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PARAMETRIC INFERENCE OF HIDDEN DISCRETE-TIME DIFFUSION PROCESSES BY DECONVOLUTION

We study a parametric approach for hidden discrete-time diffusion models based on contrast minimization and deconvolution. This approach leads to estimate a large class of stochastic models with nonlinear drift and nonlinear diffusion. It can be applied, for example, for ecological and financial state space models. After proving consistency and asymptotic normality of the estimator, leading to asymptotic confidence intervals, we provide a thorough numerical study, which compares many classical methods used in practice (Monte Carlo Expectation Maximization Likelihood estimator and Bayesian estimators) to estimate stochastic volatility models. We prove that our estimator clearly outperforms the Maximum Likelihood Estimator in term of computing time, but also most of the other methods. We also show that this contrast method is the most stable and also does not need any tuning parameter.

Introduction

This paper is motivated by the parametric estimation of hidden stochastic models of the form:

Y i = X i + ε i X i+1 = b θ 0 (X i ) + σ θ 0 (X i )η i+1 , (1) 
where one observes Y 1 ,• • • ,Y n , and where the random variables ε i , η i and X i are unobserved. Notably (X i ) i≥0 is a strictly stationary, ergodic process that depends on two measurable functions b θ 0 and σ θ 0 and its stationary density is f θ 0 , where θ 0 belongs to Θ ⊂ R p . The functions b θ 0 , σ θ 0 and f θ 0 are known up to a finite dimensional parameter, θ 0 , and the dependence with respect to θ 0 is not required to be the same in b θ 0 and σ θ 0 . Finally, the innovations (η i ) i≥0 and the errors (ε i ) i≥0 are independent and identically distributed (i.i.d.) random variables, the distribution of the innovations being known for identifiability of the model.

In this work, we propose to estimate the parameters of the two functions b θ 0 and σ θ 0 driving the dynamics of the hidden variables (X i ) i≥0 . The principle of the estimation method goes as follows.

Taking that the stationary density, f θ 0 , is known up to the finite dimensional parameter θ 0 , our Mestimator consists in optimizing a contrast function that exploits a Fourier deconvolution strategy in a parametric framework. In so doing, we exploit a "Nadaraya-Watson approach" in the sense that we estimate b θ 0 (respectively, b 2 θ 0 + σ 2 θ 0 ) as ratio of an estimator of l θ 0 = b θ 0 f θ 0 (respectively, l θ 0 = (b 2 θ 0 + σ 2 θ 0 )f θ 0 ) and an estimator of f θ 0 . Notably we provide an analytical expression of the contrast function for a well-known example and characterize their main properties. Moreover we show that this deconvolution-based estimator is consistent and asymptotically normally distributed for αmixing processes which leads to obtain confidence intervals in practice for many processes. Finally, our Monte Carlo simulations show that our approach gives good results and is fast computing. All the results are illustrated on the famous stochastic volatility model with discrete time version of CIR 1 (Cox Ingersoll Ross, see [START_REF] Cox | A theory of the term structure of interest rates[END_REF]) process for the volatility and are compared with many others methods used in the literature to estimate this model (Monte Carlo Expectation Maximisation, Sequential Monte Carlo).

Our approach extends the previous work [El Kolei, 2013] where parametric estimation of models of type of (1) is handled for constant volatility function (∀x, σ θ 0 (x) = σ θ 0 ) and where the estimator proposed by the author is not adapted for stochastic process with nonlinear diffusion. As in the previous work [El Kolei, 2013], this approach is the extension to the parametric framework of the work [START_REF] Comte | Adaptive estimation of the dynamics of a discrete time stochastic volatility model[END_REF] where the authors propose a non-parametric estimation procedure in the case of discrete time stochastic models of the form of (1). 1 Our aim consists in showing how their procedure can be extended to a parametric framework and further by obtaining confidence intervals which are useful in practice.

Applications. This class of parametric models includes, among others, the autoregressive model with measurement errors, the autoregressive stochastic volatility model ( [Taylor, 2005]), the discrete time versions of well-known diffusion processes in finance ( [START_REF] Hull | Pricing interest-rate-derivative securities[END_REF]], [Heston, 1993]) and some families of stochastic processes: Vasicek, CIR, modified CIR and hyperbolic processes (see [START_REF] Cox | A theory of the term structure of interest rates[END_REF] and [START_REF] Genon-Catalot | Parameter estimation for discretely observed stochastic volatility models[END_REF]).

Here, we focus on a stochastic volatility model of the form:

R i+1 = exp X i+1 2 ξ i+1 , X i+1 = X i + κ(µ -X i )∆ + σ √ ∆X i η i+1 (2) 
where ξ i and η i are centered gaussian random variables and ∆ the sampling interval. Hence, the unobserved variance process X i is driven by a mean reverting stochastic process which was introduced in [START_REF] Cox | A theory of the term structure of interest rates[END_REF] to model the short term interest rates.

By applying a log-transformation

Y i+1 = log(R 2 i+1 )-E[log(ξ 2 i+1 )] and ε i+1 = log(ξ 2 i+1 )-E[log(ξ 2 i+1 )
], the SV model is a particular version of (1) since it can be written as

Y i = X i + ε i X i+1 = X i + κ(µ -X i )∆ + σ √ ∆X i η i+1 (3) 
where ε i follows a log chi-squared distribution.

From a practical point of view, the observed component (Y i ) i≥1 stands for the log-return of an asset price while the unobserved component stands for the volatility of this asset. The parameter κ is the positive mean reverting parameter, µ is the positive long run parameter and σ the positive volatility of the stochastic volatility process (X i ) i≥1 .

Organization of this paper. The paper is organized as follows. Section 2 presents the notations and the model assumptions. Section 3 defines the deconvolution-based M-estimator and states all of the theoretical properties. Some Monte Carlo simulations are discussed in Section 4 and some concluding remarks are provided in the last section. All the proofs can be found in Appendix 5.

1 See also Comte et Taupin in [START_REF] Comte | Adaptive estimation in a nonparametric regression model with errors-in-variables[END_REF].

General setting and assumptions

In this section, we introduce some preliminary main notations and provide the assumptions of the model (1).

