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Preface

The Hyperboloidal Foliation Method presented in this monograph is based
on a p3 ` 1q–foliation of Minkowski spacetime by hyperboloidal hypersur-
faces. It allows us to establish global-in-time existence results for systems
of nonlinear wave equations posed on a curved spacetime and to derive
uniform energy bounds and optimal rates of decay in time. We are also
able to encompass the wave equation and the Klein-Gordon equation in a
unified framework and to establish a well-posedness theory for nonlinear
wave-Klein-Gordon systems and a large class of nonlinear interactions.

The hyperboidal foliation of Minkowski spactime we rely upon in this
book has the advantage of being geometric in nature and, especially, invari-
ant under Lorentz transformations. As stated, our theory applies to many
systems arising in mathematical physics and involving a massive scalar
field, such as the Dirac-Klein-Gordon system. As it provides uniform en-
ergy bounds and optimal rates of decay in time, our method appears to be
very robust and should extend to even more general systems.

We have built upon many earlier studies of nonlinear wave equa-
tions or Klein-Gordon equations, especially by Sergiu Klainerman, Demetri
Christodoulou, Jalal Shatah, Alain Bachelot, and many others. The cou-
pling of nonlinear wave-Klein-Gordon systems was first understood by
Soichiro Katayama who succeeded to establish an existence theory of such
systems.

Importantly, in developing the Hyperboloidal Foliation Method, we were
inspired by earlier work on the Einstein equations of general relativity by
Helmut Friedrich, Vincent Moncrief, and Anil Zenginoglu.

We are very grateful Soichiro Katayama for observations he made to the
authors on a preliminary version of this monograph.

Last but not least, the authors are very grateful to their respective
families for their strong support.

Philippe G. LeFloch and Yue Ma
Paris, September 2014
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Chapter 1

Introduction

1.1 Background and main objective

We are interested in nonlinear wave equations posed on the p3 ` 1q-
dimensional Minkowski spacetime and, especially, in models arising in
mathematical physics and involving a nonlinear coupling with the Klein-
Gordon equation. A typical example is provided by the Dirac-Klein-Gordon
equation. (Cf. Section 1.5, below.) Our study is also motivated by the Ein-
stein equations of general relativity when the matter model is a massive
scalar field. The Klein-Gordon equation also describes nonlinear waves
that propagate in fluids or in elastic materials.

The so-called ‘vector field method’ was introduced by Klainerman
(1980, 1985, 1986, 1987). It is based on weighted norms defined from the
conformal Killing fields of Minkowski spacetime and Sobolev-type argu-
ments, and yields a global-in-time, well-posedness theory for the initial
value problem for nonlinear wave equations, when the initial data have
small amplitude and are “localized”, that is, compactly supported.

This method relies on a bootstrap argument and on an analysis of the
time decay of solutions. It applies to quadratic nonlinearities satisfying the
so-called ‘null condition’ introduced by Klainerman and Christodoulou. A
vast literature is now available on nonlinear wave equations. (Cf. Section 1.4
for further references.) As far as coupled systems of wave and Klein-Gordon
equations are concerned, the current state-of-the-art is given by a recent
work by Katayama (2012a) who succeded to extend the vector field method.

In this monograph, building upon these earlier works, we introduce a
novel approach, which we refer to as the ‘hyperboloidal foliation method’
and we establish a global-in-time existence theory for a broad class of
nonlinear wave-Klein-Gordon systems. In short, by working with suit-

1
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ably weigthed spacetime norms, we are able to cover the large class of
quadratic nonlinearities, also recently treated by Katayama (2012a)), while
our method demands limited regularity on the initial data and provides
sharp bounds on the asymptotic profile of solutions. The hyperboloidal
foliation method introduces a novel methodology, which takes its roots in
an observation⇤ by Hörmander (1997) for the Klein-Gordon equation.

Let us denote by l the wave operator† in Minkowski space. For our
purpose in this monograph, a simple (yet challenging) model of interest is
provided by the following two equations which couple a wave equation with
a Klein-Gordon equation

lu “ P pBu, Bvq,
lv ` v “ QpBu, Bvq, (1.1.1)

where the unknowns are the two scalar fields u, v. This model describes
the nonlinear interactions between a massless scalar field and a massive
one. Here, the nonlinear terms P “ P pBu, Bvq and Q “ QpBu, Bvq are
quadratic forms in the first-order spacetime derivatives Bu, Bv, and account
for self-interactions as well as interactions between the two fields.

Recall that global-in-time existence results for nonlinear wave equations
(without Klein-Gordon components) is established when the nonlinearities
satisfy the null condition. (Cf. (1.2.4c), below.) On the other hand, the
vector field method applies also to the nonlinear Klein-Gordon equation, as
shown by Klainerman (1985). Recall also that the global existence problem
for the nonlinear Klein-Gordon equation was also solved independently by
Shatah (1985) with a di↵erent method.

However, when one attempts to tackle coupled systems of wave and
Klein-Gordon equations like (1.1.1), one faces a major challenge due to
the fact that one of the conformal Killing fields associated with the wave
equation (the scaling vector field denoted below by tBt ` rBr) is not a
conformal Killing field for the Klein-Gordon equation and, therefore, can
no longer be used in the vector field analysis. Katayama (2012a) succeeded
to circumvent this di�culty and established a global existence theory for
a class of coupled systems which includes (1.1.1). His method relies on a
novel L8-L8 estimate. (See Section 1.4 for further historical background.)

⇤recalled in Section 2.1, below
†Our convention here is l :“ BtBt ´ ∞3

a“1 BaBa.
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1.2 Statement of the main result

The new method we provide in the present monograph relies on a fully
geometric foliation. It is ‘robust’ as it is expected to be applicable to large
classes of curved spacetimes and nonlinear hyperbolic equations.

We state here the main result that we will establish in this monograph.
We are interested in the Cauchy problem for the following large class of
nonlinear systems of wave–Klein-Gordon equations:

lwi ` Gj↵�
i pw, BwqB↵B�wj ` c2iwi “ Fipw, Bwq,

wipB ` 1, xq “ wi0,

BtwipB ` 1, xq “ wi1,

(1.2.1)

in which the unknowns are the functions wi (1 § i § n0) defined on
Minkowski space R3`1 and wi0, wi1 are prescribed initial data. Through-
out, Latin indices a, b, c will take values within 1, 2, 3, while Greek indices
↵,�, � take values within 0, 1, 2, 3. Einstein’s convention on repeated indices
is in order throughout.

We assume the symmetry conditions

Gj↵�
i “ Gi↵�

j , Gj↵�
i “ Gj�↵

i (1.2.2)

and, for definiteness, the wave-Klein-Gordon structure

ci

#
“ 0, 1 § i § j0,

• �, j0 ` 1 § i § n0,
(1.2.3)

where � ° 0 is a (constant, positive) lower bound for the mass coe�cients of
Klein-Gordon equations. We decompose the “curved metric” coe�cients
Gj↵�

i pw, Bwq and the interaction terms Fipw, Bwq in the form

Gj↵�
i pw, Bwq “ Aj↵��k

i B�wk ` Bj↵�k
i wk, (1.2.4a)

Fipw, Bwq “ P↵�jk
i B↵wjB�wk ` Q↵jk

i wkB↵wj ` Rjk
i wjwk, (1.2.4b)

in which we can restrict the summation in (1.2.4a) and (1.2.4b) to the
range j § k. For simplicity in the presentation of the method and without
genuine loss of generality, we focus on quadratic nonlinearities and assume
that the coe�cients Aj↵��k

i , Bj↵�k
i , P↵�jk

i , Q↵jk
i , and Rjk

i are constants.
In order to simplify the notation, we adopt the following index conven-

tion:

all indices i, j, k, l take the values 1, . . . , n0,

all indices pı,p|,pk,pl take the values 1, . . . , j0,

all indices qı,q|,qk,ql take the values j0 ` 1, . . . , n0.
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It is also convenient to write

upı :“ wpı

for the components satisfying wave equations, or wave components for
short, and, analogously,

vqı :“ wqı

for the components satisfying Klein-Gordon equations, or Klein-Gordon
components.

Our main assumptions are the null condition for wave components

Ap|↵��pk
pı ⇠↵⇠�⇠� “ Bp|↵�pk

pı ⇠↵⇠� “ P↵�p|pk
pı ⇠↵⇠� “ 0

whenever p⇠0q2 ´
ÿ

a

p⇠aq2 “ 0,
(1.2.4c)

and the non-blow-up condition

Bq|↵�pk
i “ Rjpk

i “ Rp|k
i “ 0. (1.2.4d)

Moreover, we impose that

Q↵jpk
i “ 0, (1.2.4e)

which is our only genuine restriction⇤ required for the present implementa-
tion of the hyperboloidal foliation method. We emphasize that

the null condition in (1.2.4c) is imposed for the quadratic forms

associated with the wave components only,

and that no such restriction is required for the Klein-Gordon components.
We observe† that (1.2.4d) combined with the symmetric condition

(1.2.2) leads to the following restriction on Bj↵�k
i :

Bpı↵�pk
q| “ 0. (1.2.5)

This class of systems was also studied in Katayama (2012a) by a completely
di↵erent approach.

We are now in a position to state the main result that we establish in
the present monograph with the Hyperboloidal Foliation Method.

⇤When this condition is violated, solutions may not have the time decay and asymp-
totics of solutions to linear wave or Klein-Gordon equations in Minkowski space.

†as pointed out to the authors by S. Katayama
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Theorem 1.2.1 (Global well-posedness theory). Consider the initial
value problem (1.2.1) with smooth initial data posed on the spacelike hyper-
surface tt “ B ` 1u of constant time and compactly supported in the ball
tt “ B ` 1; |x| § Bu. Under the conditions (1.2.2)–(1.2.4), there exists a
real ✏0 ° 0 such that, for all initial data wi0, wi1 : R3 Ñ R satisfying the
smallness condition

ÿ

i

}wi0}H6pR3q ` }wi1}H5pR3q † ✏0, (1.2.6)

the Cauchy problem (1.2.1) admits a unique, smooth global-in-time so-
lution. In addition, the energy of the wave components –that is,∞

|I|§3 Em,c
i

ps, ZIupıq defined in Section 2.1 below– remains globally bounded
in time.

In the special case n0 “ j0, the system (1.2.1) contains only wave equa-
tions and the statement in Theorem 1.2.1 reduces to the classical existence
result for quasilinear wave equations satisfying the null condition. Our
method is somewhat simpler than the classical proof in this case, as we will
show in Chapter 6. In the opposite direction, if we take j0 “ 0, the sys-
tem under consideration contains Klein-Gordon components only, and our
result reduces to the classical existence result for quasilinear Klein-Gordon
equations.

An outline of this monograph is as follows. In Chapter 2, we introduce
some basic notations on the hyperboloidal foliation and the associated en-
ergy, and we formulate our bootstrap assumptions. Chapter 3 is devoted to
the derivation of fundamental properties of vector fields and commutators
and their decompositions, which we will use throughout this book.

In Chapter 4, we discuss the null condition in the proposed semi-
hyperboloidal frame and we derive preliminary estimates on first- and
second-order derivatives of the solutions. In Chapter 5, we present some
technical tools and, especially, a Sobolev inequality on hyperboloids and a
Hardy inequality along the hyperboloidal foliation.

At this juncture, in Chapter 6 we apply our method to scalar semilinear
wave equations and we provide a new proof of the standard existence result
for such equations

We pursue our analysis, in Chapter 7, with fundamental estimates in the
L8 and L2 norms, which follow from our bootstrap assumptions. Chapter 8
is devoted to controlling certain ‘second-order derivatives’ of the wave com-
ponents (in a sense explained therein), while Chapter 9 deals with quadratic
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terms satisfying the null condition and also discusses additional estimates
that mainly rely on the time decay of solutions.

Next, in Chapter 10, we derive L2 estimates for nonlinear interaction
terms and, therefore, complete our bootstrap argument.

Finally, for the sake of completness, in Chapter 11 we sketch the local-
in-time existence theory. Furthermore, the bibliography at the end of this
book provides the reader with further material of interest.

1.3 General strategy of proof

In this section, we present several key features of our method, while referring
to Chapter 2 for the relevant notions (hyperboloidal foliation, bootstrap
estimates, etc.).

‚ Hyperboloidal foliation.
Most importantly, in this book we propose to work with the fam-

ily of hyperboloids which generate a foliation of the interior of the
light cone in Minkowski spacetime. (Cf. (2.1.4), below.) In con-
trast with other foliations of Minkowski space which are adopted in
the literature, the hyperboidal foliation has the advantage of being
geometric in nature and invariant under Lorentz transformations.
It is therefore quite natural to search for an estimate of the energy
defined on these hypersurfaces, rather than the energy defined on
flat hypersurfaces of constant time, as is classically done.

‚ The semi-hyperboloidal frame.
Furthermore, to the hyperboloidal foliation we attach a semi-

hyperboloidal frame (as we call it), which consists of three vectors
tangent to the hyperboids plus a timelike vector. This frame has
several advantages in the analysis in comparison with, for instance,
the ‘null frame’ which is often used in the literature and, instead,
is defined from vectors tangent to the light cone. Importantly, the
semi-hyperboloidal frame is regular (in the interior of the light cone,
which is the region of interest), while the null frame is singular at
the center (tr “ 0u, say).

‚ Decomposition of the wave operator.
We also introduce a decomposition of the wave operator l with
respect to the semi-hyperboloidal frame, which yields us an expres-
sion of the second-order time derivative BtBt of the wave compo-
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nents in terms of better-behaved derivatives. (Cf. Proposition 2.2.1,
below.)

‚ The hyperboloidal energy.
Our method takes advantage of the full expression⇤ of the en-
ergy flux induced on the hyperboloids in order to estimate certain
weigthed derivatives on the hyperboloids. This appears to be es-
sential in order to encompass wave equations and Klein-Gordon
equations in a single framework.

‚ Sobolev inequality on hyperboloids.
In order to establish decay estimates (or L8 estimates) on the
solutions, we must control various commutators of fields and of
operators and, next, apply suitable embedding theorems. To this
purpose, we rely on a Sobolev inequality on hyperboloids, first
derived by Hörmander (1997).

‚ Hardy inequality on hyperboloids.
Furthermore, we also need a new embedding estimate, that is, a
Hardy inequality on hyperboloids, which we establish in this book
and is essential in eventually deriving an L2 estimate on the ‘metric
coe�cients’. Section 5.3 for a precise statement.

‚ Bootstrap strategy and hierarchy of energy bounds
Our bootstrap formulation below consists of a hierarchy of energy

bounds, involving several levels of regularity of the wave compo-
nents and the Klein-Gordon components. This rather involved
bootstrap argument is necessary (and natural) in order to handle
the coupling of wave equations and Klein-Gordon equations: the
derivatives of di↵erent order of Klein-Gordon components enjoy
di↵erent decay behaviors and di↵erent energy bounds.

We refer to Chapter 2 for further details and continue with several
observations concerning the scope of Theorem 1.2.1.

1. As stated in the theorem, the energy of the wave components, that
is, the quantity Em,c

i

ps, ZIupıq (defined in Section 2.1) remains globally
bounded for all |I| § 3, that is, up to fourth-order derivatives. Hence, the
wave components have not only ‘small’ amplitude but also ‘small’ energy.
At the end of Chapter 2, we also establish that the standard flat energy
(that is, the quantity }B↵ZIupıpt, ¨q}L2pR3q defined at the end of Chapter 2,
below) is also uniformly bounded for all times. Standard methods of proof

⇤In constrast, Hörmander (1997) only sought for a control of the zero-order term of
the energy.
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lead to possibly unbounded high-order energies.
2. We also emphasize that, in Theorem 1.2.1, the initial data belong

to H6, while Katayama (2012a) assumes a very high regularity on the
initial data (that is, a bound on the first 19 derivatives). In this latter
paper however, the initial data need not be compactly supported, but have
su�cient decay in all spatial directions.

3. In principle, H4 would be the optimal regularity in order to work with
a uniformly bounded metric and to apply the vector field technique: namely,
to guarantee the coercivity of, both, the flat and the hyperboloidal energy
functionals, we need a sup-norm bound of the second-order derivatives the
‘curved metric’ terms Gj↵�

i pw, Bwq. In spatial dimension three, Sobolev’s
embedding theorem Hm Ä L8 holds, provided m ° 3{2. Allowing only
integer exponents, we see that H4 would be optimal.

4. Certain nonlinear interaction terms may lead to a finite time blow-up

of the solutions, especially

upıup|, upıB↵up|, upıvq|, upıB↵vq|

and are, therefore, naturally excluded in Theorem 1.2.1.
5. In short, by denoting by Q an arbitrary quadratic nonlinearity and by

N an arbitrary quadratic null form and by using the notation u, v for arbi-
trary wave/Klein-Gordon components, the terms allowed in Theorem 1.2.1
for wave equations are

Qpv, vq, Qpv, Bvq, Qpv, Buq, Qpv, BBvq Qpv, BBuq,
QpBv, Bvq, QpBv, Buq, QpBv, BBvq, QpBv, BBuq,
QpBu, BBvq,
Npu, BBuq, NpBu, Buq, NpBu, BBuq,

while, in Klein-Gordon equations, we can include the terms

Qpv, vq, Qpv, Bvq, Qpv, Buq, Qpv, BBvq, Qpv, BBuq,
QpBv, Bvq, QpBv, Buq, QpBv, BBvq, QpBv, BBuq,
QpBu, BBvq, QpBu, Buq, QpBu, BBuq.

1.4 Further references on earlier works

For a background on the vector field method and the global well-posedness
for nonlinear wave equations, in additional to the references cited earlier,
especially the pioneering paper Klainerman (1980), we refer to the text-
books Hörmander (1997) and Sogge (2008). Additional background on
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nonlinear wave equations is found in Strauss (1989). We do not attempt
to review the large literature and only mention some selected results, while
referring the reader to the bibliography at the end of this monograph.

As already mentioned, the first results of global existence for nonlinear
wave equations in three spatial dimensions were established by Klainerman
(1986) and Christodoulou (1986) under the assumption that the nonlin-
earities satisfy the null condition and when the equation is posed in the flat
Minkowski space. A (very) large literature is available for equations posed
on curved spaces and, once more, we do not try to be exhaustive. We re-
fer to Lindblad (1990), Klainerman and Sideris (1996), Klainerman and
Selberg (1997), Klainerman and Machedon (1997), Bahouri and Chemin
(1999), Tataru (2000, 2001, 2002), Alinhac (2004, 2006), Lindblad and
Rodnianski (2005), and Lindblad, Nakamura, and Sogge (2012).

The Klein-Gordon equation on curved spaces was also studied in Bach-
elot (1994, 2011).

Since the decay of solutions to the (linear) Klein-Gordon equation is
t´d{2 in dimension d • 1, the decay function t´d{2 is not integrable in di-
mension two and specific arguments are required in two dimensions: Delort,
Fang, and Xue (2004) have treated quadratic quasilinear Klein-Gordon sys-
tems in two space dimensions and, more precisely, coupled systems of two
equations with masses satisfying m1 ‰ 2m2 and m2 ‰ 2m1 with general
nonlinearities. Furthermore, Delort, Fang, and Xue (2004) could treat the
case of equality when the null condition is assumed. This work simplified
and generalized (by including resonant cases) the earlier works by Ozawa,
Tsutaya and Tsutsumi (1995, 1996), Tsutsumi (2003a,b) and Sunagawa
(2003, 2004). See also Katayama, Ozawa, and Sunagawa (2012) for the
algebraic characterization of the null condition and the asymptotic behav-
ior of solutions, as well as Kawahara and Sunagawa (2011) for a condition
weaker than the null condition.

More recently, Germain (2010) revisited the global existence theory in
dimension three for coupled Klein-Gordon equations with di↵erent speeds
and systematically analyzed resonance e↵ects. Systems of wave equations
for di↵erent speeds were also studied by Yokohama (2000) and Sideris and
Tu (2001) under the null condition. See also Hoshiga and Kubo (2000),
Katayama (2013), Katayama and Yokoyama (2006), and Kubota and
Yokoyama (2001).

On the other hand, Klein-Gordon equations in one space dimension are
treated by quite di↵erent methods. (Cf. Delort (2001); Sunagawa (2003);
Candy (2013).)
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The problem of global existence for coupled systems of wave and Klein-
Gordon equations have attracted much less attention so far in the literature.
In addition to the references already quoted, let us mention Bachelot (1988)
who first treated the Dirac-Klein-Gordon system. Furthermore, results on
the blow-up of solutions were established by John (1979, 1981) and, more
recently, Alinhac (2000).

More recenty, a novel method to study nonlinear wave equations (appli-
cable also to other dispersive systems) was introduced in Shatah (2010),
Germain, Masmoudi, and Shatah (2012), Pusateri and Shatah (2013),
Pusateri (2013), and Bernicot and Germain (2014), which is based on an
analysis of space-time resonances. See also the review by Lannes (2013).

Hyperboloidal foliations were used first by Friedrich (1981, 1983, 2002)
in order to establish a global existence result for the Einstein equations. His
proof was based on a conformal transformation of the Einstein equations
and an analysis of the regularity of its solutions at infinity. This was moti-
vated by earlier work by Penrose (1963) on the compactification of space-
times. This idea was later developed by Frauendiener (1998, 2002, 2004)
and Rinne and Moncrief (2013). The importance of hyperboloidal folia-
tions for general hyperbolic systems was emphasized in Zenginoglu (2008,
2011) in order to numerically compute solutions within an unbounded do-
main. The general standpoint in these works is that, by compactification of
the spacetime, one can conveniently formulate an ‘artificial’ outer boundary
and numerically compute asymptotic properties of interest.

1.5 Examples and applications

The Maxwell-Klein-Gordon system

The theory presented in this book applies to many systems arising in math-
ematical physics, and we present here a few of them. For instance, the
Maxwell-Klein-Gordon system in Coulomb gauge takes the form of a sys-
tem of nonlinear wave equations for real-valued unknown Aj and a complex-
valued field �

´lAj “ ´=p�Bj�q ` |�|2 Aj ´ BjBtA0,

´l� “ 2
?

´1
`

´ AjBj�` A0Bt�
˘

`
?

´1BtA0�`
`
A↵A

↵ ` m2
˘
�,

(1.5.1)
with auxillary unknown A0 given by

�A0 “ ´=p�Bt�q ` |�|2 A0, (1.5.2)
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supplemented with an elliptic constraint equation imposed on the initial
data

BjAj “ 0. (1.5.3)

The Dirac-Klein-Gordon system

Consider next the following coupling between the Dirac equation and the
wave or Klein-Gordon equation (with m,� • 0):

´
?

´1
3ÿ

↵“0

�↵ B↵ ` m “ � v�0�1�2�3 ,

lv ` �2v “  :K ,

(1.5.4)

in which the unknown are the (C4-valued) spinor field  and the (real-
valued) scalar field v. We have denoted by  : the complex conjugate
transpose of  . Here, � is a coupling constant and K a constant 4 ˆ 4
matrix, while the 4 ˆ 4 matrices �↵ are the so-called Dirac matrices which
are essentially characterized by the commutation conditions

�↵�� ` ���↵ “ ´2I m↵� , (1.5.5)

where m↵� is the Minkowski metric diag
`
1,´1,´1,´1

˘
and I denotes the

4ˆ4 identity matrix. From the Dirac equation, on can deduce second-order
equations for real-valued unknowns (so that our theory applies): this is
done by composing the Dirac operator with itself (since, roughly speaking,
the Dirac operator is the “square-root” of the wave operator) and then
considering the real and imaginary parts of  .

The Einstein equations

Although our theory in its present form does not directly apply to the
Einstein equations of general relativity

G↵� “ T↵� , (1.5.6)

it is nonetheless motivated by this system and we expect a suitable exten-
sion of our method to apply to (1.5.6). The left-hand side G↵� of (1.5.6)
is the Einstein tensor of a spacetime pM, gq, that is, a Lorentzian p3 ` 1q-
dimensional manifold, while the right-hand side T↵� denotes the energy
momentum tensor of a matter field, which in our context can be assumed
to be a set of massless and massive scalar fields.
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Chapter 2

The hyperboloidal foliation and the
bootstrap strategy

2.1 The hyperboloidal foliation and the Lorentz boosts

We will work with the foliation of the interior of the light cone in Minkowski
spacetime R3`1, defined as below.

We introduce the hyperboloidal hypersurfaces

Hs :“
 

pt, xq
L
t ° 0; t2 ´ |x|2 “ s2

(
(2.1.1)

with hyperbolic radius s ° 0, where pt, xq “ pt, xaq “ pt, x1, x2, x3q de-
note Cartesian coordinates, and we write r2 :“ |x|2 “ ∞

apxaq2. We then
consider the interior of the (future) light-cone

K :“
 

pt, xq { |x| † t ´ 1
(

(2.1.2)

and, with s1 ° s0 ° 1, as well as the truncated conical region

Krs0,s1s :“
 

pt, xq { |x| † t ´ 1, ps0q2 § t2 ´ |x|2 § ps1q2, t ° 0
(

“
§

s0§s§s1

pHs X Kq. (2.1.3)

This set is thus limited by two hyperboloids and is naturally foliated by
hyperboloids. See Fig. 2.1 for a display of the set Krs0,s1s.

Taking now s1 “ `8, we will use the notation

Krs0,`8q :“
 

pt, xq
L

|x| † t ´ 1, ps0q2 § t2 ´ |x|2
(

“
§

s•s0

pHs X Kq. (2.1.4)

We refer to Fig. 2.2 for a display of this set.
In the following, we will be interested in functions supported in the

conical region Krs0,`8q. Observe that the set Krs0,`8q is neither closed nor
open and a function supported in this set, by definition, vanishes near the
future light cone tr “ t ´ 1u but can be non-vanishing on the surface Hs0 .

13
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Fig. 2.1 The set Krs0,s1s.

The region K X t|x| § t{2u will be also of interest in our estimates
below, when we will investigate the behavior of solutions away from the
light cone. Note in passing that the uniform estimate t § 2

?
3

3 s holds in
K X t|x| § t{2u.

We consider first the Klein-Gordon equation

lu ` �2 u “ f,

upt, xq|H
s0

“ u0pt, xq, utpt, xq|H
s0

“ u1pt, xq, (2.1.5)

with given �, s0 “ B ` 1 ° 1. Recall that the symbol l denotes the
wave operator in Minkowski spacetime whose metric has the signature
p1,´1,´1,´1q. In (2.1.5), the initial data u0, u1 are prescribed and com-
pactly supported in the ball

 
|x| § B

(
of radius B “ s0 ´ 1. The source-

term function f is supported in Krs0,`8q, so that, by the principle of prop-
agation at finite speed, the solution u “ upt, xq to (2.1.5) is also supported
in Krs0,`8q. In the same manner, the solution of the main system (1.2.1)
studied in this monograph is also supported in Krs0,`8q and vanishes in a
neighborhood of the light cone

 
r “ t ´ 1

(
.

Next, let us introduce the hyperbolic rotations or Lorentz boosts
(by rising and lowering the indices with the Minkowski metric with signa-
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Fig. 2.2 The set Krs0,`8q.

ture p`,´,´,´q)
La :“ ´xaB0 ` x0Ba “ xaBt ` tBa, (2.1.6)

which are tangent vectors to the hyperboloids. Denote by Z the family of
admissible vector fields consisting of all vectors

Z↵ :“ B↵, Z3`a :“ La. (2.1.7)

Observe that, for any Z, Z 1 P Z , the Lie bracket rZ,Z 1s also belongs to Z ,
so that this set is a Lie algebra. For any multi-index I “ p↵1,↵2, . . . ,↵mq
of length |I| :“ m, we denote by ZI the m-th order di↵erential operator
ZI :“ Z↵1 . . . Z↵

m

. We also denote by BI them-th order derivative operator
BI :“ B↵1B↵2 . . . B↵

m

(here 0 § ↵i § 3) and LI the m-th order derivative
operator LI :“ L↵1L↵2 . . . L↵

m

(here 4 § ↵j § 6).
Since we will be working within K, we have |xa{t| § 1 in K and, there-

fore, the spatial rotations

⌦ab :“ xaBb ´ xbBa (2.1.8)

need not be included explicitly in our analysis, since these fields can be
recovered from Z via the identities

⌦ab “ xa

t
Lb ´ xb

t
La. (2.1.9)
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Within the cone K, the coe�cients xa{t are smooth, bounded, and homo-
geneous of degree zero (see also Lemma 2.2.1).

Now we study the energy associated with the hyperboloidal foliation.
Using Btu as multiplier for the equation (2.1.5), it is easy to derive the
following energy inequality for all s1 • s0:

`
Em,�ps1, uq

˘1{2 §
`
Em,�ps0, uq

˘1{2 `
ª s1

s0

ˆ ª

H
s

f2 dx

˙1{2
ds, (2.1.10)

where the energy on the hyperboloids is defined as⇤

Em,�ps1, uq :“
ª

H
s1

´ 3ÿ

a“1

`
pxa{tqBtu ` Bau

˘2 ` pps1{tqBtuq2 ` �2u2
¯
dx

(2.1.11)
with dx “ dx1dx2dx3. Hörmander (1997)) established a Sobolev-type
estimate adapted to this inequality (cf. Lemma 7.6.1 therein, or refer to
(5.1.1) in Chapter 5, below) and arrived at the L8 estimate

sup
H

s1

t3{2|u|

§ C
ÿ

|I|§2

Em,�ps1, ZIuq1{2

§ C
ÿ

|I|§2

Em,�ps0, ZIuq1{2 ` C
ÿ

|I|§2

ª s1

s0

ˆ ª

H
s

pZIfq2 dx
˙1{2

ds,

(2.1.12)

where the summations are over all admissible vector fields in Z . Impor-
tantly, this argument yields the (optimal) rate of decay t´3{2 enjoyed by
solutions to the Klein-Gordon equation.

2.2 Semi-hyperboloidal frame

Our analysis in the present work is based on the semi-hyperboloidal
frame —as we call it— defined by†

B0 :“ Bt, Ba :“ t´1La “
`
xa{t

˘
Bt ` Ba. (2.2.1)

⇤The subscript refers to the Minkowski metric.
†In contrast, a standard method relies on the so-called null frame containing two null

vectors tangent to the light cone.
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The transition matrices between the semi-hyperboloidal frame and the nat-
ural frame B� , that is, B↵ “ ��

↵B� and B↵ “  �
↵B� are found to be

� :“

¨

˚̊
˝

1 0 0 0
x1{t 1 0 0
x2{t 0 1 0
x3{t 0 0 1

˛

‹‹‚,  :“ �´1 “

¨

˚̊
˝

1 0 0 0
´x1{t 1 0 0
´x2{t 0 1 0
´x3{t 0 0 1

˛

‹‹‚. (2.2.2)

With our choice of frame, the matrices �, are smooth within the cone K.
We adopt the following notation and convention. In order to express

the components of a tensor in a frame, we always use Roman font with
upper and lower indices for its components in the natural frame, while we
use underlined Roman font for its components in the semi-hyperboloidal
frame. Hence, a tensor is expressed as T “ T↵�B↵ b B� in natural frame,
and as T “ T↵�B↵ b B� in the semi-hyperboloidal frame. For example, the
Minkowski metric is expressed in the semi-hyperboloidal frame as

m “ m↵�B↵ b B�

with

`
m↵�

˘
“

¨

˚̊
˝

s2{t2 x1{t x2{t x3{t
x1{t ´1 0 0
x2{t 0 ´1 0
x3{t 0 0 ´1

˛

‹‹‚ (2.2.3)

and

`
m↵�

˘
“

¨

˚̊
˝

1 x1{t x2{t x3{t
x1{t px1{tq2 ´ 1 x1x2{t2 x1x3{t2
x2{t x2x1{t2 px2{tq2 ´ 1 x2x3{t2
x3{t x3x1{t2 x3x2{t2 px3{tq2 ´ 1

˛

‹‹‚. (2.2.4)

Similarly, a second-order di↵erential operator T↵�B↵B� can be written

in the semi-hyperboloidal frame, so that by writing T↵� “ T↵1�1
��

�1�↵
↵1

(with obvious notation), we obtain the following decomposition formula for
any function u

T↵�B↵B�u “ T↵�B↵B�u ` T↵�pB↵ �1

� qB�1u. (2.2.5)

In particular, for the wave operator, we obtain

lu “ m↵�B↵B�u ` m↵�
`
B↵ �

�1
˘
B�1u, (2.2.6)

where we know that m00 “ pt2 ´ r2q{t2 “ s2{t2. This leads us immediately
to the following key identity.
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Proposition 2.2.1 (Semi-hyperboloidal decomposition of l). In
the semi-hyperboloidal frame, the wave operator admits the decomposition

ps{tq2B0B0u “ lu ´ m0aB0Bau ´ ma0BaB0u ´ mabBaBbu

´ m↵�
`
B↵ �

�1
˘
B�1u.

(2.2.7)

We will also need the following property.

Proposition 2.2.2. For any two-tensor T defined in the cone K and for
all indices ↵,�, I and admissible field Z, one has

ˇ̌
ZIT↵�

ˇ̌
À

ÿ

↵

1
,�

1
|I1|§|I|

ˇ̌
ZI1

T↵1�1 ˇ̌
in K.

The proof of this result (given below) will rely on the following two
lemmas.

Lemma 2.2.1 (Homogeneity lemma). Let f “ fpt, xq be a smooth
function defined in the closed region tt • 1, |x| § tu and assumed to be
homogeneous of degree ⌘ in the sense that:

fppt, pxq “ p⌘fpt, xq for all p • 1{t. (2.2.8)

For all multi-indices I1, I2, the following estimate holds for some positive
constant Cpn, |I1|, |I2|, fq:

ˇ̌
BI1ZI2fpt, xq

ˇ̌
§ Cpn, |I1|, |I2|, fq t´|I1|`⌘ in K “

 
|x| † t ´ 1

(
.

(2.2.9)

Proof. We observe that Baf is homogeneous of degree ⌘ ´ 1 and Laf is
homogeneous of degree ⌘. We also observe that if some functions fi are
homogeneous of degree ⌘i, then the product

±
i fi is homogeneous of degree∞

i ⌘i and then any ZIf is homogeneous.
We claim that the degree of homogeneity of ZIf , denoted by ⌘1, is not

higher than ⌘. This can be checked by induction, as follows. Namely,
this is clear when |I| “ 1. Moreover, assume that for all |I| § m, ZIf is
homogeneous of degree ⌘1 § ⌘, then we now check the same property for
all |I| “ m ` 1. Namely, assume that ZI “ Z1 Z

I1
with |I 1| “ m. When

Z1 “ B↵, then ZIf “ B↵
`
ZI1

f
˘
and we observe that ZI1

f is homogeneous
of degree ⌘1 § ⌘. We see that B↵

`
ZI1

f
˘
is again homogeneous of degree

⌘1 ´ 1 † ⌘1 § ⌘. When Z1 “ La, then La

`
ZI1

f
˘
is homogeneous of degree

⌘1 § ⌘. This completes the induction argument that ZIf is homogeneous
of degree ⌘ at most.
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Furthermore, observe that if f is homogeneous of degree ⌘, then BI1f

is homogeneous of degree ⌘ ´ |I1|. This is so since B↵f is homogeneous
of degree ⌘ ´ 1. Hence, BI1ZI2f is homogeneous of degree ⌘ ´ |I1| and is
smooth within the cone K.

Next, in order to establish (2.2.9), we take pt, xq P K and compute

BI1ZI2fpt, xq “ t´|I1|`⌘1 BI1ZI2fp1, x{tq with ⌘1 § ⌘. (2.2.10)

By a continuity argument in the compact set tt “ 1, |x| § 1u, there exists
a positive constant Cpn, |I1|, |I2|q such that

sup
|x|§1

ˇ̌
BI1ZI2fp1, xq

ˇ̌
§ Cpn, |I1|, |I2|q,

so that, in view of (2.2.10), the desired result is proven.

We now estimate the coe�cients of the matrices � and  . First, we
observe that xa{t is homogeneous of degree 0 and smooth in the closed
region tt • 1, |x| § tu.

Lemma 2.2.2 (Changes of frame). With the notation above, the fol-
lowing two estimates hold for all multi-indices I1, I2:

ˇ̌
BI1ZI2��

↵

ˇ̌
§ Cpn, |I1|, |I2|q t´|I1| in K. (2.2.11)

ˇ̌
BI1ZI2 �

↵

ˇ̌
§ Cpn, |I1|, |I2|q t´|I1| in K. (2.2.12)

Proof of Proposition 2.2.2. From T↵� “ T↵1�1
 ↵

↵1 ↵
�1 we find

ZIT↵� “ ZI
`
T↵1�1

 ↵
↵1 ↵

�1
˘

“
ÿ

I1`I2“I

ZI1
`
 ↵

↵1 ↵
�1

˘
ZI2T↵1�1

and, therefore,

ˇ̌
ZIT↵�

ˇ̌
§

ÿ

I1`I2“I

ˇ̌
ZI1

`
 ↵

↵1 ↵
�1

˘ˇ̌ ˇ̌
ZI2T↵1�1 ˇ̌

§Cp|I|q
ÿ

|I2|§|I|

ˇ̌
ZI2T↵1�1 ˇ̌

.

Here, we have used that
ˇ̌
ZI1

`
 ↵

↵1 ↵
�1

˘ˇ̌
§ Cp|I1|q which follows from

(2.2.12).
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2.3 Energy estimate for the hyperboloidal foliation

As presented in Chapter 1, we are interested in the following class of wave-
Klein-Gordon type systems

lwi ` Gj↵�
i B↵B�wj ` c2iwi “ Fi,

wi|H
s0

“ wi0, Btwi|H
s0

“ wi1,
(2.3.1)

with unknowns wi (1 § i § n0), where the metric Gj↵�
i (with some abuse of

notation) and the source-terms Fi are supported in the cone Krs0,`8q, and
wi0, wi1 are supported on the initial hypersurfaceHs0XK. To guarantee the
hyperbolicity, we assume the symmetry conditions (1.2.2). For definiteness,
we may also assume (1.2.3) on the constants ci.

