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PARAMETRIC INFERENCE OF HIDDEN DISCRETE-TIME DIFFUSION

PROCESSES BY DECONVOLUTION

SALIMA EL KOLEI AND FLORIAN PELGRIN

Abstract. We study a new parametric approach for hidden discrete-time diffusion models.

This method is based on contrast minimization and deconvolution and leads to estimate a

large class of stochastic models with nonlinear drift and nonlinear diffusion. It can be applied,

for example, for ecological and financial state space models.

After proving consistency and asymptotic normality of the estimation, leading to asymptotic

confidence intervals, we provide a thorough numerical study, which compares many classical

methods used in practice (Non Linear Least Square estimator, Monte Carlo Expectation Maxi-

mization Likelihood estimator and Bayesian estimators) to estimate stochastic volatility model.

We prove that our estimator clearly outperforms the Maximum Likelihood Estimator in term of

computing time, but also most of the other methods. We also show that this contrast method

is the most stable and also does not need any tuning parameter.

Keywords: Deconvolution, Hidden Markov Model, Discrete Stochastic Volatility Models.

1. Introduction

A large class of models encountered in finance fields can be written as: Yi = Xi + εi

Xi+1 = bθ0(Xi) + σθ0(Xi)ηi+1,
(1)
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2 SALIMA EL KOLEI AND FLORIAN PELGRIN

where one observes Y1,· · · ,Yn, and where the random variables εi, ηi and Xi are unobserved. Notably

(Xi)i≥0 is a strictly stationary, ergodic process that depends on two measurable functions bθ0 and σθ0

and its stationary density is fθ0 . These two regression functions are known up to a finite dimensional

parameter, θ0, and the dependence with respect to θ0 is not required to be the same in bθ0 and σθ0 .

Finally, the innovations (ηi)i≥0 and the errors (εi)i≥0 are independent and identically distributed (i.i.d)

random variables, the distribution of the innovations being known. This class of parametric models

includes, among others, the autoregressive model with measurement errors, the autoregressive sto-

chastic volatility model ([Taylor, 2005]), the discrete time versions of well-known diffusion processes

in finance ([Heston, 1993], [Cox et al., 1985]) and some families of stochastic processes: Vasick, CIR,

CIR modified and hyperbolic processes (see [Genon-Catalot et al., 1999]).

In this paper, we propose a new parametric estimation method for the two functions bθ0 and σθ0

driving the dynamics of the hidden variables (Xi)i≥0. The principle of the estimation method goes

as follows. Taking that the stationary density, fθ0 , is known up to the finite dimensional parameter

θ0, our M-estimator consists in optimizing a contrast function that exploits a Fourier deconvolution

strategy in a parametric framework. In so doing, we exploit a ”Nadaraya-Watson approach” in the

sense that we estimate bθ0 (respectively, b2θ0 +σ2
θ0

) as ratio of an estimator of lθ0 = bθ0fθ0 (respectively,

lθ0 = (b2θ0 + σ2
θ0

)fθ0) and an estimator of fθ0 . Notably we provide an analytical expression of the

contrast function for a well-known example and characterize their main properties. Moreover we show

that this deconvolution-based estimator is consistent and asymptotically normally distributed for α-

mixing processes which leads to obtain confidence intervals in practice for many processes. Finally,

our Monte Carlo simulations show that our approach gives good results and is fast computing. All

results are illustrated on the famous Heston model which is very used in practice for options prices

and our approach is compared with many others methods used in the literature to estimate this model

(Non Linear Least Square, Monte Carlo Expectation Maximisation, Sequential Monte Carlo).

We are far from the first ones to take interest in the estimation of stochastic volatility models (see

[Genon-Catalot et al., 1999]) but in this paper we propose a general new approach to estimate a large



PARAMETRIC INFERENCE 3

class of stochastic processes.

Three papers are closely related to our work. On the one hand, Comte et al. (see [Comte et al., 2010])

propose a non-parametric estimation procedure in the case of discrete time stochastic models.1 Their

approach rests on three steps. The first stage leads to define an estimator of lθ0 through a penalized

contrast function by using an orthogonal projection of lθ0 on a (finite) basis of the space of square

integrable function (having Fourier transform). The second stage amounts of estimating fθ0 in an

adaptive way (see [Comte et al., 2006]). By a ratio strategy (”Nadaraya-Watson approach”), esti-

mators of b and σ2 are then deduced in the third stage. This approach is the cornerstone of the

estimator developed in this paper in the sense that it is based on the Fourier deconvolution and the

same (non-penalized) contrast function. At the same time, we show that their methodology can be

extended in a parametric framework and we go further by obtaining confidence intervals. On the other

hand, in [Dedecker et al., 2014] Dedecker et al. propose a new parametric estimation procedure based

on a modified least squares criterion. Their assumptions on the process Xi are less restrictive than

those proposed by F. Comte and M. Taupin in [Comte and Taupin, 2001] and they provide consistent

estimation of the parameter θ0 of the regression function b with a parametric rate of convergence in a

very general framework. Their general estimator is based on the introduction of a kernel deconvolution

density and depends on the choice of a weight function.