Notations

Subsequently, for any function v : R → R, we denote by v * the Fourier transform of the function v: v * (t) = e itx v(x)dx, by ||v|| 2 its L 2 (R)-norm, ||v|| ∞ its supremum norm, •, • stands for the scalar product in L 2 (R) and " " for the usual convolution product. Moreover, for any integrable and squareintegrable functions u, u 1 , and u 2 : we have (u

* ) * (x) = 2πu(-x)and u 1 , u 2 = 1 2π u * 1 , u * 2 . Finally, A denotes the Euclidean norm of a matrix A, Y i = (Y i , Y i+1
) and y i = (y i , y i+1 ), P n (respectively, P) the empirical (respectively, theoretical) expectation, that is, for any stochastic variable:

P n (X) = 1 n n i=1 X i (respectively, P(X) = E[X]
). Regarding the partial derivatives, for any function h θ , ∇ θ h θ is the vector of the partial derivatives of h θ with respect to (w.r.t) θ and ∇ 2 θ h θ is the Hessian matrix of h θ w.r.t θ.

Assumptions

We consider the hidden discrete-time diffusion model (1). The assumptions are the following. A0 θ 0 belongs to the interior Θ 0 of a compact set Θ, θ 0 ∈ Θ ⊂ R p . A1 The errors (ε i ) i≥0 are independent and identically distributed centered random variables with finit variance, E ε 2 1 = s 2 . The density of ε 1 , f ε , belongs to L 2 (R), and for all x ∈ R, f * ε (x) = 0. A2 The innovations (η i ) i≥0 are independent and identically distributed centered random variables with unit variance E η 2 1 = 1 and E η 3 1 = 0. A3 The X i 's are strictly stationary and ergodic with invariant density f θ 0 . A4 The sequences (X i ) i≥0 and (ε i ) i≥0 are independent. The sequence (ε i ) i≥0 and (η i ) i≥0 are independent. A5 On Θ 0 , the functions θ → b θ and θ → σ θ admit continuous derivatives with respect to θ up to order 2. A6 The function to estimate ), is twice continuously differentiable w.r.t θ ∈ Θ for any x and measurable w.r.t x for all θ in Θ. Each element of ∇ θ l θ and ∇ 2 θ l θ belongs to L 1 (R) ∩ L 2 (R). A7 The application θ → Pm θ admits a unique minimum and its Hessian matrix, denoted by V θ , is non-singular in θ 0 .

l θ := b 2 θ + σ 2 θ f θ belongs to L 1 (R) ∩ L 2 (R
The compactness assumption A0 might be relaxed by assuming that θ 0 is an element of the interior of a convex parameter space Θ ∈ R p . In this case, the statistical properties of the M-estimator can be proved in the light of convex optimization arguments. Assumptions A1-A3 are quite standard when considering estimation for convolution models. On the other hand, Assumption A3 implies that if (X i ) i≥0 is an ergodic process then (Y i ) i≥0 is stationary and ergodic since it is the sum of an ergodic process and an i.i.d. noise process [START_REF] Dedecker | Weak dependence: with examples and applications[END_REF]). Consequently Y i = (Y i , Y i+1 ) inherits the ergodicity property. According to Assumption A4 the unknown density g θ 0 of the Y i 's is defined to be

f θ 0 f ε . It turns out that g * θ 0 = f * θ 0 f * ε and thus f * θ 0 = g * θ 0 /f * ε .
Assumption A5 ensures some smoothness for the drift and diffusion functions. Assumption A6 is also quite usual in the literature and serves for the construction and for asymptotic properties of our estimator.

3 Parametric deconvolution estimator

The contrast function

Definition 1 (Theoretical and empirical contrast functions). For any square integrable real function v, we set

u v (x) = 1 2π v * (-x) f * ε (x)
,

where we recall that f * ε is the Fourier transform of the density of the observation noise. Let ϕ : R → R be given by

(1) ϕ : x → x, if σ θ 0 is a constant function of the hidden variable (2) ϕ : x → x 2 -s 2 , if σ θ 0 is not a constant function of the hidden variable where s 2 = E[ε 2
1 ], and let us define the mapping m as m

• (•) : (θ, y i ) ∈ (Θ × R 2 ) → m θ (y i ) = ||l θ || 2 -2ϕ (y i+1 ) u * l θ (y i ).
Then, under Assumptions A1 up to A7, the contrast function is defined by:

E [m θ (Y 1 )] := l θ 2 -2E ϕ(Y 2 )u * l θ (Y 1 ) , (4) 
and its empirical couterparts is given by

P n m θ = 1 n n i=1 m θ (Y i ). ( 5 
)
Remark 1. As said in the introduction, the case where the diffusion function σ θ 0 is a constant function of the hidden variable has already been studied in [El Kolei, 2013]. Therefore, from now on, we focus on the case 2 in Definition 1 and we refer to the aforementioned paper for the case 1 in Definition 1.

Definition 2 (Minimal contrast estimator). Suppose that Assumptions A0-A7 hold true then, the minimum-contrast estimator θ n is defined as any solution of

θ n = arg min θ∈Θ P n m θ . (6) 
The existence of our estimator can be deduce from regularity properties of the function l θ and compactness argument of the parameter space. See Appendix 5.2.1.

Remark 2. In this paper we consider the situation in which the observation noise variance is known. This assumption, which is often not satisfied in practice, is necessary for the identifiability of the model and so is a standard assumption for state-space models given in (1). There is some restrictions on the distribution of the innovations in the Nadaraya-Watson approach. It is known that the rate of convergence for estimating the function l θ is related to the rate of decreasing of f * ε . In particular, the smoother f ε is, the slower the rate of convergence for estimating is. This rate of convergence can be improved by assuming some additional regularity conditions on l θ (see [START_REF] Comte | Adaptive estimation of the dynamics of a discrete time stochastic volatility model[END_REF] and [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF]).

Remark 3. Let us explain the choice of the contrast function and how the strategy of deconvolution works. The convergence of P n m θ to Pm θ = E [m θ (Y 1 )] as n tends to the infinity is provided by the Ergodicity Theorem. Moreover, the limit E [m θ (Y 1 )] of the contrast function can be explicitly computed. Using (1) and Assumptions A1-A3, standard computations (see Appendix 5.1) lead to

E [m θ (Y 1 )] = l θ 2 -2 l θ , l θ 0 = l θ -l θ 0 2 -l θ 0 2 ,
which is, obviously, minimal at point θ = θ 0 .