We introduce the following energy associated with the Minkowski metric
on each hyperboloid Hs:

Em,c
i

ps, wiq

:“
ª

H
s

ˆ
pBtwiq2 `

ÿ

a

pBawiq2 ` p2xa{tqBtwiBawi ` c2iw
2
i

˙
dx

“
ª

H
s

ˆ ÿ

a

pBawiq2 `
`
ps{tqBtwi

˘2 ` c2iw
2
i

˙
dx

“
ª

H
s

ˆ ÿ

a

`
ps{tqBawi

˘2 ` t´2pSwiq2 ` t´2
ÿ

a†b

`
⌦abwi

˘2 ` c2iw
2
i

˙
dx,

(2.3.2)
where we use the notation (2.1.8) and

t´1S :“ Bt `
ÿ

a

pxa{tqBa. (2.3.3)

When ci “ 0, we may also write Emps, wiq :“ Em,0ps, wiq for short.
On the other hand, the curved energy which is naturally associated with

the principal part of (2.3.1) is defined as

EG,c
i

ps, wiq :“ Em,c
i

ps, wiq ` 2

ª

H
s

`
BtwiB�wjG

j↵�
i

˘
0§↵§3

¨ p1,´x{tqdx

´
ª

H
s

`
B↵wiB�wjG

j↵�
i

˘
dx,

(2.3.4)
where the second term in the right-hand side involves the Euclidian inner
product of the vectors

`
BtwiB�wjG

j↵�
i

˘
0§↵§3

and p1,´x{tq.
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Proposition 2.3.1 (Hyperboloidal energy estimate). Given a con-
stant 1 ° 1 and some locally integrable functions L,M • 0, the following
property holds. Let pwiq1§i§n0 be the (local-in-time) solution to (2.3.1) de-
fined on some hyperbolic time interval rs0, s1s and suppose that the metric
and source satisfy the following coercivity conditions

´2
1

ÿ

i

Em,c
i

ps, wiq §
ÿ

i

EG,c
i

ps, wiq § 21
ÿ

i

Em,c
i

ps, wiq, (2.3.5)

ˇ̌
ˇ̌
ª

H
s

s

t

ˆ
B↵Gj↵�

i BtwiB�wj ´ 1

2
BtGj↵�

i B↵wiB�wj

˙
dx

ˇ̌
ˇ̌

§ MpsqEm,c
i

ps, wiq1{2,
(2.3.6)

and the bound

ÿ

i

}Fi}L2pH
s

q § Lpsq, s P rs0, s1s. (2.3.7)

Recall also that the symmetry conditions (1.2.2) are assumed, that is,
Gj↵�

i “ Gi↵�
j “ Gj�↵

i , and that Fi, Gj↵�
i are supported in Krs0,s1s. The

following energy estimate holds (for all s P rs0, s1s):
ˆ ÿ

i

Em,c
i

ps, wiq
˙1{2

§ 21

ˆ ÿ

i

Em,c
i

ps0, wiq
˙1{2

` C21

ª s

s0

`
Lp⌧q ` Mp⌧q

˘
d⌧,

(2.3.8)

where the constant C ° 0 depends on the the structure of the system (2.3.1)
only.

The following remarks are in order:

‚ In view of (2.3.2) and (2.3.8), the L2 norm of Bawi and ps{tqB↵wi

are uniformly controlled on each hypersurface Hs. It is expected
that these weighted expressions enjoy better decay than B↵wi itself.

‚ In view of
∞

apxa{rq
`
pr{tqBa ` pxa{rqBt

˘
wi “ t´1Swi, we see that

the weighted scaling derivative t´1Swi is also controlled.
‚ In Chapter 6, we will see that the energy Emps0, wiq on the initial
hyperboloid is controlled by the H1 norm of the initial data on the
initial slice t “ s0.
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Proof. In view of the symmetry (1.2.2) and by using Btwi as a multiplier,
we easily derive the energy identity

ÿ

i

1

2
Bt

ˆ ÿ

↵

pB↵wiq2 ` c2iw
2
i

˙
´

ÿ

i

ÿ

a

Ba
`
BawiBtwi

˘

`
ÿ

i

B↵
`
Gj↵�

i BtwiB�wj

˘
´

ÿ

i

1

2
Bt

`
Gj↵�

i B↵wiB�wj

˘

“
ÿ

i

BtwiFi `
ÿ

i

ˆ
B↵Gj↵�

i BtwiB�wj ´ 1

2
BtGj↵�

i B↵wiB�wj

˙
.

We integrate this identity over the region Krs0,ss and use Stokes’ formula.
Note that by the property of propagation at finite speed, the solution pwiq
is defined in Krs0,`8q and vanishing in a neighborhood of the light cone.

By our assumption on the support of Gj↵�
i , we obtain

1

2

ÿ

i

`
EG,c

i

ps, wiq ´ EG,c
i

ps0, wiq
˘

“
ÿ

i

ª

Krs0,ss

´
BtwiFi ` B↵Gj↵�

i BtwiB�wj ´ 1

2
BtGj↵�

i B↵wiB�wj

¯
dtdx

“
ÿ

i

ª s

s0

ˆ ª

H
⌧

p⌧{tqBtwiFi dx

˙
d⌧

`
ÿ

i

ª s

s0

ˆ ª

H
⌧

p⌧{tq
´

B↵Gj↵�
i BtwiB�wj ´ 1

2
BtGj↵�

i B↵wiB�wj

¯
dx

˙
d⌧,

which leads us to
d

ds

ÿ

i

EG,c
i

ps, wiq “2
ÿ

i

ª

H
s

´
ps{tqB↵Gj↵�

i BtwiB�wj

´ ps{2tqBtGj↵�
i B↵wiB�wj ` ps{tqBtwiFi

¯
dx.

So, with the assumptions (2.3.6) and (2.3.7), we get
ˆ ÿ

i

EG,c
i

ps, wiq
˙1{2

d

ds

ˆ ÿ

i

EG,c
i

ps, wiq
˙1{2

§
ÿ

i

ˆ
Mpsq ` }Fi}L2pH

s

q

˙
Em,c

i

ps, wiq1{2

§ CMpsq
´ ÿ

i

Em,c
i

ps, wiq
¯1{2

` C
´ ÿ

i

}Fi}2L2pH
s

q
¯1{2´ ÿ

i

Em,c
i

ps, wiq
¯1{2

“ C
´
Mpsq ` Lpsq

¯´ ÿ

i

Em,c
i

ps, wiq
¯1{2

§ C1
`
Mpsq ` Lpsq

¯ ´ ÿ

i

EG,c
i

ps, wiq
¯1{2

,
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which yields

d

ds

ˆ ÿ

i

EG,c
i

ps, wiq
˙1{2

§ C1
`
Lpsq ` Mpsq

˘
.

We integrate this inequality over the interval rs0, ss and obtain
ˆ n0ÿ

i“1

EG,c
i

ps, wiq
˙1{2

§
ˆ n0ÿ

i“1

EG,c
i

ps0, wiq
˙1{2

` C1

ª s

s0

Lp⌧qd⌧ ` C1

ª s

s0

Mp⌧qd⌧.

By using the condition (2.3.5), this completes the proof.

2.4 The bootstrap strategy

We are now in a position to outline our method of proof of Theorem 1.2.1.
From now on, we assume that the assumptions therein are satisfied. It will
be necessary to distinguish between three levels of regularity and, in order
to describe this scale of regularity, we will use the following convention on
the indices in use:

I7: multi-index of order § 5,

I:: multi-index of order § 4,

I: multi-index of order § 3,

(2.4.1)

which we call admissible indices. Throughout, C,C0, C1, C
⇤, . . . are

constants depending only on the structure of the system (1.2.1), such as
j0, k0, B, ci.

We will use certain norms on the hyperboloids and, so, if u is a function
supported in Krs0,`8q, we set (for s • s0):

}u}LppH
s

q :“
ˆ ª

H
s

ˇ̌
upt, xq

ˇ̌p
dx

˙1{p
“

ˆ ª

R3

ˇ̌
u

`a
s2 ` |x|2, x

˘ˇ̌p
dx

˙1{p
.

(2.4.2)
The proof of Theorem 1.2.1 relies on Propositions 2.4.1–2.4.3, stated now.
The first proposition below concerns the construction of initial data on the
initial hyperboloid HB`1, and will be established in Chapter 11.

Proposition 2.4.1 (Initialization of the argument). For any su�-
ciently large constant C0 ° 0, there exists a positive constant ✏1

0 P p0, 1q
depending only on B and C0 such that, for every initial data satisfyingÿ

i

`
}wi0}H6pR3q ` }wi1}H5pR3q

˘
§ ✏ § ✏1

0, (2.4.3)
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the local-in-time solution to (1.2.1) associated with this initial data extends
to the region limited by the constant time hypersurface t “ B ` 1 and the
hyperboloid HB`1. Furthermore, it satisfies the uniform bound

ÿ

j

Emps0, ZI7
wjq1{2 § C0✏. (2.4.4)

for all admissible vector fields Z and all admissible indices I7.

Given some constants C1, ✏ ° 0 and � P p0, 1{6q and a hyperbolic time
interval rs0, s1s, we call hierarchy of energy bounds with parameters
pC1, ✏, �q the following five inequalities (for all s P rs0, s1s and all admissible
fields and admissible indices):

Emps, ZI7
upıq1{2 § C1✏s

� for 1 § pı § j0, (2.4.5a)

Em,�ps, ZI7
vq|q1{2 § C1✏s

� for j0 ` 1 § q| § n0, (2.4.5b)

Emps, ZI:
upıq1{2 § C1✏s

�{2 for 1 § pı § j0, (2.4.5c)

Em,�ps, ZI:
vq|q1{2 § C1✏s

�{2 for j0 ` 1 § q| § n0, (2.4.5d)

Emps, ZIupıq1{2 § C1✏ for 1 § pı § j0. (2.4.5e)

Observe that (2.4.5e) concerns the wave components only and that the
upper bound is independent of time.

At this juncture, since cqı • � ° 0 for all j0 ` 1 § qı § n0, we have

Em,�ps, ZI7
vqıq § Em,cqıps, ZI7

vqıq § pcqı{�q2Em,�ps, ZI7
vqıq, (2.4.6)

so that the two energy expressions are equivalent.
Given some constants 1 ° 1, C⇤, C1, ✏ ° 0 and � P p0, 1{6q and a hyper-

bolic time interval rs0, s1s, we call hierarchy of metric-source bounds
with parameters p1, C⇤, C1, ✏, �q. the following three sets of estimates:

‚ For all |I7| § 5,

´2
1

ÿ

i

EG,c
i

ps, ZI7
wiq §

ÿ

i

Em,c
i

ps, ZI7
wiq § 21

ÿ

i

EG,c
i

ps, ZI7
wiq,

(2.4.7a)
ˇ̌
ˇ̌
ª

H
s

s

t

ˆ
B↵Gj↵�

i BtZI7
wiB�ZI7

wj ´ 1

2
BtGj↵�

i B↵ZI7
wiB�ZI7

wj

˙
dx

ˇ̌
ˇ̌

§ C⇤pC1✏q2s´1`�Em,c
i

ps, ZI7
wiq1{2

“: MpI7, sqEm,c
i

ps, ZI7
wiq1{2,

(2.4.7b)
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and⇤
n0ÿ

i“1

››rGj↵�
i B↵B� , ZI7 swj

››
L2pH

s

q `
n0ÿ

i“1

››ZI7
Fi

››
L2pH

s

q

§ C⇤pC1✏q2s´1`� “: LpI7, sq.
(2.4.7c)

‚ For all |I:| § 4,ˇ̌
ˇ̌
ª

H
s

s

t

ˆ
B↵Gj↵�

i BtZI:
wiB�ZI:

wp| ´ 1

2
BtGj↵�

i B↵ZI:
wiB�ZI:

wj

˙
dx

ˇ̌
ˇ̌

§ C⇤pC1✏q2s´1`�{2Em,c
i

ps, ZI:
wiq1{2

“: MpI:, sqEm,c
i

ps, ZI:
wiq1{2

(2.4.8a)
and

n0ÿ

i“1

››rGj↵�
i B↵B� , ZI: swj

››
L2pH

s

q `
n0ÿ

i“1

››ZI:
Fi

››
L2pH

s

q

§ C⇤pC1✏q2s´1`�{2 “: LpI:, sq.
(2.4.8b)

‚ For all |I| § 3,ˇ̌
ˇ̌
ª

H
s

s

t

ˆ
B↵Gj↵�

pı BtZIupıB�ZIup| ´ 1

2
BtGj↵�

pı B↵ZIupıB�ZIup|

˙
dx

ˇ̌
ˇ̌

§ C⇤pC1✏q2s´3{2`2�Emps, ZIupıq1{2

“: MpI, sqEmps, ZIupıq1{2

(2.4.9a)
and

n0ÿ

i“1

››rGj↵�
i B↵B� , ZI swj

››
L2pH

s

q

`
n0ÿ

i“1

››ZIFi

››
L2pH

s

q ` }ZI
`
Gq|↵�

pı B↵B�vq|
˘
}L2pH

s

q

§ C⇤pC1✏q2s´3{2`2� “: LpI, sq.

(2.4.9b)

Observe that (2.4.9a) concerns the wave components, only.

Proposition 2.4.2. Fix some � P p0, 1{6q. There exists a positive constant
✏2
0 such that for all ✏, C1 ° 0 with C1✏ § 1 and C1✏ § ✏2

0, there exists a
constant 1 ° 1 and a constant C⇤ ° 0 (both determined by the structure
of the system (1.2.1)) such that the hierarchy of energy bounds (2.4.5) with
parameters C1, ✏, � implies the hierarchy of metric–source bounds (2.4.7a)—
(2.4.9b) with parameters 1, C⇤, C1, ✏, �.

⇤with the notation (2.4.2)
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The proof of this proposition will occupy a major part of this mono-
graph, especially Chapters 7 to 10. Now we admit this proposition and
give the proof of the main result, which is going to be essentially based on
the following observation.

Proposition 2.4.3 (Enhancing the hierarchy of energy bounds).
Let � P p0, 1{6q and let C0 ° 0 be a constant and C1 ° C0 be a su�ciently
large constant. Then, there exists ✏1 ° 0 such that the following enhanc-
ing property holds. For any solution pwiq to (1.2.1) defined in Krs0,s1s and
provided, for ✏ P r0, ✏1s,

(1)
∞n0

i“1 Em,c
i

ps0, ZI7
wiq1{2 § C0✏ for all admissible Z and I7,

(2) the hierarchy (2.4.5) holds with parameters pC1, ✏, �q in the time
interval rs0, s1s,

then the following improved energy estimates also hold

Emps, ZI7
upıq1{2 § 1

2
C1✏s

� for 1 § pı § j0, (2.4.10a)

Em,�ps, ZI7
vq|q1{2 § 1

2
C1✏s

� for j0 ` 1 § q| § n0, (2.4.10b)

Emps, ZI:
upıq1{2 § 1

2
C1✏s

�{2 for 1 § pı § j0, (2.4.10c)

Em,�ps, ZI:
vq|q1{2 § 1

2
C1✏s

�{2 for j0 ` 1 § q| § n0, (2.4.10d)

Emps, ZIupıq1{2 § 1

2
C1✏ for 1 § pı § j0. (2.4.10e)

Proof. We will use here the conclusion of Proposition 2.4.2. We assume
that ✏1 is su�ciently small with ✏1 § C´1

1 mint1, ✏2
0u such that, for all

✏ § ✏1, the conclusion in Proposition 2.4.2 holds.

Step I. High-order energy estimates. To the equations (1.2.1), we
apply the operator ZI7

(with |I7| § 5 throughout) and obtain

lpZI7
wiq ` Gj↵�

i B↵B�pZI7
wjq ` c2iZ

I7
wi “ rGj↵�

i B↵B� , ZI7 swj ` ZI7
Fi.

In view of Proposition 2.3.1 and thanks to the conditions (2.4.7a)–(2.4.7c)
implied by Proposition 2.4.2, we find

ˆ ÿ

i

Em,c
i

ps, ZI7
wiq

˙1{2

§ 21

ˆ ÿ

i

Em,c
i

ps0, ZI7
wiq

˙1{2
` C21

ª s

s0

`
LpI7, ⌧q ` MpI7, ⌧q

˘
d⌧.
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In view of Proposition 2.4.2 combined with the condition (1) in the propo-
sition, we then have

ˆ ÿ

i

Em,c
i

ps, ZI7
wiq

˙1{2
§ 21C0✏` C21C

⇤pC1✏q2
ª s

s0

⌧´1`�d⌧.

Choosing ✏1 § �pC1´22
1C0q

2CC⇤2
1C

2
1
, we obtain

ˆ ÿ

i

Em,c
i

ps, ZI7
wiq

˙1{2
§ 1

2
C1✏s

�,

which leads to the enhanced energy bound

Em,�ps, ZI7
wiq1{2 § Em,c

i

ps, ZI7
wiq1{2 § 1

2
C1✏s

�. (2.4.11)

This establishes (2.4.10b)-(2.4.10a).

Step II. Intermediate energy estimates. We will next rely on the
metric–source bounds (2.4.8a)-(2.4.8b) (with |I:| § 4 throughout) given by
the conclusion of Proposition 2.4.2. To the equation (1.2.1), we apply the
operator ZI:

and obtain

lpZI:
wiq ` Gj↵�

i B↵B�pZI:
wjq ` c2iZ

I:
wi “ rGj↵�

i B↵B� , ZI: swj ` ZI:
Fi.

From Proposition 2.3.1 and thanks to the conditions (2.4.7a) and (2.4.8a)-
(2.4.8b), we find

ˆ ÿ

i

Em,c
i

ps, ZI:
wiq

˙1{2

§ 21

ˆ ÿ

i

Em,c
i

ps0, ZI:
wiq

˙1{2
` C21

ª s

s0

`
LpI:, ⌧q ` MpI:, ⌧q

˘
d⌧.

We thus have
ˆ ÿ

i

Em,c
i

ps, ZI:
wiq

˙1{2
§ 21C0✏` C21C

⇤pC1✏q2
ª s

s0

⌧´1`�{2d⌧.

Provided ✏ is su�ciently small so that ✏1 § �pC1´22
1C0q

4CC⇤2
1C

2
1
, we find

ˆ ÿ

i

Em,c
i

ps, ZI:
wiq

˙1{2
§ 1

2
C1✏s

�{2,

which leads to the enhanced energy bound

Em,�ps, ZI:
wiq1{2 § Em,c

i

ps, ZI:
wiq1{2 § 1

2
C1✏s

�{2. (2.4.12)
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This establishes (2.4.10d)-(2.4.10c).

Step III. Low-order energy estimates. We will now rely on the metric–
source bounds (2.4.9a)-(2.4.9b) (with |I| § 3 throughout). We apply ZI to
the wave equations in (1.2.1) and obtain

lpZIupıq ` Gp|↵�
pı B↵�pZIup|q “ rGp|↵�

pı B↵B� , ZI sup| ´ ZI
`
Gq|↵�

pı B↵B�vq|
˘

` ZIFpı.

In view of Proposition 2.3.1 and thanks to the conditions (2.4.7a) and
(2.4.9a)-(2.4.9b), we obtain

ˆ ÿ

pı
Emps, ZIupıq

˙1{2

§ 21

ˆ ÿ

pı
Emps0, ZIupıq

˙1{2
` C21

ª s

s0

`
LpI, ⌧q ` MpI, ⌧q

˘
d⌧

and, therefore,
ˆ ÿ

pı
Emps, ZIupıq

˙1{2
§ 21C0✏` C21C

⇤pC1✏q2
ª s

s0

⌧´3{2`2�d⌧.

By recalling that � † 1{6, it follows that
ˆ ÿ

pı
Emps, ZIupıq

˙1{2
§ 21C0✏` CC⇤21C

2
1 ✏

2pB ` 1q2�´1{2

p1{2q ´ 2�
.

Provided ✏1 § p1´4�qpC1´22
1C0q

4CC⇤2
1C

2
1 pB`1q2�´1{2 , we obtain the enhanced energy bound

for the wave components

Emps, ZIupıq1{2 § 1

2
C1✏

and this establishes (2.4.10e).

Step IV. In conclusion, by assuming that

✏1 § min
´�pC1 ´ 221C0q

4CC⇤21C
2
1

,
p1 ´ 4�qpC1 ´ 221C0q

4CC⇤21C
2
1 pB ` 1q2�´1{2 , ✏

2
0, C

´1
1

¯
,

all conditions (2.4.10) are satisfied and the proof is completed.

Observe that (2.4.7a), (2.4.7b), (2.4.8a), and (2.4.9a) concern only the
“metric” Gj↵�

i and depend mainly on L8 bounds on the solution and its
derivatives: these bounds will be established in Chapter 9. On the other
hand, the inequalities (2.4.7c), (2.4.8b), and (2.4.9b) are L2 type estimates
and will be derived later in Chapter 10.

We complete this chapter with a proof of our main result —by assuming
that Propositions 2.4.1 and 2.4.2 are established.
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Proof of Theorem 1.2.1. Let pwiq be the unique local-in-time solution
to (1.2.1) associated with the initial data pwi0, wi1q. Given our assumption
on the support of pwi0, wi1q and according to the property of propagation
at finite speed, this solution pwiq must be supported in the region Krs0,`8q.

As guaranteed by Proposition 2.4.1, there exist constants C0, ✏
1
0 such

that, provided }wi0}H6pR3q ` }wi1}H5pR3q § ✏ § ✏1
0, we have the energy

bound EGps0, ZI7
wjq1{2 § C0✏.

Let rs0, s⇤s be the largest time interval (containing s0) on which (2.4.5)
holds with some parameters C1, ✏ ° 0 and � P p0, 1{6q fixed and for a
su�ciently large constant C1 ° C0. By continuity, we have s⇤ ° s0.

Proceeding by contradiction, let us assume that s⇤ † `8, so that at the
time s “ s⇤, one (at least) of the inequalities (2.4.5) must be an equality.
That is, at least one of the following conditions holds:

Em,�ps⇤, ZI7
vq|q1{2 “ C1✏s

⇤� for j0 ` 1 § q| § n0,

Emps⇤, ZI7
upıq1{2 “ C1✏s

⇤� for 1 § pı § j0,

Em,�ps⇤, ZI:
vq|q1{2 “ C1✏s

⇤�{2 for j0 ` 1 § q| § n0,

Emps⇤, ZI:
upıq1{2 “ C1✏s

⇤�{2 for 1 § pı § j0,

Emps⇤, ZIupıq1{2 “ C1✏, for 1 § pı § j0.

(2.4.13)

Yet, according to Proposition 2.4.3 there exists ✏1 ° 0 such that, for ✏ § ✏1,
the following enhanced energy bounds also hold:

Em,�ps⇤, ZI7
vq|q1{2 § 1

2
C1✏s

⇤� for j0 ` 1 § q| § n0,

Emps⇤, ZI7
upıq1{2 § 1

2
C1✏s

⇤� for 1 § pı § j0,

Em,�ps⇤, ZI:
vq|q1{2 § 1

2
C1✏s

⇤�{2 for j0 ` 1 § q| § n0,

Emps⇤, ZI:
upıq1{2 § 1

2
C1✏s

⇤�{2 for 1 § pı § j0,

Emps⇤, ZIupıq1{2 § 1

2
C1✏ for 1 § pı § j0.

Clearly, this is impossible, unless s⇤ “ `8.
Hence, we have proven that the inequalities (2.4.5) hold for all s P

rs0,`8q and, by the local existence criteria in Theorem 11.2.1 (combined
with Sobolev’s inequality), this local solution extends for all times. By
taking ✏0 :“ min

`
✏1
0, ✏1

˘
, this completes the proof of Theorem 1.2.1.
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2.5 Energy on the hypersurfaces of constant time

To end this chapter, we prove that the wave components of the global-in-
time solutions which we have constructed for (1.2.1) enjoy a uniform energy
estimate also on the standard hypersurfaces of constant time t.

Proposition 2.5.1. Consider the wave components ui of a global-in-time
solution wi satisfying (2.4.5) and (2.4.9) (with ✏0 su�ciently small and
C1✏ † 1). The following estimate also holds for all time t • B ` 1:

}BtZIupt, ¨q}L2pR3q `
ÿ

a

}BaZIupt, ¨q}L2pR3q

§ C3pB, �, ✏0qC1✏,

(2.5.1)

where C3 depends upon �, ✏0 and the structure of the system only.

The proof of this result relies on a modified version of the fundamental
energy estimate, as now stated.

Lemma 2.5.1. Let puiq be the solution to the Cauchy problem

lui ` Gj↵�
i B↵�ui “ Fi,

ui|H
s0

“ ui0, Btui|H
s0

“ ui0,
(2.5.2)

where Fi and Gj↵�
i are defined in Krs0,`8q, while ui|H

s0
, Btui|H

s0
are sup-

ported in Hs0 X K. There exists "0 ° 0 such that, provided

max
i,j,↵,�

|Gj↵�
i | § "0,

there exists a positive constant C “ Cp✏0q such that
ˆ

}Btupt0, ¨q}L2pR3q `
ÿ

a

}Baupt0, ¨q}L2pR3q

˙2

§ C
ÿ

i

EGpt, uiq ` C
ÿ

i

ª pt20`1q{2

t0

ª

H
s

ps{tq
ˇ̌
BtuiFi

ˇ̌
dxds

` C

ª pt20`1q{2

t0

ª

H
s

ps{tq
ˇ̌
B↵Gj↵�

i BtuiB�uj ´ 1

2
BtGj↵�

i B↵uiB�uj

ˇ̌
dxds.

(2.5.3)

Proof. The proof relies on an energy estimate within the region Kt0 :“
tpt, xq

ˇ̌
|x| § t ´ 1, t0 § t §

a
|x|2 ` t20u, which we display in Fig. 2.3. We
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Fig. 2.3 The region Kt0

begin from the general identity

ÿ

i

ˆ
1

2
Bt

ÿ

↵

`
B↵ui

˘2 `
ÿ

a

Ba
`
BauiBtui

˘

` B↵
`
Gj↵�

i BtuiB�uj

˘
´ 1

2
Bt

`
Gj↵�

i B↵uiB�uj

˘˙

“
ÿ

i

BtuiFi `
ÿ

i

ˆ
B↵Gj↵�

i BtuiB�uj ´ 1

2
BtGj↵�

i B↵uiB�uj

˙

and we integrate it within Kt0 with respect to the volume form dtdx.
Applying Stokes’ formula, we find

1

2

ÿ

i

EGpt, uiq

´ 1

2

ÿ

i

ª

R3

ˆ ÿ

↵

|B↵ui|2 ` 2Gj0�
i BtuiB�uj ´ Gj↵�

i B↵uiB�uj

˙
pt, ¨qdx

“
ª

K
t0

ÿ

i

ˆ
BtuiFi ` B↵Gj↵�

i BtuiB�uj ´ 1

2
BtGj↵�

i B↵uiB�uj

˙
dxdt

“
ª

K
t0

ps{tq
ÿ

i

ˆ
BtuiFi ` B↵Gj↵�

i BtuiB�uj ´ 1

2
BtGj↵�

i B↵uiB�uj

˙
dxds,
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where we recall that s “
a
t2 ´ |x|2. This implies

ÿ

i

ª

R3

ˆ ÿ

↵

|B↵ui|2 ` 2Gj0�
i BtuiB�uj ´ Gj↵�

i B↵uiB�uj

˙
pt, ¨qdx

§
ÿ

i

EGpt, uiq

`
ÿ

i

ª

K
t0

ps{tq
ˇ̌
BtuiFi ` B↵Gj↵�

i BtuiB�uj ´ 1

2
BtGj↵�

i B↵uiB�uj

ˇ̌
dxds,

which is bounded by

ÿ

i

EGpt, uiq `
ÿ

i

ª pt20`1q{2

t0

ª

H
s

ps{tq
ˇ̌
BtuiFi

ˇ̌
dxds

`
ª pt20`1q{2

t0

ª

H
s

ps{tq
ˇ̌
B↵Gj↵�

i BtuiB�uj ´ 1

2
BtGj↵�

i B↵uiB�uj

ˇ̌
dxds.

We then observe that

ÿ

i

ª

R3

ˇ̌
2Gj0�

i BtuiB�uj ´ Gj↵�
i B↵uiB�uj

ˇ̌
dx

§ C max
i,j,↵,�

|Gj↵�
i |

ÿ

i,↵

}B↵uipt, ¨q}L2pR3q

and thus, provided maxi,j,↵,� |Gj↵�
i | is su�ciently small,

ÿ

i

ª

R3

ˇ̌
2Gj0�

i BtuiB�uj ´ Gj↵�
i B↵uiB�uj

ˇ̌
dx § 1

2

ÿ

i,↵

}B↵uipt, ¨q}L2pR3q.

We thus have

1

2

ÿ

i,↵

}B↵upt, ¨q}L2pR3q

§
ÿ

i

ª

R3

ˆ ÿ

↵

|B↵ui|2 ` 2Gj0�
i BtuiB�uj ´ Gj↵�

i B↵uiB�uj

˙
dx

and the desired result is proven.

Proof of Proposition 2.5.1. We recall the equations satisfied by the
wave components:

lpZIupıq ` Gp|↵�
pı B↵�pZIup|q “ rGp|↵�

pı B↵B� , ZI sup| ´ ZI
`
Gq|↵�

pı B↵B�vq|
˘

` ZIFpı
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and apply (2.5.3), so thatÿ

pı,↵
}B↵ZIupıpt, ¨q}L2pR3q

§ C
ÿ

pı
EGpt, ZIupıq ` C

ÿ

pı

ª pt20`1q{2

t0

ª

H
s

ps{tq
ˇ̌
BtZIupıZ

IFpı
ˇ̌
dxds

`
ÿ

pı

ª pt20`1q{2

t0

ª

H
s

ps{tq
ˇ̌
BtZIupırGp|↵�

pı B↵B� , ZI sup|
ˇ̌
dxds

`
ÿ

pı

ª pt20`1q{2

t0

ª

H
s

ps{tq
ˇ̌
BtZIupıZ

I
`
Gq|↵�

pı B↵B�vq|
˘ˇ̌
dxds

` C
ÿ

pı

ª pt20`1q{2

t0

ª

H
s

ps{tq
ˇ̌
B↵Gj↵�

pı BtZIupıB�ZIuj ´ 1

2
BtGj↵�

pı B↵ZIupıB�ZIuj

ˇ̌
dxds.

By (2.4.5e) (which was established within our bootstrap argument and
holds on the time interval rB ` 1,`8q), we haveÿ

pı
EGpt, ZIupıq § pC1✏q2.

Also, the second term in the right-hand side is uniformly bounded, as fol-
lows: ª pt20`1q{2

t0

ª

H
s

ps{tq
ˇ̌
BtZIupıZ

IFpı
ˇ̌
dxds

§
ª pt20`1q{2

t0

}ps{tqBtZIupı}L2pH
s

q}ZIFpı}L2pH
s

qds

§ C1✏

ª pt20`1q{2

t0

}ZIFpı}L2pH
s

qds

§ C1✏

ª pt20`1q{2

t0

CC⇤pC1✏q2s´3{2`2�ds

§ CC⇤pC1✏q3p1{2 ´ 2�q´1pB ` 1q´1{2`2�.

The third and fourth terms are bounded in the same manner, that is,
ª pt20`1q{2

t0

ª

H
s

ps{tq
ˇ̌
BtZIupırGp|↵�

pı B↵B� , ZI sup|
ˇ̌
dxds

§ CC⇤pC1✏q3p1{2 ´ 2�q´1pB ` 1q´1{2`2�

and ª pt20`1q{2

t0

ª

H
s

ps{tq
ˇ̌
BtZIupıZ

I
`
Gq|↵�

pı B↵B�vq|
˘ˇ̌
dxds

§ CC⇤pC1✏q3p1{2 ´ 2�q´1pB ` 1q´1{2`2�.
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The last term is bounded by applying (2.4.9a):
ª pt20`1q{2

t0

ª

H
s

ps{tq
ˇ̌
B↵Gj↵�

pı BtZIupıB�ZIuj ´ 1

2
BtGj↵�

pı B↵ZIupıB�ZIuj

ˇ̌
dxds

§ CC⇤pC1✏q3p1{2 ´ 2�q´1pB ` 1q´1{2`2�.
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Chapter 3

Decompositions and estimates for the
commutators

3.1 Decompositions of commutators. I

In this chapter, we present technical results concerning the commutators
rX,Y su :“ XpY uq ´ Y pXuq of certain operators X,Y associated with the
set of admissible vector fields Z (cf. Chapter 2) and applied to functions u
defined in the cone K “ t|x| † t ´ 1u. In order to derive uniform bounds,
we will rely on homogeneity arguments and on the observation that all the
coe�cients in the following decomposition are smooth within K.

First of all, all admissible vector fields B↵, La under consideration are
Killing fields for the flat wave operator l, so that the following commutation
relations hold:

rB↵, ls “ 0, rLa, ls “ 0. (3.1.1)

By introducing the notation

rLa, B�su “: ⇥�
a�B�u, (3.1.2a)

rB↵, B�su “: t´1��↵�B�u, (3.1.2b)

rLa, B�su “: ⇥�
a�B�u, (3.1.2c)

we find easily that

⇥�
ab “ ´�ab��0 , ⇥�

a0 “ ´��a ,

��ab “ �ab�
�
0 , ��0b “ ´xb

t
��0 “  0

b�
�
0 , ��↵0 “ 0,

⇥�
ab “ ´xb

t
��a “  0

b�
�
a , ⇥�

a0 “ ´��a ` xa

t
��0 “ ´��a ` �a

0�
�
0 ,

(3.1.3)

35
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where � and  were defined in (2.2.2). All of these coe�cients are smooth
in the cone K and for each index I, the functions ZI⇧ are bounded for all
⇧ P

 
⇥,⇥,�

(
. Furthermore, we can also check that

⇥0
ab “ 0 so that rLa, Bbs “ ⇥�

abB� “ ⇥c
abBc. (3.1.4)

Lemma 3.1.1 (Algebraic decompositions of commutators. I).
There exist constants ✓I�↵J such that, for all su�ciently regular function
u defined in the cone K, the following identities hold for all ↵ and I:

rZI , B↵su “
ÿ

|J|†|I|

✓I�↵JB�ZJu. (3.1.5)

Proof. The proof is done by induction on |I|. When |I| “ 1, (3.1.5) is
implied by (3.1.2a). Assume next that (3.1.5) is valid for |I| § k and let
us derive this property for all |I| “ k ` 1. Let ZI be a product with index
satisfying |I| “ k ` 1, where ZI “ Z1Z

I1
with |I 1| “ k and Z1 is one of the

fields B� , La. In view of

rZI , B↵su “ rZ1Z
I1
, B↵su “ Z1

`
rZI1

, B↵su
˘

` rZ1, B↵sZI1
u

and

Z1

`
rZI1

, B↵su
˘

“ Z1

ˆ ÿ

|J|§k´1

✓I
1�

↵J B�ZJu

˙
“

ÿ

|J|§k´1

✓I
1�

↵J Z1B�ZJu,

we have

rZI , B↵su “
ÿ

|J|§k´1

✓I
1�

↵J Z1B�ZJu ` rZ1, B↵sZI1
u.

First of all, if Z1 “ B� , we have the commutation property
rZ1, B↵sZI1

u “ 0 and
ÿ

|J|§k´1

✓I
1�

↵J Z1B�ZJu “
ÿ

|J|§k´1

✓I
1�

↵J B�Z1 Z
Ju,

so that (3.1.5) is established in this case.
Second, if Z1 “ La, we apply (3.1.2a) and write

ÿ

|J|§k´1

✓I1�↵J LaB�ZJu “
ÿ

|J|§k´1

✓I
1�

↵J B�LaZ
Ju `

ÿ

|J|§k´1

✓I
1�

↵J rLa, B�sZJu

“
ÿ

|J|§k´1

✓I
1�

↵J B�LaZ
Ju `

ÿ

|J|§k´1

✓I
1�

↵J ⇥
�
a�B�ZJu.

So, (3.1.5) holds for |I| “ k ` 1, which completes the induction argument.
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3.2 Decompositions of commutators. II and III

Lemma 3.2.1 (Algebraic decompositions of commutators. II).
For all su�ciently regular functions u defined in the cone K, the follow-
ing identity holds:

rZI , B�su “
ÿ

|J|†|I|

✓I��JB�ZJu, (3.2.1)

where the functions ✓I��J are smooth and satisfy in K :
ˇ̌
BI1ZI2✓I��J

ˇ̌
§ C

`
n, |I|, |I1|, |I2|

˘
t´|I1|. (3.2.2)

Proof. Consider the identity

rZI , B�su “ rZI ,��
�B�su “

ÿ

I1`I2“I

|I2|†|I|

ZI1��
�Z

I2B�u ` ��
�rZI , B�su.

In the first sum, we commute ZI2 and B� and obtain

rZI , B�su “
ÿ

I1`I2“I

|I2|†|I|

ZI1��
�B�ZI2u `

ÿ

I1`I2“I

|I2|†|I|

ZI1��
�rZI2 , B�su ` ��

�rZI , B�su

“
ÿ

I1`I2“I

|I2|†|I|

ZI1��
�B�ZI2u `

ÿ

I1`I2“I

ZI1��
�rZI2 , B�su

“
ÿ

I1`I2“I

|I2|†|I|

ZI1��
�B�ZI2u `

ÿ

I1`I2“I

|J|†|I2|

`
ZI1��

�

˘
✓I2↵�J B↵ZJu.

Hence, ✓I↵�J are linear combinations of ZI1��
� and ✓I2↵�J ZI1��

� with |I1| § |I|
and |I2| § |I|, which yields (3.2.1). Note that ✓I2↵�J are constants, so that

BI3ZI4
`
✓I2↵�J ZI1��

�

˘
“ ✓I2↵�J BI3ZI4ZI1��

�

and, by (2.2.11), we arrive at (3.2.2).

Lemma 3.2.2 (Algebraic decompositions of commutators. III).
For all su�ciently regular functions u defined in the cone K, the follow-
ing identities hold:

rZI , Bcsu “
ÿ

|J|†|I|
�Ib
cJBbZ

Ju ` t´1
ÿ

|J 1|†|I|
⇢I�cJ 1 B�ZJ 1

u, (3.2.3)

where the functions �I�
cJ and ⇢I�cJ are smooth and satisfy in K:

ˇ̌
BI1ZI2�I�

�J

ˇ̌
§ Cpn, |I|, |I1|, |I2|qt´|I1|, (3.2.4a)

ˇ̌
BI1ZI2⇢I��J

ˇ̌
§ Cpn, |I|, |I1|, |I2|qt´|I1|. (3.2.4b)
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Proof. We proceed by induction. The case |I| “ 1 is easily checked from
(3.1.2b), (3.1.2c) and (3.1.4). Assuming that (3.2.3) with (3.2.4a) and
(3.2.4b) hold for |I| § k, we consider indices |I| “ k ` 1. To do this,
let ZI be a product of operators with index |I| “ k ` 1. Then, ZI “ Z1Z

I1

with |I 1| “ k and the following holds:

rZI , Bcsu “ rZ1Z
I1
, Bcs “ Z1

`
rZI1

, Bcsu
˘

` rZ1, BcsZI1
u.

