a) 357140

The estimates of (Q7; are similar. We establish the following list and
omit the details:

Products (0,0) Decay rate
Oyuz, 0,05u7 (7.5.3a), (7.5.4¢c) ¢ 2572
Oy 0,05u; (7.5.2a), (7.5.4c) ¢ 357140

ug 0,05u; (7.5.5¢),(7.5.4c)  t7°
v 0,05u;  (7.5.1e), (7.5.4c) ¢35~ 1H0
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Products (0,0) Decay rate
t~1oyug 0 /uj (7.5.3a), (7.5.3a) t 2572
t~1o vy Oyuy (7.5.2a),(7.5.3a) t3s

t=luz Oyu; (7.5.5¢), (7.5.3a) 2

t~tog dyu; (7.5.1e),(7.5.3a) t3s

We conclude with (8.4.3c).

The estimate of F; is as follows: recall the structure of F; described
by (8.3.3), we need to estimate these terms with I = 0. As in the proof
of Lemma 8.4.1, the following list is established (with decay rate modulo

C(Cre)?):

Products (0,0) Decay rate
Oau;0gu; (7.5.3a), (7.5.3a) t~1s2

OuviOgwj (7.5.2a), (7.5.1a) t~2s71+2
vi0qw; (7.5.1e),(7.5.1a) t~2s71+20

vpvy  (7.5.1e),(7.5.1e) ¢t 352
By taking into account the condition § < 1/6 and the fact that C~1s <t <
C's?, we conclude with (8.4.3a).
The estimate of R(u;) is a direct application of (7.5.4c). O

We can now prove the main result of this section.

Proposition 8.4.1. Let w; the solution of (1.2.1) and assume that (2.4.5)
holds with Cre < min{l, ejj}. For the wave components, the following decay
estimates hold for any J' <2 and |J| < 1

sup (th_1/2|8t6tZ‘]TUg|) < CChes?, (8.4.4a)
sup (s?’t_l/2|8t8tZ‘]ug|) < CCes®?, (8.4.4b)
sup (sgt_1/2|8t6tm|) < CChe, (8.4.4c)
and more generally
sup (33t_1/2|8a65ZJTu|) < CChes®, (8.4.5a)
sup (sgt_1/2|(9a85Z‘]u|) < CCes?, (8.4.5b)

S

sup (3375_1/2|<9a85u|) < CCle. (8.4.5¢)
s
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Proof. (8.4.4c) will be proved first. Substitute (8.4.3) into (8.2.5) with
|I| = 0. Recall the convention [I| < 0 = Zf = 0. The desired result is

proven.
Observe that for (8.4.4b), the case |J| < 0 is proved by (8.4.4c). For
the case |J| = 1, we recall (8.2.5):

|6t6tZJu;| <(J(t/s)2 Z (|ZJ257wZ-| + |ZJ2wi|)|atatUj|
|J2|=1

+ O(t)3)2Qr:(Ja, w, dw, 20w) + C(t/3)2Qg:(Ja, w, Owddw)|
+ Ot/s)2| 272 B| + C(t/s)2|R(Z72u3)|

substitutes (8.4.4c) (an estimate on 0.0;u;) and (8.4.2) into (8.2.5), together
with the following estimate:

Z (|ZJ67wi|+|ZJwi|) < 0016(t_l/zs_l+t_3/28+t_3/286/2) < CClet_g/zs.

Y37
[J]<

For (8.4.4a), remark that the case |JT| < 1 is guaranteed by (8.4.4b)
and (8.4.4c).

The case |JT| = 2 is done by substituting (8.4.4b) (with |J| = 1), (8.4.4c)
and (8.4.1) into (8.2.5) with |I| = 2 together with the following estimate
which is a direct result of (7.5.1a), (7.5.5¢) and (7.5.1e):

Z (|ZJTé’Vw¢| + |ZJTwZ'|) < CCle(t_1/2s_1+5/2 + 17325 4 t_3/255/2)
2820
< CClEt_3/281+6/2.

We recall (8.2.5) with I = JT:

]&tétZﬁ U’Z“
<C(t/s)* > (1Z270ywi| + | Z7wi)) 0,0, 27 uy)

[J1|+]J2]<2
[J11<1,~,7,1

+ C(t/5)?Qrs(Ja, w, ow, 00w) + C(t/5)*|Qas(Ja, w, Owdow)|
+ C(t/s)*|Z2 F5| + C(t/s)?|R(Z72w3)).
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Substituting (8.4.4b) (with |J| = 1), (8.4.4c) and (8.4.1), we find that
I&tatZJTUﬂ
< O(t/s)? Z (12720 w;| + | Z7>w;|) |0:0: 27 uz| + CCyett/?s3+9

[T1]+]J2]<2
[J11<1,~,7,4

< C(t/s)? Z20. w;| + 1 Z72w;)) 10:0: 27 us
v 7

[T1]+]J2]<2
[J11=1,7,7,%

+ C(t/s)? Z (1272 0w;| + | Z72w;|) |0:0: 27 uz| + CCyett/2573+9

[J1]+]JT2]<2
[J11=0,v,7,4

< COve(t)s)2t~3/25 11/25~343/2 1 CCye(t)s)t= /214012 11253
+ CCyett /257319
< 0016t3_4+6/2 + C'C'1€t1/28_3+‘S < CClet1/23_3+5.

The bound (8.4.5) are direct result of (8.4.4) combined with (8.1.2). O
We can give the complete L™ estimates of the second-order derivatives.

Proposition 8.4.2. By relying on (2.4.5) with Che < min{l,€(}, the fol-
lowing estimates hold for all |J1| <2 and |J| < 1:

sup |s3t_1/28a@ﬁZ‘]Tu| + sup |83t—1/2ZJTaaa,8U| < CCres’, (8.4.6a)
sup |s3t7120,05 27 u| + Sgl{lp |s3t712 27 0, 05u] < CCres®?, (8.4.6b)
sup |53t~ 1/20,05u| < CChe. (8.4.6¢)

Proof. These estimates are a consequence of (3.3.3) and (8.4.5). O

8.5 L2 estimates

The aim of this section is to get the L? estimates on 0,0, 2" u;. As in the
last section, the strategy is to make use of (8.2.5). First, we estimate the
terms Qr;, Qgs, Z'F; and R(Z1wy).

Lemma 8.5.1. Under the energy assumption (2.4.5), the following esti-
mates hold for all |IT| < 4:

HsQGi(IT, w, 0w, 00w C(Cre)?s°, (8.5.1a)

Mize,) <
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|sQrs(IT,w, dw, aaw)HLQ(g{S) < C(Cre)%s°, (8.5.1b)
HSZITFgHLQ(g{S) < C(Che)?s®, (8.5.1¢c)
SR(Z" )| 4, . < CCyes’. (8.5.1d)

L2(3()

Lemma 8.5.2. Under the energy assumption (2.4.5), the following esti-
mates hold for all |I| < 3:

HSQGZ(Iawvawvaaw)HL2(j_Cs) < C(Cre)?s9/2, (8.5.2a)
|sQr3(1,w, 0w, 00w)| o g0, < C(Cre)*s”2, (8.5.2b)
HSZIFgHLQ(}CS) < C(Che)?s°/?, (8.5.2¢)
sR(ZTw)|| 5. . < CCLes®?. (8.5.2d)

L2(3s)

Lemma 8.5.3. Under the energy assumption (2.4.5), the following esti-
mates hold for all |I°| < 2:

[sQaa (I, w, 0w, 00w)| a5, < C(Cre)?, (8.5.3a)
HsQGi(Ib,w,6w,66w)HL2(}CS) < C(Che)?, (8.5.3b)
|27 B 12 s, < C(Cre)?, (8.5.3c)
[sR(Z" )| 29, < CCae. (8.5.3d)

Proof of Lemma 8.5.1. We consider first ()g; and recall the structure of
Qg expressed by (8.3.2). We do an L? estimate on each term of (8.3.2)
with I = IT,|IT] < 4. We take u;0,0,u; as an example and we write down
of the argument:

HSZIT (10, 0rus) HL2(J-CS)
< [s(2"u 2" 0,005) | oo,
11+12=IT
S H3<U?ZITQaat“§>HL2(J{S)+ 2 “5(211“?2122a5t“5)HL2(%S)
IllJIrII‘2==11T
+ 2 s(Zhu 2R0,005) | o)+ 20 [5(20 5 270,005) | oo
11|i11|2==21‘r 11‘i11‘2==3ﬁ
+ [5(2" wz 200003) | o,

=:To+ Ty + 15 + 15 + T}.
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Observe now that in term T}, |I3] < 4 — k.
The term Ty is estimated by (7.5.5¢) and (7.3.5a):
To =Hs(u;ZhQa(9tuj) HLQ(% ) < CC’leHs(t_3/2 thQa&tuj)

<CCres ?||sz" 00013 12 (3€,)

<C(Cl€)28_1/2+5.
The term 77 is estimated by (7.5.5¢) and (7.3.5a):
T, = Z HS(ZIIUgZIQQaatuJA)

[11]=1
Iy 4+Ig=1t

<CCre Y [s(t7%52"20,00u5) | paae,
1'15-11'2::114r

<CCres™!/? Z HSZISQaatuJAHm(ﬂ{ ) S C(Cre)?s™1/2H0,

[I1]=1
I1+12=IT

The term 7% is estimated by (7.5.5a) and (7.3.5¢) (remark that |I5] <
4-2=2):
T = Z Hs(ZIlmZI?Qa@uj)

I11]=2
11+I2=IT

<CChe Z Hs(t_3/231+5 ZIQQaétuJA)
Illi11‘2==2IT

—CChes™1/2H9 Z HstQa&tujHLQ(g{ ) < C(Cre)?s™1/2+9,
Illj-11|2==21’r

The term T3 is estimated by (7.5.5a) and (7.3.5¢) (remark that |I| <
4-3=1):
T3 = Z Hs(ZIlmZI2Qa6tu5)

[11]=3
Il+12=IT

<CCre ). |s(t7372s° $2"20,0¢u3)| 12 s,
Illill‘;:’ﬂ

=CCyes™ 20 31 (52720, 005 g < C(CLEYSTH2H0.