Asymptotic properties

In this section we first show that our estimator is weakly consistent and asymptotically normally distributed for mixing processes. To this aim, we further assume that for ϕ defined in (2) of Definition 1 the following assumptions hold true:

A8 (Local dominance): E sup θ∈Θ ϕ(Y i+1 )u * l θ (Y i ) < ∞. A9 (Moment condition): For some δ > 0, E ϕ(Y i+1 )u * ∇ θ l θ (Y i ) 2+δ < ∞.
A10 (Hessian Local dominance): For some neighbourhood U of θ 0 :

E sup θ∈U ϕ(Y i+1 )u * ∇ 2 θ l θ (Y i ) < ∞ .

Asymptotic properties of the estimator: consistency and normality

The first result regards the (weak) consistency of our estimator.

Theorem 1. Consider the model (1) under the assumptions A0-A8, the estimator θn defined by ( 6) is weakly consistent:

θ n -→ θ 0 as n → ∞ in P θ 0 -probability.
Sketch of proof. The main idea for proving the consistency of a M-estimator comes from the following observation: if P n m θ converges to Pm θ in probability, and if the true parameter solves the limit minimization problem, then, the limit of the argminimum θ n is θ 0 . By using an argument of uniform convergence in probability and by compactness of the parameter space, we show that the argminimum of the limit is the limit of the argminimum. A standard method to prove the uniform convergence is to use the Uniform Law of Large Numbers (see Lemma 1 in Appendix 5.2.2). Combining these arguments with the dominance argument (A8) give the consistency of our estimator, and then, the Theorem 1. For further details see Appendix 5.2.2.

The second result states our estimator is √ n-consistent and asymptotically normally distributed. Besides, we give in Corollary 1 the different terms of the asymptotic variance-covariance matrix. For the CLT, we need some mixing properties (we refer the reader to [START_REF] Dedecker | Weak dependence: with examples and applications[END_REF] for a complete review of mixing processes). Hence, in the following, we further assume that:

A11 The stochastic process X i is α-mixing.
Theorem 2. Consider the model (1) under the assumptions A0-A7, and suppose that the conditions A8-A11 hold true. Then θn defined by ( 6) is a √ n-consistent estimator of θ 0 which satisfies:

√ n( θ n -θ 0 ) L → N (0, Σ(θ 0 )) .
Sketch of proof. The asymptotic normality follows essentially from Central Limit Theorem for mixing processes (see [Jones, 2004]). Thanks to the consistency, the proof is based on a moment condition of the Jacobian vector of the function m θ (y) and on a local dominance condition of its Hessian matrix.

For further details, see Appendix 5.2.3.

The following corollary gives an expression of the variance-covariance matrix Σ(θ 0 ) of Theorem 2 for the practical implementation:

Corollary 1. Under our assumptions, the variance-covariance matrix Σ(θ 0 ) is given by:

Σ(θ 0 ) = V -1 θ 0 Ω(θ 0 ) = V -1 θ 0   Ω 0 (θ 0 ) + 2 +∞ j=2 Ω j-1 (θ 0 )   V -1 θ 0 , with Ω 0 (θ 0 ) = 4 E ϕ(Y 2 )u * ∇ θ l θ (Y 1 ) ϕ(Y 2 )u * ∇ θ l θ (Y 1 ) -E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) ∇ θ l θ (X 1 ) E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) ∇ θ l θ (X 1 ) Ω j-1 (θ 0 ) = 4 E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) ∇ θ l θ (X 1 ) b 2 θ 0 (X j ) + σ 2 θ 0 (X j ) ∇ θ l θ (X j ) -E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) ∇ θ l θ (X 1 ) E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) ∇ θ l θ (X 1 ) .
and the gradient ∇ θ l θ is taken at point θ = θ 0 ; furthermore, the Hessian matrix V θ 0 is given by:

[V θ 0 ] j,k 1≤j,k≤r = 2 ∂l θ ∂θ k , ∂l θ ∂θ j j,k at point θ = θ 0 .
Proof. See Appendix 5.2.4 for further details.

4

Application: the CIR process

We consider the following stochastic volatility model

Y i = X i + ε i X i+1 = X i + κ(µ -X i )∆ + σ √ ∆X i η i+1 (7) 
where ε i follows a log chi-squared distribution and η i a gaussian distribution. This can be also seen as a discrete version of the so called Heston model with independent noise between the log-returns Y i and its volatility X i . Here, we further assume that the variance process X i is greater than zero. To ensure this condition, we make the following assumption:

F a := 2κθ σ 2 ≥ 1 and c := 2κ σ 2 > 0, which is known as the Feller condition (see [START_REF] Cox | A theory of the term structure of interest rates[END_REF]) and implies that the variance process X i is ergodic and ρ-mixing. Furthermore, the stationary distribution f θ for this process is the gamma distribution γ(a, c) (see [START_REF] Genon-Catalot | Parameter estimation for discretely observed stochastic volatility models[END_REF]).

Minimum contrast estimator

In this case, the functions b • , σ • and l • are given by:

b θ (x) = (1 -κ)x + κθ, σ θ (x) = σ √ x and l θ = b 2 θ (x) + σ 2 θ (x) γ(a, c) ∀x ∈ R * + with θ = (κ, µ, σ).
Using the Fourier transform of the Gamma and the log chi-squared density, we have

f * θ (x) = 1 - ix c -a and f * ε (x) = 1 √ π 2 ix Γ( 1 2 + ix) exp(-iCx),
with C the expectation of the logarithm of a chi-squared random variable, i.e. C = -1.27 (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]] and Appendix 5.3 for the expression of the Fourier transform). Next, the Fourier transform of l θ is given by

l * θ (x) = -α 1 -a c 2 (a + 1) 1 - ix c -a-2 + iα 2 a c 1 - ix c -a-1 + α 3 1 - ix c -a
.

with

α 1 = (1 -κ) 2 , α 2 = 2 (1 -κ) κθ + σ 2 , α 3 = (κθ) 2 .
Finally, the L 2 -norm of l θ is given by:

l θ 2 2 = α 2 1 2 -(2a+3) c -3 Γ(2a + 3) Γ 2 (a) + 2α 1 α 2 2 -(2a+2) c -2 Γ(2a + 2) Γ 2 (a) + 2α 1 α 3 + α 2 2 2 -(2a+1) c -1 Γ(2a + 1) Γ 2 (a) + α 2 α 3 2 -(2a) Γ(2a) Γ 2 (a) +α 2 3 2 -2a+1 c Γ(2a -1) Γ 2 (a) .
where Γ corresponds to the Gamma function given by Γ(z) = R + t z-1 exp(-t)dt.