Case Z1 “ B↵. In this case, we write

Z1

`
rZI1

, Bcsu
˘

“ B↵
ˆ ÿ

|J|†|I1|
�I1b
cJ BbZ

Ju ` t´1
ÿ

|J 1|†|I1|
⇢I

1�
cJ 1 B�ZJ 1

u

˙

“
ÿ

|J|†|I1|
B↵

`
�I1b
cJ

˘
BbZ

Ju `
ÿ

|J|†|I1|
�I1b
cJ BbB↵ZJu `

ÿ

|J|†|I1|
�I1b
cJ rB↵, BbsZJu

` B↵t´1
ÿ

|J 1|†|I1|

`
⇢I

1�
cJ 1

˘
B�ZJ 1

u ` t´1
ÿ

|J 1|†|I1|
B↵

`
⇢I

1�
cJ 1

˘
B�ZJ 1

u

` t´1
ÿ

|J 1|†|I1|
⇢I

1�
cJ 1 B�B↵ZJ 1

u.

For the third term, we recall (3.1.2b) and write

�I1b
cJ rB↵, BbsZJu “ t´1�I1b

cJ �
�
↵bB�ZJu.

Hence, we find

Z1

`
rZI1

, Bcsu
˘

“
ÿ

|J|†|I1|
B↵

`
�I1b
cJ

˘
BbZ

Ju `
ÿ

|J|†|I1|
�I1b
cJ BbB↵ZJu ` t´1

ÿ

|J|†|I1|
�I1b
cJ �

�
↵bB�ZIu

` B↵t´1
ÿ

|J 1|†|I1|

`
⇢I

1�
cJ 1

˘
B�ZJ 1

u ` t´1
ÿ

|J 1|†|I1|
B↵

`
⇢I

1�
cJ 1

˘
B�ZJ 1

u

` t´1
ÿ

|J 1|†|I1|
⇢I

1�
cJ 1 B�B↵ZJ 1

u.

We conclude that, when Z1 “ B↵, �I�
↵J are linear combinations of B↵�I1b

cJ

and �I1b
cJ with |J | † |I 1|. For all BI1ZI2 , we have

BI1ZI2
`
B↵�I1b

cJ

˘
“B↵BI1ZI2�I1b

cJ ` BI1
`
rZI2 , B↵s�I1b

cJ

˘

“B↵BI1ZI2�I1b
cJ `

ÿ

|I1
2|†|I2|

✓I2�↵I1
2
B�BI1ZI1

2�I2�
cJ .
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By applying the induction assumption, we findˇ̌
B↵BI1ZI2�I1b

cJ

ˇ̌
§ Cpn, I1, I2, I 1qt´|I1|´1,

so that ˇ̌
BI1ZI2

`
B↵�I1b

cJ

˘ˇ̌
§ Cpn, I1, I2, I 1qt´|I1|.

Similarly, �I1b
cJ satisfies the same estimate and we see that, in this case, �I�

↵J

satisfies the desired estimate.
Note that ⇢I�↵J are linear combinations of the following terms:

�I1b
cJ �

�
↵b, tB↵t´1⇢I

1�
cJ , B↵⇢I�cJ , ⇢I

1�
cJ .

Observe that ��↵� are linear combinations of ��
↵ and recall the estimate

(2.2.11), we see that each term can be controlled by Cpn, I1, I2, Iqt´|I1|.

Case Z1 “ La. In this case, we write

Z1

`
rZI1

, Bcsu
˘

“ La

` ÿ

|J|†|I1|
�I1b
cJ BbZ

Ju ` t´1
ÿ

|J 1|†|I1|
⇢I

1�
cJ 1 B�ZJ 1

u
˘

“
ÿ

|J|†|I1|

`
La�

I1b
cJ

˘
BbZ

Ju `
ÿ

|J|†|I1|
�I1b
cJ BbLaZ

Ju `
ÿ

|J|†|I1|
�I1b
cJ rLa, BbsZJu

` t´1ptLat
´1q

ÿ

�

|J1|†|I1|

⇢I
1�

cJ 1 B�ZJ 1
u

` t´1
ÿ

|J 1|†|I1|

`
La⇢

I1�
cJ 1

˘
B�ZJ 1

u ` t´1
ÿ

|J 1|†|I1|
⇢I

1�
cJ 1 B�LaZ

J 1
u

` t´1
ÿ

|J 1|†|I1|
⇢I

1�
cJ 1 rLa, B�sZJ 1

u.

In the right-hand side, we apply (3.1.2c) on the third term and (3.1.2a) on
the last term, and observe that the coe�cient of the fourth term

tLapt´1q “ ´xa

t
“  0

a.

We have
Z1

`
rZI1

, Bcsu
˘

“
ÿ

|J|†|I1|

`
La�

I1b
cJ

˘
BbZ

Ju `
ÿ

|J|†|I1|
�I1b
cJ BbLaZ

Ju `
ÿ

|J|†|I1|
�I1b
cJ ⇥

c
abBcZ

Ju

` t´1 0
a

ÿ

|J 1|†|I1|
⇢I

1�
cJ 1 B�ZJ 1

u

` t´1
ÿ

|J 1|†|I1|

`
La⇢

I1�
cJ 1

˘
B�ZJ 1

u ` t´1
ÿ

|J 1|†|I1|
⇢I

1�
cJ 1 B�LaZ

J 1
u

` t´1
ÿ

|J 1|†|I1|
⇢I

1�
cJ 1⇥�

a�B�ZJ 1
u.
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We also recall that

rZ1, BcsZI1
u “ rLa, BcsZI1

u “ ⇥b
acBbZ

I1
u.

We observe that �Ib
cJ are linear combinations of La�

I1b
cJ , �I1b

cJ , �I1b
cJ ⇥

c
ab and

⇥b
ac. The estimate on the first two terms is a direct consequence of the

induction assumption (3.2.4a). On the other hand, the third term is esti-
mated as follows:

BI1ZI2�I1b
cJ ⇥

c
ab “

ÿ

I3`I4“I1
I5`I6“I2

BI3ZI5�I1b
cJ BI4ZI6⇥c

ab.

The first factor is bounded by the induction assumption (3.2.4a), and the
second factor can be bounded by (2.2.12), by observing that ⇥c

ab is a linear
combination of  �

� . In the same manner, we get the desired estimate on

⇥b
ac. So, (3.2.4a) is established in the case Z1 “ La, |I| “ k ` 1.

In the same way, ⇢I�cJ are linear combinations of  0
a⇢

I1�
cJ 1 , La⇢

I1�
cJ 1 , ⇢

I1�
cJ 1 ,

⇢I
1�

cJ 1⇥�
a� . The second and the third terms are bounded by the induction

assumption (3.2.4b). The first term is estimated by applying (2.2.12) and
the induction assumption (3.2.4b). For the last term, note that ⇥�

a� are

linear combinations of  �1
� and constants. Hence, by applying (2.2.12) and

the induction assumption (3.2.4b), the desired bound is reached. Finally,
by combining these estimates together, (3.2.4b) is established in the case
|I| “ k ` 1, which completes the argument and, consequently, the proof of
Lemma 3.2.1.

3.3 Estimates of commutators

The following statement is now immediate in view of (3.1.5), (3.2.1), and
(3.2.3).

Lemma 3.3.1. For all su�ciently regular functions u defined in the cone
K, the following estimates hold:

ˇ̌
rZI , B↵su

ˇ̌
`

ˇ̌
rZI , B↵su

ˇ̌
§ Cpn, |I|q

ÿ

�,|J|†I

ˇ̌
B�ZJu

ˇ̌
, (3.3.1)

ˇ̌
rZI , Basu

ˇ̌
§ Cpn, |I|q

ÿ

b,|J1|†|I|

ˇ̌
BbZ

J1u
ˇ̌
` Cpn, |I|q

ÿ

�,J2|†|I|

ˇ̌
t´1B�ZJ2u

ˇ̌
.

(3.3.2)
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Furthermore, from (3.1.5), (3.2.1), and (3.2.3), we deduce the following
estimates. Recall our convention ZI “ 0 in case we write |I| † 0.

Lemma 3.3.2. For all su�ciently regular functions u defined in the cone
K, the following estimates hold:

ˇ̌
rZI , B↵B�su

ˇ̌
§ Cpn, |I|q

ÿ

�,�

1
|J|†|I|

ˇ̌
B�B�1ZJu

ˇ̌
, (3.3.3)

ˇ̌
rZI , BaB�su

ˇ̌
`

ˇ̌
rZI , B↵Bbsu

ˇ̌
§Cpn, |I|q

ÿ

c,�

|J1|§|I|

ˇ̌
BcB�Z

J1u
ˇ̌

` Cpn, |I|qt´1
ÿ

�

|J2|§|I|

ˇ̌
B�ZJ2u

ˇ̌
.

(3.3.4)

Proof. 1. To derive (3.3.3), we write

rZI , B↵B�su “ B↵
`
rZI , B�su

˘
` rZI , B↵sB�u

and, by applying (3.1.5), the first term in the right-hand side can be written
as

B↵
`
rZI , B�su

˘
“ B↵

ˆ ÿ

|J|†|I|
✓I��JB�ZJu

˙
“

ÿ

|J|†|I|
✓I��JB↵B�ZJu,

which is bounded by Cpn, |I|q∞ ↵,�

|J|†|I|

ˇ̌
B↵B�ZJu

ˇ̌
. The second term is esti-

mated as follows:

rZI , B↵sB�u “
ÿ

|J|†|I|
✓I�↵JB�ZJB�u

“
ÿ

|J|†|I|
✓I�↵JB�B�ZJu `

ÿ

|J|†|I|
✓I�↵JB�rZJ , B�su

“
ÿ

|J|†|I|
✓I�↵JB�B�ZJu `

ÿ

|J|†|I|
✓I�↵JB�

ˆ ÿ

|J 1|†|J|
✓J��J 1 B�ZJ 1

u

˙

“
ÿ

|J|†|I|
✓I�↵JB�B�ZJu `

ÿ

|J|†|I|
|J1|†|J|

✓I�↵J✓
J�
�J 1 B�B�ZJ 1

u.

This latter expression is bounded by Cpn, |I|q∞ ↵,�

|J|†|I|

ˇ̌
B↵B�ZJu

ˇ̌
, and

(3.3.3) is established.
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2. We now derive (3.3.4) and we begin by considering rZI , BaB�su. By
(3.2.1) and (3.2.3), we have

rZI , BaB�su
“ BarZI , B�su ` rZI , BasB�u

“ Ba

ˆ ÿ

|J|†|I|
✓I��JB�ZJu

˙
`

ÿ

|J|†|I|
�Ic
aJBcZ

JB�u ` t´1
ÿ

|J|†|I|
⇢I�aJB�ZJB�u

“
ÿ

|J|†|I|
Ba✓

I�
�JB�ZJu `

ÿ

|J|†|I|
✓I��JBaB�ZJu

`
ÿ

|J|†|I|
�Ic
aJBcZ

JB�u ` t´1
ÿ

|J|†|I|
⇢I�aJB�ZJB�u,

thus

rZI , BaB�su
“

ÿ

|J|†|I|
Ba✓

I�
�JB�ZJu `

ÿ

|J|†|I|
✓I��JBaB�ZJu

`
ÿ

|J|†|I|
�Ic
aJBcB�Z

Ju `
ÿ

|J|†|I|
�Ic
aJBc

`
rZJ , B�su

˘
` t´1

ÿ

|J|†|I|
⇢I�aJB�ZJB�u

and, therefore,

rZI , BaB�su
“

ÿ

|J|†|I|
Ba✓

I�
�JB�ZJu `

ÿ

|J|†|I|
✓I��JBa

`
 �1

� B�1ZJu
˘

`
ÿ

|J|†|I|
�Ic
aJBcB�Z

Ju `
ÿ

|J|†|I|
�Ic
aJBc

`
rZJ , B�su

˘
` t´1

ÿ

|J|†|I|
⇢I�aJB�ZJB�u

“
ÿ

|J|†|I|
✓I��J 

�1
� BaB�1ZJu `

ÿ

|J|†|I|
�Ic
aJBcB�Z

Ju

`
ÿ

|J|†|I|
✓I��JBa

`
 �1

�

˘
B�1ZJu `

ÿ

|J|†|I|
Ba✓

I�
�JB�ZJu

`
ÿ

|J|†|I|
�Ic
aJBc

`
rZJ , B�su

˘
` t´1

ÿ

|J|†|I|
⇢I�aJB�ZJB�u.

(3.3.5)
Here, the first and second terms can be bounded by

∞
a,�,|J|†|I| |BaB�Z

Ju|.
By recalling that

ˇ̌
Ba 

�1
�

ˇ̌
§ Cpnqt´1 and

ˇ̌
Ba✓

I�
�J

ˇ̌
§ Cpn, |I|qt´1, the third

and fourth can be bounded by Cpn, |I|qt´1
∞

�,|J2|§|I| |B�ZJ2u|.
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So, we focus on the fifth term:
ÿ

|J|†|I|
�Ic
aJBc

`
rZJ , B�su

˘

“
ÿ

|J|†|I|
�Ic
aJBc

ˆ ÿ

|J 1|†|J|
✓J��J 1 B�u

˙

“
ÿ

|J|†|I|
|J1|†|J|

�Ic
aJBc

`
✓J��J 1

˘
B�u `

ÿ

|J|†|I|
|J1|†|J|

�Ic
aJ✓

J�
�J 1 BcB�u

“
ÿ

|J|†|I|
|J1|†|J|

�Ic
aJBc

`
✓J��J 1

˘
B�u `

ÿ

|J|†|I|
|J1|†|J|

�Ic
aJ✓

J�
�J 1 Bc

`
 �1

� B�1u
˘
,

so
ÿ

|J|†|I|
�Ic
�JBc

`
rZJ , B�su

˘

“
ÿ

|J|†|I|
|J1|†|J|

�Ic
aJBc

`
✓J��J 1

˘
B�u `

ÿ

|J|†|I|
|J1|†|J|

�Ic
aJ✓

J�
�J 1 Bc

`
 �1

�

˘
B�1u

`
ÿ

|J|†|I|
|J1|†|J|

�Ic
aJ✓

J�
�J 1 �1

� BcB�1u.

Similarly, the first two terms can be bounded by

Cpn, |I|qt´1
ÿ

�,|J2|§|I|
|B�ZJ2u|

and the last term is bounded by
∞

↵�,|J|†|I| |BaB�Z
Ju|.

For the last term in (3.3.5), we perform the following calculation:

t´1
ÿ

|J|†|I|
⇢I�aJB�ZJB�u

“ t´1
ÿ

|J|†|I|
⇢I�aJB�B�Z

Ju ` t´1
ÿ

|J|†|I|
⇢I�aJB�

`
rZJ , B�su

˘

“ t´1
ÿ

|J|†|I|
⇢I�aJB�

`
 �1

� B�1ZJu
˘

` t´1
ÿ

|J|†|I|
⇢I�aJB�

`
✓J��J 1 B�ZJ 1

u
˘

“ t´1
ÿ

|J|†|I|
⇢I�aJ 

�1

� B�B�1ZJu ` t´1
ÿ

|J|†|I|
⇢I�aJB� �1

� B�1ZJu

` t´1
ÿ

|J|†|I|
⇢I�aJ✓

J�
�J 1 B�B�ZJ 1

u ` t´1
ÿ

|J|†|I|
⇢I�aJB�✓J��J 1 B�ZJ 1

u.

The desired estimates on these terms are immediate thanks to (3.2.4b),

(3.2.2), and the fact that |B↵ �1

� | § Ct´1.
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Now, in order to control rZI , B↵Bbsu, we consider the identity

rZI , B↵Bbsu “ rZI , BbB↵su ` rZI , rB↵, Bbssu.
The estimate on the first term in the right-hand side is already done. We
concentrate on the second term, via the following calculation:

rZI , rB↵, Bbssu
“ rZI ,��

↵rB� , Bbssu ´ rZI , Bb�
�
↵B�su

“ rZI , t´1��
↵�

�
�bB�su ´ rZI , Bb�

�
↵B�su

“
ÿ

I1`I2“I

|I2|†|I|

ZI1
`
t´1��

↵�
�
�b

˘
ZI2B�u ` t´1��

↵�
�
�brZI , B�su

´
ÿ

I1`I2“I

|I2|†|I|

ZI1
`
Bb�

�
↵

˘
ZI2B�u ´ Bb�

�
↵rZI , B�su

and thus

rZI , rB↵, Bbssu
“

ÿ

I1`I2“I

|I2|†|I|

ZI1
`
t´1��

↵�
�
�b

˘
B�ZI2u

`
ÿ

I1`I2“I

|I2|†|I|

ZI1
`
t´1��

↵�
�
�b

˘
rZI2 , B�su ` t´1��

↵�
�
�brZI , B�su

´
ÿ

I1`I2“I

|I2|†|I|

ZI1
`
Bb�

�
↵

˘
B�ZI2u

´
ÿ

I1`I2“I

|I2|†|I|

ZI1
`
Bb�

�
↵

˘
rZI2 , B�su ´ Bb�

�
↵rZI , B�su.

So, we have

rZI , rB↵, Bbssu
“

ÿ

I1`I2“I

|I2|†|I|

ZI1
`
t´1��

↵�
�
�b

˘
B�ZI2u `

ÿ

I1`I2“I

ZI1
`
t´1��

↵�
�
�b

˘
rZI2 , B�su

´
ÿ

I1`I2“I

|I2|†|I|

ZI1
`
Bb�

�
↵

˘
B�ZI2u ´

ÿ

I1`I2“I

ZI1
`
Bb�

�
↵

˘
rZI2 , B�su.

We observe that the function t´1��
↵�

�
�b and Bb�

�
↵ are homogeneous of de-

gree ´1 and are smooth in the closed region tt • 1, |x| § tu.
By Lemma 2.2.1, we have

ˇ̌
ZI1

`
t´1��

↵�
�
�b

˘ˇ̌
§Cpn, |I|qt´1,

ˇ̌
ZI1

`
Bb�

�
↵

˘ˇ̌
§Cpn, |I|qt´1.
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We conclude withˇ̌
rZI , rB↵, Bbssu

ˇ̌
§ Cpn, |I|qt´1

ÿ

�

|J|†|I|

ˇ̌
B�ZJu

ˇ̌
,

and this completes the proof of (3.3.4).

Lemma 3.3.3. For all su�ciently regular functions u defined in the cone
K, the following estimates hold:ˇ̌

ZI
`
ps{tqB↵u

˘ˇ̌
§

ˇ̌
ps{tqB↵ZIu

ˇ̌
` Cpn, |I|q

ÿ

�,|J|†|I|

ˇ̌
ps{tqB�ZJu

ˇ̌
. (3.3.6)

The proof of this lemma will rely on the following technical remark.

Lemma 3.3.4. For all index I, the function

⌅I :“ pt{sqZIps{tq (3.3.7)

defined in the closed cone K “ t|x| § t´1u, is smooth and all of its deriva-
tives (of any order) are bounded in K. Furthermore, it is homogeneous of
degree ⌘ with ⌘ § 0.

We admit here this result and give the proof of (3.3.6), while the proof
of (3.3.7) is given afterwards.

Proof of Lemma 3.3.3. We observe that
rZI , ps{tqB↵su “

ÿ

I1`I2“I

|I1|†|I|

ZI2ps{tqZI1B↵u ` ps{tqrZI , B↵su

“
ÿ

I1`I2“I

|I1|†|I|

ZI2ps{tq rZI1 , B↵su `
ÿ

I1`I2“I

|I1|†|I|

ZI2ps{tq B↵ZI1u

` ps{tqrZI , B↵su
“

ÿ

I1`I2“I

ZI2ps{tq rZI1 , B↵su `
ÿ

I1`I2“I

|I1|†|I|

ZI2ps{tq B↵ZI1 .

By applying (3.3.7), we findˇ̌
ˇ̌

ÿ

I1`I2“I

ZI2ps{tq rZI1 , B↵su
ˇ̌
ˇ̌ §

ÿ

I1`I2“I

ˇ̌
ZI2ps{tq

ˇ̌ ˇ̌
rZI1 , B↵su

ˇ̌

§Cpn, |I|q
ÿ

|J|†|I|

ˇ̌
ps{tqB↵ZJu

ˇ̌

and ˇ̌
ˇ̌

ÿ

I1`I2“I

|I1|†|I|

ZI2ps{tq B↵ZI1u

ˇ̌
ˇ̌ § Cpn, |I|q

ÿ

|J|†|I|

ˇ̌
ps{tqB↵ZJu

ˇ̌
.
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Proof of Lemma 3.3.4. We consider the identities

pt{sqLaps{tq “ ´xa{t,
pt{sqBaps{tq “ ´xa{s2, pt{sqBtps{tq “ |x|2s´2t´1.

(3.3.8)

In the cone K “ t|x| † t ´ 1u, the functions xa{s2, |x|2s´2t´1, and xa{t
are smooth and bounded, while xa{s2 and |x|2s´2t´1 are homogeneous of
degree ´1, and xa{t is homogeneous of degree 0. All of their derivatives (of
any order) are bounded in K. We have proved (3.3.7) in the case |I| “ 1.

For the case |I| ° 1, we use an induction on |I|. Assume that for
|I| § k, (3.3.7) holds. For an operator ZI with |I| “ k`1, we suppose that
ZI “ Z1 Z

I1
where |I 1| “ k and we have

pt{sqZIps{tq “ pt{sqZ1Z
I1 ps{tq “ Z1

`
pt{sqZI1 ps{tq

˘
´ Z1ps{tqZI1 ps{tq,

where Z1 can be B↵ or La. By the induction assumption and (3.3.8), the
second term is a smooth function and is homogeneous of non-positive de-
gree, while all of its derivatives are bounded in K. We focus on the first
term and, by the induction assumption, pt{sqZI1 ps{tq is smooth, homoge-
neous of non-positive degree, and is bounded in K. We need to distinguish
between two di↵erent cases, as follows.

Case Z1 “ B↵. In this case, Z1

`
pt{sqZI1 ps{tq

˘
is homogeneous of degree less

than or equal to ´1, and by the induction assumption, all of its derivatives
are bounded in K.

Case Z1 “ La. In this case, Z1

`
pt{sqZI1 ps{tq

˘
is homogeneous of degree

less than or equal to 0.

Z1

`
pt{sqZI1 ps{tq

˘
“ xaBt

`
pt{sqZI1 ps{tq

˘
` tBa

`
pt{sqZI1 ps{tq

˘
.

Denote by fpt, xq “ B↵
`
pt{sqZI1 ps{tq

˘
and recall that fpt, xq is homogeneous

of degree ⌘ with ⌘ § ´1 so

fpt, xq “ pt{2q⌘fp2, 2x{tq.
Recall that fp2, xq is bounded when |x| § 2. Recalling that t • 1, we get

ˇ̌
B↵

`
pt{sqZI1 ps{tq

˘ˇ̌
“ |fpt, xq| § Cpn, I 1qt⌘ § Cpn, I 1qt´1

thus
ˇ̌
Z1

`
pt{sqZI1 ps{tq

˘ˇ̌
§ Cpn, I 1qp1 ` |xa|{tq.

Taking into consideration the fact that in K, |xa| § t, the desired result is
proven.
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Chapter 4

The null structure in the
semi-hyperboidal frame

4.1 Estimating first-order derivatives

In this chapter, we derive various estimates on null quadratic or cubic forms.
Recall that a quadratic form T↵�B↵uB�v acting on the gradient of functions
u, v is said to satisfy the null condition if, for all null vectors ⇠ P R4, i.e. all
vectors satisfying p⇠0q2 ´ ∞

ap⇠aq2 “ 0, one has

T↵�⇠↵⇠� “ 0. (4.1.1)

Similarly, a cubic form A↵��⇠↵⇠�⇠� is said to satisfy the null condition if,
for all null vectors, one has

A↵��⇠↵⇠�⇠� “ 0. (4.1.2)

All the terms of interest will be linear combinations of factors B↵u B�v,
B�uB↵B�v, and uB↵B�v. Throughout, the notation s2 “ t2 ´ r2 is in order.

Proposition 4.1.1. If T↵�⇠↵⇠� is a quadratic form satisfying the null con-
dition, then for every index I there exists a constant CpIq ° 0 such that

ˇ̌
ZIT 00

ˇ̌
§ CpIq t

2 ´ r2

t2
“ CpIq ps{tq2 in the cone K. (4.1.3)

Similarly, if a cubic form A↵��⇠↵⇠�⇠� satisfies the null condition, then for
every index I there exists a constant CpIq ° 0 such that

ˇ̌
ZIA000

ˇ̌
§ CpIq t

2 ´ r2

t2
“ CpIq ps{tq2 in the cone K. (4.1.4)

The proof will be based on a homogeneity lemma stated now, which
concerns homogeneous functions defined “near” the light cone in

 
r “ t´1

(
.

47
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Lemma 4.1.1 (Homogeneity lemma). Let f be a smooth function de-
fined in the closed set tt • 1u X tt{2 § r § tu. Assume that f is homoge-
neous of degree ⌘ in the sense that

fppt, pxq “ p⌘fp1, x{tq, t{2 § |x| § t, pt • 1, t • 1.

The following estimate holds:
ˇ̌
ZIfpt, xq

ˇ̌
§ Cpn, |I|qt⌘ in the region tr • t{2u X K. (4.1.5)

The proof is similar to the one of Lemma 2.2.1 and is omitted.

Proof of Proposition 4.1.1. We use the notation ´!a “ !a “ xa{|x|
and !0 “ !0 “ 1, so that p!0q2 ´∞

ap!aq2 “ 0. We consider the component
T 00 and write

T 00 “ T↵� 0
↵ 

0
� “ T↵� 0

↵ 
0
� ´ T↵�!↵!�

“ T↵�
`
 0

↵ 
0
� ´ !↵!�

˘
.

First, we consider the region “away” from the light cone. When r § t{2,
we have

ZI
`
T↵� 0

↵ 
0
�

˘
“

ÿ

I1`I2“I

T↵�ZI1 0
↵Z

I2 0
� .

Applying Lemma 2.2.1, we obtain
ˇ̌
ZI

`
T↵� 0

↵ 
0
�

˘ˇ̌
§

ÿ

I1`I2“I

K
ˇ̌
ZI1 0

↵

ˇ̌ ˇ̌
ZI2 0

�

ˇ̌
§ Cpn, |I|qKps{tq2pt{sq2

for some constant K ° 0. Recall that when 0 § r § t{2, we have pt{sq2 §
4{3 so in the region tr § t{2u X K,

ˇ̌
ZI

`
T↵� 0

↵ 
0
�

˘ˇ̌
§ Cpn, |I|qKps{tq2.

Second, in the region tr • t{2u X K, we have

T 00 “ T↵�
`
 0

↵ 
0
� ´ !↵!�

˘

and, thus,

ZIT 00 “ T↵�ZIp 0
↵ 

0
� ´ !↵!�

˘
.

When ↵ “ � “ 0, we have p 0
↵ 

0
� ´ !↵!�

˘
“ 0. When ↵ “ a ° 0,� “ 0,

we have

ZIp 0
↵ 

0
� ´ !↵!�

˘
“ ´ZI

`
!a

`
1 ´ pr{tq

˘˘

“ ´
ÿ

I1`I2“I

ZI1!a Z
I2

ˆ
t ´ r

t

˙
.
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When ↵ “ a ° 0, � “ 0 ° 0, we obtain

ZI
`
 0

↵ 
0
� ´ !↵!�

˘
“ ZI

ˆ
xaxb

t2
´ xaxb

r2

˙

“
ÿ

I1`I2`I3`I4“I

ZI1!a Z
I2!b Z

I3

ˆ
1 ` r

t

˙
ZI4

ˆ
r ´ t

t

˙
.

We focus on the estimates of ZI!a, ZI
`
1` r

t

˘
and ZI

`
t´r
t

˘
. By Lemma

4.1.1, ZI!a and ZI
`
1 ` r

t

˘
are bounded by Cpn, |I|q. For the estimate of

ZI
`
t´r
t

˘
, we write

t ´ r

t
“ s2

t2
t

t ` r
and then

ZI
`
pt ´ rq{t

˘
“

ÿ

I1`I2`I3“I

ZI1
`
t{pt ` rq

˘
ZI2ps{tqZI3ps{tq.

We observe that t{pt ` rq is smooth in tt • 1u X tt{2 § r § tu and is
homogeneous of degree 0. We have

ˇ̌
ZI1

`
t{pt ` rq

˘ˇ̌
§ Cp|I|q

and the term ZI2ps{tq is bounded by Cp|I|qps{tq, thanks to Lemma 3.3.4.
We conclude with

ˇ̌
ZI

`
pt{rq{t

˘ˇ̌
§ Cp|I|qps{tq2.

Next, we have the following result concerning null quadratic forms.

Proposition 4.1.2 (Estimate of null forms). For all null quadratic
form T↵�B↵uB�v with constant coe�cients T↵� and for any index I, one
hasˇ̌
ZI

`
T↵�B↵uB�v

˘ˇ̌
§ CKps{tq2

ÿ

|I1|`|I2|§|I|

ˇ̌
ZI1BtuZI2Btv

ˇ̌

` CK
ÿ

a,�,

|I1|`|I2|§|I|

´ˇ̌
ZI1BauZ

I2B�v
ˇ̌
`

ˇ̌
ZI1B�uZ

I2Bav
ˇ̌¯
,

with K “ max↵,�
ˇ̌
T↵�

ˇ̌
.

The importance of this estimate lies on the factor ps{tq2 in front of the
component ZI1BtuZI2Btv. As we will see later, the derivative Ba enjoys
better L8 and L2 estimates in our framework. The derivatives of direction
Bt do not always have enough decay, and the factor ps{tq2 precisely allows
us to overcome this potential lack of L2 and L8 decay.
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Proof. The proof is based on a change of frame. In the semi-hyperboloidal
frame we have

T↵�B↵uB�v “ T↵�B↵uB�v

“ T 00BtuBtv ` T 0bBtuBbv ` T a0BauBtv ` T abBauBbv.

We have

ZI
`
T↵�B↵uB�v

˘

“ ZI
`
T↵�B↵uB�v

˘

“ ZI
`
T 00BtuBtv

˘
` ZI

`
T 0bBtuBbv

˘
` ZI

`
T a0BauBtv

˘
` ZI

`
T abBauBbv

˘

“: R1 ` R2 ` R3 ` R4.

Recalling the null condition satisfied by the null form under consideration
and by Proposition 4.1.1, we get

|R1| §
ÿ

I1`I2`I3“I

ˇ̌
ZI3

`
T 00

˘
ZI1

`
Btu

˘
ZI2

`
Btv

˘ˇ̌

§CKps{tq2
ÿ

|I1|`|I2|§|I|

ˇ̌
ZI1Btu

ˇ̌ ˇ̌
ZI2Btv

ˇ̌
.

The term R2 are estimated directly. Recalling that by Lemma 2.2.2,
|ZIT↵� | § CpIqK, we find

|R2| §
ÿ

b

I1`I2`I3“I

ˇ̌
ZI3

`
T 0b

˘
ZI1

`
Btu

˘
ZI2

`
Bbv

˘ˇ̌

§ CK
ÿ

b

|I1|`|I2|§|I|

ˇ̌
ZI1

`
Btu

˘
ZI2

`
Bbv

˘ˇ̌
.

The terms R3 and R4 are estimated similarly and the proof is complete.

4.2 Estimating second-order derivatives

We can also deal with second-order derivatives B↵�B↵B�u, with constant
B↵� . Recall that a second-order operator is said to satisfy the null condition
if

B↵�⇠↵⇠� “ 0 when ⇠0⇠0 ´
3ÿ

i“1

⇠i⇠i “ 0.
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Proposition 4.2.1. Let B↵�B↵B� be a second-order operator satisfying the
null condition with constants B↵� bounded by K. One has

ˇ̌
ZI

`
B↵�B↵B�u

˘ˇ̌

§ Cpn, |I|qKps{tq2
ÿ

|I1|§|I|
ZI

`
BtBtu

˘
` Cpn, |I|qK

ÿ

a,↵

|I1|§|I|

ZI
`
BaB↵u

˘

` Cpn, |I|qK
t

ÿ

↵,|I1|§|I|
|ZI1

`
B↵u

˘
|.

Proof. We have

B↵�B↵B�u “B↵�B↵B�u ` B↵�B↵
`
 �1

�

˘
B�1u

“B00BtBtu ` Ba0BaBtu ` B0bBtBbu ` BabBaBbu

` B↵�B↵
`
 �1

�

˘
B�1u.

Recall that, for a null quadratic form, |ZJB00| § Cpn, |J |qKps{tq2 and
ˇ̌
ZIB00BtBtu

ˇ̌
§

ÿ

I1`I2“I

ˇ̌
ZI2B00

ˇ̌ ˇ̌
ZI1BtBtu

ˇ̌

§ Cpn, |I|qKps{tq2
ÿ

|I1|§|I|

ˇ̌
ZI1BtBtu

ˇ̌
.

Also, from Lemma 2.2.2, we have
ˇ̌
ZIB

ˇ̌
§ Cpn, |I|q|B| and

ˇ̌
ZI

`
Ba0BaBtu

˘ˇ̌
§

ÿ

a

I1`I2“I

ˇ̌
ZI2Ba0

ˇ̌ ˇ̌
ZI1BaBtu

ˇ̌

§ Cpn, |I|qK
ÿ

a

|I1|§|I|

ˇ̌
ZI1BaBtu

ˇ̌
.

For the term ZI
`
B0bBtBbu

˘
by applying (3.1.2) we have

ˇ̌
ZI

`
B0bBtBbu

˘ˇ̌
§

ÿ

I1`I2“I

ˇ̌
ZI2Bb0

ˇ̌ ˇ̌
ZI1BtBbu

ˇ̌

§ Cpn, |I|qK
ÿ

b

|I1|§|I|

ˇ̌
ZI1BtBbu

ˇ̌

and ˇ̌
ZI1BtBbu

ˇ̌
§

ˇ̌
ZI1BbBtu

ˇ̌
`

ˇ̌
ZI1rBb, Btsu

ˇ̌

§
ˇ̌
ZI1BbBtu

ˇ̌
`

ˇ̌
ZI1

`
t´1��0bB�u

˘ˇ̌

§
ˇ̌
ZI1BbBtu

ˇ̌
`

ÿ

I3`I4“I2

ˇ̌
ZI4

`
t´1��0b

˘
ZI3B�u

˘ˇ̌

§
ˇ̌
ZI1BbBtu

ˇ̌
` Ct´1

ÿ

�

|I3|§|I1|

ˇ̌
ZI3B�u

ˇ̌
.
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Here, we have used the estimate
ˇ̌
ZJ

`
t´1��0b

˘ˇ̌
§ Cpn, |J |qt´1 because

t´1��0b is homogeneous of degree ´1. So we have proven that
ˇ̌
ZI1B0bBtBbu

ˇ̌
§ Cpn, |I|qK

ÿ

b

|I1|§|I|

ˇ̌
ZI1BbBtu

ˇ̌
`Cpn, |I|qKt´1

ÿ

�

|I1|§|I|

ˇ̌
ZI1B�u

ˇ̌
.

The term ZI
`
BabBaBbu

˘
is estimated as follows:

ˇ̌
ZI

`
BabBaBbu

˘ˇ̌
§ Cpn, |I|q

ÿ

a,b

I1`I2“I

ˇ̌
ZI2Bab

ˇ̌ ˇ̌
ZI1BaBbu

ˇ̌

§ Cpn, |I|qK
ÿ

�,a

I1`I2“I

ˇ̌
ZI1BaB�u

ˇ̌
.

The term ZI
`
B↵�B↵

`
 �1

�

˘
B�1u

˘
is estimated by applying the decay rate

supplied by ZJ
ˇ̌
B↵

`
 �1

�

˘ˇ̌
§ Cpn, |J |qt´1. This completes the proof.

As a direct corollary, the following estimates hold.

Proposition 4.2.2. Consider a bilinear form B↵�uB↵B�v acting on the
function u and the Hessian of v and suppose that the quadratic form
B↵�B↵B� satisfies the null condition. The following estimates hold:

ˇ̌
ZI

`
B↵�uB↵B�v

˘ˇ̌
§Cpn, |I|qKps{tq2

ÿ

|I1|`|I2|§|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2BtBtv

ˇ̌

` Cpn, |I|qK
ÿ

↵,b

|I1|`|I2|§|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2B↵Bbv

ˇ̌

` Cpn, |I|qK
ÿ

a,�

|I1|`|I2|§|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2BaB�v

ˇ̌

` Cpn, |I|qKt´1
ÿ

↵

|I1|`|I2|§|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2B↵v

ˇ̌
,

(4.2.1a)

ˇ̌
rZI , B↵�uB↵B�sv

ˇ̌
§Cpn, |I|qKps{tq2

ÿ

|I1|`|I2|§|I|
|I2|†|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2BtBtv

ˇ̌

` Cpn, |I|qK
ÿ

a,�

ÿ

|I1|`|I2|§|I|
|I2|†|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2BaB�v

ˇ̌

` Cpn, |I|qK
ÿ

↵,b

ÿ

|I1|`|I2|§|I|
|I2|†|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2B↵Bbv

ˇ̌

` Cpn, |I|qKt´1
ÿ

|I1|`|I2|§|I|
|I2|†|I|,�

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2B�1v

ˇ̌
.

(4.2.1b)
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Proof. We first establish (4.2.1a):

ZI
`
B↵�uB↵B�v

˘
“ZI

`
B↵�uB↵B�v ` B↵�uB↵ �1

� B�1v
˘

“
ÿ

I1`I2`I3“I

ZI3B↵� ZI1uZI2B↵B�v

`
ÿ

I1`I2`I3“I

B↵�ZI1uZI3B↵ �1

� ZI2B�1v “: R1 ` R2,

in which R1 can be estimated as follows:

R1 “
ÿ

I1`I2`I3“I

ZI3B↵� ZI1uZI2B↵B�v

“
ÿ

I1`I2`I3“I

ZI3B00 ZI1uZI2BtBtv

`
ÿ

I1`I2`I3“I

ZI3Ba0 ZI1uZI2BaBtv

`
ÿ

I1`I2`I3“I

ZI3B0b ZI1uZI2BtBbv

`
ÿ

I1`I2`I3“I

ZI3Bab ZI1uZI2BaBbv.

Since
ˇ̌
ZIB↵�

ˇ̌
§ Cpn, |I|qK and

ˇ̌
ZIB00

ˇ̌
§ Cpn, |I|qps{tq2, we have

|R1| §Cpn, |I|qKps{tq2
ÿ

|I1|`|I2|§|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2BtBtv

ˇ̌

` Cpn, |I|qK
ÿ

↵,b

|I1|`|I2|§|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2B↵Bbv

ˇ̌

` Cpn, |I|qK
ÿ

a,�

|I1|`|I2|§|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2BaB�v

ˇ̌
.

Observe now that
ˇ̌
ZIB↵ �1

�

ˇ̌
§ Cpn, |I|qt´1, then R2 is bounded by

|R2| §
ÿ

I1`I2`I3“I

ˇ̌
B↵�

ˇ̌ ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI3B↵ �1

�

ˇ̌ ˇ̌
ZI2B�1v

ˇ̌

§ Cpn, |I|qKt´1
ÿ

↵

|I1|`|I2|§|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2B↵v

ˇ̌
.