[11]=3
Ii+Ig=1T

The term T} is estimated by (7.3.6a) and (7.5.4c):
T, = Hs(Zﬂu;Qaatuj) < C’C’leHsZﬂUgt—?’/2

l129c,)

HLQ(J-CS)

l129c,)

l120c.)

l220c.)

HL2(9{S) S_1HL2(U-CS)

= CC’les_l/QHt_lZﬂUgH < CC’les_l/zus_lZﬂUg

< C(Che)?s™1/2H9,

L2(H,) HL2(5fs)
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So we conclude with

HSZ[T (w30, 01u3) ) < C(Che)?s™1/2+9,

|2,
For the remaining terms, we will not write the details, but for each
partition of IT = I} + I, we give the L? and L™ estimates in Chapter 7.
As in the estimate of u;0,0:uj3, we denote by (k, < 4 — k) the terms with
which |I1| =k, |I2] <4 — k. This leads us to Table 4 and Table 5.
There are four terms to be estimated separately:

szl (8a\11g,uﬁﬁ,u5), sz1' (é’a\Ifglwéﬁ,uj),
sZ! (Oalllg/&yugﬁﬁluj), sZ! (8alllg/ Oy 070 5u3).
We will use the additional decay supplied by |Z1 é’alllgl| < C(I)t™ 1. Let us
take
Il B’
Z (5(1‘1’5 UgQB,Uj)
as an example and write its estimate in details:

HSZIT (6alllg,m@5/u5) < Z “st3aa\IIgl ZfluaZIQQ/3/U3|‘L2(g{S)

Ii+Ix+Is=1I"
<C D stz Z" 053] 12 0.

l120c.)

[ T1]+|I2|<[TT]
<C ) st wzopug) g, +C 0 3y st 2w 2055
|I2|<|IT| |12||I<1||I:T1|—1
+C Z Hst_thua ZIQQB,Uj"LQ(HS)
|1y |=2
[I2|<|IT|—2
+C Z Hst_lZflugZ12Q5,UjHL2(}CS)+C’ Z Hst_thmQ[g,ujAHLQ(}cs)
|12||I<1||I=T:|3—3 I11l=4

=:To+ Ty + 15 +T5+ Ty.
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(¥ >°0) (e>7) (> (1> (0>%) Suscy



108 The hyperboloidal foliation method

For the term Ty by (7.5.5¢) and (7.3.1a), we have

T, =C )] Hst—luazbé/yua\\m(m
|2 |<|IT]

<CCie Y] Hst_lt_g/zsZIQQB'“JAHB(%S)
[I2|<| 17|

=C(C1e 2 Ht_5/252leéﬁ’uj|‘L2(ﬂ-Cs)
[T2|<|IT]

<CCes™ /2 Z “ZIQQB’Uj“L2(ﬂ{S)

[ 12| <[TT]

<0(01€)2S_1/2+6.
The term T is estimated by (7.5.5¢) and (7.3.3a):

T, =C Z Hst‘lZIluaZIQQ&/“?HB(G@)
|12‘\2\‘I:T1|—1

<CChe Z Hst_lt_B/zs ZIQQB,Uj“LQ(g{S)
[T1]=1

lI5]<|1T]—1

<CChes /2 Z HZIQQB’UJAHLQ(J{S)

[T1]=1
|12|<|IT|_1

<C(Che)?s™1/249,
The term T3 is estimated by (7.5.5a) and (7.3.3a):

T, =C Z Hst‘lZ[lmZIQQB/“JAHLZ(J{S)
|12||I<1||I=T2\*2

<CCye Z Hst_lt_?’/251+5 ZIQQB/%AHLQ(%S)
|12|\I<1|‘1=T2\—2

<CCres™'/20 % 1220513 12 .

[11]=2
|12|<|IT‘_2

<CO(Che)?s™ 1249,
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The term T3 is estimated by (7.5.5a) and (7.3.3a):
Ty =C ), |st7 2" u; 2205 u5] oy

[I1]=3
|11 1<|IT|-3

<CChe Z Hst—lt—3/281+6 ZIQQB/%AHLQ(%S)

[I1]=3
[Ig|<|1T|—3

<CCyes /210 ) 12205 u3] 2 s,

[11]=3
[Ip]<|IT|-3

<0(01€)28_1/2+6
The term T} is estimated by (7.3.6a) and (7.5.3a):
T, =C 2 Hst_leu;QB,ujAHLz(%s)

I | =4

<CCie ) Hst_leuat_l/zs_lHm(:}cs)
|I>|=4

=CCes™V/? Z Ht_lzbufufﬂ(}cs)

|I5]|=4
<C(Che)?s™1/249,
For the remaining three terms, we list out the L? and L® estimates to be
used for each term and each partition of IT, recall here the notation (a, < b)
means |I1| = a, |I2] < b: see Table 6. Finally we conclude with (8.5.1a).
We estimate the term QQ7; which is similar to that of Q¢;. Recall the

structure of Qr; presented in (8.3.1). We take the term Z"20,u; 0,052 u;
as an example:

Z HSZIQ Oy ug QaQBZII uf”m(:}cs)
|1 [+] 2| <[ 1T]
= 2 HSZIQ Oy uj, QaQB“JAHm(}cS) + Z HSZIQ Oy uj, Qaéﬁzll “i”m(&cs)
|2 <7 1Ty +[T2<|IT|

[I1]=1

+ Z HSZI287uE QQQ,@ZIIUJAHB(H{S)

[I1|+]1o]<|IT]
[I1]=2

+ Z Hstavu,; Qaégzhuin(ﬂ{

[I1]+|I2|<|IT]
[I1]=3

D ls0yup 2,052 ug o g
|1y |<[T7)

=To+ Ty +T5 + 15+ Ty

s)
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We will estimate each partition of IT:
To= Y [s2"0u12.05u5] o ise, < D) 522050z 200505 oo
[I2|<[TT] [I2]<4
2 H(S/t)Zb@wzHLz(m !S(t/s)éaéﬂusf\!mms) < CCyes’ CCres™?

|I2|<4

< 0(016)25_3/2+6,
where (7.3.1a) and (7.4.5¢) are used.

T < Z |s2™0,u;, QaﬁﬁzllufuLz(%
|T1]=1,]I2]|<3

S Z H(S/t)2125w“%HL2(:}fs)HS(’S/S)QaQﬁZH“iHLoo(:}{s)
[I1|=1,]12]|<3

< CC1e CCLes™3/2H9 < C(C1e)?s73/249,

where (7.3.3a) and (7.4.5a) are used.

Similarly, the term T5, T3 and T} are estimated by applying respectively
(7.3.3a)(7.4.5a), (7.3.4a), (7.5.3a), (7.3.4a), and (7.5.3a).

For the remaining terms, we will not write in details the proof but list
out the inequalities to be used on each term and each partition of the index
|I1| + |I2| < |IT], in the following list:

Products (4,<0) (3,<1) (2,<2)
$0,05Z M u; 2" 0, up (7.3.4a), (7.5.3a) (7.3.4a), (7.5.3a) (7.3.4c), (7.5.1a)
s0 %ZIluAZI?& vy (7.3.4a),(7.5.2a) (7.3.4a),(7.5.2a) (7.3.4c), (7.5.2a)

50,0 ZIleIQuk (7.3.4a), (7.5.5¢) (7.3.4a),(7.5.5¢) (7.3.4c), (7.5.5a)
( ) ( ) ( ) ( ) (7.3.4¢), ( )

sQaQﬁthvak 7.3.4a), (7.5.1e) (7.3.4a), (7.5.1e) (7.3.4¢c), (7.5.1e

Products (1,<3) (0,<4)
$0,03 21 u; 220, up, (7.4.5a), (7.3.3a) (7.4.5¢), (7.3.1a)
$0,032 1 u; 2120, vy, (7.4.5a), (7.3.2a) (7.4.5¢), (7.3.2a)
sd Qﬁlethuk (7.4.5a), (7.3.6¢) (7.4.5¢), (7.3.6a)
50,05 71w 210, (T.4.50), (T.3.1e) (T.4.5¢), (7.3.1¢)