Proof. See Appendix 5.3.

Hence, the M-estimator solves:

θ n = arg min θ∈Θ l θ 2 2 - 2 n n i=1 Y i+1 u * l θ (Y i ) (8) 
where:

u l θ (y) = √ π     α 1 a c 2 (a + 1) 1 -iy c -a-2 + iα 2 a c 1 -iy c -a-1 + α 3 1 -iy c -a 2 iβy Γ( 1 2 + iβy) exp(-i Cy)    

Others methods

Particle filters : EKF, APFS, APF and KSAPF. For the comparison with our contrast estimator given in (8), we use the following methods: the Extended Kalman Filter (EKF), the Auxiliary Particle filter (APF), the Auxiliary Particle filter with static parameter (APFS) and the Kernel Smoothing Auxiliary Particle filter (KSAPF). We refer the reader to [START_REF] Reif | Stochastic stability of the discrete-time extended Kalman filter[END_REF], [START_REF] Pitt | Filtering via simulation: auxiliary particle filters[END_REF], [START_REF] Doucet | [END_REF] and [START_REF] Liu | Combined parameter and state estimation in simulation-based filtering[END_REF]] for a complete revue of these methods.

In order to estimate the parameters with these methods, for the EKF, APF and KSAPF estimators we use the Kitagawa and al.'s approach (see [START_REF] Doucet | [END_REF] chapter 10 p.189) in which the parameters are supposed time-varying: θ i+1 = θ i + G i+1 where G i+1 is a centered Gaussian random with a variance matrix Q supposed to be known. Hence, we consider the augmented state vector Xi+1 = (X i+1 , θ i+1 ) where X i+1 is the hidden state variable and θ i+1 the unknown vector of parameters. Furthermore, for the numerical part we call APFS an Auxiliary Particle filter without time-varying parameters.

The MCEM. From a theoretical point of view, the MLE is asymptotically efficient. However, in practice since the states (X 1 • • • , X n ) are unobservable and since the model ( 7) is non Gaussian, the likelihood is untractable. We have to use numerical methods to approximate it. In this section, we illustrate the MCEM estimator which consists in approximating the likelihood and applying the Expectation-Maximisation algorithm introduced by Dempster [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] to find the parameter θ.

Numerical Results

In this section we present some Monte Carlo simulations using the model ( 7). For the analysis we consider the following "true parameter" θ 0 = (κ 0 , µ 0 , σ 2 0 ) = (4, 0.03, 0.4) which is consistent with empirical applications of daily data (see [Do, 2005]). Thus, we have sampled the trajectory of the X i , and conditionally to the trajectory, we have sampled the variables Y i with a variance noise s 2 ε = 0.1 2 The numerical illustration goes as follows: we work with a number of observations n equal to 1000, we first compare all the methods proposed in term of computing time, then we run N = 100 estimates for each method and we compare the performance of our estimator with others methods by computing the Mean Square Error (MSE) defined as:

2 For the simulation (see Appendix 5.3) we take f

* ε (x) = 1 √ π 2 iβx Γ( 1 2 + iβx) exp(-i Cx) with β = 2s 2 ε /π 2 and C = βC where C = -1.27. MSE = 1 N p i=1 N j=1 ( θi j -θ i 0 ) 2 , (9) 
where p corresponds to the dimension of the vector of parameters.

Then, we illustrate the statistical properties of our contrast estimator, by computing the confidence intervals for different number of observations. Finally, we study the influence of the signal noise ratio since the performance of our estimator depends on the regularity of l * θ and f * ε (see Remark 2).

For particles methods, we take a number of particles M equal to 5000. Note that for the Bayesian procedure (APF, APFS and KSAPF) we need a prior on θ, and this only at the first step. The prior for θ is taken to be the Uniform law and conditionally to θ the distribution of X 1 is its stationary law:

p(θ) = U(3, 5) × U(0.02, 0.04) × U(0.3, 0.5) f θ (X 1 ) = γ (θ)
For the KSAPF, we take a bandwidth h = 0.1 and for the APF we take a matrix Q = [10 -3 , 0.1.10 -4 , 10 -4 ]I 3 with I 3 the identity matrix in R 3 (see Section 4.3.1 for the definition of the matrix Q). This comparison illustrates the numerical complexity of the MCEM. Therefore, in the following, we only compare our contrast estimator with the particles estimators.

Computing time

Parameter estimates

We illustrate by boxplots the different estimates (see Figures [1] up to [3]). In Table [2], we compute the MSE defined in (9) for each method and with a number of MC equal to N = 100 and the CPU for a number of observations n = 1000 (see Table [1]).

We note that for all parameters, the EKF estimator is very bad since the stochastic volatility model ( 7) is strongly nonlinear, and its corresponding boxplots have the largest dispersion meaning that this filter is not stable and not appropriated to estimate this model. Among particle filters, the KSAPF and the APF are the best estimators although the dispersion is huge for the mean reversion parameter κ and the volatility parameter σ. Besides, the APFS is less efficient than the others particle filters. Our estimator is stable and performs the others when one compare the MSE. From a computational point of view, all particles filters have an equivalent CPU. Our contrast estimator is fast and its implementation is straightforward and the MSE is the smallest (see Table [1]). 

Confidence Interval of the minimum contrast estimator

To illustrate the statistical properties of our contrast estimator, we compute the confidence intervals with the confidence level 1 -α equal to 0.95 for N = 100 estimators. The coverage corresponds to the number of times for which the true parameter θ i 0 , i = 1, • • • , p belongs to the confidence interval. The results are illustrated in Figure [4]. We note that the coverage converges to 95% for a small number of observations and as expected, the confidence interval decreases with the number of observations. Note that of course a MLE confidence interval would be smaller since the MLE is efficient but the corresponding computing time would be huge (see Table [1]). 