In view of ZI2B↵v “ ZI2
`
 ↵1

↵ B↵1v
˘

“ ZI4 ↵1
↵ ZI5B↵1v and that ZI4 ↵1

↵ is
bounded, the estimate (4.2.1a) is proven.

Next, in order to derive (4.2.1b), we observe that

rZI , B↵�uB↵B�sv “ rZI , B↵�uB↵B�sv ` rZI , B↵�uB↵ �1

� B�1 sv “: R3 ` R4.
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The term R3 is decomposed as follows:

rZI , B↵�uB↵B�sv
“

ÿ

I1`I2`I3
|I2|†|I|

ZI3B↵� ZI1uZI2B↵B�v ` B↵�urZI , B↵B�sv

“: R5 ` R6.

The term R5 is estimated as follows:

R5 “
ÿ

I1`I2`I3
|I2|†|I|

ZI3B↵� ZI1uZI2B↵B�v

“
ÿ

I1`I2`I3
|I2|†|I|

ZI3B00 ZI1uZI2BtBtv

`
ÿ

I1`I2`I3
|I2|†|I|

ZI3Ba0 ZI1uZI2BaBtv `
ÿ

I1`I2`I3
|I2|†|I|

ZI3B0b ZI1uZI2BtBbv

`
ÿ

I1`I2`I3
|I2|†|I|

ZI3Bab ZI1uZI2BaBbv,

thus

|R5| §
ÿ

I1`I2`I3“I

|I2|†|I|

ˇ̌
ZI3B00

ˇ̌ ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2BtBtv

ˇ̌

`
ÿ

I1`I2`I3“I

|I2|†|I|

ˇ̌
ZI3Ba0

ˇ̌ ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2BaBtv

ˇ̌

`
ÿ

I1`I2`I3“I

|I2|†|I|

ˇ̌
ZI3B0b

ˇ̌ ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2BtBbv

ˇ̌

`
ÿ

I1`I2`I3“I

|I2|†|I|

ˇ̌
ZI3Bab

ˇ̌ ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2BaBbv

ˇ̌
,

hence

|R5| §Cpn, |I|qKps{tq2
ÿ

|I1|`|I2|§|I|
|I2|†|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2BtBtv

ˇ̌

` Cpn, |I|qK
ÿ

|I1|`|I2|§|I|
|I2|†|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2BaB�v

ˇ̌

` Cpn, |I|qK
ÿ

|I1|`|I2|§|I|
|I2|†|I|

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2B↵Bbv

ˇ̌
.
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The term R6 is decomposed as follows:

B↵�urZI , B↵B�sv “B00urZI , BtBtsv ` Ba0urZI , BaBtsv
` B0burZI , BtBbsv ` BaburZI , BaBbsv.

We apply (3.3.3) and (3.3.4) and that |B00| § Cps{tq2:
ˇ̌
B↵�urZI , B↵B�sv

ˇ̌

“
ˇ̌
B00urZI , BtBtsv

ˇ̌
`

ˇ̌
Ba0urZI , BaBtsv

ˇ̌

`
ˇ̌
B0burZI , BtBbsv

ˇ̌
`

ˇ̌
BaburZI , BaBbsv

ˇ̌

§ Cpn, |I|qKps{tq2|u|
ÿ

�,�

1
|I1|†|I|

ˇ̌
ZI1B�B�1v

ˇ̌

` Cpn, |I|qK|u|
ÿ

a,�

|I1|†|I|

ˇ̌
BaB�Z

I1v
ˇ̌
` Cpn, |I|qKt´1|u|

ÿ

�

|I1|†|I|

ˇ̌
B�ZI1v

ˇ̌
.

The term R4 is estimated as follows:

rZI , B↵�uB↵ �1

� B�1 sv
“

ÿ

I1`I2`I3“I

|I2|†|I|

B↵�ZI1uZI3B↵ �1

� ZI2B�1v ` B↵�uB↵ �1

� rZI , B�1 sv.

Thanks to the additional decreasing rate in
ˇ̌
ZIB↵ �1

�

ˇ̌
§ Cpn, |I|qt´1, the

first term is bounded by

Cpn, |I|qKt´1
ÿ

|I1|`|I2|§|I|
|I2|†|I|,�1

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2B�1v

ˇ̌
.

The second term is estimated by (3.3.2) and the additional decreasing rate

supplied by
ˇ̌
ZIB↵ �1

�

ˇ̌
§ Cpn, |I|qt´1. It can also be bounded by

Cpn, |I|qKt´1
ÿ

|I1|`|I2|§|I|
|I2|†|I|,�

ˇ̌
ZI1u

ˇ̌ ˇ̌
ZI2B�1v

ˇ̌
.

This completes the proof of (4.2.1b).

4.3 Products of first-order and second-order derivatives

The third type of null form we treat is a null quadratic form acting on the
gradient and the Hessian, as now stated.

Proposition 4.3.1. Consider a quadratic form acting on the gradient of
u and the Hessian of v, that is, A↵��B�uB↵B�v, for functions u, v defined
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in the cone K, and suppose that A↵�� satisfies the null condition. The
following estimate holds for any index I:

ˇ̌
ZI

`
A↵��B�uB↵B�v

˘ˇ̌

§ Cpn, |I|qKps{tq2
ÿ

|I1|`|I2|§|I|

ˇ̌
ZI1BtuZI2BtBtv

ˇ̌

` Cpn, |I|qK
`
⌦1pI, u, vq ` ⌦2pI, u, vq

˘
,

where

⌦1pI, u, vq “
ÿ

a,�,�

|I1|`|I2|§|I|

ˇ̌
ZI1Bau

ˇ̌ ˇ̌
ZI2B�B�v

ˇ̌
`

ÿ

↵,b,�

|I1|`|I2|§|I|

ˇ̌
ZI1B↵u

ˇ̌ ˇ̌
ZI2BbB�v

ˇ̌

`
ÿ

↵�,c

|I1|`|I2|§|I|

ˇ̌
ZI1B↵u

ˇ̌ ˇ̌
ZI2B�Bcv

ˇ̌

and

⌦2pI, u, vq § t´1
ÿ

↵,�,

|I1|`|I2|§|I|

|ZI1B↵uZI2B�v|.

Proof. We observe the following change of frame formula:

A↵��B�uB↵B�v “ A↵��B�uB↵B�v ` A↵��B�uB↵
`
 �1

�

˘
B�1u

“: R1pu, vq ` R2pu, vq.

The term ZIR2 can be estimated as follows. Recall that |ZIB↵
`
 �1

�

˘
| § C

t ,
then

ZI
`
A↵��B�uB↵

`
 �1

�

˘
B�1v

˘
“

ÿ

I1`I2`I3“I

A↵��ZI1B�uZI2B�1v ZI3B↵
`
 �1

�

˘
,

which can be estimated as
ˇ̌
ZI

`
A↵��B�uB↵

`
 �1

�

˘
B�1v

˘ˇ̌
§ CKt´1

ÿ

↵,�

|I1|`|I2|§|I|

|ZI1B↵uZI2B�v| “ ⌦2.

The term R1 can be estimated as follows:

R1 “A↵��B�uB↵B�v

“A000BtuBtBtv
` A00cBcuBtBtv ` A0b0BtuBtBbv ` Aa00BtuBaBtv
` Aab0BtuBaBbv ` A0bcBcuBtBbv ` Aa0cBcuBaBtv ` AabcBauBbBcv

“:R3pu, vq ` R4pu, vq,
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where

R3pu, vq :“ A000BtuBtBtv
and R4pu, vq denotes the remaining terms. We have ZIR1 “ ZIR3 `
ZIR4. To estimate |ZIR3|, we observe that A↵�� is a null cubic form
so by Proposition 4.1.1, |ZIA000| § Cps{tq2. We find

ZI
`
A000BtuBtBtv

˘
“

ÿ

I1`I2`I3“I

ZI3A000 ZI1BtuZI2BtBtv,

so that
ˇ̌
ZI

`
A000BtuBtBtv

˘ˇ̌
§ Cpn, |I|qKps{tq2

ÿ

|I1|`|I2|§|I|
|ZI1BtuZI2BtBtv|.

To see the estimates on ZIR4 terms, we just remark that by Lemma 2.2.2,
|ZIA↵�� | § Cpn, IqK. We can control ZIR3 by ⌦1.

Finally, by combining the estimate on R2, R3 and R4, the desired result
is established.

The fourth type of terms we need to control is the commutator between
ZI and a null quadratic form.

Proposition 4.3.2. Consider a null quadratic form acting on the gradient
of function u and on the Hessian matrix of v, that is, A↵��B�uB↵B�v, for
functions u, v defined in the cone K. The following estimate holds:

ˇ̌
rZI , A↵��B�uB↵B�sv

ˇ̌
§CKps{tq2

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BtuZI3BtBtv

ˇ̌

` CK
ÿ

c,↵,�

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BcuZ

I3B↵B�v
ˇ̌

` CK
ÿ

c,↵,�

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2B↵uZ

I3BcB�v
ˇ̌

` CK
ÿ

c,↵,�

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2B↵uZ

I3B�Bcv
ˇ̌

` t´1CK
ÿ

↵,�

ÿ

|I2|§|I|´1
|I1|`|I2|§|I|

ˇ̌
B�ZI1uB↵ZI2v

ˇ̌
.

Proof. We use the change of frame formula

A↵��B�uB↵B�v “ A↵��B�u B↵B�v ` A↵��B�u B↵
`
 �1

�

˘
B�1v
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and find

rZI , A↵��B�uB↵B�sv
“ rZI , A↵��B�uB↵B�sv ` rZI , A↵��B�uB↵

`
 �1

�

˘
B�1 sv

“: R1pI, u, vq ` R2pI, u, vq.

We first decompose R1pI, u, vq as

rZI , A↵��B�uB↵B�sv
“

ÿ

I2`I3`I4“I,

|I3|†|I|

ZI4A↵��ZI2
`
B�u

˘
ZI3

`
B↵B�v

˘
` A↵��B�urZI , B↵B�sv

“: R3pI, u, vq ` R4pI, u, vq,

while R3pI, u, vq is decomposed as

R3pI, u, vq
“

ÿ

I2`I3`I4“I,

|I3|†|I|

ZI4A000ZI2BtuZI3BtBtv

`
ÿ

I2`I3`I4“I,

|I3|†|I|

ZI4A00cZI2BcuZ
I3BtBtv `

ÿ

I2`I3`I4“I,

|I3|†|I|

ZI4A0b0ZI2BtuZI3BtBcv

`
ÿ

I2`I3`I4“I,

|I3|†|I|

ZI4Aa00ZI2BtuZI3BaBtv `
ÿ

I2`I3`I4“I,

|I3|†|I|

ZI4A0bcZI2BcuZ
I3BtBbv

`
ÿ

I2`I3`I4“I,

|I3|†|I|

ZI4Aa0cZI2BcuZ
I3BaBtv `

ÿ

I2`I3`I4“I,

|I3|†|I|

ZI4Aab0ZI2BtuZI3BaBbv

`
ÿ

I2`I3`I4“I,

|I3|†|I|

ZI4AabcZI2BcuZ
I3BaBbv.

We observe that A is a null cubic form and, by Proposition 4.1.1, and
therefore

ˇ̌
ZI4A000

ˇ̌
§ Cp|I|qKps{tq2.

By Lemma 2.2.2, we have

ˇ̌
ZI4A↵��

ˇ̌
§ K.
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The term R3pI, u, vq is estimated as follows:
ˇ̌
R3pI, u, vq

ˇ̌

§ CKps{tq2
ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BtuZI3BtBtv

ˇ̌

` CK
ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BcuZ

I3BtBtv
ˇ̌
` CK

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BtuZI3BtBcv

ˇ̌

` CK
ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BtuZI3BaBtv

ˇ̌
` CK

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BcuZ

I3BtBbv
ˇ̌

` CK
ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BcuZ

I3BaBtv
ˇ̌
` CK

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BtuZI3BaBbv

ˇ̌

` CK
ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BcuZ

I3BaBbv
ˇ̌
,

so that
ˇ̌
R3pI, u, vq

ˇ̌
§CKps{tq2

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BtuZI3BtBtv

ˇ̌

` CK
ÿ

c,↵,�

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BcuZ

I3B↵B�v
ˇ̌

` CK
ÿ

c,↵,�

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2B↵uZ

I3BcB�v
ˇ̌

` CK
ÿ

c,↵,�

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2B↵uZ

I3B�Bcv
ˇ̌
.

The term R4pI, u, vq is also decomposed as:

R4pI, u, vq “A000BturZI , BtBtsv ` A00cBcurZI , BtBtsv
` A0b0BturZI , BtBbsv ` Aa00BturZI , BaBtsv
` A0bcBcurZI , BtBbsv ` Aa0cBcurZI , BaBtsv
` Aab0BturZI , BaBbsv ` AabcBcurZI , BaBbsv.

Thanks to the null condition, we have
ˇ̌
R4pI, u, vq

ˇ̌
§CKps{tq2Btu

ˇ̌
rZI , BtBtsv

ˇ̌
` CK

ˇ̌
BcurZI , BtBtsv

ˇ̌

` CK
ˇ̌
BturZI , BtBbsv

ˇ̌
` CK

ˇ̌
BturZI , BaBtsv

ˇ̌

` CK
ˇ̌
BcurZI , BtBbsv

ˇ̌
` CK

ˇ̌
BcurZI , BaBtsv

ˇ̌

` CK
ˇ̌
BturZI , BaBbsv

ˇ̌
` CK

ˇ̌
BcurZI , BaBbsv

ˇ̌
.
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Observe now that thanks to the commutator estimates (3.3.3) and (3.3.4),
we have

ˇ̌
B↵urZI , BtBtsv

ˇ̌
§ C

ÿ

↵,�

|I1|§|I|´1

ˇ̌
B↵uB↵B�ZI1

v
ˇ̌
,

ˇ̌
B↵urZI , BaB�sv

ˇ̌
§ C

ÿ

a,�

|I1|§|I|´1

ˇ̌
B↵uBaB�Z

I1
v

ˇ̌
` Ct´1

ÿ

�

|I1|†|I|

ˇ̌
B↵uB�ZI1

v
ˇ̌

and
ˇ̌
B↵urZI , B�Bcsv

ˇ̌
§ C

ÿ

�,c

|I1|§|I|´1

ˇ̌
B↵uBcB�Z

I1
v

ˇ̌
` Ct´1

ÿ

�

|I1|†|I|

ˇ̌
B↵uB�ZI1

v
ˇ̌
.

We also note that
∞

↵

ˇ̌
B↵u

ˇ̌
§ C

∞
↵

ˇ̌
B↵u

ˇ̌
, so that |R4pI, u, vq| is bounded

by ˇ̌
R4pI, u, vq

ˇ̌

§CKps{tq2
ÿ

↵,�

|I1|§|I|´1

ˇ̌
BtuB↵B�ZI1

v
ˇ̌
` CK

ÿ

↵,�,c

|I1|§|I|´1

ˇ̌
BcuB↵B�ZI1

v
ˇ̌

` CK
ÿ

↵,�,c

|I1|§|I|´1

ˇ̌
B↵uBcB�v

ˇ̌
` CKt´1

ÿ

↵,�

|I1|§|I|´1

ˇ̌
B�uB↵ZI1

v
ˇ̌
.

In conclusion, R1pI, u, vq is bounded by
ˇ̌
R1pI, u, vq

ˇ̌
§CKps{tq2

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BtuZI3BtBtv

ˇ̌

` CK
ÿ

c,↵,�

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2BcuZ

I3B↵B�v
ˇ̌

` CK
ÿ

c,↵,�

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2B↵uZ

I3BcB�v
ˇ̌

` CK
ÿ

c,↵,�

ÿ

|I2|`|I3|§|I|,
|I3|†|I|

ˇ̌
ZI2B↵uZ

I3B�Bcv
ˇ̌

` t´1CK
ÿ

↵,�

|I1|§|I|´1

ˇ̌
B�uB↵ZI1

v
ˇ̌
.

Next, we turn our attention to the estimate of R2pI, u, vq:
R2pI, u, vq “A↵��B�u B↵ �1

� rZI , B�1 sv
`

ÿ

I1`I2`I3“I,

|I2|†|I|

A↵��ZI1B�uZI2B�1v ZI3B↵ �1

�

“:R5pI, u, vq ` R6pI, u, vq.
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To estimate the term R5pI, u, vq, we recall (3.2.1) and the fact thatˇ̌
B↵ �1

�

ˇ̌
§ Ct´1, so that

ˇ̌
A↵��B�u B↵ �1

� rZI , B�1 sv
ˇ̌

§ CKt´1
ÿ

�,�

|I1|§|I|´1

ˇ̌
B�uB�ZI1

v
ˇ̌
.

In the same way, for R6pI, u, vq we have

R6pI, u, vq § CKt´1
ÿ

�,�

ÿ

|I1|`|I2|§|I|
|I2|†|I|

ˇ̌
B�ZI1uB�ZI2v

ˇ̌
.

This establishes the desired result.
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Chapter 5

Sobolev and Hardy inequalities on
hyperboloids

5.1 A Sobolev inequality on hyperboloids

To turn L2 energy estimates into L8 estimates, we will rely on the following
Sobolev inequality.

Proposition 5.1.1 (Sobolev-type estimate on hyperboloids). Let u
be a su�ciently regular function defined in the cone K “ t|x| † t´1u, then
for all s ° 0 (and with t “

a
s2 ` |x|2)

sup
H

s

t3{2|upt, xq| § C
ÿ

L

ÿ

|I|§2

}LIu}L2pH
s

q, (5.1.1)

where C ° 0 is a universal constant and the summation in L is over all
vector fields La “ xaBt ` tBa, a “ 1, 2, 3.

In comparison to Lemma 7.6.1 in Hörmander (1997), observe that the
right-hand side of (5.1.1) does not contain the rotation fields ⌦ab :“ xaBb ´
xbBa.

Proof. Recall the relation t “
a
s2 ` |x|2 on Hs and consider a function

u defined in K, its restriction to the hyperboloid Hs is, by definition,

wspxq :“ up
a
s2 ` |x|2, xq.

Fix s0 and a point pt0, x0q on the hyperboloid Hs0 , with t0 “
a
s20 ` |x0|2.

Observe that

Baws0pxq “ Bau
`b

s20 ` |x|2, x
˘

“ Baupt, xq, (5.1.2)

with t “
a
s20 ` |x|2 and, therefore,

tBaws0pxq “ tBau
`b

s20 ` |x|2, t
˘

“ Laupt, xq. (5.1.3)

63
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Introduce the function gs0,t0pyq :“ ws0px0 ` t0 yq and note that

gs0,t0p0q “ ws0px0q “ u
`b

s20 ` |x0|2, x0

˘
“ upt0, x0q.

Applying the standard Sobolev inequality to gs0,t0 , we obtain

ˇ̌
gs0,t0p0q

ˇ̌2 § C
ÿ

|I|§2

ª

Bp0,1{3q
|BIgs0,t0pyq|2 dy,

where Bp0, 1{3q Ä R3 denotes the ball centered at the origin and with
radius 1{3.

Taking into account the identity (with x “ x0 ` t0y)

Bags0,t0pyq “ t0Baws0px0 ` t0yq “ t0Baws0pxq
“ t0Bau

`
t, xq

˘
,

in view of (5.1.2), we see that for all I

BIgs0,t0pyq “ pt0BqIupt, xq
and, therefore,

ˇ̌
gs0,t0p0q

ˇ̌2 §C
ÿ

|I|§2

ª

Bp0,1{3q

ˇ̌
pt0BqIu

`
t, xq

˘ˇ̌2
dy

“Ct´3
0

ÿ

|I|§2

ª

Bppt0,x0q,t0{3qXH
s0

ˇ̌
pt0BqIu

`
t, xq

˘ˇ̌2
dx.

We can check that

pt0Bapt0Bbws0qq “ t20BaBbws0

“ pt0{tq2ptBaqptBbqws0 ´ pt0{tq2pxa{tqLbws0 .

We also remark that xa{t “ xa
0{t` yt0{t “ pxa

0{t0 ` yqpt0{tq, so that, in the
region y P Bp0, 1{3q of interest, the factor |xa{t| is bounded by Cpt0{tq. We
conclude that for any |I| § 2,

|pt0BqIu| §
ÿ

|J|§|I|
|LIu|pt0{tqI .

On the other hand, when |x0| § t0{2 then t0 § 2?
3
s0 and thus

t0 § Cs0 § C
b

|x|2 ` s20 “ Ct,

C being a universal constant thoughout. When |x0| • t0{2 then in the
region Bppt0, x0q, t0{3q X Hs0 we have also

t0 § C|x| § C
b

|x|2 ` s20 “ Ct.
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Consequently, it follows that

|pt0BqIu| § C
ÿ

|J|§|I|
|LIu| (5.1.4)

and
ˇ̌
gs0,t0py0q

ˇ̌2 §Ct´3
0

ÿ

|I|§2

ª

Bpx0,t0{3qXH
s0

ˇ̌
ptBqIu

`
t, xq

˘ˇ̌2
dx

§Ct´3
0

ÿ

|I|§2

ª

H
s0

ˇ̌
LIupt, xq

ˇ̌2
dx,

which completes the proof of Proposition 5.1.1.

5.2 Application of the Sobolev inequality on hyperboloids

Using now the hyperboloidal energy defined in (2.3.2) and combining Propo-
sition 5.1.1 with the technical estimate (3.3.6), we can deduce various sup-
norm estimates, presented now. For clarity in the presention, we make
use of the notation Em,� (defined in Chapter 2) in order to emphasize
the dependency of the hyperboloidal energy upon the coe↵ficient � in the
Klein-Gordon equation.

Lemma 5.2.1 (L8 estimates on derivatives up to first-order). If u
is a su�ciently regular function supported in K, then the following estimates
hold:

(a) sup
H

s

ˇ̌
t1{2sB↵u

ˇ̌
§ C

ÿ

|I|§2

Emps, ZIuq1{2,

(b) sup
H

s

ˇ̌
t3{2Bau

ˇ̌
§ C

ÿ

|I|§2

Emps, ZIuq1{2,

(c) sup
H

s

ˇ̌
� t3{2u

ˇ̌
§ C

ÿ

|I|§2

Em,�ps, ZIuq1{2,

(5.2.1)

where Z stands for any admissible vector field, that is, any of B↵, La, and
C is a universal constant.

Remark 5.2.1. Let us illustrate our result with the homogeneous linear
wave equation

lw “ 0, w|H
B`1 “ w0, Btw|H

B`1 “ w1, (5.2.2)

where the solution wi is defined in HB`1 X K. Thanks to the energy
estimate in Proposition 2.3.1, the energy Emps, ZIwq is controlled by the
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initial energy. By the commutator estimates (3.3.1) and (3.3.2) and by the
Sobolev inequality, we find

ˇ̌
Baw

ˇ̌
§ Ct´3{2,

ˇ̌
B↵w

ˇ̌
§ Ct´3{2`1pt2 ´ r2q´1{2, (5.2.3)

which are classical estimates. We emphasize that our argument of proof
is “robust” in the sense that it uses neither the explicit expression of the
solution nor the scaling vector field S “ rBr ` tBt.

Now, we turn our attention to the energy and decay estimates for the
“good” second-order derivatives, that is, derivatives such as BaB↵u.

Lemma 5.2.2 (Bounds on second-order derivatives). For every suf-
ficiently regular function u supported in the cone K, the following estimates
hold:

sup
H

s

ˇ̌
t3{2sBaB↵u

ˇ̌
` sup

H
s

ˇ̌
t3{2sB↵Bau

ˇ̌
§ C

ÿ

|I|§3

Emps, ZIuq1{2, (5.2.4)

ª

H
s

ˇ̌
sBaB↵u

ˇ̌2
dx `

ª

H
s

ˇ̌
sB↵Bau

ˇ̌2
dx § C

ÿ

|I|§1

Emps, ZIuq. (5.2.5)

Proof. Recalling that Ba “ t´1La, we obtain |BaB↵u| § t´1|LaBu|. By
Lemma 5.2.1 and the commutator estimate (3.1.5), we obtain (5.2.4). The
second estimate is immediate in view of the expression (2.3.2).

Remark 5.2.2. Energy estimates and L8 estimates for the second-order
time derivative B0B0u will be derived later from the wave equation itself,
thanks to the decomposition in Proposition 2.2.1.

At the end of this section, we state the L8 estimates of the solution of
wave equation (i.e. ci “ 0).

Lemma 5.2.3. If u is a su�ciently regular function supported in the cone
K, then for any multi-index J , if

∞
|I|§|J|`2 Emps, ZIuq1{2 § C 1s� for some

� • 0, then one has
ˇ̌
ZJu

ˇ̌
§ CC 1tp´2`�q{2pt ´ rqp1`�q{2 § C2C 1t´3{2s1`�, (5.2.6)

where C,C 1, C2 are universal constants.

Proof. Using that
∞

|I|§|J|`2 Emps, ZIuq1{2 is bounded by C 1s� and recall-
ing by Lemma 5.2.1, we find in the cone K

|BrZIu| § Ct´p2´�q{2pt ´ rq´p1´�q{2.

Then, (5.2.6) follows by integration along radial directions.
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5.3 Hardy inequality for the hyperboloidal foliation

In this section we establish an analogue of the classical Hardy inequality
but generalized to hyperboloidal foliations. This inequality will be used in
order to control L2 norms of wave components such as }ZIu}L2pH

s

q.

Proposition 5.3.1 (The hyperboloidal Hardy inequality). For all
su�ciently regular functions u supported in the cone K, one has

}s´1u}L2pH
s

q §C}s´1
0 u}L2pH

s0 q ` C
ÿ

a

}Bau}L2pH
s

q

` C
ÿ

a

ª s

s0

⌧´1
´

}p⌧{tqBau}L2pH
⌧

q ` }Bau}L2pH
⌧

q
¯
d⌧.

(5.3.1)

Before proving this result, we begin with the following modified version
of the classical Hardy inequality.

Lemma 5.3.1. For all su�ciently regular functions u supported in the cone
K, one has

}r´1u}L2pH
s

q § C
ÿ

a

}Bau}L2pH
s

q.

Proof. As in the proof of Proposition 5.1.1, we consider the function
wspxq :“ u

`a
s2 ` |x|2, x

˘
, which satisfies

Bawspxq “ Bau
`a

s2 ` |x|2, x
˘
.

We then apply the classical Hardy inequality to ws and obtain
ª

R3

|r´1wspxq|2dx § C

ª

R3

|rwspxq|2dx “ C
ÿ

a

ª

R3

ˇ̌
Baup

a
s2 ` r2, xq

ˇ̌2
dx

§ C
ÿ

a

ª

H
s

ˇ̌
Baupt, xq

ˇ̌2
dx.

Proof of Proposition 5.3.1. We introduce a smooth cut-o↵ function �

satisfying

�prq “
#
1, 2{3 § r,

0, 0 § r § 1{3
and consider the decomposition

}s´1u}L2pH
s

q § }�pr{tqs´1u}L2pH
s

q ` }p1 ´ �pr{tqqs´1u}L2pH
s

q
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which distinguish between the region “near” and “away” from the light
cone.

The estimate of }p1 ´ �pr{tqqs´1u}L2pH
s

q is based on the following ob-
servation:

`
1 ´ �pr{tq

˘
s´1 § Ct´1 in the cone K,

so that, by Lemma 5.3.1,

}p1 ´ �pr{tqqus´1}L2pH
s

q § }t´1u}L2pH
s

q

§ }r´1u}L2pH
s

q § C
ÿ

a

}Bau}L2pH
s

q.
(5.3.2)

The estimate near the light cone is more delicate and to deal with the
term }�pr{tqs´1u}L2pH

s

q, we proceed as follows: in the region Krs0,ss, we
can find a positive constant C

�pr{tq § C
�pr{tqr

p1 ` r2q1{2 ,

and thus

}�pr{tqs´1u}L2pH
s

q § C}rp1 ` r2q´1{2�pr{tqs´1u}L2pH
s

q.

So, we can focus on controlling this latter term.
To this end, we consider the vector field

W “
ˆ
0,´xa tpu�pr{tqq2

p1 ` r2qs2
˙

defined in K and we compute its divergence

divW

“ s´1Bau
r�pr{tqu

p1 ` r2q1{2s
´2xat�pr{tq
rp1 ` r2q1{2 ´ s´1u

r

r�pr{tqu
sp1 ` r2q1{2

2�1pr{tqr
p1 ` r2q1{2

´
ˆ

r2t ` 3t

p1 ` r2q2s2 ` 2r2t

p1 ` r2qs4
˙`

u�pr{tq
˘2
.

Next, we integrate the above inequality in the region Krs0,s1s Ä K X
ts0 §

?
t2 ´ r2 § s1u with respect to the Lebesgue measure in R4:ª

Krs0,s1s
divWdxdt

“ ´2

ª

Krs0,s1s
s´1

ˆ
Bau

r�pr{tqu
p1 ` r2q1{2s

xat�pr{tq
rp1 ` r2q1{2

˙
dxdt

´ 2

ª

Krs0,s1s
s´1u

r

r�pr{tqu
sp1 ` r2q1{2

�1pr{tqr
p1 ` r2q1{2 dxdt

´
ª

Krs0,s1s

ˆ
r2t ` 3t

p1 ` r2q2s2 ` 2r2t

p1 ` r2qs4
˙`

u�pr{tq
˘2
dxdt
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thus ª

Krs0,s1s
divWdxdt

“ ´2

ª s1

s0

ª

H
s

ps{tqs´1

ˆ
Bau

r�pr{tqu
p1 ` r2q1{2s

xat�pr{tq
rp1 ` r2q1{2

˙
dxds

´ 2

ª s1

s0

ª

H
s

ps{tqs´1u

r

r�pr{tqu
sp1 ` r2q1{2

�1pr{tqr
p1 ` r2q1{2 dxds

´
ª s1

s0

ª

H
s

ps{tq
ˆ

r2t ` 3t

p1 ` r2q2s2 ` 2r2t

p1 ` r2qs4
˙`

u�pr{tq
˘2
dxds

“:

ª s1

s0

`
T1 ` T2 ` T3

˘
ds,

where

T1 “ ´ 2s´1

ª

H
s

ps{tq
ˆ

Bau
r�pr{tqu

p1 ` r2q1{2s
xat�pr{tq
rp1 ` r2q1{2

˙
dx

§2s´1

››››
ru�pr{tq

sp1 ` r2q1{2

››››
L2pH

s

q

¨
ÿ

a

}ps{tqBau}L2pH
s

q
››�pr{tqxatr´1p1 ` r2q´1{2››

L8pH
s

q

§Cs´1

››››
ru�pr{tq

sp1 ` r2q1{2

››››
L2pH

s

q

ÿ

a

}ps{tqBau}L2pH
s

q,

T2 “ ´ 2s´1

ª

H
s

ps{tqu
r

r�pr{tqu
sp1 ` r2q1{2

�1pr{tqr
p1 ` r2q1{2 dx

§Cs´1

››››
ru�pr{tq

sp1 ` r2q1{2

››››
L2pH

s

q
}ur´1}L2pH

s

q
››r�1pr{tqp1 ` r2q´1{2››

L8pH
s

q

§Cs´1

››››
ru�pr{tq

sp1 ` r2q1{2

››››
L2pH

s

q

ÿ

a

}Bau}L2pH
s

q,

where Lemma 5.3.1 is used. We also observe that T3 § 0.
We write our identity in the form

d

ds

ˆ ª

Krs0,ss
divW dxdt

˙
“ T1 ` T2 ` T3 (5.3.3)

and obtain
d

ds

ˆ ª

Krs0,s1s
divW dxdt

˙

§ Cs´1

››››
ru�pr{tq

sp1 ` r2q1{2

››››
L2pH

s

q

ÿ

a

`
}ps{tqBa}L2pH

s

q ` }Bau}L2pH
s

q
˘
.

(5.3.4)



October 19, 2015 15:56 World Scientific Book - 9in x 6in PLF-YM-book page 70

70 The hyperboloidal foliation method

On the other hand, we apply Stokes’ formula in the region Krs0,s1s, and
find

ª

Krs0,s1s
divW dxdt

“
ª

H
s

W ¨ nd� `
ª

H
s0

W ¨ nd�

“
ª

H
s

r2

1 ` r2
ˇ̌
u�pr{tqs´1

ˇ̌2
dx ´

ª

H
s0

r2

1 ` r2
ˇ̌
u�pr{tqs´1

ˇ̌2
dx.

By di↵erentiating this identity with respect to s, it follows that

d

ds

ˆ ª

Krs0,s1s
divW dxdt

˙
“ d

ds

ˆ ª

H
s

r2

1 ` r2
ˇ̌
u�pr{tqs´1

ˇ̌2
dx

˙

“ 2

››››
ru�pr{tq

sp1 ` r2q1{2

››››
L2pH

s

q

d

ds

››››
ru�pr{tq

sp1 ` r2q1{2

››››
L2pH

s

q
.

(5.3.5)

Finally, combining (5.3.4) and (5.3.5) yields us

d

ds

››››
ru�pr{tq

sp1 ` r2q1{2

››››
L2pH

s

q
§ Cs´1

ÿ

a

`
}Bau}L2pH

s

q ` }Bau}L2pH
s

q
˘

and, by integration over the interval rs0, ss,
››rp1 ` r2q´1{2�pr{tqs´1u

››
L2pH

s

q

§
››rp1 ` r2q´1{2�pr{tqs´1

0 u
››
L2pH

s0 q

` C
ÿ

a

ª s

s0

⌧´1
`
}Bau}L2pH

⌧

q ` }Bau}L2pH
⌧

q
˘
.

(5.3.6)

In view of Lemma 5.3.1, we conclude that

}�pr{tqs´1u}L2pH
s

q

§ C }rp1 ` r2q´1{2�pr{tqs´1u}L2pH
s

q

§ C
››s´1

0 u
››
L2pH

s0 q ` C
ÿ

a

ª s

s0

⌧´1
`
}Bau}L2pH

⌧

q ` }Bau}L2pH
⌧

q
˘
.

(5.3.7)

The desired conclusion is reached by combining (5.3.2) with (5.3.7).
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Chapter 6

Revisiting scalar wave equations

6.1 Background and statement of the main result

In this chapter, we revisit the classical global existence theory for scalar
nonlinear wave equations (with initial data imposed on a hyperboloid Hs0 ,
with s0 • 1):

lu “ P↵�B↵uB�u
u|H

s0
“ u0, Btu|H

s0
“ u1,

(6.1.1)

with smooth initial data u0, u1 compactly supported in the open ball
Bp0, s0q. We denote by Bp0, s0q the intersection of the spacelike hyper-
surface Hs0 and the cone K “

 
pt, xq { |x| † t´1

(
. We impose the classical

null condition on the bilinear form P↵� , that is,

P↵�⇠↵⇠� “ 0 for all ⇠ P R4 satisfying ´⇠20 `
ÿ

a

⇠2a “ 0. (6.1.2)

We are going to revisit this classical problem with the hyperboloidal fo-
liation method and we establish that the energy of solutions is uniformly
bounded, while, according to the classical technique of proof, the energy
is only known to be at most polynomially increasing. The hyperboloidal
energy Em “ Em,0 was introduced in (2.1.11), while the admissible vector
fields Z P Z were defined in (2.1.7).

Theorem 6.1.1 (Existence theory for scalar wave equations).
There exist ✏0, C1 ° 0 such that for all initial data satisfying

Emps0, ZIuq1{2 § ✏ § ✏0 for all |I| § 3, Z P Z , (6.1.3)

the local-in-time solution u to the Cauchy problem (6.1.1) extends to arbi-
trarily large times and, furthermore,

Emps, ZIuq1{2 § C1✏ for all |I| § 3, Z P Z , (6.1.4)

and ˇ̌
B↵upt, xq

ˇ̌
§ C1"t

´1pt ´ |x|q´1{2. (6.1.5)

71
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6.2 Structure of the proof

We proceed with a bootstrap strategy and, for some large constant C1 ° 1,
we assume that, in a time interval rs0, s1s the local solution satisfies the
bound

ÿ

|I|§3
ZPZ

Emps, ZIuq1{2 § C1✏ for s P rs0, s1s. (6.2.1)

We take

s1 :“ sup
!
s • s0 {

ÿ

|I|§3
ZPZ

Emp⌧, ZIuq1{2 § C1✏ for all ⌧ P rs0, ss
)

to be the largest such time and we suppose that it would be finite. Since
C1 ° 1, by a continuity argument, we know that s1 ° s0.

Our objective is to establish, for a suitable choice of ✏0, C1 ° 0, that for
all ✏ § ✏0,

ÿ

|I|§3
ZPZ

Emps, ZIuq1{2 § 1

2
C1✏ for s P rs0, s1s. (6.2.2)

This leads us to
ÿ

|I|§3
ZPZ

Emps1, ZIuq1{2 § 1

2
C1✏,

and, by continuity,

s1 † sup
!
s • s0 {

ÿ

|I|§3
ZPZ

Emp⌧, ZIuq § C1✏ for all ⌧ P rs0, ss
)
, (6.2.3)

which would be a contradiction. We can then conclude that s1 “ `8.
Namely, in view of the local-in-time existence theory (cf. Theorem 11.2.1),
the solution u extends to all times.

In other words, our task reduces to proving the following result, and the
rest of this chapter is devoted to its proof.

Proposition 6.2.1. Let u be a solution to (6.1.1) defined in rs0, s1s and
with initial data satisfying

ÿ

|I|§3
ZPZ

Emps0, ZIuq1{2 § ". (6.2.4)

There exist constants C1, "0 ° 0 such that if u satisfies the estimate (6.2.1)
with " § "0, then the estimate (6.2.2) holds.
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6.3 Energy estimate

The following lemma is essentially Proposition 2.3.1 in the special case of
(6.1.1), but for convenience we provide here a direct proof.

Lemma 6.3.1. If u is a solution to (6.1.1) defined in rs0, s1s, then the
energy estimate

ÿ

|I|§3
ZPZ

Emps, ZIuq1{2

§
ÿ

|I|§3
ZPZ

Emps0, ZIuq1{2 `
ª s

s0

ÿ

|I|§3
ZPZ

››ZI
`
P↵�B↵uB�u

˘››
L2pH

⌧

qd⌧.
(6.3.1)

Proof. We apply to the equation (6.1.1) a product ZI with |I| § 3 and,
by recalling the commutation relation rZI ,ls “ 0, we find

l
`
ZIu

˘
“ ZI

`
P↵�B↵uB�u

˘
.

By multiplying this equation by BtZIu and performing the standard energy
calculation, we deduce that the function ru :“ ZIu satisfies

1

2
Bt

ˆ
pBtruq2 `

ÿ

a

pBaruq2
˙

´ Ba
`
BaruBtru

˘
“ ZI

`
P↵�B↵ruB�ru

˘
Btru.