Products (4,<0) 3,<1) (2,<2)
st™10y Z1u; 2120, up (7.2.1a), (7.5.3a) (7.2.3a), (7.5.3a) (7.2.3a), (7.5.1a)
st~ 10 ZMu;Z20,0; (7.2.1a), (7.5.2a) (7.2.3a), (7.5.2a) (7.2.3a), (7.5.2a)
st 1& Zflujzfzu (7.2.1a), (7.5.5¢) (7.2.3a), (7.5.5¢) (7.2.3a), (7.5.5a)
375‘187/2111@212 (7.2.1a),(7.5.1e) (7.2.3a),(7.5.1e) (7.2.3a), (7.5.1e)

k
Uk
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Products (1,< 3) (0,<4)
st™10y Z1 w2120, u; (7.4.4a), (7.3.3a) (7.4.4a), (7.3.1a)
st™10y Z1 ;2120 vp (7.4.4a), (7.3.2a) (7.4.4a), (7.3.2a)

st 0 Z1us; 2120, (7.4.4a), (7.3.6¢) (7.4.4a), (7.3.6a)
( ) ( ) ( )

k
st™1oy Zhu;Z 20 (7.4.4a), (7.3.1¢) (7.4.4a), (7.3.1¢

Now, we estimate the term F; which is also similar: recall the structure
of Z1 TF; presented in (8.3.3) with I replaced by IT. As before, we consider
the term Z!' (Pauj0pusz) as an example and we write down the details of
the analysis. For the rest terms, we just give the L? and L™ estimates to
be used for each factor:

2" (Cati50517) | 2 5.
S Hsaa“JAZﬂaB“EHm(g{S) T 2 HSZIlaauJAZIQaBu%Hm(%s)
e

+ Z Hth@auJAZb&f;uEHLQ

I +Ip=1t
[11]=2

(3€s)

+ 2 |87 00u; 2 0gug | pa o,y + 52" Gty Opug | oo,

Ij+Ig=1t
[11]=3

=:To+T1 + T + 15+ Ty.
The term T is estimated by (7.5.3a) and (7.3.1a):

Th =H38au]AZIT§5%HL2(9{S) < C’CleHs Y21 ZITalguEHLQ(}CS)

:CC1€HS Y2571 (t/s) (s/tZIT dgusz) < C’CleHs/tZﬂagu%HLQ

<C(Cl 6)286 .
Here the relation ¢t < C's? (in X) is used. The term T} is estimated in the
same way by exchanging the role of u; and uz.

The terms 77 and T35 are estimated by (7.5.3a) and (7.3.3a). We estimate
Ty as follows. The estimate of T3 is done by exchanging u; and ug in the

HL?(}CS) (Hs)

following argument:
T = Z Hth&aujleégu

11+12=IT
[I1]=1

@HLz(%S)

<CChels t=V2s7 1 (t/s)(s/t) 212 dpuy, HL2(}(S)
<CCie|(s/t) 2" 05uz 2 5., < C(Cre)*.
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The term T3 is estimated by (7.5.1a) and (7.3.3a):

Ty = Z HSZIl@aujzbaﬁu@”m(:}cs)

Il+12=IT
[11]=2

<C’C16H5 12149 (t/s)(s/t)Zb&,gu@“LQ(%S)
zCCles(SH(s/t)Zb@guEHm(}cs) < C(Cre)?s°.

The estimate of other terms are presented in Table 7. We conclude (8.5.1c).
The estimate of R(Zu;) is a direct result of (7.3.4a). O

Proof of Lemma 8.5.2. The proof is essentially the same as the one of
Lemma 8.5.1. The main difference lies in the inequalities we use for each
term and partition of the index. We will list out the relevant inequalities
and skip the details.

For the proof of (8.5.2a), we list out the inequalities in Table 8.

The following four terms are estimated by apply the additional decay
rate supplied by ﬁai)g:

szt (dlllfg/uﬁﬁ,uj), szt (6Q\P§/wéﬂ,uj),

sZ! (8a\11g,87UgQB,u]A), szt (aawg/amgﬁ,uj).

See Table 10.

For the term Qr;, we find Table 11 and Table 12.

For the estimates on Z!F;, the inequalities we use are presented in the
following list:
Products (3,<0) (2,<1) (1,<2) (0,<3)
daus0pus (7.3.3a),(7.5.3a) (7.3.3a), (7.5.3a) (7.5.3a),(7.3.3a) (7.5.3a), (7.3.3a)
Oav50gwy, (7.3.2b), (7.5.1b) (7.3.2b), (7.5.1b) (7.5.2b), (7.3.1b) (7.5.2b), (7.3.1b)

vyOqw; (7.3.1f),(7.5.1b) (7.3.1f), (7.5.1b) (7.5.1f),(7.3.1b) (7.5.1f), (7.3.1b)
vyvy  (7.3.1f),(7.5.1f) (7.3.1f),(7.5.1f) (7.5.1f), (7.3.1f) (7.5.1f), (7.3.1f)

The estimate on R(Zu;) is a direct result of (7.3.4b) O

~—
~—

k
k

~—
~—

~—"
~—"

~—"
~—"

Proof of Lemma 8.5.3. The proof is essentially the same as the one of
Lemma 8.5.1. The main difference is the level of regularity under consider-
ation. We will not give the details and only list the inequalities we use for
each term and partition I = Iy + I3:
Products (2,<0) (1,<1) (0,<2)
u;0,0pu;5 (7.3.6¢), (7.5.4c) (7.5.5¢), (7.3.5¢) (7.5.5¢), (7.3.5¢)
v;70,05u;5 (7.3.1e), (7.5.4¢) (7.5.1e), (7.3.5¢) (7.5.1¢), (7.3.5¢)
u;0rd,uz (7.3.6¢), (7.5.4¢) (7.5.5¢), (7.3.5¢) (7.5.5¢), (7.3.5¢)
v70:0,u; (7.3.1e),(7.5.4¢c) (7.5.1e),(7.3.5¢) (7.5.1e), (7.3.5¢)
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Products (2,<0) (1,<1) (0,<2)
0. uz0,0puz (7.3.3a), (7.5.4c) (7.5.3a), (7.3.5¢) (7.5.3a), (7.3.5¢)
0.,070,0pu5 (7.3.2a), (7.5.4¢) (7.5.2a), (7.3.5¢) (7.5.2a), (7.3.5¢)
0., u7010,u; (7.3.3a), (7.5.4¢) (7.5.3a), (7.3.5¢) (7.5.3a), (7.3.5¢)
0., v:0,0,u; (7.3.2a), (7.5.4¢) (7.5.2a), (7.3.5¢) (7.5.2a), (7.3.5¢)

V70, 0gvy (7.3.1e),(7.5.2a) (7.5.1e), (7.3.2a) (7.5.1e),(7.3.2a)
0,u70,,0pvy (7.3.3a), (7.5.2a) (7.5.3a), (7.3.2a) (7.5.3a), (7.3.2a)
0101000505 (7.3.2a), (7.5.2a) (7.5.2a), (7.3.2a) (7.5.2a), (7.3.2a)

There are four terms to be estimated separately:
I B I B
Z (8a\115 Ugﬁﬂ,Uj), A (6a\11ﬂ U;QIB/Uj),
210,05 0 uwdgug),  Z1(0aW) 0yvidgius).

As before, these terms are to be estimated by the additional decay supplied
by |ZI\IJg | < C(I)t~!. We omit the details but list out the inequalities to
be used for each term and each partition of I = I + I3:

Products (2,0) (1,1) (0,2)
50(‘1’?%@5&5 (7.3.6¢),(7.5.3a) (7.5.5¢), (7.3.3a) (7.5.5¢), (7.3.3a)
80»1!/@ vidgu; (7.3.1e),(7.5.3a) (7.5.1e), (7.3.3a) (7.5.1e), (7.3.3a)

00V 0yurdgu; (7.3.34), (7.5.3a) (7.5.3a), (7.3.3) (7.5.3), (7.3.3a)
0oV 01010505 (7.3.22), (7.5.3a) (7.5.2a), (7.3.3a) (7.5.2a), (7.3.3a)

And we conclude with (8.5.3a).

We turn our attention to the estimates for Q7. As before the details
are omitted. The inequalities we use for each term and each partition of
the indices are listed:

Products (2,<0) (1,<1) (0,<2)
$0,03Z 1 u; 2120, up (7.3.4¢), (7.5.3a) (7.3.4¢), (7.5.3a) (7.4.5¢), (7.3.3a)
50,052 uy 220, vy, (7.3.4¢), (7.5.2a) (7.3.4¢), (7.5.2a) (7.4.5¢), (7.3.2a)

50,052 w; Zuy  (7.3.4¢), (7.5.5¢) (7.3.4c), (7.5.5¢) (7.4.5¢), (7.3.6¢)
$0,05Z M uz; 2120 (7.3.4¢),(7.5.1e) (7.3.4¢), (7.5.1e) (7.4.5¢), (7.3.1e)

Products (2,<0) (1,<1) (0,<2)

st™10y Z1u; 2120, up (7.2.3a), (7.5.3a) (7.2.3a), (7.5.3a) (7.4.4a), (7.3.3a)
st™10y Z1u; 2120, v; (7.2.3a),(7.5.2a) (7.2.3a), (7.5.2a) (7.4.4a), (7.3.2a)
st™10., ZNusZ2u;  (7.2.3a), (7.5.5¢) (7.2.3a), (7.5.5¢) (7.4.4a), (7.3.6¢)

( ); (7.5.1e) ( ); (7.5.1e) ( ); (7.3.1e)

k
st_lﬁszhujZI2vv 7.2.3a),(7.5.1e) (7.2.3a),(7.5.1e) (7.4.4a),(7.3.1e

k
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The estimate of Z!F; is essentially the same. As before, we omit the
details but list out the inequalities to be used:

Products (2,0) (1,1) (0,2)
dauz0pug (7.3.3a),(7.5.3a) (7.5.3a),(7.3.3a) (7.5.3a), (7.3.3a)

Oavi0gwy, (7.3.2a),(7.5.1a) (7.5.2a), (7.3.1a) (7.5.2a), (7.3.1a)
vidaw; (7.3.1¢),(7.5.1a) (7.5.1¢), (7.3.1a) (7.5.1¢), (7.3.1a

( ( (7.5.1e), ( ) (

) )
vyvy  (7.3.1e),(7.5.1e) (7.5.1e),(7.3.1e) (7.5.1e),(7.3.1e)

The estimate of R(Z!u;) is a direct result of (7.3.4c). O
Now we are ready to prove the second main result of this section.