Ratio signal-noise for the contrast estimator

We denote by r = [s 2 ε /σ 2 ] the ratio signal-noise and in Table (3) we compare the MSE for different r and different number of observations n for the contrast estimator. We note that the MSE decreases with the number of observations and is smaller for small ratio-signal-noise. As explained in Section 3.1 and see [START_REF] Comte | Adaptive estimation of the dynamics of a discrete time stochastic volatility model[END_REF] for more details, the rate of convergence of our approach depends on the regularity of the noise density f ε . And, in particular, the smoother the noises are, the slower the rate of convergence is. For the CIR model, the density of the noises and the function l θ are ordinary smooth, so we are in a favourable case. 

Summary and Conclusions

In this paper we have proposed a new method to estimate hidden nonlinear diffusion process. This method is based on a deconvolution strategy and leads to consistent and asymptotically normal estimator. We have numerically studied the performance of our estimator for the CIR process widely used in many domains and we were able to construct confidence interval (see Figure [4]). As the boxplots [1] up to [3] show, only Contrast, APF, and KSAPF estimators are comparable. Indeed EKF and APFS estimators are biased and their MSE are bad, especially for the EKF method since the CIR process is nonlinear. Furthermore, if one compares the MSE of the particle filters, the KSAPF estimator is the best method. Among particles filters, it is clearly known that the APFS is less efficient than the APF filter since the parameters are not time-varying and so the only randomness is made at the first step by the prior law and not in each propagation step. Then, the Contrast, APF, and KSAPF methods lead to unbiased and not so much varying estimator. We emphasize that our estimator performs the others in a MSE aspect (see Table [1]). Most importantly, our estimator can be constructed without any arbitrary parameters choice, is straightforward to implement, fast and allows to construct confidence interval.

Appendix

The contrast function

The procedure: The limit E [m θ (Y 1 )] of the contrast function can be explicitly computed. Using (1) and Assumptions A1-A3, we obtain:

E (Y 2 2 -s 2 ε )u * l θ (Y 1 ) = E X 2 2 + 2X 2 ε 2 + ε 2 2 -s 2 ε u * l θ (Y 1 ) = E X 2 2 u * l θ (Y 1 ) by assumption A1 = E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 )η 2 2 + 2b θ 0 (X 1 )σ θ 0 (X 1 )η 2 u * l θ (Y 1 ) = E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) u * l θ (Y 1
) by assumption A2, Using Fubini's Theorem and (1), it follows that:

E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) u * l θ (Y 1 ) = E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) e iY 1 y u l θ (z)dz = E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) 1 2π 1 f * ε (z) e iY 1 z (l θ (-z)) * dy = 1 2π E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) e i(X 1 +ε 1 )z 1 f * ε (z) (l θ (-z)) * dz = 1 2π E e iε 1 z f * ε (z) E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) e iX 1 z (l θ (-z)) * dy = 1 2π E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) e iX 1 z (l θ (-z)) * dz = 1 2π E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) ((l θ (-X 1 )) * ) * = E b 2 θ 0 (X 1 ) + σ 2 θ 0 (X 1 ) l θ (X 1 ) . = b 2 θ 0 (x) + σ 2 θ 0 (x) f θ 0 (x) b 2 θ (x) + σ 2 θ (x) f θ (x)dx = l θ , l θ 0 .
Then,

E [m θ (Y 1 )] = l θ 2 -2 l θ , l θ 0 = l θ -l θ 0 2 -l θ 0 2 .

Proofs

For the reader convenience we split the proof of Theorems 1 and 2 into three parts: in Subsection 5.2.1, we give the proof of the existence of our contrast estimator defined in (6). In Subsection 5.2.2, we prove the consistency, that is, the Theorem 1. Then, we prove the asymptotic normality of our estimator in Subsection 5.2.3, that is, the Theorem 2. The Subsection 5.2.4 is devoted to Corollary 1.

Recall from Remark 1 that we only made the proof for the function ϕ defined by (2) in Definition 1 and we refer to [El Kolei, 2013] for the proof in the case (1) of Definition 1.

Proof of the existence and measurability of the M-Estimator

By assumption, the function θ → l θ 2 2 is continuous. Moreover, l * θ and then u *

l θ (x) = 1 2π e ixy l * θ (-y) f * ε (y) dy are continuous w.r.t θ. In particular, the function m θ (y i ) = l θ 2 2 -2ϕ(y i+1 )u * l θ (y i ) is continuous w.r.t θ, for ϕ : x → x 2 -s 2 ε . Hence, the function P n m θ = 1 n n i=1 m θ (Y i ) is continuous w.r.t.
θ belonging to the compact subset Θ. So, there exists θ that belongs to Θ such that:

inf θ∈Θ P n m θ = P n m θ.

Proof of the Consistency

For the consistency of our estimator, we need to use the uniform convergence given in the following Lemma. Let us consider the following quantities:

P n h θ = 1 n n i=1 h θ (Y i ); P n S θ = 1 n n i=1 ∇ θ h θ (Y i ) and P n H θ = 1 n n i=1 ∇ 2 θ h θ (Y i )
where h θ is real function from Θ × Y with value in R.

Lemma 1. Uniform Law of Large Numbers (ULLN)(see [START_REF] Newey | Large sample estimation and hypothesis testing[END_REF] for the proof.)

Let (Y i ) be an ergodic stationary process and suppose that:

(1) For all y ∈ R, θ → h θ (y) is continuous and for all θ ∈ Θ, y → h θ (y) is measurable.

(2) There exists a function (called the dominating function) s : R → R such that for all θ ∈ Θ |h θ (y)| ≤ s(y) and E[s(Y 1 )] < ∞. Then:

sup θ∈Θ |P n h θ -Ph θ | → 0 in probability as n → ∞.
Moreover, Ph θ is a continuous function of θ.