Integrating this equation in the region Krs0,ss, we have

ª

Krs0,ss

˜
1

2
Bt

ˆ
pBtruq2 `

ÿ

a

pBaruq2
˙

´ Ba
`
BaruBtru

¸
dtdx

“
ª

Krs0,ss
ZI

`
P↵�B↵ruB�u

˘
Btru dtdx.

(6.3.2)

By Huygens’ principle, the solution is supported in the cone K and, in
a neighborhood of the cone t|x| “ t ´ 1u X ts0 § ⌧ § su, we have ru “ 0.
By Stokes’ formula, the left-hand side of (6.3.2) reduces to

1

2

ª

H
s

´`
Btru

˘2 `
ÿ

a

`
Baru

˘2
, 2BtruBaru

¯
¨ nd�

´ 1

2

ª

H
s0

`
|Btru|2 `

ÿ

a

|Baru|2, 2BtruBaru
˘
.nd�,

where n is the (future oriented) unit normal vector to the hyperboloids and
d� is the induced Lebesgue measure on the hyperboloids, with

n “
`
t2 ` |x|2

˘´1{2pt,´xaq, d� “
`
t2 ` |x|2

˘1{2

t
dx.
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Hence, the left-hand side of (6.3.2) reads

1

2

ª

H
s

ˆ
|Btru|2 `

ÿ

a

|Baru|2 ` 2
xa

t
BaruBtru

˙
dx

´ 1

2

ª

H
s0

ˆ
|Btru|2 `

ÿ

a

|Baru|2 ` 2
xa

t
BaruBtru

˙
dx,

which is 1
2Emps, ZIuq ´ 1

2Emps0, ZIuq.
On the other hand, in the region Krs0,ss, we use the change of variable

⌧ “ pt2 ´ |x|2q1{2 and the identity dtdx “ p⌧{tqd⌧dx, so that the right-hand
side of (6.3.2) becomes

ª s

s0

ª

H
⌧

p⌧{tqBtuZI
`
P↵�B↵uB�u

˘
dxd⌧.

We thus conclude that (6.3.2) is equivalent to

1

2
Emps, ZIuq ´ 1

2
Emps0, ZIuq “

ª s

s0

ds

ª

H
⌧

p⌧{tqBtuZI
`
P↵�B↵uB�u

˘
dx.

(6.3.3)
Next, we di↵erentiate (6.3.3) with respect to the variable s and obtain

Ep⌧, ZIuq1{2 d

d⌧
Ep⌧, ZIuq1{2 “

ª

H
⌧

p⌧{tqBtuZI
`
P↵�B↵uB�u

˘
dx

§}p⌧{tqBtu}L2pH
⌧

q
››ZI

`
P↵�B↵uB�u

˘››
H

⌧

.

Recalling the expression of the hyperboloidal energy (2.3.2), we have
Eps, uq1{2 • }p⌧{tqBtu}L2pH

s

q and therefore

d

ds

ÿ

|I|§3
ZPZ

Eps, ZIuq1{2 §
ÿ

|I|§3
ZPZ

››ZI
`
P↵�B↵uB�u

˘››
H

s

.

The conclusion follows by integrating over rs0, ss.

6.4 Basic L2 and L8 estimates

In this section, from the bootstrap assumption (6.2.1), we deduce L2 and
L8 estimates. First of all, the following lemma is immediate in view of the
expression of the hyperboloidal energy and (6.2.1).

Lemma 6.4.1 (Basic L2 estimates). By relying on (6.2.1), the follow-
ing estimate hold for all s P rs0, s1s:

ÿ

|I|§3
ZPZ

}BaZ
Iu}L2pH

s

q § CC1✏, (6.4.1a)



October 19, 2015 15:56 World Scientific Book - 9in x 6in PLF-YM-book page 75

Revisiting scalar wave equations 75

ÿ

|I|§3
ZPZ

}ps{tqB0Z
Iu}L2pH

s

q § CC1✏, (6.4.1b)

where C ° 0 is a (universal) constant.

Now, we combine Lemma 6.4.1 with the commutator estimates in Lem-
mas 3.3.1 and 3.3.2.

Lemma 6.4.2. By relying on (6.2.1), the following estimate hold for all
s P rs0, s1s:

}ZI1BaZ
I2u}L2pH

s

q § CC1✏ for all |I1| ` |I2| § 3, (6.4.2a)

}ZI1
`
ps{tqB0Z

I2u
˘
}L2pH

s

q § CC1✏ for all |I1| ` |I2| § 3, (6.4.2b)

where C ° 0 is a universal constant.

Furthermore, the following decay estimate is immediate in view of
(6.4.2) and the Sobolev estimate on hyperboloids (5.1.1).

Lemma 6.4.3 (Basic L8 estimates). By relying on (6.2.1), the follow-
ing estimate hold for all s P rs0, s1s:

}t3{2BaZ
Ju}L8pH

s

q § CC1✏ for all |J | § 1, (6.4.3a)

}t1{2sB0Z
Iu}L8pH

s

q § CC1✏ for all |J | § 1, (6.4.3b)

where C ° 0 is a universal constant.

6.5 Estimate on the interaction term

We are now in a position to control the interaction term P↵�B↵uB�u with
the help of the L2 bound (6.4.2) and the L8 bound (6.4.3).

Lemma 6.5.1. By reyling on the inequalities (6.4.2) and (6.4.3) and by
assuming that the billinear form associated with P↵� is a null form, the
following estimate holds for all s P rs0, s1s:

››ZI
`
P↵�B↵uB�u

˘››
L2pH

s

q § CK pC1"q2s´3{2, (6.5.1)

where C ° 0 is a universal constant and K “ max↵,� |P↵� |.
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Proof. We recall Proposition 4.1.2 which tells us how to estimate a null
form, that is

ˇ̌
ZI

`
P↵�B↵uB�u

˘ˇ̌
§ CKps{tq2

ÿ

|I1|`|I2|§|I|

ˇ̌
ZI1BtuZI2Btu

ˇ̌

` CK
ÿ

a,�,

|I1|`|I2|§|I|

´ˇ̌
ZI1BauZ

I2B�u
ˇ̌
`

ˇ̌
ZI1B�uZ

I2Bau
ˇ̌¯

“: T1 ` T2,

where K “ max↵,� |P↵� |.
To estimate the L2 norm of each term in T1, we remark that |I1|`|I2| §

|I| § 3 implies that |I1| § 1 or |I2| § 1. Without loss of generality, we
assume |I2| § 1 and then write

››ps{tq2ZI1BtuZI2Btu
››
L2pH

s

q

§
››ps{tqBtu

››
L2pH

s

q
››ps{tqt´1{2s´1

`
t1{2sZI2Btu

˘››
L8pH

s

q

§ CC1✏ s
´3{2CC1✏ § CpC1✏q2s´3{2.

The terms in T2 are estimated along the same idea by writing, when
|I1| § 1,

››ZI1BauZ
I2B�u

››
L2pH

s

q “
››t3{2ZI1Bau t

´3{2pt{sqps{tqZI2B�u
››
L2pH

s

q

§
››t3{2ZI1Bau s

´3{2ps{tqZI2B�u
››
L2pH

s

q

“s´3{2››t3{2ZI1Bau
››
L8pH

s

q
››ps{tqZI2B�u

››
L2pH

s

q

§CpC1✏q2s´3{2

and, on the other hand when |I2| § 1,

››ZI1BauZ
I2B�u

››
L2pH

s

q “
››ZI1Bau t

´1{2s´1 t1{2sZI2B�u
››
L2pH

s

q

§
››ZI1Bau s

´3{2t1{2sZI2B�u
››
L2pH

s

q

“s´3{2››ZI1Bau
››
L2pH

s

q
››t1{2sZI2B�u

››
L8pH

s

q

§CpC1✏q2s´3{2.
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6.6 Conclusion

Proof of Proposition 6.2.1. Now, we combine the null form estimate
(6.5.1) and the energy estimate (6.3.1), and obtain

ÿ

|I|§3
ZPZ

Emps, ZIuq1{2 §
ÿ

|I|§3
ZPZ

Emps0, ZIuq1{2 ` CpC1✏q2
ª s

s0

⌧´3{2 d⌧

§
ÿ

|I|§3
ZPZ

Emps0, ZIuq1{2 ` CpC1✏q2
ª `8

1
⌧´3{2 d⌧

§✏` CpC1✏q2.
In order to conclude, we take C1 ° 2 and ✏ § ✏0 “ C1´2

2CC2
1
, and we find that

ÿ

|I|§3
ZPZ

Emps, ZIuq1{2 § 1

2
C1✏.

The time-asymptotics of the solutions is also clear: (6.1.4) has already
been proved by Proposition 6.2.1. To see (6.1.5), we remark that by Lemma
6.4.3,

|Btu| § C1✏t
´1{2s´1 § C1✏t

´1pt ´ rq´1{2, |Bau| § C1✏t
´3{2.

By recalling the relation

Bau “ Bau ´ xa

t
Btu,

then (6.1.5) follows. In view of the discussion at the beginning of Section
6.2, Theorem 6.1.1 is now established.
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Chapter 7

Fundamental L8 and L2 estimates

7.1 Objective of this chapter

We begin the discussion of the bootstrap arguments and we suppose that
(2.4.5) holds on some time interval. Our aim is to derive additional es-
timates from these assumptions. In the present chapter, we are able to
deduce several L2 and L8 estimates on the solution and its derivatives.
These rather immediate estimates will serve as a basis for the following
chapters. The estimates in this chapter are classified into two groups: L2

estimates and L8 estimates:

‚ The L2-type estimates themselves are classified into two genera-
tions:

– The estimates of the first generation are immediate conse-
quences of (2.4.5).

– The estimates of the second generation are deduced from those
of the first generation, by recalling the commutator estimates
(cf. Lemmas 3.3.1 and 3.3.2). These are the L2 bounds that
will be more often used in the following discussion.

‚ The L8-type estimates are also classified into two generations:

– The estimates of the first generation follow immediately from
(2.4.5) and the Sobolev inequalities (5.1.1).

– The estimates of the second generation are deduced from the
ones of the first generation and the commutator estimates in
Lemmas 3.3.1 and 3.3.2.

In the following, the letter C will be used to represent a constant who
depends on the structure of the system (1.2.1), such as the number of

79
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equations n0, the number of wave components j0, and the Klein-Gordon
constants ci.

7.2 L2 estimates of the first generation

From the expression of the energy (2.3.2) and the energy assumption (2.4.5),
the following estimates hold of all |I7| § 5 and |I:| § 4:

ÿ

↵,i

››ps{tqB↵ZI7
wi

››
L2pH

s

q `
ÿ

↵,i

››ps{tqB↵Z
I7
wi

››
L2pH

s

q § CC1✏s
�, (7.2.1a)

ÿ

↵,i

››ps{tqB↵ZI:
wi

››
L2pH

s

q `
ÿ

↵,i

››ps{tqB↵Z
I:
wi

››
L2pH

s

q § CC1✏s
�{2, (7.2.1b)

ÿ

a,i

››BaZ
I7
wi

››
L2pH

s

q § CC1✏s
�, (7.2.1c)

ÿ

a,i

››BaZ
I:
wi

››
L2pH

s

q § CC1✏s
�{2, (7.2.1d)

ÿ

qı

››ZI7
vqı

››
L2pH

s

q § CC1✏s
�, (7.2.1e)

ÿ

qı

››ZI:
vqı

››
L2pH

s

q § CC1✏s
�{2. (7.2.1f)

By taking

ZI7 “ B↵ZI:
, ZI: “ B↵ZI ,

ZI7 “ tBaZ
I: “ LaZ

I:
, ZI: “ tBaZ

I “ LaZ
I

in (7.2.1e) and (7.2.1f), we have especially the following estimates on Klein-
Gordon components for |I:| § 4 and |I| § 3:

ÿ

qı,↵

››B↵ZI:
vqı

››
L2pH

s

q `
ÿ

qı,a

››B↵Z
I:
vqı

››
L2pH

s

q § CC1✏s
�, (7.2.2a)

ÿ

qı,↵

››B↵ZIvqı
››
L2pH

s

q `
ÿ

qı,a

››B↵Z
Ivqı

››
L2pH

s

q § CC1✏s
�{2, (7.2.2b)

ÿ

qı,a

››tBaZ
I:
vqı

››
L2pH

s

q § CC1✏s
�, (7.2.2c)
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ÿ

qı,a

››tBaZ
Ivqı

››
L2pH

s

q § CC1✏s
�{2. (7.2.2d)

The bound on B↵Z
I:
vqı in (7.2.2a) is derived from the estimate on BtZI:

vqı
and the estimates on BaZ

I:
vqı.

For any |I| § 3, from (2.3.2) and (2.4.5e) we control the wave compo-
nents:

ÿ

↵,pı

››ps{tqB↵ZIupı
››
L2pH

s

q `
ÿ

↵,pı

››ps{tqB↵Z
Iupı

››
L2pH

s

q § CC1✏, (7.2.3a)

ÿ

a,pı

››BaZ
Iupı

››
L2pH

s

q § CC1✏. (7.2.3b)

7.3 L2 estimates of the second generation

By using Lemma 3.3.2, we can commute the vector fields under consider-
ation and, relying on the estimates established in the previous section, we
obtain the following result.

The first group of estimates is obtained by (3.3.1), (3.3.2), and (7.2.1):
ÿ

pı,↵

››ps{tqZI7 B↵wi

››
L2pH

s

q `
ÿ

pı,↵

››ps{tqZI7 B↵wi

››
L2pH

s

q § CC1✏s
�, (7.3.1a)

ÿ

pı,↵

››ps{tqZI: B↵wi

››
L2pH

s

q `
ÿ

pı,↵

››ps{tqZI: B↵wi

››
L2pH

s

q § CC1✏s
�{2, (7.3.1b)

ÿ

pı,a

››ZI7 Bawpı
››
L2pH

s

q § CC1✏s
�, (7.3.1c)

ÿ

pı,a

››ZI: Bawpı
››
L2pH

s

q § CC1✏s
�{2, (7.3.1d)

ÿ

q|

››ZI7
vq|

››
L2pH

s

q § CC1✏s
�, (7.3.1e)

ÿ

q|

››ZI:
vq|

››
L2pH

s

q § CC1✏s
�{2. (7.3.1f)

The second group of estimates follows from (3.3.1), (3.3.2), and (7.2.2):

ÿ

qı,↵

››ZI: B↵vqı
››
L2pH

s

q `
ÿ

qı,↵

››ZI: B↵vqı
››
L2pH

s

q § CC1✏s
�, (7.3.2a)
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ÿ

qı,↵

››ZIB↵vqı
››
L2pH

s

q `
ÿ

qı,↵

››ZIB↵vqı
››
L2pH

s

q § CC1✏s
�{2, (7.3.2b)

ÿ

qı,a

››tZI: Bavqı
››
L2pH

s

q § CC1✏s
�, (7.3.2c)

ÿ

qı,a

››tZIBavqı
››
L2pH

s

q § CC1✏s
�{2. (7.3.2d)

The third group of estimates follows from (3.3.1), (3.3.2), and (7.2.3):
ÿ

pı,↵

››ps{tqZIB↵upı
››
L2pH

s

q `
ÿ

pı,↵

››ps{tqZIB↵upı
››
L2pH

s

q § CC1✏, (7.3.3a)

ÿ

pı,a

››ZIBaupı
››
L2pH

s

q § CC1✏. (7.3.3b)

The fourth group of estimates concerns the second order derivatives.
The first is deduced from (5.2.5), (2.4.5a), and (2.4.5b), while the second is
deduced from (5.2.5), (2.4.5d), and (2.4.5c), and the last one from (5.2.5)
and (2.4.5e):

ÿ

a,�,i

››sBaB�Z
I:
wi

››
L2pH

s

q `
ÿ

a,�,i

››sB�BaZ
I:
wi

››
L2pH

s

q § CC1✏s
�, (7.3.4a)

ÿ

a,�,i

››sBaB�Z
Iwi

››
L2pH

s

q `
ÿ

a,�,i

››sB�BaZ
Iwi

››
L2pH

s

q § CC1✏s
�{2, (7.3.4b)

ÿ

a,�,pı

››sBaB�Z
I5
upı

››
L2pH

s

q `
ÿ

a,�,pı

››sB�BaZ
I5
upı

››
L2pH

s

q § CC1✏, (7.3.4c)

where the order of I5 is less or equal to 2. We can also use the commutator
estimates (3.3.4) and obtain

ÿ

a,�,i

››sZI: BaB�wi

››
L2pH

s

q `
ÿ

a,�,i

››sZI: B�Bawi

››
L2pH

s

q § CC1✏s
�, (7.3.5a)

ÿ

a,�,i

››sZIBaB�wi

››
L2pH

s

q `
ÿ

a,�,i

››sZIB�Bawi

››
L2pH

s

q § CC1✏s
�{2, (7.3.5b)

ÿ

a,�,pı

››sZI5 BaB�upı
››
H

s

`
ÿ

a,�,pı

››sZI5 B�Baupı
››
H

s

§ CC1✏. (7.3.5c)
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Finally, we have the L2 estimates for the wave components themselves⇤

for all |I7| § 5 and all |I:| § 4:
››s´1ZI7

upı
››
L2pH

s

q § CC1✏s
�, (7.3.6a)

››s´1ZI:
upı

››
L2pH

s

q § CC1✏s
�{2, (7.3.6b)

››t´1ZIupı
››
L2pH

s

q § CC1✏. (7.3.6c)

The first two inequalities are direct consequences of (7.2.1a), (7.2.1b),
(7.2.1c), and (7.2.1d) combined with Proposition 5.3.1. The last inequality
is a result of Lemma 5.3.1 combined with (7.2.3b).

7.4 L8 estimates of the first generation

For convenience in the presentation, we introduce a new convention (which
is parallel to the index convention already made in (2.4.1)):

J 7 index of order § 3,

J: index of order § 2,

J index of order § 1.

(7.4.1)

Now we give the decay estimates based on the energy assumption (2.4.5)
and the Sobolev-type inequality given in Proposition 5.1.1.

The first group of inequalities is a direct consequence of (5.2.1), (2.4.5b),
and (2.4.5a):

sup
H

s

´
st1{2 ˇ̌

B↵ZJ7
wj

ˇ̌¯
` sup

H
s

´
st1{2 ˇ̌

B↵Z
J7
wj

ˇ̌¯
§ CC1✏s

�, (7.4.2a)

sup
H

s

´
st1{2 ˇ̌

B↵ZJ:
wj

ˇ̌¯
` sup

H
s

´
st1{2 ˇ̌

B↵Z
J:
wj

ˇ̌¯
§ CC1✏s

�{2, (7.4.2b)

sup
H

s

´
t3{2 ˇ̌

BaZ
J7
wj

ˇ̌¯
§ CC1✏s

�, (7.4.2c)

sup
H

s

´
t3{2 ˇ̌

BaZ
J:
wj

ˇ̌¯
§ CC1✏s

�{2, (7.4.2d)

⇤In (7.3.6a), if we want to be more precise, C “ C1pC0{C1 ` 1 ` �´1q where C1 is a
constant depending only on the structure of the system. We see that it also depends on
C0 and �. But as we can assume that 1{12 § � † 1{6 and C1 • C0, we denote it again
by C and regard it as a constant determined by the structure of the system.
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sup
H

s

´
t3{2|ZJ7

vq||
¯

§ CC1✏s
�, (7.4.2e)

sup
H

s

´
t3{2|ZJ:

vq||
¯

§ CC1✏s
�{2. (7.4.2f)

The second group of estimates is a special case of the second estimate,
by taking

ZJ7 “ B↵ZJ:
, ZJ7 “ LaZ

J: “ tBaZ
J:
,

ZJ: “ B↵ZJ , ZJ: “ LaZ
J “ tBaZ

J

in (7.4.2e) and (7.4.2f):

sup
H

s

´
t3{2|B↵ZJ:

vq||
¯

` sup
H

s

´
t3{2 ˇ̌

B↵Z
J:
vq|

ˇ̌¯
§ CC1✏s

�, (7.4.3a)

sup
H

s

´
t3{2|B↵ZJvq||

¯
` sup

H
s

´
t3{2 ˇ̌

B↵Z
Jvq|

ˇ̌¯
§ CC1✏s

�{2, (7.4.3b)

sup
H

s

´
t5{2 ˇ̌

BaZ
J:
vq|

ˇ̌¯
§ CC1✏s

�, (7.4.3c)

sup
H

s

´
t5{2 ˇ̌

BaZ
Jvq|

ˇ̌¯
§ CC1✏s

�{2. (7.4.3d)

The estimates in the third group follow from (5.2.1) (a) and (b) com-
bined with (2.4.5e):

sup
H

s

´
st1{2 ˇ̌

B↵ZJupk
ˇ̌¯

` sup
H

s

´
st1{2 ˇ̌

B↵Z
Jupk

ˇ̌¯
§ CC1✏, (7.4.4a)

sup
H

s

´
t3{2 ˇ̌

BaZ
Jupk

ˇ̌¯
§ CC1✏. (7.4.4b)

The fourth group concerns the “second order derivative” of the solution.
They are deduced from (5.2.4) and (2.4.5):

sup
H

s

`
t3{2s

ˇ̌
B↵BaZ

J:
wj

ˇ̌˘
` sup

H
s

`
t3{2s|BaB↵Z

J:
wj |

˘
§ CC1✏s

�, (7.4.5a)

sup
H

s

`
t3{2s

ˇ̌
B↵BaZ

Jwj

ˇ̌˘
` sup

H
s

`
t3{2s|BaB↵Z

Jwj |
˘

§ CC1✏s
�{2, (7.4.5b)

sup
H

s

`
t3{2s

ˇ̌
B↵Baup|

ˇ̌˘
` sup

H
s

`
t3{2s

ˇ̌
BaB↵up|

ˇ̌˘
§ CC1✏. (7.4.5c)
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7.5 L8 estimates of the second generation

The estimates in this section follow from the first generation L8 estimates
established in the previous section, combined with the commutator esti-
mates in Lemmas 3.3.1 and 3.3.2.

The first group of estimates are results of (3.3.1), (3.3.2) combined with
(7.4.2):

sup
H

s

ˇ̌
st1{2ZJ7 B↵wj

ˇ̌
` sup

H
s

ˇ̌
st1{2ZJ7 B↵wj

ˇ̌
§ CC1✏s

�, (7.5.1a)

sup
H

s

ˇ̌
st1{2ZJ: B↵wj

ˇ̌
` sup

H
s

ˇ̌
st1{2ZJ: B↵wj

ˇ̌
§ CC1✏s

�{2, (7.5.1b)

sup
H

s

ˇ̌
t3{2ZJ7 Bawj

ˇ̌
§ CC1✏s

�, (7.5.1c)

sup
H

s

ˇ̌
t3{2ZJ: Bawj

ˇ̌
§ CC1✏s

�{2, (7.5.1d)

sup
H

s

ˇ̌
t3{2ZJ7

vqk
ˇ̌

§ CC1✏s
�, (7.5.1e)

sup
H

s

ˇ̌
t3{2ZJ:

vqk
ˇ̌

§ CC1✏s
�{2. (7.5.1f)

The second group consists of the following estimates. They are results
of (3.3.1), (3.3.2) combined with (7.4.3):

sup
H

s

ˇ̌
t3{2ZJ: Bavq|

ˇ̌
` sup

H
s

ˇ̌
t3{2ZJ: B↵vq|

ˇ̌
§ CC1✏s

�, (7.5.2a)

sup
H

s

ˇ̌
t3{2ZJBavq|

ˇ̌
` sup

H
s

ˇ̌
t3{2ZJB↵vq|

ˇ̌
§ CC1✏s

�{2, (7.5.2b)

sup
H

s

ˇ̌
t5{2ZJ: Bavq|

ˇ̌
§ CC1✏s

�, (7.5.2c)

sup
H

s

ˇ̌
t5{2ZJBavq|

ˇ̌
§ CC1✏s

�{2. (7.5.2d)

The third group consists of the following estimates which are direct
consequences of (3.3.1) and (3.3.2) combined with (7.4.4):

sup
H

s

ˇ̌
st1{2ZJB↵up|

ˇ̌
` sup

H
s

ˇ̌
st1{2ZJB↵up|

ˇ̌
§ CC1✏, (7.5.3a)
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sup
H

s

ˇ̌
t3{2ZJBaup|

ˇ̌
§ CC1✏. (7.5.3b)

The estimates of the fourth group are deduced from (3.3.4), (7.4.5a),
(7.4.5b), and (7.4.5c):

sup
H

s

`
t3{2sZJ: B↵Bawj

˘
` sup

H
s

`
t3{2sZJ: BaB↵wj

˘
§ CC1✏s

�, (7.5.4a)

sup
H

s

`
t3{2sZJB↵Bawj

˘
` sup

H
s

`
t3{2sZJBaB↵wj

˘
§ CC1✏s

�{2, (7.5.4b)

sup
H

s

ˇ̌
st3{2BaB�up|

ˇ̌
` sup

H
s

ˇ̌
st3{2B↵Bbup|

ˇ̌
§ CC1✏s. (7.5.4c)

We finally can write down the decay estimates for the wave components,
which follow from Lemma 5.2.3 combined with (2.4.5):

sup
H

s

´
t3{2s´1|ZJ7

upı|
¯

§ CC1✏s
�, (7.5.5a)

sup
H

s

´
t3{2s´1|ZJ:

upı|
¯

§ CC1✏s
�{2, (7.5.5b)

sup
H

s

`
t3{2s´1|ZJupı|

˘
§ CC1✏. (7.5.5c)
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Chapter 8

Second-order derivatives of the wave
components

8.1 Preliminaries

The estimates in this chapter concern “second-order” terms B↵B�ZIupı and
ZIB↵B�upı, which will also be used for the control of

upı B↵B�up|.

This chapter is more technical than the derivation of our earlier estimates
and our strategy now is as follows. We are going to analyze the structure
of certain second-order derivatives of the wave components in the semi-
hyperboloidal frame and concentrate first on the component of the Hessian
B0B0Z

Iupı or, equivalently, BtBtZIupı. Other components have a main part
which can be expressed in terms of this component. Next, we will ana-
lyze BtBtZIupı and give a general sketch of the proof, while postponing the
technical aspects to the last two sections.

More precisely, let us first reduce the derivation of an estimating of the
Hessian of ZIupı to an estimate of its component B0B0Z

Iupı.

Lemma 8.1.1. If u is a smooth function compactly supported in the half-
cone K “ t|x| § t ´ 1u, then for all index I one has

|B↵B�ZIu| § |BtBtZIu| ` C
ÿ

a,�

ˇ̌
BaB�ZIu

ˇ̌
` C

t

ÿ

�

|B�ZIu|,

where C is a universal constant.

Proof. We recall the following identity based on a change of frame (be-

87
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tween the natural frame and the semi-hyperboloidal frame):

B↵B�ZIu “ ↵1
↵  

�1

� B↵1 B�1ZIu ` B↵
`
 �1

�

˘
B�Z

Iu

“ 0
↵ 

0
�B0B0Z

Iu `
ÿ

b

 0
↵ 

b
�B0BbZ

Iu

`
ÿ

a

 a
↵ 

0
�BaB0Z

Iu `
ÿ

a,b

 a
↵ 

b
�BaBbZ

Iu ` B↵
`
 �1

�

˘
B�Z

Iu.

By observing that
ˇ̌
B↵ �1

�

ˇ̌
§ C

t and
ˇ̌
rBb, BtspZIuq

ˇ̌
§ Ct´1

ÿ

↵

ˇ̌
B↵ZIu

ˇ̌
,

we can write
ÿ

b

|BtBbZ
Iu| `

ÿ

a,b

|BaBbZ
Iu| §

ÿ

a,�

|BaB�ZIu| ` Ct´1
ÿ

�

|B�ZIu|.

Now we assume that the energy is controlled.

Lemma 8.1.2. Under the energy assumption (2.4.5), the following L2 es-
timates hold for all |I:| § 4, |I| § 3 and |I5| § 2:

››s3t´2B↵B�ZI:
upı

››
L2pH

s

q §
››s3t´2BtBtZI:

upı
››
L2pH

s

q ` CC1✏s
�, (8.1.1a)

››s3t´2B↵B�ZIupı
››
L2pH

s

q §
››s3t´2BtBtZIupı

››
L2pH

s

q ` CC1✏s
�{2, (8.1.1b)

››s3t´2B↵B�ZI5
upı

››
L2pH

s

q §
››s3t´2BtBtZI5

upı
››
L2pH

s

q ` CC1✏. (8.1.1c)

Furthermore, the following L8 estimates hold for all |J:| § 2 and |J | § 1:

sup
H

s

|s3t´1{2B↵B�ZJ:
u| § sup

H
s

|s3t´1{2BtBtZJ:
u| ` CC1✏s

�, (8.1.2a)

sup
H

s

|s3t´1{2B↵B�ZJu| § sup
H

s

|s3t´1{2BtBtZJu| ` CC1✏s
�{2, (8.1.2b)

sup
H

s

|s3t´1{2B↵B�u| § sup
H

s

|s3t´1{2BtBtu| ` CC1✏. (8.1.2c)

Proof. The estimate (8.1.1a) is a combination of Lemma 8.1.1 and the
estimate (7.3.4a), while (8.1.1b) is a combination of Lemma 8.1.1 and the
estimate (7.3.4b). On the other hand, (8.1.1c) is a combination of Lemma
8.1.1 and the estimate (7.3.4c). For the L8 estimates, we combine Lemma
8.1.1 with (7.4.5).
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8.2 Analysis of the algebraic structure

The aim of this section is to establish a general control on BtBtZIupı, by
making use of the identity (2.2.7). Our strategy is to express BtBtZIupı by
other terms arising in (2.2.7). In this first lemma, we relate BtBtZIupı to
remaining terms which have faster decay.

Lemma 8.2.1. Let UttpIq :“
`
BtBtZIu1, BtBtZIu2, . . . , BtBtZIuj0

˘T
which

is a j0-vector and Ij0 be the j0- dimensional identity matrix. The following
identity holds:

`
ps{tq2Ij0 ` Gpw, Bwq

˘
UttpIq

“
`
rZI , Gp|00

pı BtBtsup| ´ QGpıpI, w, Bw, BBwq ` ZIFpı ` RpZIupıq
˘
1§pı§j0

,

(8.2.1)
where

`
Gpw, Bwq

˘
1§pı,p|§j0

“
`
Gp|00

pı pw, Bwq
˘
1§pı,p|§j0

is a j0ˆj0 order matrix,

QGpıpI, w, Bw, BBwq
“ ZI

`
Gp|a0

pı pw, BwqBaBtup| ` Gp|0b
pı pw, BwqBtBbup| ` Gp|ab

pı pw, BwqBaBbup|
˘

` ZI
`
Gp|↵�

pı pw, BwqB�1up|B↵ �1

�

˘
` ZI

`
Gq|↵�

pı pw, BwqB↵B�vq|
˘

and

RpZIupıq :“ ´ m0aB0BaZ
Iupı ´ ma0BaB0Z

Iupı ´ mabBaBbZIupı

` m↵�
`
B↵�

�1

�

˘
B�1ZIupı.

The terms ZIFpı and QGpı are bilinear and can be expected to enjoy
better estimates. The term RpZIupıq contains only “good” second-order
derivatives and can also be expected to enjoy better estimates.

Proof. Recall the identity (2.2.7) with the function ZIupı

ps{tq2B0B0Z
Iupı “lZIupı ´ m0aB0BaZ

Iupı ´ ma0BaB0Z
Iupı

´ mabBaBbZIupı ` m↵�
`
B↵�

�1

�

˘
B�1ZIupı

“:lZIupı ` RpZI , upıq.
(8.2.2)

By equation (1.2.1), the first term in the right-hand side can be written as

lZIupı “ ZIlupı “ ´ZI
`
Gj↵�

pı pw, BwqB↵B�wj

˘
` ZIpFpıpw, Bwqq,

where

Gj↵�
pı pw, BwqB↵B�wj “ Gp|↵�

pı pw, BwqB↵B�up| ` Gq|↵�
pı pw, BwqB↵B�vq|
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and

Gp|↵�
pı pw, BwqB↵B�up| “ Gp|↵�

pı pw, BwqB↵B�up| ` Gp|↵�
pı pw, BwqB�1up|B↵ �1

� .

We have

ZI
`
Gp|↵�

pı pw, BwqB↵B�up|
˘

“ ZI
`
Gp|↵�

pı pw, BwqB↵B�up|
˘

` ZI
`
Gp|↵�

pı pw, BwqB�1up|B↵ �1

�

˘

“ ZI
`
Gp|00

pı BtBtup| ` Gp|a0
pı BaBtup| ` Gp|0b

pı BtBbup| ` Gp|ab
pı BaBbup|

˘

` ZI
`
Gp|↵�

pı pw, BwqB�1up|B↵ �1

�

˘

“ Gp|00
pı pw, BwqBtBtZIup| ` rZI , Gp|00

pı pw, BwqBtBtsup|

` ZI
`
Gp|0b

pı pw, BwqBtBbup| ` Gp|a0
pı pw, BwqBaBtup| ` Gp|ab

pı pw, BwqBaBbup|
˘

` ZI
`
Gp|↵�

pı pw, BwqB�1up|B↵ �1

�

˘
.

So we conclude that

lZIupı “ ´ Gp|00
pı pw, BwqBtBtZIup| ´ rZI , Gp|00

pı pw, BwqBtBtsup|

´ ZI
`
Gp|a0

pı pw, BwqBaBtup| ` Gp|0b
pı pw, BwqBtBbup| ` Gp|ab

pı pw, BwqBaBbup|
˘

´ ZI
`
Gp|↵�

pı pw, BwqB�1up|B↵ �1

�

˘
´ ZI

`
Gq|↵�

pı pw, BwqB↵B�vq|
˘

` ZIFpıpw, Bwq.
Substituting this result into the equation (8.2.2), we obtain

ps{tq2BtBtZIupı ` Gp|00
pı pw, BwqBtBtZIup|

“ ´rZI , Gp|00
pı pw, BwqBtBtsup|

´ ZI
`
Gp|a0

pı pw, BwqBaBtup| ´ Gp|0b
pı pw, BwqBtBbup| ´ Gp|ab

pı pw, BwqBaBbup|
˘

´ ZI
`
Gp|↵�

pı pw, BwqB�1up|B↵ �1

�

˘
´ ZI

`
Gq|↵�

pı pw, BwqB↵B�vq|
˘

` ZIFpıpw, Bwq ` RpZI , upıq.

Now we derive estimates from the algebraic relation (8.2.1). A first step
is to get the estimate of the inverse of the linear operator pIj0 ` pt{sq2Gq.
We can expect that when |pt{sq2G| is small, pIj0 ` pt{sq2Gq is invertible
and we can estimate UttpIq from (8.2.1).

Lemma 8.2.2. There exists a positive constant ✏2
0, such that if the following

sup-norm estimates

|Bupı| § CC1✏t
´1{2s´1, |Bvqı| § CC1✏t

´3{2s�,

|vqı| § CC1✏t
´3{2s�, |uqı| § CC1✏t

´3{2s
(8.2.3)
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hold for C1✏ † ✏2
0, then the following estimate holds:

ˇ̌
BtBtZIupı

ˇ̌
§Cpt{sq2 max

1§pk§j0

 `ˇ̌
rZI , Gp|00

pk
BtBtsup|

ˇ̌
`

ˇ̌
QGpkpI, w, Bw, BBwq

ˇ̌

`
ˇ̌
ZIFpk

ˇ̌
`

ˇ̌
RpZIupkq

ˇ̌˘(
.

(8.2.4)

Remark 8.2.1. (8.2.3) can be guaranteed by the energy assumption (2.4.5)
via the L8 estimates (7.5.1), (7.5.2), (7.5.3), and (7.5.5) with C determined
by the structure of the system.

Proof. By the structure of Gpw, Bwq

Gp|00
pı “ Ap|00�pk

pı B�upk ` Ap|00�qk
pı B�vqk ` Bp|00pk

pı upk ` Bp|00qk
pı vqk.

Taking into account the assumption of (8.2.3),

|Gp|00
pı | § CC1✏ps{tq2.

When CC1✏ § C✏2
0 su�ciently small, the linear operator Ij0 `

pt{sq2Gpw, Bwq is invertible (viewed as a linear mapping from pRj0 , } }8q to
itself) and }pIj0 ` pt{sq2Gpw, Bwqq´1}8,8 is bounded by a fixed constant.

By Lemma 8.2.1, we have

ps{tq2BtBtZIupı

“ pIj0 ` pt{sq2Gpw, Bwqq´1

´
rZI , Gp|00

pı BtBtsup| ´ QGpıpI, w, Bw, BBwq ` ZIFpı ` RpZIupıq
¯

1§pı§j0

and so
ˇ̌
ps{tq2BtBtZIupı

ˇ̌
§C max

1§pk§j0

`ˇ̌
rZI , Gp|00

pk
BtBtsup|

ˇ̌
`

ˇ̌
QGpkpI, w, Bw, BBwq

ˇ̌˘

` C
`ˇ̌
ZIFpk

ˇ̌
`

ˇ̌
RpZIuıpkq

ˇ̌˘
.

We need to estimate the terms appearing in the right-hand side of
(8.2.4). We observe that the term rZI , Gp|00

pı BtBtsup| contains the factor
BtBtZJup| which is also a second-order derivative but with |J | † |I|. This
structure leads us to the following induction estimates. Recall again our
convention: ZI “ 0 when |I| † 0.
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Lemma 8.2.3. Followed by the notation of Lemma 8.2.1 and 8.2.2, the
following induction estimate holds

|BtBtZIupı|
§ Cpt{sq2

ÿ

|I1|`|I2|§|I|
|I1|†|I|,�,p|,i

`
|ZI2B�wi| ` |ZI2wi|

˘
|BtBtZI1up||

` Cpt{sq2 max
1§pk§j0

 
QT pkpI, w, Bw, BBwq ` Cpt{sq2|QGpkpI, w, BwBBwq|

` Cpt{sq2|ZIFpk| ` Cpt{sq2|RpZIupkq|
(
,

(8.2.5)
where

QT pı “
ÿ

|I1|`|I2|§|I|
|I1|†|I|,�,j,p|

ÿ

a,�,�1

`
|ZI2B�wj | ` |ZI2wj |

˘`
|BaB�Z

I1up|| ` t´1|B�1ZI1up||
˘

Proof. This is purely an estimate for the term rZI , Gp|00
pı BtBtsup|, derived as

follows:

rZI , Gp|00
pı BtBtsup| “

ÿ

I1`I2“I

|I1|†|I|

ZI2
`
Gp|00

pı
˘
ZI1

`
BtBtup|

˘
` Gp|00

pı rZI , BtBtsup|.

(8.2.6)
We have ˇ̌

ZI2
`
Gp|00

pı
˘ˇ̌

§
ˇ̌
ZI2

`
Ap|00�k

pı B�wk

˘ˇ̌
`

ˇ̌
ZI2

`
Bp|00k

pı wk

˘ˇ̌

§C
ÿ

j,�

|I3|§|I2|

`ˇ̌
ZI3B�wj

ˇ̌
`

ˇ̌
ZI3wj

ˇ̌˘
.