Proposition 8.5.1. Let u; be wave components of a sufficiently reqular,
local-in-time solution to (1.2.1) and assume that (2.4.5) holds with Cie <
min{1,e}}. The following estimates hold for |IT| < 4, |I| < 3 and |I°| < 2

|s%720,0, 2" wa| 2(3c,) < CChes’, (8.5.4a)
|s3t20:0: Z uz| L2 3¢,y < CCres®?, (8.5.4b)
|s%20,0,2" wal| 12(3c.) < CChe (8.5.4¢)
and, furthermore,
|s%t 20005 2" w123,y < CChes’, (8.5.5a)
|53t 200,05 Z usl| 12 (3¢.) < CCres®?, (8.5.5b)
|5% 2040527 ua| 12(3¢.) < CChe. (8.5.5¢)

Proof. The proof is a combination of (8.5.1), (8.5.2), and (8.5.3) with
(8.2.5). We will prove first (8.5.4c).
The proof is done by induction. We first prove (8.5.4c) with |I’| = 0

and recall our convention that |I| < 0 implies Z! = 0, and (8.2.5) implies
(with |I| = 0):

|50, 2

< Cl5Qai] 2 ac,) + CllsQral p2ac,) + ClsFr] 2o, + ClsR()] 2o, -

By the group of inequalities (8.5.3),

H83t_26t(9tua < 0016.

2200
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Suppose that (8.5.4c) holds with |I°| < m, we will prove (8.5.4c) with
I’ <m + 1. By (8.2.5),

|5420,0027 ] 1

<SCK Y Y [s12"0,wi| + [ 2% w;) 5tatZI2“§HL2(}cS)

[I3|+]I3]<I1P| ¥,),8
[Ig]<|IP]

+ C|sQea;(I", w, dw, 00wzl L2 ¢3¢,y + CsQr;(I", w, dw, 0w)|lzll L2 (a¢,)
b
+ ClsR(Z" wa) | 2o,

when |I’| <m + 1 <2, and we apply (8.5.3):

|s% 2010, 27 ws) )

<SCK ). > |s(12"0,w] + 125 wi)) 0001273 2 g, + CChe

[Io|+]131<II°| ¥,3%
[Ig|<|1P|

<SCK ) ) |s12"0ywil + [Z%wi]) 2002wz o g

[Io|+]13]<II°| ¥,3%
[I3]=1

+CK Z Z H3(|ZI3&"7U}7L| + |ZI?,wz|) atatZI2ujHL2({}{s) + CC1e.

IIo|+]I31<I1P| 7,38
[I3]=2

Observe now that when I3 = 1, by (7.5.3a), (7.5.1c) and (7.5.5a) we have

’ZIS&YUﬂ < 001615_1/23—1’ |ZIB&YU{| < 00161:_3/285,

| ZBu;| < CCLet™%s, | ZT05] < COLet =280,
And by the induction assumption ((8.5.4c) for || < |I’| — 1):

Z Z |s(|1Z% 0yw;| + | Z"w]) 5tat212uj|‘L2(ﬂ{S)

[Io|+|I5|<|1%] ¥,],%
[I3]|=1

[I2]+|13|<|1"]
7,351, I3]=1

<CGe) Y Y stP0ez ] g

[Io|+]I3]<I1°| 7,758
[I3]=1

< 0(016)2.
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When |I3| = 2, we observe that |I3| < 0. By (8.4.4c), we have

I I I

Z‘ [s(12" 0y wil + 12" wil) 0.0, 2" w1 g

V.35t

< CCre Y |s(1Z2%oywi| + |2 w;]) t'/?
7,51

< C’C’leZ !‘t1/23_2Z13@7ug‘}L2(}c3) + CCleZ Ht1/23_2ZI3§71);
) v,T

+CCre )] Htl/zs—zzfamumms) +CChe )] Htl/zs—zzfngmms)

8_3HL2(1H5)

l120c.)

These four terms can be bounded by C(C1¢)? by applying (7.3.3a), (7.3.2a)
and (7.3.6c). So for [I’] < m + 1 < 2, (8.5.4c) is proved. By induction,
(8.5.4c) is proved for |I°| < 2.
We turn to the proof of (8.5.4b) and observe that in (8.5.4b), the case
|I| < 2 is already proved by (8.5.4c). We need only treat the cases |I| = 3.
When |I| = 3, we apply (8.2.5):

H s3t_2§t@tZIugHL2 (Hs)

<CK Y Y |s(1Z2% 0w + |Zl3wz‘|)5tatZIQU5HL2(9cs)

[T2|+1131<3 ~ 7,4
[I3]<3

+ O sQa7:(1,w, dw, 00w)sz| L2(3¢.) + C|Z'F5| + CHSZIUgHLz(gCS).
We observe that, in view of (8.5.2),

Is4 20,0020 g

< CK Z Z HS(|Z1357UJZ'| + |ZISwZ-|) atatZIQUjHLQ(}CS) +CCres®?.

[T2]+1I31<3 ~, 7,4
[Io]<3

We focus on

> 2 sz wil + |25 wil) 6i0: 2" ug oy

[T2]+]I3|<3 ~,7,4
|12‘<3

< Z Z HSZI?’&YUi 5tatZIQUj“L2(g{S)

[Ho|+]I31<3 v, 7.7
[I2]=0

+ Z Z HSZI3@Y?}7 atatZIQUJAHm(st)

[T2]+1I31<3 v 7.7
[I2]=1

D YD W P v

[T2]+]I31<3 ~v,7.%
[I2]=2
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For each sum, the possible choice of (|I2|, |I3]) are

(0,<3), (1,<2), (2,<1).
We list out, for each sum, the relevant inequalities for each possible choice
(IZ2|, |13]). This makes the following list:

Products (0,< 3) (1,<2) (2,<1)
$0101 Z 2 uy Z13 0 u; (8.4.6¢), (7.3.3a) (8.5.4¢), (7.5.2b) (8.5.4¢), (7.5.3a)
$0101 Z12u; 272 00y (8.4.6¢), (7.3.2b) (8.5.4c), (7.5.2a) (8.5.4c), (7.5.2a)

s0101 Z 2 uz Z13u;  (8.4.6¢), (7.3.6b) (8.5.4¢), (7.5.5b) (8.5.4¢), (7.5.5¢)

s0p0r Z 2 uz Z13v;  (8.4.6¢),(7.3.2b) (8.5.4¢), (7.5.2a) (8.5.4c), (7.5.2a)
We conclude with the fact that these four terms can be bounded by
C(C1e)%s9/%. So (8.5.4b) is proved for |[IT| = 3.

Now we turns to the proof of (8.5.4). When |IT| = 4, we apply (8.5.4b)
with [IT| = 3 and, more precisely,

|$°t720,0: 2T ug|| L2 a¢,) < CCes®? < CCres®. (8.5.6)

As in previous cases, by (8.2.5) and (8.5.1),

I5420,00 27 ] 1

< CK Z Z |s(|1Z" 0yw;i| + | Z"w]) 8t8tZIQu5HL2(%S) + C(Cre)?s°.

[T2|+I3|<4 ~ 74
[T9]<3

The first sum is also decomposed into four parts:
Z Z |s(12%2 0 wi] + |ZIB“’Z'|)atatZI2“5HL2(ﬂ{s)

[T2]+]I3|<4 v, 7,4
[Io|<4

< Z Z HSZIC"’%U? 5tatZIQUjHLz(g{S)

[Ho|+|I3]<4 v, 7.7
[I2]<4

+ 2 Z HSZIB%W 3tatZIQUJAHL2(:Hs)

[T2|+|Ig|<4 v 7.7
[I2]<4

+ 2 Z HSZIBW5759152[2“5”L2(%5)

[H2|+|I3|<4 v, 7.7
[I2]<4

D YD M P Ty L

[T2|+|Ig|<4 v 7.7
[I2]<4

The possible choices of (|13, |I3]) are

(3,<1), (2,<2), (1,<3), (0,<4).
We list out the inequalities to be used for each term and each choice of
(12|, |13]). Cf. Table 13. We conclude with (8.5.4a). On the other hand,
(8.5.5) are combinations of (8.5.4) and Lemma 8.1.1. O
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Now, we derive the complete L? estimates of the second-order deriva-
tives.

Lemma 8.5.4. Under the assumption (2.4.5), the following L* estimates
hold for |IT| < 4,|I| < 3| and I’| < 2:

Hs?’t_2(9a65Zﬂug + Hsgt_2Zﬂé’aé‘gm < CChes?, (8.5.7a)

HL?(:}{S) HL?(%S)

< C’C’les‘m,
(8.5.7b)

|5%720a08 2" ual a5 ) + | 57227 0aOptia] 12 g

Hsi’)t—2aa6321bugHL2(}Cs) + HSBt_QZIbﬁaaﬂufuLz(g{s) < CCle. (8.5.7¢c)

Proof. These inequalities are based on (3.3.3) and (8.5.5). O



Chapter 9

Null forms and decay in time

9.1 Bounds that are independent of second-order estimates

In this chapter, we are going to estimate the terms

T (0w, Ouy) := Taﬁaaugaguj, [ZI,AO‘m@Wu;@a&‘B]uj.
where T%% and A*%Y are null quadratic forms. Concerning the term
[Z1, AP0 uz00,05]u;, we can apply (8.5.4c) and (8.4.4c) for better de-
cay rates, but the following rates will be sufficient for our main result in
this monograph.