By assumption for all x, θ → l θ (x) is continuous and for all θ, x → l θ (x) is measurable which implies the continuity and the measurability of the function P n m θ on the compact subset Θ. Furthermore, the local dominance assumption (A8)

implies that E [sup θ∈Θ |m θ (Y i )|] is finite. Indeed, |m θ (y i )| = l θ 2 2 -2ϕ(y i+1 )u * l θ (y i ) ≤ l θ 2 2 + 2 ϕ(y i+1 )u * l θ (y i ) .
with ϕ the function defined in (2) in Definition 1.

As l θ 2 2 is continuous on the compact subset Θ, sup θ∈Θ l θ 2 2 is finite. Therefore, E [sup θ∈Θ |m θ (Y i )|] is finite if E sup θ∈Θ ϕ(Y i+1 )u * l θ (Y i ) is finite.
Lemma 1 gives us the uniform convergence in probability of the contrast function: for any ε > 0,

lim n→+∞ P sup θ∈Θ |P n m θ -Pm θ | ≤ ε = 1.
Combining the uniform convergence with Theorem 2.1 p. 2121 chapter 36 in [START_REF] Hansen | robert f. engle and daniel l. mcfadden[END_REF] yields the weak (convergence in probability) consistency of the estimator.

Proof of the asymptotic normality

Consider the model (1) under the assumptions A0-A7. The proof of the asymptotic normality results from assumptions A8-A11 is a straighforward application of [Hayashi, 2000] (Propostion 7.8. p. 472 and [Jones, 2004]). Furthermore, for the CLT, we need to recall some mixing properties (we refer the reader to [START_REF] Dedecker | Weak dependence: with examples and applications[END_REF] for a complete revue of mixing processes).

Let K θ (x, dy) be a Markov transition kernel on a general space (X , B(X ))) and let K n θ (x, dy) denotes the n step Markov transition corresponding to K θ . Then, for k ∈ N, x ∈ X and a measurable set A:

K n θ (x, dy) = P θ (X n+k ∈ A|X k = x)
Let M : R → R be a nonnegative function and γ : N → Z + be a nonnegative decreasing function such that:

(C) ||K n θ (x, .) -f θ (.)|| V T ≤ M (x)γ(n) where ||.|| V T denotes the total variation norm. Remark 4. X is geometrically ergodic if (C) holds with γ(n) = t n for some t < 1. X is uniform ergodic if (C) holds with M bounded and γ(n) = t n for some t < 1. X is polynomial ergodic of order m where m ≥ 0 if (C) holds with γ(n) = n -m .
The proof of the asymptotic normality is based on the following Lemma: Lemma 2. [see [Hayashi, 2000] and [Jones, 2004] for the proof.] Suppose that the conditions of the consistency hold. Suppose further that:

(1) Y i is α-mixing.

(2) (Moment condition): for some δ > 0 and for each j ∈ {1, • • • , p} :

E ∂m θ (Y 1 ) ∂θ j 2+δ < ∞ . (3) Assumption (C) holds such that E[M (X 1 )] < ∞ and γ(n) satisfies n γ(n) δ 2+δ < ∞ with δ defined in (2).
(4) (Hessian Local condition): for some neighbourhood U of θ 0 and for j, k ∈ {1, • • • , p}

E sup θ∈U ∂ 2 m θ (Y 1 ) ∂θ j ∂θ k < ∞.
Then, θ n defined in Eq.( 6) is asymptotically normal with asymptotic covariance matrix given by:

Σ(θ 0 ) = V -1 θ 0 Ω(θ 0 )V -1 θ 0
where V θ 0 is the Hessian of the application Pm θ given in Eq.(4).

Proof. It just remains to check that the conditions (2) and (4) of Lemma 2 hold under our assumptions.

Moment condition: as the function l θ is twice continuously differentiable w.r.t θ, for all y i ∈ R 2 , the application m θ (y i ) :

θ ∈ Θ → m θ (y i ) = ||l θ || 2 2 -2ϕ(y i+1 )u * l θ (y i
) is twice continuously differentiable for all θ ∈ Θ and its first derivatives are given by:

∇ θ m θ (y i ) = ∇ θ ||l θ || 2 2 -2ϕ(y i+1 )∇ θ u * l θ (y i ).
By assumption, for each j ∈ {1, • • • , p}, ∂l θ ∂θ j ∈ L 1 (R), therefore one can apply the Lebesgue differentiation Theorem and Fubini's Theorem to obtain :

∇ θ m θ (y i ) = ∇ θ ||l θ || 2 2 -2ϕ(y i+1 )u * ∇ θ l θ (y i ) . (10) 
Then, for some δ > 0:

|∇ θ m θ (y i )| 2+δ = ∇ θ ||l θ || 2 2 -2ϕ(y i+1 )u * ∇ θ l θ (y i ) 2+δ ≤ C 1 ∇ θ ||l θ || 2 2 2+δ + C 2 ϕ(y i+1 )u * ∇ θ l θ (y i ) 2+δ , (11) 
where C 1 and C 2 are two positive constants. By assumption, the function

||l θ || 2 2 is twice continuously differentiable w.r.t θ. Hence, θ → ∇ θ ||l θ || 2
2 is continuous on the compact subset Θ and the first term of equation ( 11) is finite. The second term is finite by the moment assumption (A9).

Hessian Local dominance: for j, k ∈ {1, • • • , p}, ∂ 2 l θ ∂θ j ∂θ k ∈ L 1 (R)
, the Lebesgue differentiation Theorem gives:

∇ 2 θ m θ (y i ) = ∇ 2 θ ||l θ || 2 2 -2ϕ(y i+1 )u * ∇ 2
θ l θ (y i ), and, for some neighbourhood U of θ 0 :

E sup θ∈U ∇ 2 θ m θ (Y i ) ≤ sup θ∈U ∇ 2 θ ||l θ || 2 2 + 2E sup θ∈U ϕ(Y i+1 )u * ∇ 2 θ l θ (Y i ) .
The first term of the above equation is finite by continuity and compactness argument and the second term is finite by the Hessian local dominance assumption (A10).