The first term of the right-hand side of (8.2.6) is bounded by

C
ÿ

|I1|`|I2|§|I|
|I1|†|I|,�,j,p|

`
|ZI2B�wj | ` |ZI2wj |

˘
|BtBtZI1up||

` C
ÿ

|I1|`|I2|§|I|
|I1|†|I|,�,j,p|

ÿ

a,�,�1

`
|ZI2B�wj | ` |ZI2wj |

˘`
|BaB�Z

I1up|| ` t´1|B�1ZI1up||
˘

Similarly, the second term of the right-hand side of (8.2.6) is estimated as
follows, by (3.3.3) and Lemma 8.1.1:

ˇ̌
rZI , BtBtsup|

ˇ̌
§ C

ÿ

↵,�

|J|†|I|

|B↵B�ZJup||

§ C
ÿ

|J|†|I|
|BtBtZJup|| ` C

ÿ

a,�

|J|†|I|

|BaB�Z
Jup||

` Ct´1
ÿ

�

|J|†|I|

|B�ZJup||.
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Combined with the following estimate, we have

|Gp|00
pı | § C

ÿ

p|,�

`
|B�wj | ` |wj |

˘
.

8.3 Structure of the quadratic terms

The aim of this section is to analyze the structure of the quadratic terms
QT pı, QGpı and ZIFpı. We emphasize that some components of these terms
satisfy the null condition and we can use it to make the estimates a bit
simpler, but we prefer to avoid the use of the null structure here in order
to show the independence of these analysis on this structure.

First, we note that the terms QT pı are linear combinations of the follow-
ing terms with constant coe�cients with |I1| ` |I2| § |I| and |I1| † |I|

|ZI2B�upk| |BaB�Z
I1up||, |ZI2B�vqk| |BaB�Z

I1up||,
|ZI2upk| |BaB�Z

I1up||, |ZI2vqk| |BaB�Z
I1up||,

t´1|ZI2B�upk| |B�1ZI1up||, t´1|ZI2B�vqk| |B�1ZI1up||,
t´1|ZI2upk| |B�1ZI1up||, t´1|ZI2vqk| |B�1ZI1up||.

(8.3.1)

We consider QGpı and write

QGpıpI, w, Bw, BBwq
“ ZI

`
Gp|a0

pı pw, BwqBaBtup| ` Gp|0b
pı pw, BwqBtBbup| ` Gp|ab

pı pw, BwqBaBbup|
˘

` ZI
`
Gp|↵�

pı pw, BwqB�1up|B↵ �1

�

˘
` ZI

`
Gq|↵�

pı pw, BwqB↵B�vq|
˘

“ ZI
`
Ap|a0�pk

pı B�upkBaBtup| ` Bp|a0pk
pı upkBaBtup| ` Ap|a0�qk

pı B�vqkBaBtup|

` Bp|a0qk
pı vqkBaBtup|

˘

` ZI
`
Ap|0b�pk

pı B�upkBtBbup| ` Bp|0bpk
pı upkBtBbup| ` Ap|0b�qk

pı B�vqkBtBbup|

` Bp|0bqk
pı vqkBtBbup|

˘

` ZI
`
Ap|ab�pk

pı B�upkBaBbup| ` Bp|abpk
pı upkBaBbup| ` Ap|ab�qk

pı B�vqkBaBbup|

` Bp|abqk
pı vqkBaBbup|

˘

` ZI
`
Ap|↵��pk

pı B�upkB�1up|B↵ �1

� ` Bp|↵�pk
pı upkB�1up|B↵ �1

�

` Ap|↵��qk
pı B�vqkB�1up|B↵ �1

� ` Bp|↵�qk
pı vqkB�1up|B↵ �1

�

˘

` ZI
`
Aq|↵��pk

pı B�upkB↵B�vq| ` Aq|↵��qk
pı B�vqkB↵B�vq| ` Bq|↵�qk

pı vqkB↵B�vqk
˘
.
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Let K :“ max↵,�,�,i,j,ktAj↵��k
i , Bj↵�

i u and remark that by (2.2.2),

|ZIAp|↵��k
pı | ` |ZIBp|↵�k

pı | § CpIqK.

We observe that the terms QGpıpI, w, Bw, BBwq are linear combinations
with bounded coe�cients of the following terms:

ZI
`
upıBaB�up|

˘
, ZI

`
vqıBaB�up|

˘
, ZI

`
upıBtBaup|

˘
, ZI

`
vqıBtBaup|

˘
,

ZI
`
B�upıBaB�up|

˘
, ZI

`
B�vqıBaB�up|

˘
, ZI

`
B�upıBtBaup|

˘
, ZI

`
B�vqıBtBaup|

˘
,

ZI
`
B↵ �1

� upıB�1up|
˘
, ZI

`
B↵ �1

� vqıB�1up|
˘
,

ZI
`
B↵ �1

� B�upıB�1up|
˘
, ZI

`
B↵ �1

� B�vqıB�1up|
˘
,

ZI
`
vqıB↵B�vq|

˘
, ZI

`
B�upıB↵B�vq|

˘
, ZI

`
B�vqıB↵B�vq|

˘
.

(8.3.2)
For the term ZIFpı, recalling its definition

ZIFpı “ ZI
`
P↵�jk

pı B↵wjB�wk ` Q↵jqk
pı vqkB↵wj ` Rq|qk

pı vq|vqk
˘
,

we classify its components into the following groups:

B↵up|B�upk, B↵vq|B�wk, vqkB↵wj , vq|vqk.

We regard ZIFpı as a linear combination with constant coe�cients bounded
by K of the following terms:

ZI
`
B↵up|B�upk

˘
, ZI

`
B↵vq|B�wk

˘
,

ZI
`
vqkB↵up|

˘
, ZI

`
vq|vqk

˘
.

(8.3.3)

The estimates on BtBtZIupı turn out to be the estimates on these terms
listed in (8.3.2) and (8.3.3) and RpZIupkq.

8.4 L8 estimates

The purpose of the section is to establish the L8 estimates on BtBtZJupı (and
then B↵B�ZJupı) under the energy assumption (2.4.5). We need to combine

estimates on the terms QT pı, QGpı, Z
J:
Fpı and RpZJ:

upıq with Lemma 8.2.3.
So, we first consider these terms in the following two lemmas.

Lemma 8.4.1. Under the energy assumption (2.4.5), the following esti-
mates hold for any |J:| § 2

|ZJ:
Fpı| § CpC1✏q2t´3{2s´1`�, (8.4.1a)

|QGpıpJ:, w, Bw, BBwq| § CpC1✏q2t´3{2s´1`�, (8.4.1b)

QT pıpJ:, w, Bw, BBwq § CpC1✏q2t´3{2s´1`�, (8.4.1c)

|RpZJ:
upıq| § CC1✏t

´3{2s´1`�. (8.4.1d)
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Lemma 8.4.2. Under the energy assumption (2.4.5), the following esti-
mates hold for any |J | § 1

|ZJFpı| § CpC1✏q2t´3{2s´1`�{2, (8.4.2a)

|QGpıpJ,w, Bw, BBwq| § CpC1✏q2t´3{2s´1`�{2, (8.4.2b)

QT pıpJ,w, Bw, BBwq § CpC1✏q2t´3{2s´1`�{2, (8.4.2c)

|RpZJupıq| § CC1✏t
´3{2s´1`�{2. (8.4.2d)

Lemma 8.4.3. Under the energy assumption (2.4.5), the following esti-
mates hold:

|Fpı| § CpC1✏q2t´3{2s´1, (8.4.3a)

|QGpıp0, w, Bw, BBwq| § CpC1✏q2t´3{2s´1, (8.4.3b)

QT pıp0, w, Bw, BBwq § CpC1✏q2t´3{2s, (8.4.3c)

|Rpupıq| § CC1✏t
´3{2s´1. (8.4.3d)

The proofs of these three lemmas are essentially the same. We compute
the relevant terms and express them as linear combinations of some bilinear
terms, then suitably estimate each of them. The di↵erence of the decay rate
between these three lemmas is due to the di↵erence of regularity.

Proof of Lemma 8.4.1. The control of QGpıpJ:, w, Bw, BBwq is obtained
as follows. Recall that QGpıpJ:, w, Bw, BBwq is a linear combination of the
terms listed in (8.3.2) with the index I replaced by J:. We estimate
ZJ: `

upıBaBtup|
˘
in details:

ˇ̌
ZJ: `

upıBaBtup|
˘ˇ̌

§
ÿ

J2`J3“J:

ˇ̌
ZJ2upı

ˇ̌ˇ̌
ZJ3BaBtup|

ˇ̌

“
ˇ̌
upı

ˇ̌ˇ̌
ZJ: BaBtup|

ˇ̌
`

ˇ̌
ZJ2upı

ˇ̌ˇ̌
ZJ3BaBtup|

ˇ̌
`

ˇ̌
ZJ:

upı
ˇ̌ˇ̌

BaBtup|
ˇ̌
.

When J2 “ 0 and J3 “ J:, we apply (7.5.5c) and (7.5.4a); when J3 “ 0 and
J2 “ J:, we apply (7.5.5a) and (7.5.4c); and when |J2| “ 1 and |J3| “ 1,
we apply (7.5.5c) and (7.5.4a);

ˇ̌
ZJ: `

wiBaBtup|
˘ˇ̌

§ CpC1✏q2t´3`�.

For the other terms, we will specify the L8 estimates to be used but
omit the details.
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Here the in the di↵erent columns represent the di↵erent partitions of
J: “ J2 ` J3. pa,§ bq means |J2| “ a, |J3| § b. In the last column, we
specify the decay rate obtained directly by applying the given inequalities
(modulo the constant CpC1✏q2). The first coe�cient is the one we used for
the first factor, while the second coe�cient is used for the second factor:

Products p2,§ 0q p1,§ 1q p0,§ 2q Decay rate
upıBaB�up| (7.5.5a), (7.5.4c) (7.5.5c), (7.5.4a) (7.5.5c), (7.5.4a) t´3s�

vqıBaB�up| (7.5.1e), (7.5.4c) (7.5.1e), (7.5.4a) (7.5.1e), (7.5.4a) t´3s´1`2�

upıBtBaup| (7.5.5a), (7.5.4c) (7.5.5c), (7.5.4a) (7.5.5c), (7.5.4a) t´3s�

vqıBtBaup| (7.5.1e), (7.5.4c) (7.5.1e), (7.5.4a) (7.5.1e), (7.5.4a) t´3s´1`2�

B�vqıBaB�up| (7.5.2a), (7.5.4c) (7.5.2a), (7.5.4a) (7.5.2a), (7.5.4a) t´3s´1`2�

B�upıBaB�up| (7.5.1a), (7.5.4c) (7.5.3a), (7.5.4a) (7.5.3a), (7.5.4a) t´2s´2`�

Products p2,§ 0q p1,§ 1q p0,§ 2q Decay rate
B�upıBtBaup| (7.5.1a), (7.5.4c) (7.5.3a), (7.5.4a) (7.5.3a), (7.5.4a) t´2s´2`�

B�vqıBtBaup| (7.5.2a), (7.5.4c) (7.5.2a), (7.5.4a) (7.5.2a), (7.5.4a) t´3s´1`2�

vqıB↵B�vq| (7.5.1e), (7.5.2a) (7.5.1e), (7.5.2a) (7.5.1e), (7.5.2a) t´3s2�

B�upıB↵B�vq| (7.5.1a), (7.5.2a) (7.5.3a), (7.5.2a) (7.5.3a), (7.5.2a) t´2s´1`2�

B�vqıB↵B�vq| (7.5.2a), (7.5.2a) (7.5.2a), (7.5.2a) (7.5.2a), (7.5.2a) t´3s2�

Taking into account the fact that s § Ct § Cs2 and � † 1{6, we conclude
that these terms are bounded by CpC1✏q2t´3{2s´1`�.

Again, we have the following four terms from QGpı, which are estimated
separately:

ZJ: `
B↵ �1

� upıB�1up|
˘
, ZJ: `

B↵ �1

� vqıB�1up|
˘
,

ZJ: `
B↵ �1

� B�upıB�1up|
˘
, ZJ: `

B↵ �1

� B�vqıB�1up|
˘
.

By observing that
ˇ̌
ZIB↵ �1

�

ˇ̌
§ CpIqt´1, these terms can be estimated by

CpC1✏q2t´3s2�. We give the proof for ZJ1
`
B↵ �1

� upıB�1up|
˘
:

ˇ̌
ZJ: `

B↵ �1

� upıB�1up|
˘ˇ̌

§
ÿ

J2`J3`J4“J1

ˇ̌
ZJ4B↵ �1

�

ˇ̌ ˇ̌
ZJ2upı

ˇ̌ ˇ̌
ZJ3B�1up|

ˇ̌

§ Ct´1
ÿ

|J2|`|J3|§|J:|

ˇ̌
ZJ2upı

ˇ̌ ˇ̌
ZJ3B�1up|

ˇ̌
§ Ct´1C1✏t

´3{2s1`�C1✏t
´1{2s´1`�

“ CpC1✏q2t´3s2� § CpC1✏q2t´3{2s´1`�,

where we recall that � † 1{6, and (7.5.5a) and (7.5.1a) are been used. The
other terms are estimated similarly, and we omit the details and only list
out the inequalities we use for each term and each partition of indices; cf.
Table 1.
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The term QT pı a linear combination of the terms presented in (8.3.1),
with Ii replaced by Ji and i “ 1, 2. Each term is estimated as for QG.
We give the list of inequalities we use for every partition |J1| ` |J2| § |J:|:
in Table 2 and Table 3 the symbol pa,§ bq means |J1| “ a, |J2| § b. We
conclude with (8.4.1c).

The estimates on ZJ:
Fpı are essentially the same. Recall that ZJ:

Fpı is
a linear combination of the terms listed in (8.3.3) with I replaced by J:.
We write in details the estimate of the term ZJ: `

B↵up|B�upk
˘
, as follows:

ˇ̌
ZJ: `

B↵up|B�upk
˘ˇ̌

§|ZJ: B↵up|| |B�upk| ` |B↵up|| |ZJ1B�upk|
`

ÿ

|J1|,|J2|§1

J2`J3“J

:

|ZJ2B↵up|| |ZJ3B�upk|

§CC1✏t
´1{2s´1`� CC1✏t

´1{2s´1

` CC1✏t
´1{2s´1 CC1✏t

´1{2s´1`�

` CC1✏t
´1{2s´1 CC1✏t

´1{2s´1

§CpC1✏q2t´1s´2`�

§CpC1✏q2t´3{2s´1`�.

For the three partitions of J: “ J1 `J2, the L8 estimates we use are: when
|J1| “ 0 and |J2| § |J:|, we apply (7.5.3a) and (7.5.1a); when |J1| “ |J2| “
1, we apply (7.5.3a) and (7.5.3a); when |J1| “ |J:| and |J2| § 0, we apply
(7.5.1a) and (7.5.3a).

For the remaining terms, for each partition of J1, we just list out the
L8 estimates we use (with decay rate modulo a factor CpC1✏q2):
Products p2,§ 0q p1,§ 1q p0,§ 2q Decay rate
B↵up|B�upk (7.5.1a), (7.5.3a) (7.5.3a), (7.5.3a) (7.5.3a), (7.5.1a) t´1s´2`�

B↵vq|B�wk (7.5.2a), (7.5.1a) (7.5.2a), (7.5.1a) (7.5.2a), (7.5.1a) t´2s´1`2�

vqkB↵wj (7.5.1e), (7.5.1a) (7.5.1e), (7.5.1a) (7.5.1e), (7.5.1a) t´2s´1`2�

vq|vqk (7.5.1e), (7.5.1e) (7.5.1e), (7.5.1e) (7.5.1e), (7.5.1e) t´3`2�

Combined with the condition � † 1{6 and the fact that s § Ct § Cs2, the
estimate (8.4.1a) is proved.

On the other hand, the estimate of RpZJ1upıq is a direct application of
(7.4.5a).

Proof of Lemma 8.4.2. The proof is essentially the same as that of
(8.4.2), and the main di↵erence lies in the inequalities we use for each term
and partition of the index. We omit the details and present the inequalities
we use, as follows.
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For the estimates ofQGpıpJ,w, Bw, BBwq, the inequalities we use are listed
in:

Products p1,§ 0q p0,§ 1q Decay rate
upıBaB�up| (7.5.5c), (7.5.4c) (7.5.5c), (7.5.4b) t´3s�{2

vqıBaB�up| (7.5.1f), (7.5.4c) (7.5.1f), (7.5.4b) t´3s´1`�

upıBtBaup| (7.5.5c), (7.5.4c) (7.5.5c), (7.5.4b) t´3s�{2

vqıBtBaup| (7.5.1f), (7.5.4c) (7.5.1f), (7.5.4b) t´3s´1`�

B�vqıBaB�up| (7.5.2b), (7.5.4c) (7.5.2b), (7.5.4b) t´3s´1`�

B�upıBaB�up| (7.5.3a), (7.5.4c) (7.5.3a), (7.5.4b) t´2s´2`�{2

Products p1,§ 0q p0,§ 1q Decay rate
B�upıBtBaup| (7.5.3a), (7.5.4c) (7.5.3a), (7.5.4b) t´2s´2`�{2

B�vqıBtBaup| (7.5.2b), (7.5.4c) (7.5.2b), (7.5.4b) t´3s´1`�

vqıB↵B�vq| (7.5.1f), (7.5.2b) (7.5.1f), (7.5.2b) t´3s�

B�upıB↵B�vq| (7.5.3a), (7.5.2b) (7.5.3a), (7.5.2b) t´2s´1`�{2

B�vqıB↵B�vq| (7.5.2b), (7.5.2b) (7.5.2b), (7.5.2b) t´3s�

Terms p1,§ 0q p0,§ 1q Decay rate
t´1ZJ2upıZ

J3B�1up| (7.5.5c), (7.5.3a) (7.5.5c), (7.5.3a) t´3

t´1ZJ2vqıZ
J3B�1up| (7.5.1f), (7.5.3a) (7.5.1f), (7.5.3a) t´3s´1`�{2

t´1ZJ2B�upıZ
J3B�1up| (7.5.3a), (7.5.3a) (7.5.3a), (7.5.3a) t´2s´2

t´1ZJ2B�vqıZ
J3B�1up| (7.5.1b), (7.5.3a) (7.5.1b), (7.5.3a) t´2s´2`�{2

For the term QT pıpJ,w, Bw, BBwq, we have the list:
Products p1,§ 0q p0,§ 1q Decay rate

BaB�Z
J1upı Z

J2B�upk (7.4.5b), (7.5.3a) (7.4.5c), (7.5.3a) t´2s´2`�{2

BaB�Z
J1upı Z

J2B�vqk (7.4.5b), (7.5.2b) (7.4.5c), (7.5.2b) t´3s´1`�

BaB�Z
J1upı Z

J2upk (7.4.5b), (7.5.5c) (7.4.5c), (7.5.5c) t´3s�

BaB�Z
J1upı Z

J2vqk (7.4.5b), (7.5.1f) (7.4.5c), (7.5.1f) t´3s´1`�

Terms p1,§ 0q p0,§ 1q Decay rate
t´1B�1ZJ1up| Z

J2B�upk (7.4.4a), (7.5.3a) (7.4.4a), (7.5.3a) t´2s´2

t´1B�1ZJ1up| Z
J2B�vqk (7.4.4a), (7.5.2b) (7.4.4a), (7.5.2b) t´3s´1`�{2

t´1B�1ZJ1up| Z
J2upk (7.4.4a), (7.5.5c) (7.4.4a), (7.5.5c) t´3

t´1B�1ZJ1up| Z
J2vqk (7.4.4a), (7.5.1f) (7.4.4a), (7.5.1f) t´2s´1`�{2

Finally, for the term Fpı we have
Products p1,§ 0q p0,§ 1q Decay rate
B↵up|B�upk (7.5.3a), (7.5.3a) (7.5.3a), (7.5.3a) t´1s´2

B↵vq|B�wk (7.5.2b), (7.5.1b) (7.5.2b), (7.5.1b) t´2s´1`�

vqkB↵wj (7.5.1f), (7.5.1b) (7.5.1f), (7.5.1b) t´2s´1`�

vq|vqk (7.5.1f), (7.5.1f) (7.5.1f), (7.5.1f) t´3`�

On the other hand, the estimate of RpZJuq is a direct result of (7.4.5b).
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Proof of Lemma 8.4.3. The proof is essentially the same as the proof of
Lemma 8.4.1 but much easier. We analyze first QGpıpw, Bw, BBwq. This is
a direct application of the L8 estimates established earlier on the terms
listed in (8.3.2) with I “ 0. As done in the proof of Lemma 8.4.1, this gives
the following list (with decay rate modulo CpC1✏q2):

Terms p0, 0q Decay rate
upıBaB�up| (7.5.5c), (7.5.4c) t´3

vqıBaB�up| (7.5.1e), (7.5.4c) t´3s´1`�

upıBtBaup| (7.5.5c), (7.5.4c) t´3

vqıBtBaup| (7.5.1e), (7.5.4c) t´3s´1`�

B�upıBaB�up| (7.5.3a), (7.5.4c) t´2s´2

B�vqıBaB�up| (7.5.2a), (7.5.4c) t´3s´1`�

Terms p0, 0q Decay rate
B�upıBtBaup| (7.5.3a), (7.5.4c) t´2s´2

B�vqıBtBaup| (7.5.2a), (7.5.4c) t´3s´1`�

vqıB↵B�vq| (7.5.1e), (7.5.2a) t´3s2�

B�upıB↵B�vq| (7.5.3a), (7.5.2a) t´2s´1`�

B�vqıB↵B�vq| (7.5.2a), (7.5.2a) t´3s2�

The following four terms

B↵ �1

� upıB�1up|, B↵ �1

� vqıB�1up|, B↵ �1

� B�upıB�1up|, B↵ �1

� B�vqıB�1up|

are estimated by taking into account the additional decay supplied by the
factor | �1

� | § Ct´1. The inequalities we use for each term are listed as
follows:

Terms p0, 0q Decay rate
t´1upıB�1up| (7.5.5c), (7.5.3a) t´3

t´1vqıB�1up| (7.5.1e), (7.5.3a) t´3s´1`�

t´1B�upıB�1up| (7.5.3a), (7.5.3a) t´2s´2

t´1B�vqıB�1up| (7.5.2a), (7.5.3a) t´3s´1`�

The estimates of QT i are similar. We establish the following list and
omit the details:

Products p0, 0q Decay rate
B�upk BaB�upı (7.5.3a), (7.5.4c) t´2s´2

B�vqk BaB�upı (7.5.2a), (7.5.4c) t´3s´1`�

upk BaB�upı (7.5.5c), (7.5.4c) t´3

vqk BaB�upı (7.5.1e), (7.5.4c) t´3s´1`�
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Products p0, 0q Decay rate
t´1B�upk B�1up| (7.5.3a), (7.5.3a) t´2s´2

t´1B�vqk B�1up| (7.5.2a), (7.5.3a) t´3s´1`�

t´1upk B�1up| (7.5.5c), (7.5.3a) t´3

t´1vqk B�1up| (7.5.1e), (7.5.3a) t´3s´1`�

We conclude with (8.4.3c).
The estimate of Fpı is as follows: recall the structure of Fpı described

by (8.3.3), we need to estimate these terms with I “ 0. As in the proof
of Lemma 8.4.1, the following list is established (with decay rate modulo
CpC1✏q2):

Products p0, 0q Decay rate
B↵upıB�up| (7.5.3a), (7.5.3a) t´1s´2

B↵vqıB�wj (7.5.2a), (7.5.1a) t´2s´1`2�

vqıB↵wj (7.5.1e), (7.5.1a) t´2s´1`2�

vqıvq| (7.5.1e), (7.5.1e) t´3s2�

By taking into account the condition � † 1{6 and the fact that C´1s § t §
Cs2, we conclude with (8.4.3a).

The estimate of Rpupıq is a direct application of (7.5.4c).

We can now prove the main result of this section.

Proposition 8.4.1. Let wi the solution of (1.2.1) and assume that (2.4.5)
holds with C1✏ § mint1, ✏2

0u. For the wave components, the following decay
estimates hold for any J: § 2 and |J | § 1:

sup
H

s

`
s3t´1{2|BtBtZJ:

upı|
˘

§ CC1✏s
�, (8.4.4a)

sup
H

s

`
s3t´1{2|BtBtZJupı|

˘
§ CC1✏s

�{2, (8.4.4b)

sup
H

s

`
s3t´1{2|BtBtupı|

˘
§ CC1✏, (8.4.4c)

and more generally

sup
H

s

`
s3t´1{2|B↵B�ZJ:

u|
˘

§ CC1✏s
�, (8.4.5a)

sup
H

s

`
s3t´1{2|B↵B�ZJu|

˘
§ CC1✏s

�{2, (8.4.5b)

sup
H

s

`
s3t´1{2|B↵B�u|

˘
§ CC1✏. (8.4.5c)
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Proof. (8.4.4c) will be proved first. Substitute (8.4.3) into (8.2.5) with
|I| “ 0. Recall the convention |I| † 0 ñ ZI “ 0. The desired result is
proven.

Observe that for (8.4.4b), the case |J | § 0 is proved by (8.4.4c). For
the case |J | “ 1, we recall (8.2.5):

|BtBtZJupı| §Cpt{sq2
ÿ

|J2|“1
�,p|,i

`
|ZJ2B�wi| ` |ZJ2wi|

˘
|BtBtup||

` Cpt{sq2QT pıpJ2, w, Bw, BBwq ` Cpt{sq2|QGpıpJ2, w, BwBBwq|
` Cpt{sq2|ZJ2Fpı| ` Cpt{sq2|RpZJ2upıq|

substitutes (8.4.4c) (an estimate on BtBtup|) and (8.4.2) into (8.2.5), together
with the following estimate:

ÿ

� p|,pı
|J|§1

`
|ZJB�wi|`|ZJwi|

˘
§ CC1✏

`
t´1{2s´1`t´3{2s`t´3{2s�{2˘

§ CC1✏t
´3{2s.

For (8.4.4a), remark that the case |J:| § 1 is guaranteed by (8.4.4b)
and (8.4.4c).

The case |J:| “ 2 is done by substituting (8.4.4b) (with |J | “ 1), (8.4.4c)
and (8.4.1) into (8.2.5) with |I| “ 2 together with the following estimate
which is a direct result of (7.5.1a), (7.5.5c) and (7.5.1e):

ÿ

� p|,pı

`
|ZJ: B�wi| ` |ZJ:

wi|
˘

§ CC1✏
`
t´1{2s´1`�{2 ` t´3{2s ` t´3{2s�{2˘

§ CC1✏t
´3{2s1`�{2.

We recall (8.2.5) with I “ J::

|BtBtZJ:
upı|

§Cpt{sq2
ÿ

|J1|`|J2|§2
|J1|§1,�,p|,i

`
|ZJ2B�wi| ` |ZJ2wi|

˘
|BtBtZJ1up||

` Cpt{sq2QT pıpJ2, w, Bw, BBwq ` Cpt{sq2|QGpıpJ2, w, BwBBwq|
` Cpt{sq2|ZJ2Fpı| ` Cpt{sq2|RpZJ2upıq|.
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Substituting (8.4.4b) (with |J | “ 1), (8.4.4c) and (8.4.1), we find that

|BtBtZJ:
upı|

§ Cpt{sq2
ÿ

|J1|`|J2|§2
|J1|§1,�,p|,i

`
|ZJ2B�wi| ` |ZJ2wi|

˘
|BtBtZJ1up|| ` CC1✏t

1{2s´3`�

§ Cpt{sq2
ÿ

|J1|`|J2|§2
|J1|“1,�,p|,i

`
|ZJ2B�wi| ` |ZJ2wi|

˘
|BtBtZJ1up||

` Cpt{sq2
ÿ

|J1|`|J2|§2
|J1|“0,�,p|,i

`
|ZJ2B�wi| ` |ZJ2wi|

˘
|BtBtZJ1up|| ` CC1✏2t

1{2s´3`�

§ CC1✏pt{sq2t´3{2s t1{2s´3`�{2 ` CC1✏pt{sq2t´3{2s1`�{2 t1{2s´3

` CC1✏t
1{2s´3`�

§ CC1✏ts
´4`�{2 ` CC1✏t

1{2s´3`� § CC1✏t
1{2s´3`�.

The bound (8.4.5) are direct result of (8.4.4) combined with (8.1.2).

We can give the complete L8 estimates of the second-order derivatives.

Proposition 8.4.2. By relying on (2.4.5) with C1✏ § mint1, ✏2
0u, the fol-

lowing estimates hold for all |J:| § 2 and |J | § 1:

sup
H

s

|s3t´1{2B↵B�ZJ:
u| ` sup

H
s

|s3t´1{2ZJ: B↵B�u| § CC1✏s
�, (8.4.6a)

sup
H

s

|s3t´1{2B↵B�ZJu| ` sup
H

s

|s3t´1{2ZJB↵B�u| § CC1✏s
�{2, (8.4.6b)

sup
H

s

|s3t´1{2B↵B�u| § CC1✏. (8.4.6c)

Proof. These estimates are a consequence of (3.3.3) and (8.4.5).

8.5 L2 estimates

The aim of this section is to get the L2 estimates on BtBtZIup|. As in the
last section, the strategy is to make use of (8.2.5). First, we estimate the
terms QT pı, QGpı, Z

IFpı and RpZIupıq.

Lemma 8.5.1. Under the energy assumption (2.4.5), the following esti-
mates hold for all |I:| § 4:

››sQGpıpI:, w, Bw, BBwq
››
L2pH

s

q § CpC1✏q2s�, (8.5.1a)
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››sQT pıpI:, w, Bw, BBwq
››
L2pH

s

q § CpC1✏q2s�, (8.5.1b)

››sZI:
Fpı

››
L2pH

s

q § CpC1✏q2s�, (8.5.1c)

››sRpZI:
upıq

››
L2pH

s

q § CC1✏s
�. (8.5.1d)

Lemma 8.5.2. Under the energy assumption (2.4.5), the following esti-
mates hold for all |I| § 3:

››sQGpıpI, w, Bw, BBwq
››
L2pH

s

q § CpC1✏q2s�{2, (8.5.2a)

››sQT pıpI, w, Bw, BBwq
››
L2pH

s

q § CpC1✏q2s�{2, (8.5.2b)

››sZIFpı
››
L2pH

s

q § CpC1✏q2s�{2, (8.5.2c)

››sRpZIupıq
››
L2pH

s

q § CC1✏s
�{2. (8.5.2d)

Lemma 8.5.3. Under the energy assumption (2.4.5), the following esti-
mates hold for all |I5| § 2:

››sQGpıpI5, w, Bw, BBwq
››
L2pH

s

q § CpC1✏q2, (8.5.3a)

››sQGpıpI5, w, Bw, BBwq
››
L2pH

s

q § CpC1✏q2, (8.5.3b)

››sZI5
Fpı

››
L2pH

s

q § CpC1✏q2, (8.5.3c)

››sRpZI5
upıq

››
L2pH

s

q § CC1✏. (8.5.3d)

Proof of Lemma 8.5.1. We consider first QGpı and recall the structure of
QGpı expressed by (8.3.2). We do an L2 estimate on each term of (8.3.2)
with I “ I:, |I:| § 4. We take upıBaBtup| as an example and we write down
of the argument:
››sZI: `

upıBaBtup|
˘››

L2pH
s

q

§
ÿ

I1`I2“I:

››s
`
ZI1upı Z

I2BaBtup|
˘››

L2pH
s

q

§
››s

`
upı Z

I: BaBtup|
˘››

L2pH
s

q `
ÿ

|I1|“1

I1`I2“I

:

››s
`
ZI1upı Z

I2BaBtup|
˘››

L2pH
s

q

`
ÿ

|I1|“2

I1`I2“I

:

››s
`
ZI1upı Z

I2BaBtup|
˘››

L2pH
s

q `
ÿ

|I1|“3

I1`I2“I

:

››s
`
ZI1upı Z

I2BaBtup|
˘››

L2pH
s

q

`
››s

`
ZI:

upı BaBtup|
˘››

L2pH
s

q

“: T0 ` T1 ` T2 ` T3 ` T4.
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Observe now that in term Tk, |I2| § 4 ´ k.
The term T0 is estimated by (7.5.5c) and (7.3.5a):

T0 “
››s

`
upı Z

I1BaBtup|
˘››

L2pH
s

q § CC1✏
››s

`
t´3{2 sZI1BaBtup|

˘››
L2pH

s

q

§CC1✏s
´1{2››sZI1BaBtup|

››
L2pH

s

q

§CpC1✏q2s´1{2`�.

The term T1 is estimated by (7.5.5c) and (7.3.5a):

T1 “
ÿ

|I1|“1

I1`I2“I

:

››s
`
ZI1upı Z

I2BaBtup|
˘››

L2pH
s

q

§CC1✏
ÿ

|I1|“1

I1`I2“I

:

››s
`
t´3{2 sZI2BaBtup|

˘››
L2pH

s

q

§CC1✏s
´1{2 ÿ

|I1|“1

I1`I2“I

:

››sZI3BaBtup||
ˇ̌
L2pH

s

q § CpC1✏q2s´1{2`�.

The term T2 is estimated by (7.5.5a) and (7.3.5c) (remark that |I2| §
4 ´ 2 “ 2):

T2 “
ÿ

|I1|“2

I1`I2“I

:

››s
`
ZI1upı Z

I2BaBtup|
˘››

L2pH
s

q

§CC1✏
ÿ

|I1|“2

I1`I2“I

:

››s
`
t´3{2s1`� ZI2BaBtup|

˘››
L2pH

s

q

“CC1✏s
´1{2`�

ÿ

|I1|“2

I1`I2“I

:

››sZI2BaBtup|
››
L2pH

s

q § CpC1✏q2s´1{2`�.

The term T3 is estimated by (7.5.5a) and (7.3.5c) (remark that |I2| §
4 ´ 3 “ 1):

T3 “
ÿ

|I1|“3

I1`I2“I

:

››s
`
ZI1upı Z

I2BaBtup|
˘››

L2pH
s

q

§CC1✏
ÿ

|I1|“3

I1`I2“I

:

››s
`
t´3{2s� sZI2BaBtup|

˘››
L2pH

s

q

“CC1✏s
´1{2`�

ÿ

|I1|“3

I1`I2“I

:

››sZI2BaBtup|
››
L2pH

s

q § CpC1✏q2s´1{2`�.

The term T4 is estimated by (7.3.6a) and (7.5.4c):

T4 “
››s

`
ZI:

upı BaBtup|
˘››

L2pH
s

q § CC1✏
››sZI:

upı t
´3{2s´1

››
L2pH

s

q

“ CC1✏s
´1{2››t´1ZI:

upı
››
L2pH

s

q § CC1✏s
´1{2››s´1ZI:

upı
››
L2pH

s

q

§ CpC1✏q2s´1{2`�.
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So we conclude with
››sZI: `

upıBaBtup|
˘››

L2pH
s

q § CpC1✏q2s´1{2`�.

For the remaining terms, we will not write the details, but for each
partition of I: “ I1 ` I2 we give the L2 and L8 estimates in Chapter 7.
As in the estimate of upıBaBtup|, we denote by pk,§ 4 ´ kq the terms with
which |I1| “ k, |I2| § 4 ´ k. This leads us to Table 4 and Table 5.

There are four terms to be estimated separately:

sZI: `
B↵ �1

� upıB�1up|
˘
, sZI: `

B↵ �1

� vqıB�1up|
˘
,

sZI: `
B↵ �1

� B�upıB�1up|
˘
, sZI: `

B↵ �1

� B�vqıB�1up|
˘
.

We will use the additional decay supplied by |ZIB↵ �1

� | § CpIqt´1. Let us
take

ZI: `
B↵ �1

� upıB�1up|
˘

as an example and write its estimate in details:
››sZI: `

B↵ �1

� upıB�1up|
˘››

L2pH
s

q §
ÿ

I1`I2`I3“I:

››sZI3B↵ �1

� ZI1upı Z
I2B�1up|

››
L2pH

s

q

§ C
ÿ

|I1|`|I2|§|I:|

››st´1ZI1upı Z
I2B�1up|

››
L2pH

s

q

§ C
ÿ

|I2|§|I:|

››st´1upı Z
I2B�1up|

››
L2pH

s

q ` C
ÿ

|I1|“1

|I2|§|I:|´1

››st´1ZI1upı Z
I2B�1up|

››
L2pH

s

q

` C
ÿ

|I1|“2

|I2|§|I:|´2

››st´1ZI1upı Z
I2B�1up|

››
L2pH

s

q

` C
ÿ

|I1|“3

|I2|§|I:|´3

››st´1ZI1upı Z
I2B�1up|

››
L2pH

s

q ` C
ÿ

|I1|“4

››st´1ZI1upı B�1up|
››
L2pH

s

q

“: T0 ` T1 ` T2 ` T3 ` T4.
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T
er
m
s

p4
,§

0q
p3
,§

1q
p2
,§

2q
p1
,§

3q
p0
,§

4q
u

pıB
a
B �

u
p|

(7
.3
.6
b
),
(7
.5
.4
c)

(7
.5
.5
a)
,(
7.
3.
5c
)
(7
.5
.5
a)
,(
7.
3.
5c
)
(7
.5
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B �
v

q |
(7
.3
.2
a)
,(
7.
5.
2a

)
(7
.5
.2
a)
,(
7.
3.
2a

)
(7
.5
.2
a)
,(
7.
3.
2a

)
(7
.5
.2
a)
,(
7.
3.
2a

)
(7
.5
.2
a)
,(
7.
3.
2a

)

T
ab

le
5



October 19, 2015 15:56 World Scientific Book - 9in x 6in PLF-YM-book page 108

108 The hyperboloidal foliation method

For the term T0 by (7.5.5c) and (7.3.1a), we have

T0 “C
ÿ

|I2|§|I:|

››st´1upı Z
I2B�1up|

››
L2pH

s

q

§CC1✏
ÿ

|I2|§|I:|

››st´1t´3{2sZI2B�1up|
››
L2pH

s

q

“CC1✏
ÿ

|I2|§|I:|

››t´5{2s2 ZI2B�1up|
››
L2pH

s

q

§CC1✏s
´1{2 ÿ

|I2|§|I:|

››ZI2B�1up|
››
L2pH

s

q

§CpC1✏q2s´1{2`�.

The term T1 is estimated by (7.5.5c) and (7.3.3a):

T1 “C
ÿ

|I1|“1

|I2|§|I:|´1

››st´1ZI1upı Z
I2B�1up|

››
L2pH

s

q

§CC1✏
ÿ

|I1|“1

|I2|§|I:|´1

››st´1t´3{2sZI2B�1up|
››
L2pH

s

q

§CC1✏s
´1{2 ÿ

|I1|“1

|I2|§|I:|´1

››ZI2B�1up|
››
L2pH

s

q

§CpC1✏q2s´1{2`�.