Lemma 9.1.1. By reyling on the energy assumption (2.4.5e), the following
estimates hold for all |I| <3 and |J| < 1:

HZI‘T(&L;, 8u5)HL2(9{ )< C(Cre)?s73/2, (9.1.1a)
|[Z", A*P76,1;0005] sl 2 ¢, < C(Cre)?s —3/2+49 (9.1.1b)
sup (£*sT(Ous, 8u3)) < C(Cre). (9.1.2)

S

Proof. The proof of (9.1.1a) is a combination of Proposition 4.1.2 with
(7.5.3) and (7.3.3). By recalling the decomposition of T presented in Propo-
sition 4.1.2, we have the list in Table 14. This completes the argument.

The estimate on the term [Z1, A7 0, 1u;0,05]u; is also proved by using
the inequalities presented in the following list. Observe that by Proposition
4.3.2, some partition of the index do not exist. We have:

Terms (3,<0) (2,<1) (1,<2)
(s/t)2 2" 0uz Z120,04u;5 (7.3.3a), (7.5.3a) (7.3.3a), (7.5.1a) (7.5.3a), (7.3.3a)
ZN0,up Z™ 050 u;  (7.3.3b), (7.5.3a) (7.3.3b), (7.5.1a) (7.5.3b), (7.3.3a)
ZN 0 up 20,0 uy  (7.3.3a),(7.5.4¢) (7.3.3a), (7.5.4a) (7.5.3a), (7.3.5¢)
ZM0,up Z2050.u;  (7.3.3a),(7.5.4¢c) (7.3.3a), (7.5.4a) (7.5.3a), (7.3.5¢)
t71ZM04uzd5u;  (7.3.3a),(7.5.3a) (7.3.3a), (7.5.3a) (7.5.3a), (7.3.3a)

123
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Finally, we derive the L* estimates of T by the following list:

Terms (1,<0) (0,<1) Decay rate
(s/t)2Z7 0us 272 0puz (7.5.3a), (7.5.3a) (7.5.3a), (7.5.3a) =3
Z10,u; Z7204u;  (7.5.3b),(7.5.3a) (7.5.3b), (7.5.3a) ¢ 257!
Z70guz 2720, u;  (7.5.3a), (7.5.3b) (7.5.3a), (7.5.3b) ¢t 2s7*

9.2 Bounds that depend on second-order estimates

In this section we estimate the terms [Z!, BY? u;000)u; by essentially re-
lying on the second-order estimates (8.4.6).

Lemma 9.2.1. By relying on the energy assumption (2.4.5e), the following
estimates hold for |I| < 3:

I1z*, BO‘5Ug0a55]u5HL2(%S) < O(Che)?s73/2+9, (9.2.1a)

Proof. Recall the structure of [Z7, B®fu;0,05]u; presented in (4.2.1b). It
is a linear combinations of several terms and we need to control each term
in each possible partition of the index |I1| + |I2| < |I|,|I2] < |I|]. As before,
we list out the inequalities we use for each term and each partition of the

indices:
terms (3,<0) (2,<1) (1,<2)
(s/t)2Z1rug Z™20,04u; (7.3.6¢), (8.4.4¢) (7.3.6¢), (8.4.4a) (7.3.6¢), (8.4.4a)
ZMup Z9,05u;  (7.3.6¢), (7.5.4¢) (7.3.6¢), (7.5.4a) (7.3.6¢), (7.5.4a)
Zhup 220,0,u;  (7.3.6¢), (7.5.4¢) (7.3.6¢), (7.5.4a) (7.3.6¢), (7.5.4a)
t 172N ZM 04uy  (7.3.6¢), (7.5.3a) (7.3.6¢), (7.5.3a) (7.5.5¢), (7.3.3a)
O

9.3 Decay estimates

We are now in a position to prove (2.4.7a), (2.4.7b), (2.4.8a), and (2.4.9a).
The proof of (2.4.7a) requires only the L™ estimate established in Chap-
ter 7.

Lemma 9.3.1. Let {w;} be the local-in-time solution of (1.2.1) and suppose
that the energy assumption (2.4.5b) and (2.4.5e) hold. Then there exists
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a constant k1 > 0 (depending upon the constants AJ*?"* and BI*P*) such
that, if Cie 1s sufficiently small,

KIQZEm,ci(S, Z1w;) < ZEG,CZ.(S, Zhw;) < H%ZEm,ci(S, Z wy,).

Proof. Note that
MG < CK Y (Jows| + Jws))

i’j’aﬂﬁ ’L'

< CK . (10avs] + |0gus| + |vi] + |ug]).
Applying (7.5.2a), (7.5.3a), (7.5.1e), and (7.5.5¢), and recalling 0 < 6 < 1/6,
we have

DG < CK (7325 + 7127,
i’j7a7/8
Z !EG,ci (8, wz) - Em,ci (87 wz)|

7

= IQJ (@wiﬁﬁwg‘Gfaﬂ)omd (1, —x/t)dx _J (5aw¢§5ijga5)dx
Hs <a<

ol (o) (gomr)s

Hs Nija,B

< 2CKJ‘ Z (|8w1| + |wz|) (Z |aawk|2> dzx
Hs 4 o,k

(t_1/23_1 + t_3/23) (t/s)? <Z |(3/t)8awk|2> dx

oLk

S

< 2CKClef

H,
< CK01€Z Em(S, wl) < CKCleZ Em,ci (S, wi),
' i
where the relation t < C's? in K is taken into consideration. Here we take

CKChe < 2/3 with C' a universal constant, then the lemma is proved by
fixing K1 = /3. ]

The proof of (2.4.7b) will be related to the energy estimate (7.2.1a).

Lemma 9.3.2. By relying on (2.4.5a), (2.4.5b), and (2.4.5e), for any
|I¥] < 5 the following estimate holds:

U ( (0aGI*) 0,2 w05 2" w; — 1(8tGgaﬁ)8aZﬂwi85Zﬂwj>da:

(C 6) 1+§E (8 Zlﬁwl)1/2 C(C 6)2 —1+5Ema(s Zﬂwz)l/Q
(9.3.1)
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Proof. By (7.5.1a) and (7.5.2a), we note that

10aG1%] <C ) |oaw)| + C ) [0adpwy|
J 7,8
<C Y (10av5] + 10adsvsl) + C D (18aus] + 10adpus))
J.o,B 7,08
<CCyet 3280 + CCret 125119,

By substituting this result into the expression, the first term in the left-hand
side of (9.3.1) is bounded as follows:

[(5/)(0a G2 )02 i85 2" w5 | 11

= [((¢/$)0aGI*") (/)0 2" wi(s/t)35 2" wj | 1 o,

< Do) ?s™ 4 725 70) (500, 2" wi(s/1)05 2" wy | 1 o

3B

< CCres™ Y [(s/00 2" wils/1)05 2" wj | 1 o
7B

< CCres™ 3 (/)05 2" wi] o e | (5/0)0: 2" w
7,8

l120c.):

We apply (7.2.1a) and find

[(5/6)(0aGI™®) 002" w303 2" w5 | 11 5.

1/2

< C’(C’le)Qs_H‘S(J |(s/t)8tZIﬁwi|2dx>
< C(Cre)?s 1R, (s, Zﬂwi)lp.

The second term is estimated in the same way and we omit the details. [

The proof of (2.4.8a) is similar to that of (2.4.7b).

Lemma 9.3.3. By relying on (2.4.5¢), (2.4.5d), and (2.4.5¢), the following
estimate holds:

U §(<aaG£aﬁ)atzf*wiagzﬂwj - %(atGZ“ﬁ)aaZ’TwﬁﬁZﬂwJdx
g’(s

<C(Cre)s 12, (s, ZITwi)l/2 < 0(016)23*1”/21?%0(5, Zﬂwi)lm.
(9.3.2)
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Proof. As in the proof of Lemma 9.3.2, we can apply (7.2.1b) together
with (7.5.1b) and (7.5.2b):

[(s/0)(0aGI) 22" wids 2" w1 o

1/2
< O(Cpe)?s 1192 (J ’(s/t)&tZIHwilzda:>
¥

S

< C(Che)2s™ 192 p, (s, 77 w;) /2.

The second term is estimated in the same way and we omit the details. [J

The proof of (2.4.9a) is quite similar, but the null structure will be taken
into consideration for the sharp decay rate s~%/2%2%_ This is one of the only
two places where the null structure is taken into account.

Lemma 9.3.4. Suppose (2.4.5b) and (2.4.5e) hold, then for any |I| < 3
the following estimates are true:

N 1 N
|f ( G%O"B)ﬁtZIu;ﬁngu;— §(§tG%a5)8aZIugﬁﬂZIu3)dm

(9.3.3)
(O 6)2 —3/2+5E (S,ZIUg)l/Q.

Proof. We decompose the term G%AQ'B as follows:

(s/t)&aGga'BﬁgZIu]A@tZIUg
= (s/t)(AL""% 000,05 + BIP*000:) 05 2 430, 2 s

+ (s/t) (ALP7% 000 uz + BI*P*00ur )05 2 uz0, 2 s
= R1 + R».