Proof of Corollary 1

By replacing ∇ θ m θ (Y 1 ) by its expression (10), we have:

Ω 0 (θ) = Var ∇ θ ||l θ || 2 2 -2ϕ(Y 2 )u * ∇ θ l θ (Y 1 ) = 4Var ϕ(Y 2 )u * ∇ θ l θ (Y 1 ) = 4 E ϕ(Y 2 ) 2 u * ∇ θ l θ (Y 1 ) u * ∇ θ l θ (Y 1 ) -E ϕ(Y 2 )u * ∇ θ l θ (Y 1 ) E ϕ(Y 2 )u * ∇ θ l θ (Y 1
) . Furthermore, by Eq.( 1) and by independence of the centered noise (ε 2 ) and (η 2 ), we have:

E ϕ(Y 2 )u * ∇ θ l θ (Y 1 ) = E (b 2 θ 0 + σ 2 θ 0 )(X 1 )u * ∇ θ l θ (Y 1 ) .
Using Fubini's Theorem and Eq.( 1) we obtain:

E (b 2 θ 0 + σ 2 θ 0 )(X 1 )u * ∇ θ l θ (Y 1 ) = E (b 2 θ 0 + σ 2 θ 0 )(X 1 ) e iY 1 z u ∇ θ l θ (z)dz = E (b 2 θ 0 + σ 2 θ 0 )(X 1 ) 1 2π 1 f * ε (z) e iY 1 z (∇ θ l θ ) * (-z)dz = 1 2π E (b 2 θ 0 + σ 2 θ 0 )(X 1 )e i(X 1 +ε 1 )z 1 f * ε (z) (∇ θ l θ ) * (-z)dz = 1 2π E e iε 1 z f * ε (z) E (b 2 θ 0 + σ 2 θ 0 )(X 1 )e iX 1 z (∇ θ l θ ) * (-z)dz, so that E (b 2 θ 0 + σ 2 θ 0 )(X 1 )u * ∇ θ l θ (Y 1 ) = 1 2π E (b 2 θ 0 + σ 2 θ 0 )(X 1 )e i(X 1 +ε 1 )z 1 f * ε (z) (∇ θ l θ ) * (-z)dz = 1 2π E e iε 1 z f * ε (z) E (b 2 θ 0 + σ 2 θ 0 )(X 1 )e iX 1 z (∇ θ l θ ) * (-z)dz = 1 2π E (b 2 θ 0 + σ 2 θ 0 )(X 1 ) e iX 1 z (∇ θ l θ ) * (-z)dz = 1 2π E (b 2 θ 0 + σ 2 θ 0 )(X 1 ) ((∇ θ l θ ) * (-X 1 )) * = E (b 2 θ 0 + σ 2 θ 0 )(X 1 )∇ θ l θ (X 1 ) . (12) 
Hence, Ω 0 (θ) = 4 (P 2 -P 1 ) ,

where

P 1 = E (b 2 θ 0 + σ 2 θ 0 )(X 1 )∇ θ l θ (X 1 ) E (b 2 θ 0 + σ 2 θ 0 )(X 1 )∇ θ l θ (X 1 ) , P 2 = E ϕ(Y 2 ) 2 u * ∇ θ l θ (Y 1 ) u * ∇ θ l θ (Y 1 ) .
Calculus of the covariance matrix of Corollary (1): By replacing (∇ θ m θ (Y 1 )) by its expression (10) we have:

Ω j-1 (θ) = Cov ∇ θ ||l θ || 2 2 -2ϕ(Y 2 )u * ∇ θ l θ (Y 1 ), ∇ θ ||l θ || 2 2 -2ϕ(Y j+1 )u * ∇ θ l θ (Y j ) , = 4Cov ϕ(Y 2 )u * ∇ θ l θ (Y 1 ), ϕ(Y j+1 )u * ∇ θ l θ (Y j ) , = 4 E ϕ(Y 2 )u * ∇ θ l θ (Y 1 )ϕ(Y j+1 )u * ∇ θ l θ (Y j ) -E ϕ(Y 2 )u * ∇ θ l θ (Y 1 ) E ϕ(Y j+1 )u * ∇ θ l θ (Y j ) .
By using Eq.( 12) and the stationary property of the Y i , one can replace the second term of the above equation by: Finally, we obtain: Ω

(θ) = Ω 0 (θ)+2 ∞ j>1 Ω j-1 (θ) with Ω 0 (θ) = 4 (P 2 -P 1 ) and Ω j-1 (θ) = 4 Cj-1 -P 1 .
Expression of the Hessian matrix V θ : We have:

Pm θ = ||l θ || 2 2 -2 l θ , l θ 0 . (17) 
For all θ in Θ, the application θ → Pm θ is twice differentiable w.r.t θ on the compact subset Θ. And for j ∈ {1, • • • , p}:

∂Pm ∂θ j (θ) = 2 ∂l θ ∂θ j , l θ -2 ∂l θ ∂θ j , l θ 0 = 2 ∂l θ ∂θ j , l θ -l θ 0 ,
= 0 at the point θ 0 , and for j, k ∈ {1, • • • , p}:

∂ 2 Pm ∂θ j ∂θ k (θ) = 2 ∂ 2 l θ ∂θ j θ k , l θ -l θ 0 + ∂l θ ∂θ k , ∂l θ ∂θ j j,k = 2 ∂l θ ∂θ k , ∂l θ ∂θ j j,k
at the point θ 0 .

5.3 M-estimator using the example in Section 4

Expression of f * ε : consider the random variable ε = ε-C √ V with ε = log(X 2 ) where X is standard Gaussian random variable, C = E[log(X 2 )] and V = V[log(X 2 )].
The Fourier transform of ε is given by:

E [exp (iεy)] = exp - iC √ V y E [exp (iεy)] = exp - iC √ V y E X 2iy √ V = exp - iC √ V y 1 √ 2π +∞ -∞ x 2iy √ V exp - x 2 2 dx
Using a change of variable z = x 2 2 , we get:

E [exp (iεy)] = exp - iC √ V y 2 iy √ V √ π +∞ 0 z iy √ V -1 2 e -z dz ≡ exp - iC √ V y 2 iy √ V √ π Γ 1 2 + iy √ V . Then f * ε = exp - iC √ V y 2 iy √ V √ π +∞ 0 z iy √ V -1 2 e -z dz ≡ exp - iC √ V y 2 iy √ V √ π Γ 1 2 + iy √ V .
The CIR process: taking that η i+1 ∼ N (0, 1) and ε i has a (log-) Chi-squared probability density function, if the Feller's condition holds true (a = 2κθ σ 2 ≥ 1) and c = 2κ σ 2 > 0, then the volatility process X i is stationary ergodic and ρ -mixing. The stationary distribution f θ is the gamma distribution γ(a, c) (see [START_REF] Genon-Catalot | Parameter estimation for discretely observed stochastic volatility models[END_REF]). On the other hand, the functions b θ , σ θ and l θ are given by: b θ (x) = (1 -κ)x + κθ and σ θ (x) = σ √ x l θ (x) = b 2 θ (x) + σ 2 θ (x) γ(a, c) =

(1 -κ) 2 x 2 + 2x (1 -κ) κθ + σ 2 + (κθ) 2 f θ (x), = α 1 x 2 + α 2 x + α 3 f θ (x).

where θ = (κ, µ, σ) and α 1 = (1 -κ) 2 , α 2 = 2 (1 -κ) κθ + σ 2 , α 3 = (κθ) 2 .

Therefore

l * θ (t) = E[e itX l θ (X)] = α 1 E[X 2 e itX ] + α 2 E[Xe itX ] + α 3 E[e itX ] with X ∼ Γ(a, c) = -α 1 ∂ 2 f * θ ∂t 2 (t) -iα 2 ∂f * θ ∂t (t) + α 3 f * θ (t).
After replacing f * θ (t) by 1 -it c -a , we obtain:

l * θ (x) = -α 1 -a c 2 (a + 1) 1 - ix c -a-2 + iα 2 a c 1 - ix c -a-1 + α 3 1 - ix c -a
.

It follows that for all θ, the squared norme of l θ is given by:

l θ 2 = b 2 θ + σ 2 θ (x) 2 Γ 2 (a, c)dx = β 1 x 4 + β 2 x 3 + β 3 x 2 + β 4 x + β 5 Γ 2 (a, c)dx,
where β 1 = α 2 1 , β 2 = 2α 1 α 2 , β 3 = 2α 1 α 3 + α 2 2 , β 4 = 2α 2 α 3 , β 3 = α 2 3 . Finally, using the non-centered moments of a Gamma-distributed random variable, E[X r ] = Γ(a+r) Γ(a)c r , we get: and the expression of the contrast function ( 8) is obtained. It is worth noting that the function u * l θ (y) defined in Definition 1 must be approximated numerically by using standard quadrature methods or Fast Fourier Transform.

β 1 x 4 Γ 2 (a, c)dx = β 1 x 4 c 2a Γ 2 (

Proof of Theorems 1 and 2 for the CIR process

Mixing property: under the Feller's condition, the volatility process X t is ρ-mixing and so αmixing by using the strong Markov property.

Regularity conditions: for the CIR process, the function l θ is given by the following polynomial function x → (α 1 x 2 + α 2 x + α 3 )f θ (x) with α 1 = (1 -κ) 2 , α 2 = 2 (1 -κ) κθ + σ 2 , α 3 = (κθ) 2 and for all x this function is smooth w.r.t. θ ∈ Θ. Hence, it remains to prove the moment condition and the local dominance to apply Theorem 2.

Since the function l θ is polynomial w.r.t θ belonging to the compact subset Θ, all the derivatives exist and in particular sup θ∈Θ l θ and sup θ∈Θ ∇ 2 θ l θ are finite. Furthermore, by combining the compactness argument and as the Fourier transform f * satisfies (see [START_REF] Fan | Nonparametric function estimation involving errors-invariables[END_REF]):

|f * ε (x)| = √ 2 exp - π 2 |x| 1 + O 1 |x| , |x| → ∞,
which means that f ε is ordinary-smooth in its terminology, we obtain:

           E sup θ∈Θ ϕ(Y 2 )u * l θ (Y 1 ) < ∞ E ϕ(Y 2 )u * ∇ θ l θ (Y 1 ) 2+δ < ∞ for some δ > 0, E sup θ∈U ϕ(Y 2 )u * ∇ 2 θ l θ (Y 1 ) < ∞
for some neighbourhood U of θ 0 .
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 1 Figure 1. Boxplot of the parameter κ. True value equal to 4.

Figure 2 .

 2 Figure 2. Boxplot of the parameter µ. True value equal to 0.03.
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 3 Figure 3. Boxplot of the parameter σ 2 . True value equal to 0.4.
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 4 Figure 4. Coverage with respect to the number of observations n = 500 up to 3000 for N = 100 estimators.

  = β 1 2 -(2a+3) c -3 Γ(2a + 3) Γ 2 (a)andβ 2 x 3 Γ 2 (a, c)dx = β 2 2 -(2a+2) c -2 Γ(2a + 2) Γ 2 (a) Γ(2a + 2, 2c)dx = β 2 2 -(2a+2) c -2 Γ(2a + 2) Γ 2 (a) , β 3 x 2 Γ 2 (a, c)dx = β 3 2 -(2a+1) c -1 Γ(2a + 1) Γ 2 (a) Γ(2a + 1, 2c)dx = β 3 2 -(2a+1) c -1 Γ(2a + 1) Γ 2 (a) , β 4 xΓ 2 (a, c)dx = β 4 2 -(2a) Γ(2a) Γ 2 (a) , β 5 Γ 2 (a, c)dx = β 5 2 -2a+1 c Γ(2a -1) Γ 2 (a).

Table 1 .

 1 Comparison of the CPU for Particle filters estimators, MCEM estimator and Contrast estimator.

	APF	KSAPF	APFS	EKF Contrast MCEM
	CPU (sec) 105.1695 93.8846 192.2166 0.2	20.4074 217430

Table 3 .

 3 Ratio signal-noise for the estimation of the CIR model

		Mean(μ n ) Mean(κ n ) Mean(σ 2 n ) MSE
	n = 500 and r = 0.1	0.0315	3.88	0.401	0.14
	n = 500 and r = 1	0.0303	3.89	0.405	0.16
	n = 1000 and r = 0.1	0.0312	3.76	0.401	0.11
	n = 1000 and r = 1	0.0308	3.83	0.41	0.18