The term T2 is estimated by (7.5.5a) and (7.3.3a):

T2 “C
ÿ

|I1|“2

|I2|§|I:|´2

››st´1ZI1upı Z
I2B�1up|

››
L2pH

s

q

§CC1✏
ÿ

|I1|“2

|I2|§|I:|´2

››st´1t´3{2s1`� ZI2B�1up|
››
L2pH

s

q

§CC1✏s
´1{2`�

ÿ

|I1|“2

|I2|§|I:|´2

››ZI2B�1up|
››
L2pH

s

q

§CpC1✏q2s´1{2`�.
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The term T3 is estimated by (7.5.5a) and (7.3.3a):

T3 “C
ÿ

|I1|“3

|I1|§|I:|´3

››st´1ZI1upı Z
I2B�1up|

››
L2pH

s

q

§CC1✏
ÿ

|I1|“3

|I2|§|I:|´3

››st´1t´3{2s1`� ZI2B�1up|
››
L2pH

s

q

§CC1✏s
´1{2`�

ÿ

|I1|“3

|I2|§|I:|´3

››ZI2B�1up|
››
L2pH

s

q

§CpC1✏q2s´1{2`�

The term T4 is estimated by (7.3.6a) and (7.5.3a):

T4 “C
ÿ

|I2|“4

››st´1ZI2upı B�1up|
››
L2pH

s

q

§CC1✏
ÿ

|I2|“4

››st´1ZI2upı t
´1{2s´1

››
L2pH

s

q

“CC1✏s
´1{2 ÿ

|I2|“4

››t´1ZI2upı
››
L2pH

s

q

§CpC1✏q2s´1{2`�.

For the remaining three terms, we list out the L2 and L8 estimates to be
used for each term and each partition of I:, recall here the notation pa,§ bq
means |I1| “ a, |I2| § b: see Table 6. Finally we conclude with (8.5.1a).

We estimate the term QT pı which is similar to that of QGpı. Recall the
structure of QT pı presented in (8.3.1). We take the term ZI2B�upk BaB�Z

I1up|
as an example:ÿ

|I1|`|I2|§|I:|

››sZI2B�upk BaB�Z
I1up|

››
L2pH

s

q

“
ÿ

|I2|§|I:|

››sZI2B�upk BaB�up|
››
L2pH

s

q `
ÿ

|I1|`|I2|§|I:|
|I1|“1

››sZI2B�upk BaB�Z
I1up|

››
L2pH

s

q

`
ÿ

|I1|`|I2|§|I:|
|I1|“2

››sZI2B�upk BaB�Z
I1up|

››
L2pH

s

q

`
ÿ

|I1|`|I2|§|I:|
|I1|“3

››sZI2B�upk BaB�Z
I1up|

››
L2pH

s

q

`
ÿ

|I1|§|I:|

››sB�upk BaB�Z
I1up|

››
L2pH

s

q

“:T0 ` T1 ` T2 ` T3 ` T4.
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We will estimate each partition of I::

T0 “
ÿ

|I2|§|I:|

››sZI2B�upk BaB�up|
››
L2pH

s

q §
ÿ

|I2|§4

››sZI2B�upk BaB�up|
››
L2pH

s

q

§
ÿ

|I2|§4

››ps{tqZI2B�upk
››
L2pH

s

q
››spt{sqBaB�up|

››
L8pH

s

q § CC1✏s
� CC1✏s

´3{2

§ CpC1✏q2s´3{2`�,

where (7.3.1a) and (7.4.5c) are used.

T1 §
ÿ

|I1|“1,|I2|§3

››sZI2B�upk BaB�Z
I1up|

››
L2pH

s

q

§
ÿ

|I1|“1,|I2|§3

››ps{tqZI2B�upk
››
L2pH

s

q
››spt{sqBaB�Z

I1up|
››
L8pH

s

q

§ CC1✏CC1✏s
´3{2`� § CpC1✏q2s´3{2`�,

where (7.3.3a) and (7.4.5a) are used.
Similarly, the term T2, T3 and T4 are estimated by applying respectively

(7.3.3a)(7.4.5a), (7.3.4a), (7.5.3a), (7.3.4a), and (7.5.3a).
For the remaining terms, we will not write in details the proof but list

out the inequalities to be used on each term and each partition of the index
|I1| ` |I2| § |I:|, in the following list:

Products p4,§ 0q p3,§ 1q p2,§ 2q
sBaB�Z

I1upıZ
I2B�upk (7.3.4a), (7.5.3a) (7.3.4a), (7.5.3a) (7.3.4c), (7.5.1a)

sBaB�Z
I1upıZ

I2B�vqk (7.3.4a), (7.5.2a) (7.3.4a), (7.5.2a) (7.3.4c), (7.5.2a)
sBaB�Z

I1upıZ
I2upk (7.3.4a), (7.5.5c) (7.3.4a), (7.5.5c) (7.3.4c), (7.5.5a)

sBaB�Z
I1upıZ

I2vqk (7.3.4a), (7.5.1e) (7.3.4a), (7.5.1e) (7.3.4c), (7.5.1e)

Products p1,§ 3q p0,§ 4q
sBaB�Z

I1upıZ
I2B�upk (7.4.5a), (7.3.3a) (7.4.5c), (7.3.1a)

sBaB�Z
I1upıZ

I2B�vqk (7.4.5a), (7.3.2a) (7.4.5c), (7.3.2a)
sBaB�Z

I1upıZ
I2upk (7.4.5a), (7.3.6c) (7.4.5c), (7.3.6a)

sBaB�Z
I1upıZ

I2vqk (7.4.5a), (7.3.1e) (7.4.5c), (7.3.1e)

Products p4,§ 0q p3,§ 1q p2,§ 2q
st´1B�1ZI1up|Z

I2B�upk (7.2.1a), (7.5.3a) (7.2.3a), (7.5.3a) (7.2.3a), (7.5.1a)
st´1B�1ZI1up|Z

I2B�vqk (7.2.1a), (7.5.2a) (7.2.3a), (7.5.2a) (7.2.3a), (7.5.2a)
st´1B�1ZI1up|Z

I2upk (7.2.1a), (7.5.5c) (7.2.3a), (7.5.5c) (7.2.3a), (7.5.5a)
st´1B�1ZI1up|Z

I2vqk (7.2.1a), (7.5.1e) (7.2.3a), (7.5.1e) (7.2.3a), (7.5.1e)
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Products p1,§ 3q p0,§ 4q
st´1B�1ZI1up|Z

I2B�upk (7.4.4a), (7.3.3a) (7.4.4a), (7.3.1a)
st´1B�1ZI1up|Z

I2B�vqk (7.4.4a), (7.3.2a) (7.4.4a), (7.3.2a)
st´1B�1ZI1up|Z

I2upk (7.4.4a), (7.3.6c) (7.4.4a), (7.3.6a)
st´1B�1ZI1up|Z

I2vqk (7.4.4a), (7.3.1e) (7.4.4a), (7.3.1e)

Now, we estimate the term Fpı which is also similar: recall the structure
of ZI:

Fpı presented in (8.3.3) with I replaced by I:. As before, we consider
the term ZI: `

B↵up|B�upk
˘
as an example and we write down the details of

the analysis. For the rest terms, we just give the L2 and L8 estimates to
be used for each factor:››sZI: `

B↵up|B�upk
˘››

L2pH
s

q

§
››sB↵up| Z

I: B�upk
››
L2pH

s

q `
ÿ

I1`I2“I

:
|I1|“1

››sZI1B↵up| Z
I2B�upk

››
L2pH

s

q

`
ÿ

I1`I2“I

:
|I1|“2

››sZI1B↵up| Z
I2B�upk

››
L2pH

s

q

`
ÿ

I1`I2“I

:
|I1|“3

››sZI1B↵up| Z
I2B�upk

››
L2pH

s

q `
››sZI: B↵up| B�upk

››
L2pH

s

q

“: T0 ` T1 ` T2 ` T3 ` T4.

The term T0 is estimated by (7.5.3a) and (7.3.1a):

T0 “
››sB↵up| Z

I: B�upk
››
L2pH

s

q § CC1✏
››s t´1{2s´1 ZI: B�upk

››
L2pH

s

q

“CC1✏
››s t´1{2s´1 pt{sq

`
s{tZI: B�upk

˘››
L2pH

s

q § CC1✏
››s{tZI: B�upk

››
L2pH

s

q

§CpC1✏q2s�.
Here the relation t § Cs2 (in K) is used. The term T4 is estimated in the
same way by exchanging the role of up| and upk.

The terms T1 and T3 are estimated by (7.5.3a) and (7.3.3a). We estimate
T1 as follows. The estimate of T3 is done by exchanging up| and upk in the
following argument:

T1 “
ÿ

I1`I2“I

:
|I1|“1

››sZI1B↵up| Z
I2B�upk

››
L2pH

s

q

§CC1✏
››s t´1{2s´1 pt{sqps{tqZI2B�upk

››
L2pH

s

q

§CC1✏
››ps{tqZI2B�upk

››
L2pH

s

q § CpC1✏q2.
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p|
Z

J
2
v

q k
(7
.2
.3
a)
,(
7.
5.
1f
)
(7
.2
.3
a)
,(
7.
5.
1f
)
(7
.4
.4
a)
,(
7.
3.
1f
)
(7
.4
.4
a)
,(
7.
3.
1f
)

T
ab

le
12
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The term T2 is estimated by (7.5.1a) and (7.3.3a):

T2 “
ÿ

I1`I2“I

:
|I1|“2

››sZI1B↵up| Z
I2B�upk

››
L2pH

s

q

§CC1✏
››s t´1{2s´1`� pt{sqps{tqZI2B�upk

››
L2pH

s

q

“CC1✏s
�
››ps{tqZI2B�upk

››
L2pH

s

q § CpC1✏q2s�.
The estimate of other terms are presented in Table 7. We conclude (8.5.1c).

The estimate of RpZIupıq is a direct result of (7.3.4a).

Proof of Lemma 8.5.2. The proof is essentially the same as the one of
Lemma 8.5.1. The main di↵erence lies in the inequalities we use for each
term and partition of the index. We will list out the relevant inequalities
and skip the details.

For the proof of (8.5.2a), we list out the inequalities in Table 8.
The following four terms are estimated by apply the additional decay

rate supplied by B↵��
� :

sZI
`
B↵ �1

� upıB�1up|
˘
, sZI

`
B↵ �1

� vqıB�1up|
˘
,

sZI
`
B↵ �1

� B�upıB�1up|
˘
, sZI

`
B↵ �1

� B�vqıB�1up|
˘
.

See Table 10.
For the term QT pı, we find Table 11 and Table 12.
For the estimates on ZIFpı, the inequalities we use are presented in the

following list:

Products p3,§ 0q p2,§ 1q p1,§ 2q p0,§ 3q
B↵up|B�upk (7.3.3a), (7.5.3a) (7.3.3a), (7.5.3a) (7.5.3a), (7.3.3a) (7.5.3a), (7.3.3a)
B↵vq|B�wk (7.3.2b), (7.5.1b) (7.3.2b), (7.5.1b) (7.5.2b), (7.3.1b) (7.5.2b), (7.3.1b)
vqkB↵wj (7.3.1f), (7.5.1b) (7.3.1f), (7.5.1b) (7.5.1f), (7.3.1b) (7.5.1f), (7.3.1b)
vqkvq| (7.3.1f), (7.5.1f) (7.3.1f), (7.5.1f) (7.5.1f), (7.3.1f) (7.5.1f), (7.3.1f)

The estimate on RpZIupıq is a direct result of (7.3.4b)

Proof of Lemma 8.5.3. The proof is essentially the same as the one of
Lemma 8.5.1. The main di↵erence is the level of regularity under consider-
ation. We will not give the details and only list the inequalities we use for
each term and partition I “ I2 ` I3:

Products p2,§ 0q p1,§ 1q p0,§ 2q
upıBaB�up| (7.3.6c), (7.5.4c) (7.5.5c), (7.3.5c) (7.5.5c), (7.3.5c)
vqıBaB�up| (7.3.1e), (7.5.4c) (7.5.1e), (7.3.5c) (7.5.1e), (7.3.5c)
upıBtBaup| (7.3.6c), (7.5.4c) (7.5.5c), (7.3.5c) (7.5.5c), (7.3.5c)
vqıBtBaup| (7.3.1e), (7.5.4c) (7.5.1e), (7.3.5c) (7.5.1e), (7.3.5c)
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Products p2,§ 0q p1,§ 1q p0,§ 2q
B�upıBaB�up| (7.3.3a), (7.5.4c) (7.5.3a), (7.3.5c) (7.5.3a), (7.3.5c)
B�vqıBaB�up| (7.3.2a), (7.5.4c) (7.5.2a), (7.3.5c) (7.5.2a), (7.3.5c)
B�upıBtBaup| (7.3.3a), (7.5.4c) (7.5.3a), (7.3.5c) (7.5.3a), (7.3.5c)
B�vqıBtBaup| (7.3.2a), (7.5.4c) (7.5.2a), (7.3.5c) (7.5.2a), (7.3.5c)
vqıB↵B�vq| (7.3.1e), (7.5.2a) (7.5.1e), (7.3.2a) (7.5.1e), (7.3.2a)

B�upıB↵B�vq| (7.3.3a), (7.5.2a) (7.5.3a), (7.3.2a) (7.5.3a), (7.3.2a)
B�vqıB↵B�vq| (7.3.2a), (7.5.2a) (7.5.2a), (7.3.2a) (7.5.2a), (7.3.2a)

There are four terms to be estimated separately:

ZI
`
B↵ �1

� upıB�1up|
˘
, ZI

`
B↵ �1

� vqıB�1up|
˘
,

ZI
`
B↵ �1

� B�upıB�1up|
˘
, ZI

`
B↵ �1

� B�vqıB�1up|
˘
.

As before, these terms are to be estimated by the additional decay supplied
by |ZI �1

� | § CpIqt´1. We omit the details but list out the inequalities to
be used for each term and each partition of I “ I2 ` I3:

Products p2, 0q p1, 1q p0, 2q
B↵ �1

� upıB�1up| (7.3.6c), (7.5.3a) (7.5.5c), (7.3.3a) (7.5.5c), (7.3.3a)

B↵ �1

� vqıB�1up| (7.3.1e), (7.5.3a) (7.5.1e), (7.3.3a) (7.5.1e), (7.3.3a)

B↵ �1

� B�upıB�1up| (7.3.3a), (7.5.3a) (7.5.3a), (7.3.3a) (7.5.3a), (7.3.3a)

B↵ �1

� B�vqıB�1up| (7.3.2a), (7.5.3a) (7.5.2a), (7.3.3a) (7.5.2a), (7.3.3a)

And we conclude with (8.5.3a).
We turn our attention to the estimates for QT pı. As before the details

are omitted. The inequalities we use for each term and each partition of
the indices are listed:

Products p2,§ 0q p1,§ 1q p0,§ 2q
sBaB�Z

I1upıZ
I2B�upk (7.3.4c), (7.5.3a) (7.3.4c), (7.5.3a) (7.4.5c), (7.3.3a)

sBaB�Z
I1upıZ

I2B�vqk (7.3.4c), (7.5.2a) (7.3.4c), (7.5.2a) (7.4.5c), (7.3.2a)
sBaB�Z

I1upıZ
I2upk (7.3.4c), (7.5.5c) (7.3.4c), (7.5.5c) (7.4.5c), (7.3.6c)

sBaB�Z
I1upıZ

I2vqk (7.3.4c), (7.5.1e) (7.3.4c), (7.5.1e) (7.4.5c), (7.3.1e)

Products p2,§ 0q p1,§ 1q p0,§ 2q
st´1B�1ZI1up|Z

I2B�upk (7.2.3a), (7.5.3a) (7.2.3a), (7.5.3a) (7.4.4a), (7.3.3a)
st´1B�1ZI1up|Z

I2B�vqk (7.2.3a), (7.5.2a) (7.2.3a), (7.5.2a) (7.4.4a), (7.3.2a)
st´1B�1ZI1up|Z

I2upk (7.2.3a), (7.5.5c) (7.2.3a), (7.5.5c) (7.4.4a), (7.3.6c)
st´1B�1ZI1up|Z

I2vqk (7.2.3a), (7.5.1e) (7.2.3a), (7.5.1e) (7.4.4a), (7.3.1e)
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The estimate of ZIFpı is essentially the same. As before, we omit the
details but list out the inequalities to be used:

Products p2, 0q p1, 1q p0, 2q
B↵up|B�upk (7.3.3a), (7.5.3a) (7.5.3a), (7.3.3a) (7.5.3a), (7.3.3a)
B↵vq|B�wk (7.3.2a), (7.5.1a) (7.5.2a), (7.3.1a) (7.5.2a), (7.3.1a)
vqkB↵wj (7.3.1e), (7.5.1a) (7.5.1e), (7.3.1a) (7.5.1e), (7.3.1a)
vqkvq| (7.3.1e), (7.5.1e) (7.5.1e), (7.3.1e) (7.5.1e), (7.3.1e)

The estimate of RpZIupıq is a direct result of (7.3.4c).

Now we are ready to prove the second main result of this section.

Proposition 8.5.1. Let upı be wave components of a su�ciently regular,
local-in-time solution to (1.2.1) and assume that (2.4.5) holds with C1✏ §
mint1, ✏2

0u. The following estimates hold for |I:| § 4, |I| § 3 and |I5| § 2:

}s3t´2BtBtZI:
upı}L2pH

s

q § CC1✏s
�, (8.5.4a)

}s3t´2BtBtZIupı}L2pH
s

q § CC1✏s
�{2, (8.5.4b)

}s3t´2BtBtZI5
upı}L2pH

s

q § CC1✏ (8.5.4c)

and, furthermore,

}s3t´2B↵B�ZI:
upı}L2pH

s

q § CC1✏s
�, (8.5.5a)

}s3t´2B↵B�ZIupı}L2pH
s

q § CC1✏s
�{2, (8.5.5b)

}s3t´2B↵B�ZI5
upı}L2pH

s

q § CC1✏. (8.5.5c)

Proof. The proof is a combination of (8.5.1), (8.5.2), and (8.5.3) with
(8.2.5). We will prove first (8.5.4c).

The proof is done by induction. We first prove (8.5.4c) with |I5| “ 0
and recall our convention that |I| † 0 implies ZI “ 0, and (8.2.5) implies
(with |I| “ 0):

››s3t´2BtBtupı
››
L2pH

s

q

§ C
››sQGpı

››
L2pH

s

q ` C
››sQT pı

››
L2pH

s

q ` C
››sFpı

››
L2pH

s

q ` C
››sRpupıq

››
L2pH

s

q.

By the group of inequalities (8.5.3),
››s3t´2BtBtupı

››
L2pH

s

q § CC1✏.
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Suppose that (8.5.4c) holds with |I5| § m, we will prove (8.5.4c) with
|I5| § m ` 1. By (8.2.5),

››s3t´2BtBtZI5
upı

››
L2pH

s

q

§ CK
ÿ

|I2|`|I3|§|I5|
|I2|†|I5|

ÿ

�,p|,i

››sp|ZI3B�wi| ` |ZI3wi|q BtBtZI2up|
››
L2pH

s

q

` C}sQGpıpI5, w, Bw, BBwqpı}L2pH
s

q ` C}sQT pıpI5, w, Bw, BBwq}pı}L2pH
s

q

` C}sRpZI5
upıq}L2pH

s

q

when |I5| § m ` 1 § 2, and we apply (8.5.3):

››s3t´2BtBtZI5
upı

››
L2pH

s

q

§ CK
ÿ

|I2|`|I3|§|I5|
|I2|†|I5|

ÿ

�,p|,i

››sp|ZI3B�wi| ` |ZI3wi|q BtBtZI2up|
››
L2pH

s

q ` CC1✏

§ CK
ÿ

|I2|`|I3|§|I5|
|I3|“1

ÿ

�,p|,i

››sp|ZI3B�wi| ` |ZI3wi|q BtBtZI2up|
››
L2pH

s

q

` CK
ÿ

|I2|`|I3|§|I5|
|I3|“2

ÿ

�,p|,i

››sp|ZI3B�wi| ` |ZI3wi|q BtBtZI2up|
››
L2pH

s

q ` CC1✏.

Observe now that when I3 “ 1, by (7.5.3a), (7.5.1c) and (7.5.5a) we have

|ZI3B�upı| § CC1✏t
´1{2s´1, |ZI3B�vqı| § CC1✏t

´3{2s�,

|ZI3upı| § CC1✏t
´3{2s, |ZI3vq|| § CC1✏t

´3{2s�.

And by the induction assumption
`
(8.5.4c) for |I2| § |I5| ´ 1

˘
:

ÿ

|I2|`|I3|§|I5|
|I3|“1

ÿ

�,p|,i

››sp|ZI3B�wi| ` |ZI3wi|q BtBtZI2up|
››
L2pH

s

q

§ CpC1✏q
ÿ

|I2|`|I3|§|I5|
�,p|,i,|I3|“1

››t2s´2pt´1{2s´1 ` t´3{2s ` t´3{2s�q s3t´2BtBtZI2up|
››
L2pH

s

q

§ CpC1✏q
ÿ

|I2|`|I3|§|I5|
|I3|“1

ÿ

�,p|,i

››s3t´2BtBtZI2up|
››
L2pH

s

q

§ CpC1✏q2.
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When |I3| “ 2, we observe that |I2| § 0. By (8.4.4c), we have
ÿ

�,p|,i

››sp|ZI3B�wi| ` |ZI3wi|q BtBtZI2up|
››
L2pH

s

q

§ CC1✏
ÿ

�,p|,i

››sp|ZI3B�wi| ` |ZI3wi|q t1{2s´3
››
L2pH

s

q

§ CC1✏
ÿ

�,pı

››t1{2s´2ZI3B�upı
››
L2pH

s

q ` CC1✏
ÿ

�,qı

››t1{2s´2ZI3B�vqı
››
L2pH

s

q

` CC1✏
ÿ

pı

››t1{2s´2ZI3upı
››
L2pH

s

q ` CC1✏
ÿ

qı

››t1{2s´2ZI3vqı
››
L2pH

s

q

These four terms can be bounded by CpC1✏q2 by applying (7.3.3a), (7.3.2a)
and (7.3.6c). So for |I5| § m ` 1 § 2, (8.5.4c) is proved. By induction,
(8.5.4c) is proved for |I5| § 2.

We turn to the proof of (8.5.4b) and observe that in (8.5.4b), the case
|I| § 2 is already proved by (8.5.4c). We need only treat the cases |I| “ 3.

When |I| “ 3, we apply (8.2.5):
››s3t´2BtBtZIupı

››
L2pH

s

q

§ CK
ÿ

|I2|`|I3|§3
|I2|†3

ÿ

�,p|,i

››sp|ZI3B�wi| ` |ZI3wi|q BtBtZI2up|
››
L2pH

s

q

` C}sQGpıpI, w, Bw, BBwqpı}L2pH
s

q ` C}ZIFpı} ` C}sZIupı}L2pH
s

q.

We observe that, in view of (8.5.2),
››s3t´2BtBtZIupı

››
L2pH

s

q

§ CK
ÿ

|I2|`|I3|§3
|I2|†3

ÿ

�,p|,i

››sp|ZI3B�wi| ` |ZI3wi|q BtBtZI2up|
››
L2pH

s

q ` CC1✏s
�{2.

We focus on
ÿ

|I2|`|I3|§3
|I2|†3

ÿ

�,p|,i

››sp|ZI3B�wi| ` |ZI3wi|q BtBtZI2up|
››
L2pH

s

q

§
ÿ

|I2|`|I3|§3
|I2|“0

ÿ

�,p|,pı

››sZI3B�upı BtBtZI2up|
››
L2pH

s

q

`
ÿ

|I2|`|I3|§3
|I2|“1

ÿ

�,p|,qı

››sZI3B�vqı BtBtZI2up|
››
L2pH

s

q

`
ÿ

|I2|`|I3|§3
|I2|“2

ÿ

�,p|,pı

››sZI3upı BtBtZI2up|
››
L2pH

s

q.
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For each sum, the possible choice of p|I2|, |I3|q are

p0,§ 3q, p1,§ 2q, p2,§ 1q.
We list out, for each sum, the relevant inequalities for each possible choice
p|I2|, |I3|q. This makes the following list:

Products p0,§ 3q p1,§ 2q p2,§ 1q
sBtBtZI2up| Z

I3B�upı (8.4.6c), (7.3.3a) (8.5.4c), (7.5.2b) (8.5.4c), (7.5.3a)
sBtBtZI2up| Z

I3B�vqı (8.4.6c), (7.3.2b) (8.5.4c), (7.5.2a) (8.5.4c), (7.5.2a)
sBtBtZI2up| Z

I3upı (8.4.6c), (7.3.6b) (8.5.4c), (7.5.5b) (8.5.4c), (7.5.5c)
sBtBtZI2up| Z

I3vqı (8.4.6c), (7.3.2b) (8.5.4c), (7.5.2a) (8.5.4c), (7.5.2a)

We conclude with the fact that these four terms can be bounded by
CpC1✏q2s�{2. So (8.5.4b) is proved for |I:| “ 3.

Now we turns to the proof of (8.5.4). When |I:| “ 4, we apply (8.5.4b)
with |I:| “ 3 and, more precisely,

}s3t´2BtBtZI1upı}L2pH
s

q § CC1✏s
�{2 § CC1✏s

�. (8.5.6)

As in previous cases, by (8.2.5) and (8.5.1),
››s3t´2BtBtZI7

upı
››
L2pH

s

q

§ CK
ÿ

|I2|`|I3|§4
|I2|†3

ÿ

�,p|,i

››sp|ZI3B�wi| ` |ZI3wi|q BtBtZI2up|
››
L2pH

s

q ` CpC1✏q2s�.

The first sum is also decomposed into four parts:ÿ

|I2|`|I3|§4
|I2|†4

ÿ

�,p|,i

››sp|ZI3B�wi| ` |ZI3wi|q BtBtZI2up|
››
L2pH

s

q

§
ÿ

|I2|`|I3|§4
|I2|†4

ÿ

�,p|,pı

››sZI3B�upı BtBtZI2up|
››
L2pH

s

q

`
ÿ

|I2|`|I3|§4
|I2|†4

ÿ

�,p|,qı

››sZI3B�vqı BtBtZI2up|
››
L2pH

s

q

`
ÿ

|I2|`|I3|§4
|I2|†4

ÿ

�,p|,pı

››sZI3upı BtBtZI2up|
››
L2pH

s

q

`
ÿ

|I2|`|I3|§4
|I2|†4

ÿ

�,p|,qı

››sZI3vqı BtBtZI2up|
››
L2pH

s

q.

The possible choices of p|I2|, |I3|q are

p3,§ 1q, p2,§ 2q, p1,§ 3q, p0,§ 4q.
We list out the inequalities to be used for each term and each choice of
p|I2|, |I3|q. Cf. Table 13. We conclude with (8.5.4a). On the other hand,
(8.5.5) are combinations of (8.5.4) and Lemma 8.1.1.
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P
ro
d
u
ct
s

p3
,§

1q
p2
,§

2q
p1
,§

3q
p0
,§

4q
sB

t
B t
Z

I
2
u

p|
Z

I
3
B �

u
pı
(8
.5
.6
),
(7
.5
.3
a)

(8
.4
.4
a)
,(
7.
3.
3a

)
(8
.4
.4
a)
,(
7.
3.
3a

)
(8
.4
.4
c)
,(
7.
3.
1a

)
sB

t
B t
Z

I
2
u

p|
Z

I
3
B �

v qı
(8
.5
.6
),
(7
.5
.2
a)

(8
.4
.4
a)
,(
7.
3.
2a

)
(8
.4
.4
a)
,(
7.
3.
2a

)
(8
.4
.4
c)
,(
7.
3.
2a

)
sB

t
B t
Z

I
2
u

p|Z
I
3
u

pı
(8
.5
.6
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Now, we derive the complete L2 estimates of the second-order deriva-
tives.

Lemma 8.5.4. Under the assumption (2.4.5), the following L2 estimates
hold for |I:| § 4, |I| § 3| and I5| § 2:

››s3t´2B↵B�ZI:
upı

››
L2pH

s

q `
››s3t´2ZI: B↵B�upı

››
L2pH

s

q § CC1✏s
�, (8.5.7a)

››s3t´2B↵B�ZIupı
››
L2pH

s

q `
››s3t´2ZIB↵B�upı

››
L2pH

s

q § CC1✏s
�{2,

(8.5.7b)
››s3t´2B↵B�ZI5

upı
››
L2pH

s

q `
››s3t´2ZI5 B↵B�upı

››
L2pH

s

q § CC1✏. (8.5.7c)

Proof. These inequalities are based on (3.3.3) and (8.5.5).
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Chapter 9

Null forms and decay in time

9.1 Bounds that are independent of second-order estimates

In this chapter, we are going to estimate the terms

TpBupı, Bup|q :“ T↵�B↵upıB�up|, rZI , A↵��B�upıB↵B�sup|.

where T↵� and A↵�� are null quadratic forms. Concerning the term
rZI , A↵��B�upıB↵B�sup|, we can apply (8.5.4c) and (8.4.4c) for better de-
cay rates, but the following rates will be su�cient for our main result in
this monograph.

Lemma 9.1.1. By reyling on the energy assumption (2.4.5e), the following
estimates hold for all |I| § 3 and |J | § 1:››ZITpBupı, Bup|q

››
L2pH

s

q § CpC1✏q2s´3{2, (9.1.1a)
››rZI , A↵��B�upıB↵B�sup|

››
L2pH

s

q § CpC1✏q2s´3{2`�, (9.1.1b)

sup
H

s

`
t2sTpBupı, Bup|q

˘
§ CpC1✏q2. (9.1.2)

Proof. The proof of (9.1.1a) is a combination of Proposition 4.1.2 with
(7.5.3) and (7.3.3). By recalling the decomposition of T presented in Propo-
sition 4.1.2, we have the list in Table 14. This completes the argument.

The estimate on the term rZI , A↵��B�upıB↵B�sup| is also proved by using
the inequalities presented in the following list. Observe that by Proposition
4.3.2, some partition of the index do not exist. We have:

Terms p3,§ 0q p2,§ 1q p1,§ 2q
ps{tq2ZI1BtupkZ

I2BtBtup| (7.3.3a), (7.5.3a) (7.3.3a), (7.5.1a) (7.5.3a), (7.3.3a)
ZI1BaupkZ

I2B�B�up| (7.3.3b), (7.5.3a) (7.3.3b), (7.5.1a) (7.5.3b), (7.3.3a)
ZI1B↵upkZ

I2BbB�up| (7.3.3a), (7.5.4c) (7.3.3a), (7.5.4a) (7.5.3a), (7.3.5c)
ZI1B↵upkZ

I2B�Bcup| (7.3.3a), (7.5.4c) (7.3.3a), (7.5.4a) (7.5.3a), (7.3.5c)
t´1ZI1B↵upkB�up| (7.3.3a), (7.5.3a) (7.3.3a), (7.5.3a) (7.5.3a), (7.3.3a)

123
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Finally, we derive the L8 estimates of T by the following list:

Terms p1,§ 0q p0,§ 1q Decay rate
ps{tq2ZJ1BtupıZ

J2Btup| (7.5.3a), (7.5.3a) (7.5.3a), (7.5.3a) t´3

ZJ1BaupıZ
J2B�up| (7.5.3b), (7.5.3a) (7.5.3b), (7.5.3a) t´2s´1

ZJ1B�upıZ
J2Baup| (7.5.3a), (7.5.3b) (7.5.3a), (7.5.3b) t´2s´1

9.2 Bounds that depend on second-order estimates

In this section we estimate the terms rZI , B↵�upıB↵B�sup| by essentially re-
lying on the second-order estimates (8.4.6).

Lemma 9.2.1. By relying on the energy assumption (2.4.5e), the following
estimates hold for |I| § 3:

››rZI , B↵�upıB↵B�sup|
››
L2pH

s

q § CpC1✏q2s´3{2`�. (9.2.1a)

Proof. Recall the structure of rZI , B↵�upıB↵B�sup| presented in (4.2.1b). It
is a linear combinations of several terms and we need to control each term
in each possible partition of the index |I1| ` |I2| § |I|, |I2| † |I|. As before,
we list out the inequalities we use for each term and each partition of the
indices:

terms p3,§ 0q p2,§ 1q p1,§ 2q
ps{tq2ZI1upk Z

I2BtBtup| (7.3.6c), (8.4.4c) (7.3.6c), (8.4.4a) (7.3.6c), (8.4.4a)
ZI1upkZ

I2BaB�up| (7.3.6c), (7.5.4c) (7.3.6c), (7.5.4a) (7.3.6c), (7.5.4a)
ZI1upkZ

I2B↵Bbup| (7.3.6c), (7.5.4c) (7.3.6c), (7.5.4a) (7.3.6c), (7.5.4a)
t´1ZI1upkZ

I1B↵up| (7.3.6c), (7.5.3a) (7.3.6c), (7.5.3a) (7.5.5c), (7.3.3a)

9.3 Decay estimates

We are now in a position to prove (2.4.7a), (2.4.7b), (2.4.8a), and (2.4.9a).
The proof of (2.4.7a) requires only the L8 estimate established in Chap-
ter 7.

Lemma 9.3.1. Let twiu be the local-in-time solution of (1.2.1) and suppose
that the energy assumption (2.4.5b) and (2.4.5e) hold. Then there exists
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a constant 1 ° 0 (depending upon the constants Aj↵��k
i and Bj↵�k

i ) such
that, if C1✏ is su�ciently small,

´2
1

ÿ

i

Em,c
i

ps, ZIwiq §
ÿ

i

EG,c
i

ps, ZIwiq § 21
ÿ

i

Em,c
i

ps, ZIwiq.

Proof. Note thatÿ

i,j,↵,�

ˇ̌
Gj↵�

i

ˇ̌
§ CK

ÿ

i

`
|Bwi| ` |wi|

˘

§ CK
ÿ

pı,qı,↵

`
|B↵vqı| ` |B�upı| ` |vqı| ` |upı|

˘
.

Applying (7.5.2a), (7.5.3a), (7.5.1e), and (7.5.5c), and recalling 0 † � † 1{6,
we have ÿ

i,j,↵,�

ˇ̌
Gj↵�

i

ˇ̌
§ CKpt´3{2s ` t´1{2s´1q.

ÿ

i

ˇ̌
EG,c

i

ps, wiq ´ Em,c
i

ps, wiq
ˇ̌

“
ˇ̌
ˇ̌2
ª

H
s

`
BtwiB�wjG

j↵�
i

˘
0§↵§1

p1,´x{tqdx ´
ª

H
s

`
B↵wiB�wjG

j↵�
i

˘
dx

ˇ̌
ˇ̌

§ 2

ª

H
s

ˆ ÿ

i,j,↵,�

ˇ̌
Gj↵�

i

ˇ̌˙ ˆ ÿ

↵,k

|B↵wk|2
˙
dx

§ 2CK

ª

H
s

ÿ

i

`
|Bwi| ` |wi|

˘ ˆ ÿ

↵,k

|B↵wk|2
˙
dx

§ 2CKC1✏

ª

H
s

`
t´1{2s´1 ` t´3{2s

˘
pt{sq2

ˆ ÿ

↵,k

|ps{tqB↵wk|2
˙
dx

§ CKC1✏
ÿ

i

Emps, wiq § CKC1✏
ÿ

i

Em,c
i

ps, wiq,

where the relation t § Cs2 in K is taken into consideration. Here we take
CKC1✏ § 2{3 with C a universal constant, then the lemma is proved by
fixing 1 “

?
3.

The proof of (2.4.7b) will be related to the energy estimate (7.2.1a).

Lemma 9.3.2. By relying on (2.4.5a), (2.4.5b), and (2.4.5e), for any
|I7| § 5 the following estimate holds:ˇ̌

ˇ̌
ª

H
s

s

t

ˆ`
B↵Gj↵�

i

˘
BtZI7

wiB�ZI7
wj ´ 1

2

`
BtGj↵�

i

˘
B↵ZI7

wiB�ZI7
wj

˙
dx

ˇ̌
ˇ̌

§ CpC1✏q2s´1`�Emps, ZI7
wiq1{2 § CpC1✏q2s´1`�Em,�ps, ZI7

wiq1{2.
(9.3.1)
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Proof. By (7.5.1a) and (7.5.2a), we note that

ˇ̌
B↵Gj↵�

i

ˇ̌
§C

ÿ

j

|B↵wj | ` C
ÿ

j,�

|B↵B�wj |

§C
ÿ

q|,↵,�

`
|B↵vq|| ` |B↵B�vq||

˘
` C

ÿ

p|,↵,�

`
|B↵up|| ` |B↵B�up||

˘

§CC1✏t
´3{2s� ` CC1✏t

´1{2s´1`�.

By substituting this result into the expression, the first term in the left-hand
side of (9.3.1) is bounded as follows:

››ps{tq
`
B↵Gj↵�

i

˘
BtZI7

wiB�ZI7
wj

››
L1pH

s

q

“
››`

pt{sqB↵Gj↵�
i

˘
ps{tqBtZI7

wips{tqB�ZI7
wj

››
L1pH

s

q

§
ÿ

j,�

››CpC1✏qpt1{2s´2 ` t´1{2s´1`�q ps{tqBtZI7
wips{tqB�ZI7

wj

››
L1pH

s

q

§ CC1✏s
´1

ÿ

j,�

››ps{tqBtZI7
wips{tqB�ZI7

wj

››
L1pH

s

q

§ CC1✏s
´1

ÿ

j,�

}ps{tqB�ZI7
wj

››
L2pH

s

q
››ps{tqBtZI7

wi

››
L2pH

s

q.

We apply (7.2.1a) and find

››ps{tq
`
B↵Gj↵�

i

˘
BtZI7

wiB�ZI7
wj

››
L1pH

s

q

§ CpC1✏q2s´1`�

ˆ ª

H
s

ˇ̌
ps{tqBtZI7

wi

ˇ̌2
dx

˙1{2

§ CpC1✏q2s´1`�Emps, ZI7
wiq1{2.

The second term is estimated in the same way and we omit the details.

The proof of (2.4.8a) is similar to that of (2.4.7b).