The estimate of R; is direct, and we simply apply the inequalities (7.5.1e):

IRy L1 sc.) = [[(8/8) (ALP7% 050,05 + BI*PF0,0;) (052 50027 wa) | 11 3¢,
(t328°(t/s)) (s/)0sZ" uz (s/t) 0 Z sl 1 (3¢,

< CChe |27 0 (s/t)0s Z ug] 12 ae) 1 (8/8)0: 2 wal| L2 (¢,

< 001633/2+5H(s/t)&BZIu]AHLz(g{S) E.. (s, ZIu;)l/Q.

In view of (7.2.3a), we get

|R1 L1 sc,) < C(Cre)?s™ 20 By, (s, Zup) /2. (9.3.4)
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The estimates on R is more involved: we have the following decompo-
sition:

(s/t) (AL 0,0, uz + BI**0,uz) 052 u;
:(s/t)Aga'Bﬂyk@aé‘quagZ]uj—|— (s/t)BgaﬁkﬁaugagZIuj
—:(s/) AL (02 uj, 00uz) + (s/)TL (Qug, 92 uj)

Recall that Agk and ‘J'ij are null forms.

Let us consider first the terms of Agk. By Proposition 4.3.1 (with I = 0),
we have

A (07 s, 00us)

CK(S/t)2|5t§tu%| ]&Zluﬂ + CKQ4(0, Zluj, UE) + CKt_lﬁg(O, ZIUJA, UE)
CK (s/t)%|0:0rug| 10+ 7" us)

+CK ) 10,05u3] 10,2 w5l + CK ) 0,0yuz| 10,2 uj

<
<

a,B,y a,b,y
+ CK ) 10,05uz|10.2"us] + CKt' ) |00 Z" us] [05uz).
a,/B,C a?/B

Each term is estimated as follows:
[(s/t)?0cdug s Z" uz) 1230,y = |(s/1)0edru, (5/4)0: 2" us] L2 ¢,
< CCrelt™ (s/£)0, 27wz 12 3¢,
< 00168_3/2H(S/t)atZIanLz(g.cs) < C(Cre)?s73/2,
where we applied (7.5.3a) and (7.2.3a). We have also
1802503 2, 273l a0,y = (/)08 03 (5/0)20 2 5] 2,
< CChre|(t/s)t ™27 (s/t) 0 Z uz] 2 (oc.
< 00168_3/2H(S/t)atZIanLz(g.cs) < C(Cre)?s73/2,

The term [0,0,uz, 0, Z us]|r2(5¢,) is estimated in the same manner and
we omit the details.

QCZIUJA”L%&CS) < O(Che)?s™2

10005us 0.2 w5l 123,y < |100@suz]l Lo (3¢,
where (7.5.3a) and (7.2.3b) are used.
71002703 0z 2o, < 17 (1/5)0ug ) 1 o) I3/ 2 05 2o
< C(Cre)?s75/2,
We conclude with

|(s/)AZ" (02" us, d0u3)| < OK(Che)2s~3/?

‘LQ(H-CS)
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and

H (s/t)A%%(@Zqu, 53“5)5tZIU?HL1(ﬂ{S)

7k
< |4 (027 us, 00u3) | 290y | (5/8) 00 2 s 2 3. (9:3.5)
< C(Cre)2s7 2B, (s, ZTuz) /2.
Next, we consider the terms of ‘Ig%. By (4.2.1a), ’J'g%(éZIu@, Juz) can
be bounded by a linear combination of the terms presented in Proposition

4.1.2. All the estimates are based on the inequalities (7.5.3a), (7.5.3b),
(7.2.1a), and (7.2.1c).

[(s/t)20: 2" wzoruz | o gy < [ (5/)00u | oo g¢y | (/)0 2" 5] o
< C(Chre)?s73/2,

|00z 252" 5] 2 5,y < [(8/5)a
x C(Clﬁ) s 3/2

(/)22 uJHLQ(J{ )

Y

HQaU@QbZIUJAHm(:H) |0auz ZIUJAHLQ(HS)
< C(Cye)*s™ 2.
We conclude with
(05, 027402 0] 1, < 170050270 g 5/ 0] 1,
< C(Cre)%s 32 E,, (s, ZTuy) Y.
(9.3.6)

Combining (9.3.4), (9.3.5), and (9.3.6), we conclude that

|00 (G2 (w w, 0w))0:Z Ui 1 g < C(Cr€)*s™ 20 By (s, Z7uz) V2.

By a similar argument, the term H@t (Gga'g(w,5w))5aZIu;HL1(%S)

bounded by C(C1¢)?s~3/2%% and we omit the details. O

is also
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Chapter 10

L? estimates of the interaction terms

10.1 L? estimates on higher-order interaction terms

In this chapter, we establish three groups of energy estimates mentioned in
the proof of Proposition 2.4.3, that is, (2.4.7¢), (2.4.8b), and (2.4.9b) which
are derived under the assumption (2.4.5). We emphasize that three groups
of inequalities correspond to different decreasing rates in time. The proof
of (2.4.7c) and (2.4.8b) is much easier than that of (2.4.9b), since, roughly
speaking, it does not require the null structure, while the decreasing rate in
(2.4.9b) is a consequence of the null structure. Interestingly, this is one of
the two places in our proof where the null structure is used in a fundamental
way.

Lemma 10.1.1. Under the assumption of (2.4.5) (with Cre < min(1,¢q)),
the following estimates hold for all |I*] <5 and so < s < 81:

|27 B Laaq,, < C(Cre)*s™+, (10.1.1a)

I[Z1, GI%7 (w, 0w)dnds|w,|| < C(Cre)?s™1H9. (10.1.1b)

Proof. We begin with (10.1.1a). This concerns only the basic L? and L*
estimates established earlier. Recall that Z!° F; is decomposed as follows:

2 Fy = 27 (PPP* dgw;dpwi) + 27 (Q07 v 00wy + 21 (R vsvy)
We see that Z* F; is a linear combination of the following terms:
2 (dauidpus),  Z7 (0avitgus), 27 (avidsvy),
2" (vidawy), 2" (vyp).

As done before, for each term and each partition of I = If + Ig, we write
the relevant inequalities in the following two lists (Recall our convention
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that, on each term, I7 o acts on the first factor and Ig acts on the second,
while the symbol (a, < b) means |If| = a, |I5] <b.):

Products (5,<0) (4,<1) (3,<2)
Oau;0pu; (7.3.1a), (7.5.3a) (7.3.1a), (7.5.3a) (7.3.3a), (7.5.1a)
davi0gu; (7.3.1a), (7.5.3a) (7.3.2a), (7.5.3a) (7.3.2a), (7.5.1a)
Oavi0pvy (7.3.1a),(7.5.2a) (7.3.2a), (7.5.2a) (7.3.2a), (7.5.2a)
vi0w; (7.3.1e),(7.5.1a) (7.3.1e), (7.5.1a) (7.3.1e),(7.5.1a)
vyvy  (7.3.1e),(7.5.1e) (7.3.1e), (7.5.1e) (7.3.1e),(7.5.1e)

Products (2,<3) (1,<4) (0,<5)
Oau;0gu; (7.5.1a),(7.3.3a) (7.5.3a), (7.3.1a) (7.5.3a), (7.3.1a)
Javi0gu; (7.5.2a),(7.3.3a) (7.5.2a), (7.3.1a) (7.5.2a),(7.3.1a)
Oavi0pvy (7.5.2a),(7.3.1a) (7.5.2a), (7.3.1a) (7.5.2a), (7.3.1a)
vi0qw; (7.3.1e),(7.5.1a) (7.5.1e), (7.3.1a) (7.5.1e),(7.3.1a)
vy (7.3.1e),(7.5.1e) (7.5.1e), (7.3.1e) (7.5.1e),(7.3.1e)

From these inequalities, we conclude with (10.1.1a).

We turn our attention to (10.1.1b) and, by recalling the decomposition
of [Z27,G7P (w, 0w)0uds]w;, we find
[Zlu,GzaB(w,aw)@aag]wj
—[2", ATPR G wdndplwy + (27, BI®PFu:0,05]w, (10.1.2)
+ [Zﬂ, Bgaﬁku%aa@g]l@
The first term of the right-hand side is decomposed as follows:
(27, AP Q0,00 05w
= > AP ZR wZ 0005w, + AP0 [ 2T, dads]wy,

I§+Ig=lﬁ
118 |<| 18| -1

(10.1.3)
in which we have
S Azl w2 0,0pw,

I§+Ig=1ﬁ
118 |<| 18| -1

1 = # f ; A i i
= > (Ag“ﬁvszlawzfzaaaﬂwj+Agawzhawézfaaaaﬁwj).
e rd
|1§\<\iﬁ|—1
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This term is a linear combination of the following terms with constant
coefficients:

ZH 0 20,0505, 2V 0yus 27040505
ZIE (%”UEZIg &aégug, ZIE 871)%2[5 8a65v5
with [I?| + |I}| < 1% and If < |I¥| — 1.
The second term in the right-hand side of (10.1.3) is estimated as fol-

lows. We see that it is a linear combination of the following terms with
constant coefficients:

0yur (27 0ndplus,  Oui[ 27, 0008]0s,
Oy vy, [ZIN ; 0a0gluz, Oy vy, [Zju , 0a0]vy

By the commutator estimates (3.3.3), these terms are bounded by

" Vi
D |0yuz0adsZ 2], D [0vupadsZuy,
| 15|<|1¢—1 I8 |<|IH|—1
It Vi
> |0y00a052 g, > |0yvp0a0sZ 20y
|15|<|1%]—1 [I5|<|1¥|-1

We observe that [27°, A7 0 w,0,05]w; is bounded by a linear combi-
nation of the following terms with constant coefficients:

f f H o H o

zZh 571%2[2 8a65u5, zZh 87u@ZI2 dﬁg@;, zZh &YUEZIQ dxaﬁuj,
ﬁ # ﬁ f H #

le 671)%2[2 @aag’l}j, le 671%6@5/@2121@, ZIl awu@&aﬁgz%j,
ﬁ # # f

ZIl ayvzaaaBZIng, ZIl avaaaangmj

with |I%] + |18 < |I*] and |I}] < 4.
We give the inequalities we use for each term and each partition of the

index:

Products (5,<0) (4,<1) (3,<2)
Z10yuz 2% 00 0u; (7.3.1a), (8.4.6¢) (7.3.1b), (8.4.6b) (7.3.3a), (8.4.6a)
Z1 0yuz 2% 00005 (7.3.1a), (7.5.2a) (7.3.1b), (7.5.2a) (7.3.3a), (7.5.2a)
Z1 00, 25 0,05u; (7.3.1a), (8.4.6¢) (7.3.2a), (8.4.6b) (7.3.2a), (8.4.6a)
721040, 25 0,05v5 (7.3.1a), (7.5.1¢) (7.3.2a), (7.5.1¢) (7.3.2a), (7.5.1a)
Z1 0yuz 0005 Z % u; (7.3.1a), (8.4.6¢) (7.3.1b), (8.4.6b) (7.3.3a), (3.4.6a)
Z1 0yuz 0005 2 %05 (7.3.1a), (7.4.3a) (7.3.1b), (7.4.3a) (7.3.3a), (7.4.3a)
71 0,40;0005 75 u; (7.3.1a), (8.4.6¢) (7.3.2a), (8.4.6b) (7.3.2a), (8.4.6a)
Z1 871)%804852[5@5 (7.3.1a),(7.4.2e) (7.3.2a),(7.4.2e) (7.3.2a), (7.4.2a)
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Products (2,<3) (1,<4)
Zf“avuszﬁa dsu; (7.5.1b), (8.5.7b) (7.5.3a), (8.5.7a)
VAR Zf 0a05v5 (7.5.1a),(7.3.2a) (7.5.1a), (7.3.2a)
Zfﬁa va $0005u; (7.5.2a), (8.5.7a) (7.5.2a), (8.5.7a)
Zf”a vy 210, 0gv7 (7:5.2a), (7:3.1¢) (7.5.20), (7.3.1¢)
ZIuc%u Ou aﬁzfzuj 7.5.1b), (8.5.7b) (7.5.3a), (8.5.7a)
le&yuka aﬁzfzvj (7.5.1b), (7.2.2a) (7.5.3a), (7.2.2a)
zh 8 07000 2" 2uA (7.5.2a), (8.5.7a) (7.5.2a), (8.5.7a)
zh avaaaaﬁsz; (7.5.2a), (7.2.1e) (7.5.2a), (7.2.1¢)

The remaining terms in the right-hand side of (10.1.2) are estimated
similarly. These two terms can be bounded by the combination of the
following terms with constant coefficients:

Zflfva 20 agwj, ZIEUEZ@&Q@B%A,
1vE8a(95Z 2wj, ZlfuzaaagZIguj
with |I%] + [IA| < |I¥] and |I}| < |I¥| — 1. We will write in details the

estimate for the most critical term ngu@ng 0a 05

Z |Z11UA IgaaagujA‘

|1§\+\15\<\1ﬂ|

|18 |<|1¥ |1

< N |2 up0a05us] + |2 u; 250,055

S UpOa0pU;j ug a0pU;
|17} |<5 |1} |=4,| 15| <1

i B
+ Z ’ZIlu%ZIQaaaguﬂ
|15 |=3,| 15|<2
i B i i
+ Z ‘leuEZI28a65u5| + Z }leu%ZQ@a&gu;‘
|13|=2,|15|<3 |1} |=1,]15|<4
=I5 +Ty+T5+T5 + 1.

The term T5 is estimated by applying (7.3.6a) on the first factor and (8.4.6¢)
on the second factor:

ITslzeey = 2y |57 2" ug 50a0pu5] oo
11¢|<5

<[5 2% ug |

< C(Cle)Qs‘sHtl/Qs_

(Hs)
< 0(016)28_1+6,

o= ey
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where we observe that s < t < Cs? in the half-cone K.
The term Ty is bounded by applying (7.3.6b) and (8.4.6b):

_ o i
ITaleeoey < Dy |87 2"y s2%0005u5) g
|1 =4,| 1] <1

<C(Cl€)286/2H5t1/28_3+5/2
<C(Cre)s 119,
The term T3 is bounded by applying (7.5.5a) and (8.5.7¢):

| oo 3.

_ i _ f
T3] L2(3¢,) < 2 |s1e%2 2 g st S/QZIQaaaﬂuij(}cs)
1§ |=3,|15|<2

<001€86H83t_2zlg 0o 03]
<CO(Cre)?s1H9,

The term 75 is estimated by applying (7.5.5b), (8.5.7b):

—241/2

‘LQ(U{S)HS HLOO(J-CS)

f :
|15 p2¢9¢,) < Z Hs_3t2Z11uE 83t_2ZI28a§5u5|
|7 |<2,| 75| <3

203t

< ) HS_StzzIE U P
|1¥)<2,]18]<3

<001€ ’S—3t2t—3/281+5/2 H

—C(Che)?s71H9,

The term 73 is bounded by applying (7.5.5¢) and (8.5.7a):

_ H
$172210,05u3) (5¢.)

CCesd/?

L* ()

_ f — ?

|71 22 3¢,y < Z Hs 3752211% $3t 2ZIQaaaBU5}\L2(g{S)
1)<, |18 <4

< Y sz
|15]<1,| 15 |<4

<CCie |S_3t2t_3/23||Loo(g{S) .CChes’ < C(Cre)ts 19,

_ f
U@HLOO(J{S) s3t 2ZIQaa55UjHL2(g{S)

For the remaining terms, we list out the inequalities to be used on each
term and each partition of the index as follows:

Products (5,<0) (4,<1) (3,<2)
ZN v, 7156,05w; (7.3.1€), (7.5.1a) (7.3.1¢), (7.5.1a) (7.3.1¢), (7.5.1a)
ZNu; 215 0,055 (7.3.6a), (8.4.6¢) (7.3.6b), (8.4.6b) (7.5.5a), (8.5.7c)
7N 000057 5w; (7.3.1¢), (7.4.2a) (7.3.1¢), (7.4.2a) (7.3.1¢), (7.4.2a)
ZN ;00,0575 u; (7.3.6a), (8.4.6¢) (7.3.6b), (8.4.6b) (7.5.5a), (8.5.7c)
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Products (2,< 3) (1,<4)
7210 Z250,05w; (7.5.1e),(7.3.1a) (7.5.1¢), (7.3.1a)
ZNu; 275 0,05u; (7.5.5b), (8.5.7b) (7.5.5¢), (8.5.7a)
710040525 w; (7.5.1¢), (7.2.1a) (7.5.1¢), (7.2.1a)
ZN ;000525 u; (7.5.5b), (8.5.7b) (7.5.5¢), (8.5.7a)

We estimate the source with fourth-order derivatives.

Lemma 10.1.2. By relying on the assumption (2.4.5), the following esti-
mates hold for all |[IT| < 4 and sg < s < s1:

|z" < C(Cre)?s 1492, (10.1.4a)

Fi”L?(}cs)

[[Z", G (w, dw)dads]w;| 2 50y < C(Cre)?s™ 14972, (10.1.4b)

Proof. The proof is essentially the same as the one of Lemma 10.1.1. We
will not write the proof in detail, but we list out the inequalities we use for
each term and each partition of the index.

First we list out the estimate on Z!' F; in Table 15. The terms
[ZIT,BfO‘ﬁ kwkaaﬁg]wj are estimated by the inequalities listed in Table
16. ]

10.2 L2 estimates on third-order terms

We now derive the L? estimates for the source terms (2.4.9b). This is
the second place where the null structure is taken into consideration after
Lemma 9.3.4.

Lemma 10.2.1. By relying on the assumption of (2.4.5) with Cie <
min(1, (), the following estimates hold for all |I| < 3:

| Z" By | 2 (sc,) < C(Cre)?s™3/2H20, (10.2.1a)
121 GI* (w, 0w) 00 03] L2 (3c,) < C(Cre)?s™3/2+20, (10.2.1b)

[[Z", GI*F (w, 0w)2adslug| L g, < C(Cre)*s™3/2F2, (10.2.1¢)
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Proof. We first prove (10.2.1a) and recall the structure of Z! F;:

7P, = 71 (P9 0 us05uz)
+ PO"BJ’CZI (Oaviopug) + PaBJkZI (Oauzdguy) + PO"BJkZI (Oav;05v7)
+ Qa]kZI( %@awj) + R%kZI (vjv@).