Lemma 9.3.3. By relying on (2.4.5c), (2.4.5d), and (2.4.5e), the following
estimate holds:

ˇ̌
ˇ̌
ª

H
s

s

t

ˆ`
B↵Gj↵�

i

˘
BtZI:

wiB�ZI:
wj ´ 1

2

`
BtGj↵�

i

˘
B↵ZI:

wiB�ZI:
wj

˙
dx

ˇ̌
ˇ̌

§CpC1✏q2s´1`�{2Emps, ZI:
wiq1{2 § CpC1✏q2s´1`�{2Em,�ps, ZI:

wiq1{2.
(9.3.2)
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Proof. As in the proof of Lemma 9.3.2, we can apply (7.2.1b) together
with (7.5.1b) and (7.5.2b):

››ps{tq
`
B↵Gj↵�

i

˘
BtZI7

wiB�ZI7
wj

››
L1pH

s

q

§ CpC1✏q2s´1`�{2
ˆ ª

H
s

ˇ̌
ps{tqBtZI7

wi

ˇ̌2
dx

˙1{2

§ CpC1✏q2s´1`�{2Emps, ZI7
wiq1{2.

The second term is estimated in the same way and we omit the details.

The proof of (2.4.9a) is quite similar, but the null structure will be taken
into consideration for the sharp decay rate s´3{2`2�. This is one of the only
two places where the null structure is taken into account.

Lemma 9.3.4. Suppose (2.4.5b) and (2.4.5e) hold, then for any |I| § 3
the following estimates are true:

ˇ̌
ˇ̌
ª

H
s

s

t

ˆ`
B↵Gp|↵�

pı
˘
BtZIupıB�ZIup| ´ 1

2

`
BtGp|↵�

pı
˘
B↵ZIupıB�ZIup|

˙
dx

ˇ̌
ˇ̌

§ CpC1✏q2s´3{2`�Emps, ZIupıq1{2.
(9.3.3)

Proof. We decompose the term Gp|↵�
pı as follows:

ps{tqB↵Gp|↵�
pı B�ZIup|BtZIupı

“ ps{tq
`
Ap|↵��qk

pı B↵B�vqk ` Bp|↵�qk
pı B↵vqk

˘
B�ZIup|BtZIupı

` ps{tq
`
Ap|↵��pk

pı B↵B�upk ` Bp|↵�pk
pı B↵upk

˘
B�ZIup|BtZIupı

:“ R1 ` R2.

The estimate of R1 is direct, and we simply apply the inequalities (7.5.1e):

}R1}L1pH
s

q “ }ps{tq
`
Ap|↵��qk

pı B↵B�vqk ` Bp|↵�qk
pı B↵vqk

˘
pB�ZIup|BtZIupıq}L1pH

s

q

§ CC1✏ }pt´3{2s�pt{sqq ps{tqB�ZIup| ps{tqBtZIupı}L1pH
s

q

§ CC1✏ }pt´1{2s´1`�ps{tqB�ZIup|}L2pH
s

q }ps{tqBtZIupı}L2pH
s

q

§ CC1✏s
3{2`�}ps{tqB�ZIup|}L2pH

s

q Emps, ZIupıq1{2.

In view of (7.2.3a), we get

}R1}L1pH
s

q § CpC1✏q2s´3{2`�Emps, ZIupıq1{2. (9.3.4)
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The estimates on R2 is more involved: we have the following decompo-
sition:

ps{tq
`
Ap|↵��pk

pı B↵B�upk ` Bp|↵�pk
pı B↵upk

˘
B�ZIup|

“ps{tqAp|↵��pk
pı B↵B�upkB�ZIup| ` ps{tqBp|↵�pk

pı B↵upkB�ZIup|

“:ps{tqAp|pk
pı pBZIup|, BBupkq ` ps{tqTp|pk

pı pBupk, BZIup|q

Recall that Ap|pk
pı and T

p|pk
pı are null forms.

Let us consider first the terms of Ap|pk
pı . By Proposition 4.3.1 (with I “ 0),

we have

A
p|pk
pı pBZIup|, BBupkq

§ CKps{tq2|BtBtupk| |BtZIup|| ` CK⌦1p0, ZIup|, upkq ` CKt´1⌦2p0, ZIup|, upkq
§ CKps{tq2|BtBtupk| |BtZIup||

` CK
ÿ

a,�,�

|BaB�upk| |B�Z
Iup|| ` CK

ÿ

↵,b,�

|B↵Bbupk| |B�Z
Iup||

` CK
ÿ

↵,�,c

|B↵B�upk| |BcZ
Iup|| ` CKt´1

ÿ

↵,�

|B↵ZIup|| |B�upk|.

Each term is estimated as follows:

}ps{tq2BtBtupk BtZIup|}L2pH
s

q “ }ps{tqBtBtupk ps{tqBtZIup|}L2pH
s

q

§ CC1✏}t´3{2 ps{tqBtZIup|}L2pH
s

q

§ CC1✏s
´3{2}ps{tqBtZIup|}L2pH

s

q § CpC1✏q2s´3{2,

where we applied (7.5.3a) and (7.2.3a). We have also

}BaB�upk B�Z
Iup|}L2pH

s

q “ }pt{sqBaB�upk ps{tqBtZIup|}L2pH
s

q

§ CC1✏}pt{sqt´3{2s´1 ps{tqBtZIup|}L2pH
s

q

§ CC1✏s
´3{2}ps{tqBtZIup|}L2pH

s

q § CpC1✏q2s´3{2.

The term }B↵Bbupk B�Z
Iup|}L2pH

s

q is estimated in the same manner and
we omit the details.

}B↵B�upk BcZ
Iup|}L2pH

s

q § }B↵B�upk}L8pH
s

q}BcZ
Iup|}L2pH

s

q § CpC1✏q2s´3{2

where (7.5.3a) and (7.2.3b) are used.

}t´1B↵ZIup| B�upk}L2pH
s

q § }t´1pt{sqB�upk}L8pH
s

q}ps{tqB↵ZIup|}L2pH
s

q

§ CpC1✏q2s´5{2.

We conclude with
››ps{tqAp|pk

pı pBZIupı, BBup|q
››
L2pH

s

q § CKpC1✏q2s´3{2
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and
››ps{tqAp|pk

pı pBZIupı, BBup|qBtZIupı
››
L1pH

s

q

§
››Ap|pk

pı pBZIupı, BBup|q}L2pHq}ps{tqBtZIupı}L2pH
s

q

§ CpC1✏q2s´3{2Emps, ZIupıq1{2.

(9.3.5)

Next, we consider the terms of Tp|pk
pı . By (4.2.1a), Tp|pk

pı pBZIupk, Bup|q can
be bounded by a linear combination of the terms presented in Proposition
4.1.2. All the estimates are based on the inequalities (7.5.3a), (7.5.3b),
(7.2.1a), and (7.2.1c).

››ps{tq2BtZIup|Btupk
››
L2pH

s

q §
››ps{tqBtupk

››
L8pH

s

q
››ps{tqBtZIup|

››
L2pH

s

q

§ CpC1✏q2s´3{2,

››BaupkB�Z
Iup|

››
L2pH

s

q §
››pt{sqBaupk

››
L8pH

s

q
››ps{tqB�Z

Iup|
››
L2pH

s

q

§ CpC1✏q2s´3{2,

››B↵upkBbZ
Iup|

››
L2pH

s

q §
››B↵upk

››
L8pH

s

q
››BbZ

Iup|
››
L2pH

s

q

§ CpC1✏q2s´3{2.

We conclude with
››TpBupk, BZIup|qBtZIupı

››
L1pH

s

q §
››TpBupk, BZIup|q

››
L2pH

s

q
››ps{tqBtZIupı

››
L2pH

s

q

§ CpC1✏q2s´3{2Emps, ZIupıq1{2.
(9.3.6)

Combining (9.3.4), (9.3.5), and (9.3.6), we conclude that
››B↵

`
Gp|↵�

pı pw, Bwq
˘
BtZIupı

››
L1pH

s

q § CpC1✏q2s´3{2`�Emps, ZIupıq1{2.

By a similar argument, the term
››Bt

`
Gp|↵�

pı pw, Bwq
˘
B↵ZIupı

››
L1pH

s

q is also

bounded by CpC1✏q2s´3{2`�, and we omit the details.
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Chapter 10

L2 estimates of the interaction terms

10.1 L2 estimates on higher-order interaction terms

In this chapter, we establish three groups of energy estimates mentioned in
the proof of Proposition 2.4.3, that is, (2.4.7c), (2.4.8b), and (2.4.9b) which
are derived under the assumption (2.4.5). We emphasize that three groups
of inequalities correspond to di↵erent decreasing rates in time. The proof
of (2.4.7c) and (2.4.8b) is much easier than that of (2.4.9b), since, roughly
speaking, it does not require the null structure, while the decreasing rate in
(2.4.9b) is a consequence of the null structure. Interestingly, this is one of
the two places in our proof where the null structure is used in a fundamental
way.

Lemma 10.1.1. Under the assumption of (2.4.5) (with C1✏ § minp1, ✏2
0q),

the following estimates hold for all |I7| § 5 and s0 § s § s1:
››ZI7

Fpı
››
L2pH

s

q § CpC1✏q2s´1`�, (10.1.1a)

››rZI , Gj↵�
i pw, BwqB↵B�swj

›› § CpC1✏q2s´1`�. (10.1.1b)

Proof. We begin with (10.1.1a). This concerns only the basic L2 and L8

estimates established earlier. Recall that ZI7
Fi is decomposed as follows:

ZI7
Fi “ ZI7 `

P↵�jk
i B↵wjB�wk

˘
` ZI7 `

Q↵jqk
i vqkB↵wj

˘
` ZI7 `

Rq|qk
i vq|vqk

˘

We see that ZI7
Fi is a linear combination of the following terms:

ZI7 `
B↵upıB�up|

˘
, ZI7 `

B↵vqıB�up|
˘
, ZI7 `

B↵vqıB�vq|
˘
,

ZI7 `
vqıB↵wj

˘
, ZI7 `

vq|vqk
˘
.

As done before, for each term and each partition of I7 “ I7
1 ` I7

2, we write
the relevant inequalities in the following two lists (Recall our convention

131
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that, on each term, I7
1 acts on the first factor and I7

2 acts on the second,
while the symbol pa,§ bq means |I7

1| “ a, |I7
2| § b.):

Products p5,§ 0q p4,§ 1q p3,§ 2q
B↵upıB�up| (7.3.1a), (7.5.3a) (7.3.1a), (7.5.3a) (7.3.3a), (7.5.1a)
B↵vqıB�up| (7.3.1a), (7.5.3a) (7.3.2a), (7.5.3a) (7.3.2a), (7.5.1a)
B↵vqıB�vq| (7.3.1a), (7.5.2a) (7.3.2a), (7.5.2a) (7.3.2a), (7.5.2a)
vqıB↵wj (7.3.1e), (7.5.1a) (7.3.1e), (7.5.1a) (7.3.1e), (7.5.1a)
vq|vqk (7.3.1e), (7.5.1e) (7.3.1e), (7.5.1e) (7.3.1e), (7.5.1e)

Products p2,§ 3q p1,§ 4q p0,§ 5q
B↵upıB�up| (7.5.1a), (7.3.3a) (7.5.3a), (7.3.1a) (7.5.3a), (7.3.1a)
B↵vqıB�up| (7.5.2a), (7.3.3a) (7.5.2a), (7.3.1a) (7.5.2a), (7.3.1a)
B↵vqıB�vq| (7.5.2a), (7.3.1a) (7.5.2a), (7.3.1a) (7.5.2a), (7.3.1a)
vqıB↵wj (7.3.1e), (7.5.1a) (7.5.1e), (7.3.1a) (7.5.1e), (7.3.1a)
vq|vqk (7.3.1e), (7.5.1e) (7.5.1e), (7.3.1e) (7.5.1e), (7.3.1e)

From these inequalities, we conclude with (10.1.1a).
We turn our attention to (10.1.1b) and, by recalling the decomposition

of rZI7
, Gj↵�

i pw, BwqB↵B�swj , we find

rZI7
, Gj↵�

i pw, BwqB↵B�swj

“rZI7
, Aj↵��k

i B�wkB↵B�swj ` rZI7
, Bj↵�qk

i vqkB↵B�swj

` rZI7
, Bj↵�pk

i upkB↵B�sup|.

(10.1.2)

The first term of the right-hand side is decomposed as follows:

rZI7
, Aj↵��k

i B�wkB↵B�swj

“
ÿ

I

7
1`I

7
2“I

7

|I7
2|§|I7|´1

Aj↵��k
i ZI7

1B�wkZ
I7
2B↵B�wj ` Aj↵��k

i B�wkrZI7
, B↵B�swj ,

(10.1.3)
in which we have

ÿ

I

7
1`I

7
2“I

7

|I7
2|§|I7|´1

Aj↵��k
i ZI7

1B�wkZ
I7
2B↵B�wj

“
ÿ

I

7
1`I

7
2“I

7

|I7
2|§|I7|´1

ˆ
Aj↵��pk

i ZI7
1B�upkZ

I7
2B↵B�wj ` Aj↵��qk

i ZI7
1B�vqkZ

I7
2B↵B�wj

˙
.
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This term is a linear combination of the following terms with constant
coe�cients:

ZI7
1B�upkZ

I7
2B↵B�up|, ZI7

1B�upkZ
I7
2B↵B�vq|

ZI7
1B�vqkZ

I7
2B↵B�up|, ZI7

1B�vqkZ
I7
2B↵B�vq|

with |I7
1| ` |I7

2| § |I7| and I7
2 § |I7| ´ 1.

The second term in the right-hand side of (10.1.3) is estimated as fol-
lows. We see that it is a linear combination of the following terms with
constant coe�cients:

B�upkrZI7
, B↵B�sup|, B�upkrZI7

, B↵B�svq|,

B�vqkrZI7
, B↵B�sup|, B�vqkrZI7

, B↵B�svq|

By the commutator estimates (3.3.3), these terms are bounded by
ÿ

|I7
2|§|I7|´1

ˇ̌
B�upkB↵B�ZI7

2up|
ˇ̌
,

ÿ

|I7
2|§|I7|´1

ˇ̌
B�upkB↵B�ZI7

2vq|
ˇ̌
,

ÿ

|I7
2|§|I7|´1

ˇ̌
B�vqkB↵B�ZI7

2up|
ˇ̌
,

ÿ

|I7
2|§|I7|´1

ˇ̌
B�vqkB↵B�ZI7

2vq|
ˇ̌
.

We observe that rZI7
, Aj↵��k

i B�wkB↵B�swj is bounded by a linear combi-
nation of the following terms with constant coe�cients:

ZI7
1B�upkZ

I7
2B↵B�up|, ZI7

1B�upkZ
I7
2B↵B�vq|, ZI7

1B�vqkZ
I7
2B↵B�up|,

ZI7
1B�vqkZ

I7
2B↵B�vq|, ZI7

1B�upkB↵B�ZI7
2up|, ZI7

1B�upkB↵B�ZI7
2vq|,

ZI7
1B�vqkB↵B�ZI7

2up|, ZI7
1B�vqkB↵B�ZI7

2vq|

with |I7
1| ` |I7

2| § |I7| and |I7
2| § 4.

We give the inequalities we use for each term and each partition of the
index:

Products p5,§ 0q p4,§ 1q p3,§ 2q
ZI7

1B�upkZ
I7
2B↵B�up| (7.3.1a), (8.4.6c) (7.3.1b), (8.4.6b) (7.3.3a), (8.4.6a)

ZI7
1B�upkZ

I7
2B↵B�vq| (7.3.1a), (7.5.2a) (7.3.1b), (7.5.2a) (7.3.3a), (7.5.2a)

ZI7
1B�vqkZ

I7
2B↵B�up| (7.3.1a), (8.4.6c) (7.3.2a), (8.4.6b) (7.3.2a), (8.4.6a)

ZI7
1B�vqkZ

I7
2B↵B�vq| (7.3.1a), (7.5.1e) (7.3.2a), (7.5.1e) (7.3.2a), (7.5.1a)

ZI7
1B�upkB↵B�ZI7

2up| (7.3.1a), (8.4.6c) (7.3.1b), (8.4.6b) (7.3.3a), (8.4.6a)

ZI7
1B�upkB↵B�ZI7

2vq| (7.3.1a), (7.4.3a) (7.3.1b), (7.4.3a) (7.3.3a), (7.4.3a)

ZI7
1B�vqkB↵B�ZI7

2up| (7.3.1a), (8.4.6c) (7.3.2a), (8.4.6b) (7.3.2a), (8.4.6a)

ZI7
1B�vqkB↵B�ZI7

2vq| (7.3.1a), (7.4.2e) (7.3.2a), (7.4.2e) (7.3.2a), (7.4.2a)
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Products p2,§ 3q p1,§ 4q
ZI7

1B�upkZ
I7
2B↵B�up| (7.5.1b), (8.5.7b) (7.5.3a), (8.5.7a)

ZI7
1B�upkZ

I7
2B↵B�vq| (7.5.1a), (7.3.2a) (7.5.1a), (7.3.2a)

ZI7
1B�vqkZ

I7
2B↵B�up| (7.5.2a), (8.5.7a) (7.5.2a), (8.5.7a)

ZI7
1B�vqkZ

I7
2B↵B�vq| (7.5.2a), (7.3.1e) (7.5.2a), (7.3.1e)

ZI7
1B�upkB↵B�ZI7

2up| (7.5.1b), (8.5.7b) (7.5.3a), (8.5.7a)

ZI7
1B�upkB↵B�ZI7

2vq| (7.5.1b), (7.2.2a) (7.5.3a), (7.2.2a)

ZI7
1B�vqkB↵B�ZI7

2up| (7.5.2a), (8.5.7a) (7.5.2a), (8.5.7a)

ZI7
1B�vqkB↵B�ZI7

2vq| (7.5.2a), (7.2.1e) (7.5.2a), (7.2.1e)

The remaining terms in the right-hand side of (10.1.2) are estimated
similarly. These two terms can be bounded by the combination of the
following terms with constant coe�cients:

ZI7
1vqkZ

I7
2B↵B�wj , ZI7

1upkZ
I7
2B↵B�up|,

ZI7
1vqkB↵B�ZI7

2wj , ZI7
1upkB↵B�ZI7

2up|

with |I7
1| ` |I7

2| § |I7| and |I7
2| § |I7| ´ 1. We will write in details the

estimate for the most critical term ZI7
1upkZ

I7
2B↵B�up|:

ÿ

|I7
1|`|I7

2|§|I7|
|I7

2|§|I7|´1

ˇ̌
ZI7

1upkZ
I7
2B↵B�up|

ˇ̌

§
ÿ

|I7
1|§5

ˇ̌
ZI7

1upkB↵B�up|
ˇ̌
`

ÿ

|I7
1|“4,|I7

2|§1

ˇ̌
ZI7

1upkZ
I7
2B↵B�up|

ˇ̌

`
ÿ

|I7
1|“3,|I7

2|§2

ˇ̌
ZI7

1upkZ
I7
2B↵B�up|

ˇ̌

`
ÿ

|I7
1|“2,|I7

2|§3

ˇ̌
ZI7

1upkZ
I7
2B↵B�up|

ˇ̌
`

ÿ

|I7
1|“1,|I7

2|§4

ˇ̌
ZI7

1upkZ
I7
2B↵B�up|

ˇ̌

“: T5 ` T4 ` T3 ` T2 ` T1.

The term T5 is estimated by applying (7.3.6a) on the first factor and (8.4.6c)
on the second factor:

}T5}L2pH
s

q “
ÿ

|I7
1|§5

››s´1ZI7
1upk sB↵B�up|

››
L2pH

s

q

§
››s´1ZI7

1upk
››
L2pH

s

q
››sB↵B�up|

››
L8pH

s

q

§ CpC1✏q2s�
››t1{2s´2

››
L8pH

s

q § CpC1✏q2s´1`�,



October 19, 2015 15:56 World Scientific Book - 9in x 6in PLF-YM-book page 135

L2 estimate on the interaction terms 135

where we observe that s § t § Cs2 in the half-cone K.
The term T4 is bounded by applying (7.3.6b) and (8.4.6b):

}T4}L2pH
s

q §
ÿ

|I7
1|“4,|I7

2|§1

››s´1ZI7
1upk sZ

I7
2B↵B�up|

››
L2pH

s

q

§CpC1✏q2s�{2››st1{2s´3`�{2››
L8pH

s

q

§CpC1✏qs´1`�.

The term T3 is bounded by applying (7.5.5a) and (8.5.7c):

}T3}L2pH
s

q §
ÿ

|I7
1|“3,|I7

2|§2

››s´1t3{2ZI7
1upk st

´3{2ZI7
2B↵B�up|

››
L2pH

s

q

§CC1✏s
�
››s3t´2ZI7

2B↵B�up|
››
L2pH

s

q
››s´2t1{2››

L8pH
s

q

§CpC1✏q2s´1`�.

The term T2 is estimated by applying (7.5.5b), (8.5.7b):

}T2}L2pH
s

q §
ÿ

|I7
1|§2,|I7

2|§3

››s´3t2ZI7
1upk s

3t´2ZI7
2B↵B�up|

››
L2pH

s

q

§
ÿ

|I7
1|§2,|I7

2|§3

››s´3t2ZI7
1upk

››
L8pH

s

q
››s3t´2ZI7

2B↵B�up|
››
L2pH

s

q

§CC1✏
››s´3t2t´3{2s1`�{2››

L8pH
s

qCC1✏s
�{2

“CpC1✏q2s´1`�.

The term T1 is bounded by applying (7.5.5c) and (8.5.7a):

}T1}L2pH
s

q §
ÿ

|I7
1|§1,|I7

2|§4

››s´3t2ZI7
1upk s

3t´2ZI7
2B↵B�up|

››
L2pH

s

q

§
ÿ

|I7
1|§1,|I7

2|§4

››s´3t2ZI7
1upk

››
L8pH

s

q
››s3t´2ZI7

2B↵B�up|
››
L2pH

s

q

§CC1✏}s´3t2t´3{2s}L8pH
s

q ¨ CC1✏s
� § CpC1✏q2s´1`�.

For the remaining terms, we list out the inequalities to be used on each
term and each partition of the index as follows:

Products p5,§ 0q p4,§ 1q p3,§ 2q
ZI7

1vqkZ
I7
2B↵B�wj (7.3.1e), (7.5.1a) (7.3.1e), (7.5.1a) (7.3.1e), (7.5.1a)

ZI7
1upkZ

I7
2B↵B�up| (7.3.6a), (8.4.6c) (7.3.6b), (8.4.6b) (7.5.5a), (8.5.7c)

ZI7
1vqkB↵B�ZI7

2wj (7.3.1e), (7.4.2a) (7.3.1e), (7.4.2a) (7.3.1e), (7.4.2a)

ZI7
1upkB↵B�ZI7

2up| (7.3.6a), (8.4.6c) (7.3.6b), (8.4.6b) (7.5.5a), (8.5.7c)
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Products p2,§ 3q p1,§ 4q
ZI7

1vqkZ
I7
2B↵B�wj (7.5.1e), (7.3.1a) (7.5.1e), (7.3.1a)

ZI7
1upkZ

I7
2B↵B�up| (7.5.5b), (8.5.7b) (7.5.5c), (8.5.7a)

ZI7
1vqkB↵B�ZI7

2wj (7.5.1e), (7.2.1a) (7.5.1e), (7.2.1a)

ZI7
1upkB↵B�ZI7

2up| (7.5.5b), (8.5.7b) (7.5.5c), (8.5.7a)

We estimate the source with fourth-order derivatives.

Lemma 10.1.2. By relying on the assumption (2.4.5), the following esti-
mates hold for all |I:| § 4 and s0 § s § s1:

››ZI:
Fpı

››
L2pH

s

q § CpC1✏q2s´1`�{2, (10.1.4a)

››rZI:
, Gj↵�

i pw, BwqB↵B�swj

››
L2pH

s

q § CpC1✏q2s´1`�{2. (10.1.4b)

Proof. The proof is essentially the same as the one of Lemma 10.1.1. We
will not write the proof in detail, but we list out the inequalities we use for
each term and each partition of the index.

First we list out the estimate on ZI:
Fi in Table 15. The terms

rZI:
, Bj↵�k

i wkB↵B�swj are estimated by the inequalities listed in Table
16.

10.2 L2 estimates on third-order terms

We now derive the L2 estimates for the source terms (2.4.9b). This is
the second place where the null structure is taken into consideration after
Lemma 9.3.4.

Lemma 10.2.1. By relying on the assumption of (2.4.5) with C1✏ †
minp1, ✏2

0q, the following estimates hold for all |I| § 3:

}ZIFpı}L2pH
s

q § CpC1✏q2s´3{2`2�, (10.2.1a)

}ZIGq|↵�
pı pw, BwqB↵B�vq|}L2pH

s

q § CpC1✏q2s´3{2`2�, (10.2.1b)

››rZI , Gp|↵�
pı pw, BwqB↵B�sup|

››
L2pH

s

q § CpC1✏q2s´3{2`2�. (10.2.1c)
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P
ro
d
u
ct
s

p4
,§

0q
p3
,§

1q
p2
,§

2q
p1
,§

3q
p0
,§

4q
B ↵

u
pıB

�
u

p|
(7
.3
.1
b
),
(7
.5
.3
a)

(7
.3
.3
a)
,(
7.
5.
3a

)
(7
.3
.3
a)
,(
7.
5.
1b

)
(7
.5
.3
a)
,(
7.
3.
3a

)
(7
.5
.3
a)
,(
7.
3.
1b

)
B ↵

v qı
B �

w
j
(7
.3
.2
a)
,(
7.
5.
1a

)
(7
.3
.2
a)
,(
7.
5.
1a

)
(7
.3
.2
a)
,(
7.
5.
1a

)
(7
.5
.2
a)
,(
7.
3.
1a

)
(7
.5
.2
a)
,(
7.
3.
1a

)
v qı

B ↵
w

j
(7
.3
.1
e)
,(
7.
5.
1a

)
(7
.3
.1
e)
,(
7.
5.
1a

)
(7
.3
.1
e)
,(
7.
5.
1a

)
(7
.5
.1
e)
,(
7.
3.
1a

)
(7
.5
.1
e)
,(
7.
3.
1a

)
v

q |v
q k

(7
.3
.1
e)
,(
7.
5.
1e
)
(7
.3
.1
e)
,(
7.
5.
1e
)
(7
.3
.1
e)
,(
7.
5.
1e
)
(7
.5
.1
e)
,(
7.
3.
1e
)
(7
.5
.1
e)
,(
7.
3.
1e
)

T
ab

le
15

P
ro
d
u
ct
s

p4
,§

0q
p3
,§

1q
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Proof. We first prove (10.2.1a) and recall the structure of ZIFpı:

ZIFpı “ ZI
`
P↵�p|pk

pı B↵up|B�upk
˘

` P↵�q|pk
pı ZI

`
B↵vq|B�upk

˘
` P↵�p|qk

pı ZI
`
B↵up|B�vqk

˘
` P↵�q|qk

pı ZI
`
B↵vq|B�vqk

˘

` Q↵jqk
pı ZI

`
vqkB↵wj

˘
` Rp|pk

pı ZI
`
vp|vpk

˘
.

The first term in the right-hand side is a null term and we can apply directly
(9.1.1a):

››P↵�p|pk
pı B↵up|B�upk

››
L2pH

s

q § CpC1✏q2s´3{2.

The remaining terms are linear combinations of the following terms with
constant coe�cients:

ZI
`
B↵vq|B�wk

˘
, ZI

`
vqkB↵wj

˘
, ZI

`
vp|vpk

˘
.

We will not give in details the estimates of each term, but we list out the
inequalities we use for each term and each partition:

Products p3,§ 0q p2,§ 1q p1,§ 2q p0,§ 3q
B↵vq|B�wk (7.3.2a), (7.5.1a) (7.3.2a), (7.5.1a) (7.5.2a), (7.3.1a) (7.5.2a), (7.3.1a)
vqkB↵wj (7.3.1e), (7.5.1a) (7.3.1e), (7.5.1a) (7.5.1e), (7.3.1a) (7.5.1e), (7.3.1a)
vp|vpk (7.3.1e), (7.5.1e) (7.3.1e), (7.5.1e) (7.5.1e), (7.3.1e) (7.5.1e), (7.3.1e)

To establish the second inequality (10.2.1b), we decompose it as follows:

ZI
`
Gq|↵�

pı pw, BwqB↵B�vq|
˘

“ Aq|↵��k
pı ZI

`
B�wkB↵B�vq|

˘
` Bq|↵�qk

pı ZI
`
vqkB↵B�vq|

˘
.

So, it is to be bounded by a linear combination of the following terms with
constant coe�cients:

ZI
`
B�wkB↵B�vq|

˘
, ZI

`
vqkB↵B�vq|

˘
.

As before, we list out the inequalities we use for each term and each parti-
tion of the index:

Products p3,§ 0q p2,§ 1q p1,§ 2q p0,§ 3q
B�wkB↵B�vq| (7.3.1a), (7.5.2a) (7.3.1a), (7.5.2a) (7.5.1a), (7.3.2a) (7.5.1a), (7.3.2a)
vqkB↵B�vq| (7.3.1e), (7.5.2a) (7.3.1e), (7.5.2a) (7.5.1e), (7.3.2a) (7.5.1e), (7.3.2a)

The proof of the inequality (10.2.1c) is also related to the null structure.
Recall the following decomposition:

rZI , Gp|↵�
pı pw, BwqB↵B�sup|

“rZI , Ap|↵��pk
pı B�upkB↵B�sup| ` rZI , Bp|↵�pk

pı upkB↵B�sup|

` rZI , Ap|↵��qk
pı B�vqkB↵B�sup| ` rZI , Bjh↵�qk

pı vqkB↵B�sup|
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Observing the null structure of the first two terms and applying (9.1.1b)
and (9.2.1a), we obtain

››rZI , Ap|↵��pk
pı B�upkB↵B�sup|

››
L2pH

s

q `
››rZI , Bp|↵�pk

pı upkB↵B�sup|
››
L2pH

s

q

§ CpC1✏q2s´3{2`�.

The remaining two terms are linear combinations of the following term:

ZI1B�vqkZ
I2B↵B�up|, ZI1vqkZ

I2B↵B�up|,

ZI1B�vqkB↵B�ZI2up|, ZI1vqkB↵B�ZI2up|

with |I1| ` |I2| § |I| and |I2| § 2.
We omit here the details and list out the inequalities applied to each

term and each partition of the index:

Products p3,§ 0q p2,§ 1q p1,§ 2q
ZI1B�vqkZ

I2B↵B�up| (7.3.2a), (7.5.1a) (7.3.2a), (7.5.1a) (7.5.2a), (7.3.1a)
ZI1vqkZ

I2B↵B�up| (7.3.1e), (7.5.1a) (7.3.1e), (7.5.1a) (7.5.1e), (7.3.1a)
ZI1B�vqkB↵B�ZI2up| (7.3.2a), (7.4.2a) (7.3.2a), (7.4.2a) (7.5.2a), (7.2.1a)
ZI1vqkB↵B�ZI2up| (7.3.1e), (7.4.2a) (7.3.1e), (7.4.2a) (7.5.1e), (7.2.1a)
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Chapter 11

The local well-posedness theory

11.1 Construction of the initial data

In this chapter, we establish the local-in-time existence theory for general
systems of the form

lwi ` Gj↵�
i pw, BwqB↵B�wj ` c2iwi “ Fipw, Bwq,

wipB ` 1, xq “ wi0, BtwipB ` 1, xq “ wi1,
(11.1.1)

where

Gj↵�
i pw, Bwq “ Aj↵��k

i B�wk ` Bj↵�kwk,

Fipw, Bwq “ P↵�jk
i B↵wjB�wk ` Q↵jk

i B↵wjwk ` Rjk
i wjwk,

(11.1.2)

with constants A↵��j
i , Bj↵�k, P↵�jk

i , Q↵jk
i , Rjk

i . To guarantee the hyperbol-
icity property, the following symmetry conditions are assumed:

Gj↵�
i “ Gi↵�

j , Gj↵�
i “ Gj�↵

i . (11.1.3)

Initial data by pwi0, wi1q P Hl`1pR3q ˆ HlpR3q of su�ciently high reg-
ularity are prescribed on the hyperplane tt “ B ` 1u and we assume the
smallness condition:

}wi0}Hl`1pR3q ` }wi1}HlpR3q § ✏1. (11.1.4)

We also assume that wi0 and wi1 are supported in the ball t|x| § Bu. The
following theorem was essentially already established in Sogge (2008).

Theorem 11.1.1. For any integer l • 5, there exists a time interval rB `
1, T p✏1q ` B ` 1s on which the Cauchy problem (11.1.1) admits a (unique)
solution wi “ wipt, xq and one has

wipt, xq P C
`
rB ` 1, T p✏q ` B ` 1s,Hl`1pR3q

˘
(11.1.5)

141
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and there exists a constant A ° 0 such that

ÿ

i

ÿ

↵

|I|§5

}B↵ZIwi}L8prB`1,T p✏qs,L2pR3qq § A✏1. (11.1.6)

Moreover, the time of existence approaches infinity when the size of the
data approaches zero, that is,

lim
✏1Ñ0`

T p✏1q “ `8. (11.1.7)

If T ⇤ denotes the supremum of all such times T p✏1q (for fixed initial data),
then either T ⇤ “ `8 or else

sup
tPr0,T⇤s

xPR

ÿ

i

ÿ

|�|§5

|B�wipt, xq| “ `8. (11.1.8)

In addition, for C0 ° 1 su�ciently large and some ✏1
0 ° 0 (depending only

on the structure of the system), the uniform bound

ÿ

i

EGpB ` 1, wiq § C0✏
1 (11.1.9)

holds for all initial data satisfying ✏1 § ✏1
0, where EGp¨, wiq :“ EG,0p¨, wiq is

the hyperboloidal energy in (2.3.4).

Proof. We only sketh the proof. The local existence theory and the blow-
up criteria are discussed in Sogge (2008) (cf. by Theorem 4.1 in Section
1.4 therein). The property of T p✏1q is deduced from our proof of global
existence in this monograph. Therefore, we can focus here on estimating
the energy EGpB ` 1, ZIwiq.

We consider the regionKB`1 :“ tpt, xq : t • B`1, t2´|x|2 § pB`1q2uX
K where K “ t|x| † t ´ 1, t • 0u. We observe that in KB`1, t § pB`1q2`1

2 .

We can fix some ✏1
0 su�ciently small, so that T p✏1q • pB`1q2`1

2 . The local
solution is well defined in the region KB`1.

To estimate EGpB ` 1, ZIwiq, we choose Btwi as a multiplier and, with
the notation

E⇤
GpB ` 1, wiq

:“
ª

R3

´ ÿ

↵

|B↵wi|2 ` 2Gj↵�
i BtwiB�wj ´ Gj↵�

i B↵wiB�wj

¯
pB ` 1, ¨q dx

(11.1.10)
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in order to denote the standard energy defined on the flat hypersurface
t “ B ` 1, we obtain the energy estimate

ÿ

i

EGpB ` 1, ZIwiq ´
ÿ

i

E⇤
GpB ` 1, ZIwiq

“
ÿ

i

ª

K
B`1

`
ZIFipw, Bwq BtZIwi ´ rZI , Gj↵�

i B↵�sZIwj BtZIwi

˘
dxdt

`
ÿ

i

ª

K
B`1

ˆ
B↵Gj↵�

i BtZIwiB�ZIwj ´ 1

2
BtGj↵�

i B↵ZIwiB�ZIwj

˙
dxdt

§ CK
ÿ

i,j,k

↵,�

ª pB`1q2`1
2

B`1
|B↵ZIwi| |B�ZJwj | |B�ZJ 1

wk|dxdt § CA✏1.

Here, C is a constant depending only on the structure of the system. We
have

EGpB ` 1, ZIwiq § CA✏1 ` C✏1.

Thus, for C0 ° 1 su�ciently large and ✏1 ° 0, we can find some ✏1
0 su�-

ciently small such that

CA✏1 ` C✏1 § C0✏
1.

11.2 Local well-posedness theory in the hyperboloidal foli-
ation

For convenience, we introduce the following notation in the cone K

x̄0 :“ s “
a
t2 ´ |x|2,

x̄a :“ xa.

The natural frame associated with these variables is

B̄0 “ Bs “ s

t
Bt,

B̄a “ Ba “ xa

t
Bt ` Ba.

By an easy calculation, we express the wave operator in this frame:

lu “ B̄0B̄0u ` 2x̄a

s
B̄0B̄au ´

ÿ

a

B̄aB̄au ` 3

s
Bau. (11.2.1)
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The symmetric second-order quasi-linear operator Gj↵�
i pw, BwqB↵B�wj can

also be expressed in this frame:

Gj↵�
i pw, BwqB↵B�wj

“ Ḡj↵�
i pw, B̄wqB↵B�wj ` Gj↵�

i pw, BwqB↵
`
 �1

�

˘
B̄�1wj

(11.2.2)

with

Ḡj↵�
i “ Gj↵1�1

i  ↵
↵1 �

�1 ,

which is again symmetric with respect to i, j.
Now, we can transform the system (11.1.1):

B̄0B̄0wi ` Ḡj00
i B̄0B̄0wj ` x̄a

s
B̄0B̄awi ` Ḡj0a

i pw, BwqB̄0B̄awj

´
ÿ

a

B̄aB̄awi ` Ḡjab
i B̄aB̄bwj “ F̃ipw, Bwq

(11.2.3)

with initial data posed on s “ B ` 1:

wipB ` 1, ¨q “ w1
i0, BswipB ` 1, ¨q “ w1

i1.

We observe that this system is again symmetric and that the perturbation
terms Ḡ are small, so this system is again hyperbolic with respect to the
variables ps, x̄aq. By the standard theory of second-order symmetric hy-
perbolic system, the following theorem holds. (See, for example, Taylor
(2011), Proposition 3.1 in Chap. 16, Section 3.)

Theorem 11.2.1. Let l • 5 be an integer and B ° 0. Then, the following
property holds for a su�ciently small ✏ ° 0. Let pwi0, wi1q P Hl`1 ˆ Hl be

data supported in the ball centered at the origin and with radius pB`1q2´1
2 .

Then, the Cauchy problem

lwi ` Gj↵�
i pw, BwqB↵�wj ` c2iwi “ Fipw, Bwq,

wi|H
B`1 “ wi0, Btwi|H

B`1 “ wi1

(11.2.4)

under the condition (on the initial slice)ÿ

i

ÿ

|�|§l`1

}B�wi}L2pH
B`1q `

ÿ

i

ÿ

|�|§l

}B�Btwi}L2pH
B`1q § ✏ (11.2.5)

admits a unique local-in-time solution, which satisfiesÿ

i

ÿ

|�|§l`1

}B�wi}L2pH
s

q § A✏ (11.2.6)

in the time interval rB ` 1, T p✏q ` B ` 1s and for soe constant A ° 0.
Furthermore, if T ⇤ denotes the supremum of all such times T p✏q (for ✏
fixed), then either T ⇤ “ `8 or else

lim
sÑT

⇤
s†T

⇤

ÿ

i

ÿ

↵§l`1

}B↵wi}L2pH
s

q “ `8. (11.2.7)
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411–441.

A. Bachelot, The Klein-Gordon equation in the anti-de Sitter cosmology, J.
Math. Pures Appl. 96 (2011), 527–554.
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