The first term in the right-hand side is a null term and we can apply directly
(9.1.1a):

| PP 3 uz0 50 < O(Che)?s™2,

tlzaac,)
The remaining terms are linear combinations of the following terms with
constant coefficients:

2" (Qavs0pwr), 2" (vplarwy), 2" (v5vz)-

We will not give in details the estimates of each term, but we list out the
inequalities we use for each term and each partition:

Products (3,<0) (2,<1) (1,<2) (0,<3)
davy0pwy, (7.3.2a), (7.5.1a) (7.3.2a), (7.5.1a) (7.5.2a), (7.3.1a) (7.5.2a), (7.3.1a)
vyOaw; (7.3.1e),(7.5.1a) (7.3.1e),(7.5.1a) (7.5.1e),(7.3.1a) (7.5.1e),(7.3.1a)
vivp  (7.3.1e), (7.5.1e) (7.3.1e), (T.5.1¢) (T.5.1¢), (7.3.1e) (7.5.1¢), (7.3.1e)

To establish the second inequality (10.2.1b), we decompose it as follows:
Z1(GIP (w, 0w)dadpvy) = AL Z1 (0, wi00d5v5) + BIF Z1 (v3.0005v5).

So, it is to be bounded by a linear combination of the following terms with
constant coefficients:

Z" (0ywi0a0pv5), Z' (vi0adsvy).

As before, we list out the inequalities we use for each term and each parti-
tion of the index:

Products (3,<0) (2,<1) (1,<2) (0,<3)
04w 0a0pvy (7.3.1a),(7.5.2a) (7.3.1a), (7.5.2a) (7.5.1a), (7.3.2a) (7.5.1a), (7.3.2a)
vpadguy (7.3.1¢),(7.5.2a) (7.3.1¢), (7.5.2a) (7.5.1¢), (7.3.2a) (7.5.1e), (7.3.2a)
)

The proof of the inequality (10.2.1c
Recall the following decomposition:

(27, G2 (w, 0w)0udp]u;
(27, AP0 w000 us + (27, BI U 00dsus
+ (21, AP0 020005 us + (21, B 010005 u;

is also related to the null structure.
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Observing the null structure of the first two terms and applying (9.1.1b)

and (9.2.1a), we obtain
[[2", AT 0z 0,0 + (2", B 60513,

< 0(016)28_3/2+5.

T3] L2 o, (3€5)

The remaining two terms are linear combinations of the following term:
zh GWUEZIQ 0a 03, zh U%ZI2 00 0BU3,
ZI1 871)%804652[%5, ZIIUE(9Q85212UJA

with [I1| + |I2| < |I| and |I5] < 2.

We omit here the details and list out the inequalities applied to each
term and each partition of the index:

Products (3,<0) (2,<1) (1,<2)

Z1 0,0, 2120,05u5 (7.3.2a), (7.5.1a) (7.3.2a), (7.5.1a) (7.5.2a), (7.3.1a)
Zhwp Z7120,05u; (7.3.1e),(7.5.1a) (7.3.1e), (7.5.1a) (7.5.1¢),(7.3.1a)
710,010,032 2u; (7.3.2a), (7.4.2a) (7.3.2a), (7.4.2a) (7.5.2a), (7.2.1a)
Z1;0,08Z"u; (7.3.1e),(7.4.2a) (7.3.1e), (7.4.2a) (7.5.1¢), (7.2.1a)



140 The hyperboloidal foliation method



Chapter 11

The local well-posedness theory

11.1 Construction of the initial data

In this chapter, we establish the local-in-time existence theory for general
systems of the form

Cw; + G2 (w, 0w)dndpw; + w; = Fi(w, dw), (11.1.1)
wi(B+1,2) = w;g, Ow;(B+1,x)=w;,
where
GI* (w, dw) = AI*P7* 0wy, + BIPFwy,

e . . (11.1.2)
F;(w, 0w) = PM7"0,w;jdgwy, + Q77" dgwjwy, + R wjwy,

with constants Af‘ﬁ v piabk Pf‘ﬁ ik Q?j F Rg *. To guarantee the hyperbol-
icity property, the following symmetry conditions are assumed:

Ggaﬂ _ G;aﬁ, Ggaﬁ _ Ggﬂo‘. (11.1.3)

Initial data by (wiq,w;1) € HTH(R3) x H'(R3) of sufficiently high reg-
ularity are prescribed on the hyperplane {¢ = B + 1} and we assume the
smallness condition:

||wi0||Hl+1(R3) + Hwi1||Hl(R3) <€ (11.1.4)

We also assume that w;q and w;; are supported in the ball {|x| < B}. The
following theorem was essentially already established in Sogge (2008).

Theorem 11.1.1. For any integer | = 5, there exists a time interval [B +
1,T(e) + B + 1] on which the Cauchy problem (11.1.1) admits a (unique)
solution w; = w;(t,x) and one has

w;(t,x) € C([B + 1,T(e) + B + 1], H'(R?)) (11.1.5)
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and there exists a constant A > 0 such that

Z Z H(?aZIwiHLoo([BH’T(G)]’Lz(Rs)) < A€ (1116)

T
l1]<5

Moreover, the time of existence approaches infinity when the size of the
data approaches zero, that is,

lim+ T(¢') = +oo. (11.1.7)
e —0

If T* denotes the supremum of all such times T'(¢') (for fized initial data),
then either T = +00 or else

sup Z Z 0P w; (t, )| = +oo. (11.1.8)

o i |pl<s
In addition, for Cy > 1 sufficiently large and some €, > 0 (depending only
on the structure of the system), the uniform bound

Y Ea(B + 1,w;) < Coé (11.1.9)

holds for all initial data satisfying € < €, where Eq(-,w;) := Ego(-, w;) is
the hyperboloidal energy in (2.3.4).

Proof. We only sketh the proof. The local existence theory and the blow-
up criteria are discussed in Sogge (2008) (cf. by Theorem 4.1 in Section
1.4 therein). The property of T'(¢’) is deduced from our proof of global
existence in this monograph. Therefore, we can focus here on estimating
the energy Eq(B + 1, Z1w;).

We consider the region KXp 41 := {(t,7) : t = B+1,t*—|z|*> < (B+1)?}n

K where KX = {|z| <t —1,t = 0}. We observe that in Xpi1, t < —(B+12)2+1,

We can fix some ¢ sufficiently small, so that T'(¢/) > %. The local
solution is well defined in the region Kpg.

To estimate Eg(B + 1, Z1w;), we choose d;w; as a multiplier and, with
the notation

E5(B + 1,w;)
= f (X 10awif? + 2637 dyundpu; — GI*Pdawidgw; ) (B +1,-) da

R3
(11.1.10)
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in order to denote the standard energy defined on the flat hypersurface
t = B + 1, we obtain the energy estimate

Y Ea(B+1,Z"w;) = Y E&(B+1,Zw;)
— ZJ (ZIFi(w,ﬁw) o Z w; — [ZI,G‘gaﬁé’ag]Zij 6tZIwi)d:cdt
i YXBy1

. 1 .
+> LC (aaagaﬂatsziaﬁszj - 5atGgO‘ﬂ aasziaﬁszj> dadt
i B+1

(B+1)2+1

2 /
<CK ) 1002 wi| |05 27w, |04 Z7 wy|dzdt < C A€
i,5.k YB+1
B
Here, C' is a constant depending only on the structure of the system. We
have
Eq(B +1,7Z'w;) < CA + C¢.

Thus, for Cy > 1 sufficiently large and € > 0, we can find some ¢, suffi-
ciently small such that

CAe + Ce < Cyé'.

]
11.2 Local well-posedness theory in the hyperboloidal foli-
ation
For convenience, we introduce the following notation in the cone K
V=5 =+/12 — |x|?,
%=z,
The natural frame associated with these variables is
- s
aO = 8S = _ata
t
_ 2
Og =0, = Tat + 0.
By an easy calculation, we express the wave operator in this frame:
_ 279 - — - = 3
[lu = 000t + ——0o0att — ) Oalali + =0, u. (11.2.1)
S - S
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The symmetric second-order quasi-linear operator G‘Z b (w, Ow)0a0pgw; can
also be expressed in this frame:
GIe?

(3

(w, 0w)0n0pw; (112.9)
— GIY (w, 0w)0a0pw; + GI* (w, dw)d, (\Ilg/)(%/wj
with
G = G g,
which is again symmetric with respect to 1, j.
Now, we can transform the system (11.1.1):

dodow; + GIP80ow; + —dodaw; + G (w, Ow)edaw;
5 o N (11.2.3)
— > 0aaw; + GI*0,00w; = Fi(w, dw)

with initial data posed on s = B + 1:

wi(B+1,:) =w,,, dswi(B+1,-)=uwj.
We observe that this system is again symmetric and that the perturbation
terms G are small, so this system is again hyperbolic with respect to the
variables (s,Z%). By the standard theory of second-order symmetric hy-

perbolic system, the following theorem holds. (See, for example, Taylor
(2011), Proposition 3.1 in Chap. 16, Section 3.)

Theorem 11.2.1. Let | = 5 be an integer and B > 0. Then, the following
property holds for a sufficiently small € > 0. Let (w;q, w;1) € H*Y x H be

data supported in the ball centered at the origin and with radius %.
Then, the Cauchy problem
w; + G2 (w, ow)d,pw; + w; = Fi(w, dw),

Wilap 1 = Wi,  OrWi|3cp,, = Wi
under the condition (on the initial slice)

Z Z Haﬁw’iHLQ(fHBH) +Z Z Hé’ﬂ(?twl-HLz(}CBH) <€ (11.2.5)

i |BlI<i+1 i |B8|<l
admits a unique local-in-time solution, which satisfies
YD 1Pwillzagac, < Ae (11.2.6)
i |Bl<l+1

in the time interval [B + 1,T(¢) + B + 1] and for soe constant A > 0.
Furthermore, if T* denotes the supremum of all such times T'(e) (for e
fized), then either T* = 400 or else

lim Y > [0%wilLz(ac,) = o0, (11.2.7)

s<T* 1 a<<l+1
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