Finally, in [El Kolei, 2013], the author proposes a new parametric estimation for a class of state space

models. This approach is not based on a weighted least squared estimation so that the choice of the

weight function is not encountered in her paper. Moreover, it allows to estimate both the parameters

of the drift b and diffusion σ2 functions only in the case where σ2 is a constant function of the hidden

variable x. Our approach is a generalisation of this procedure, that is it permits also to estimate

models with nonlinear drift function b and nonlinear diffusion function σ2. Although, we focus our

approach on the estimation of stochastic volatility models, this method can be applied for many ap-

plications.

The paper is organized as follows. Section 2 provides examples of hidden stochastic volatility models

1See also Comte et Taupin in [Comte and Taupin, 2007].
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that can be casted in (1). Section 3 presents the notations and the model assumptions. Section 4

defines the deconvolution-based M-estimator and states all of the theoretical properties. Some Monte

Carlo simulations are discussed in Section 5 and some concluding remarks are provided in the last

section. The proofs are gathered in Appendix.

2. Examples

In this section, we provide many examples of stochastic processes on which our approach can be easily

applied.

• Cox-Ingersoll-Ross process:

dX(t) = (β1 − β2X(t))dt+ β3

√
X(t)dW (t) (2)

The stationary distribution is a Gamma law with shape parameter 2β1/β
2
3 and scale parameter

β2
3/2β

2
2 .

• The modified CIR

dX(t) = −β1X(t))dt+ β2

√
1 +X2(t)dW (t)

where β1 + β2
2 > 0. The modified CIR process has a stationary distribution that is proportional to

1/(1 + x2)1+β1/β2 . Thus,

X(t) ∼ T (nv)/
√

(nv)

where T is the Student distribution and the number of degrees of freedom nv is given by nv = 1+β1/β2.

• The hyperbolic processes (sometimes used to model log-returns of assets prices in stock markets)
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dX(t) =
σ2

2

[
β − γ X(t)√

(δ2 + (X(t)− µ)2

]
dt+ σdW (t)

Its invariant density is defined by:

π(x) =

√
γ2 − β2

2γδK1(.)
exp{−γ

√
δ2 + (x− µ)2 + β(x− µ)}

where K1(.) = K1(δ
√
γ2 − β2) is the modified Bessel function of second kind of index one. It is worth

noting that δ > 0, 0 ≤ |β|, and γ > 0. As a special case, one gets the hyperbolic process

dX(t) = θ
X(t)√

1 +X2(t)
dt+ dW (t)

• Linear feedback models

• Type 1

Table 1. Expression

Drift: b(x) = r(θ − x), r > 0

Diffusion: σ2(x) = ε

SDE: dX(t) = r(θ −X(t))dt+
√
εdW (t)

Stationary density: 1
2πδ exp{− (x−θ)2

2δ }

δ = ε/r

• Type 2

Table 2. Expression

Drift: b(x) = r(θ − x), r > 0

Diffusion: σ2(x) = εx

SDE: dX(t) = r(θ −X(t))dt+
√
εX(t)dW (t)

Stationary density: (xδ )−1+ θ
δ

exp{−x
δ
}

Γ(θ/δ)

δ = ε/r and Γ is the Gamma function.

• Type 3
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Table 3. Expression

Drift: b(x) = r(θ − x), r > 0

Diffusion: σ2(x) = εx(1− x)

SDE: dX(t) = r(θ −X(t))dt+
√
εX(t)(1−X(t))dW (t)

Stationary density: Γ(1/δ)
Γ(θ/δ)Γ(1−θ)/δ)x

−1+ θ
δ (1− x)−1+ 1−θ

δ

δ = ε/r and Γ is the Gamma function.

Remark 1. The state equation in the model (1) is viewed as an approximation of a stochastic differ-

ential equation (SDE). One key issue is that the stationary distribution of X(t) defined by the SDE

dX(t) = a(X(t), β1)dt+ b(X(t), β2)dW (t)

can be known but this no longer true when considering the discrete time version of the SDE. Neverthe-

less, it is not the matter of this paper and can be studied in a next paper. For this paper, we consider

exact discrete time nonlinear state space models in which we know exactly the stationary distribution.

For example, for Ornstein-Uhlenbeck process or CIR process (2) we know the stationary distribution

of the discrete time version of the SDE (see [Cox et al., 1985]).

3. General setting and assumptions

In this section, we introduce some preliminary main notations and provide the assumptions of model

(1).

3.1. Notations. Subsequently, we denote by u∗ the Fourier transform of the function u:

u∗(t) =

∫
eitxu(x)dx,
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and by ||u||2, ||u||∞, 〈u, v〉, and u ∗ v the quantities:

||u||2 =

(∫
|u(x)|2dx

)1/2

||u||∞ = sup
x∈R
|u(x)|

〈u, v〉 =

∫
u(x)v(x)dx with vv = |v|2

u ∗ v =

∫
u(t)v̄(x− t)dt.

Moreover, for any integrable and square-integrable functions u, u1, and u2:

(u∗)∗(x) = 2πu(−x)

〈u1, u2〉 =
1

2π
〈u∗1, u∗2〉 .

Finally, ‖A‖ denotes the Euclidean norm of a matrix A, Yi = (Yi, Yi+1) and yi = (yi, yi+1), Pn (re-

spectively, P) the empirical (respectively, theoretical) expectation, that is, for any stochastic variable:

Pn(X) = 1
n

∑n
i=1Xi (respectively, P(X) = E[X]). Regarding the partial derivatives, for any function

hθ, ∇θhθ is the vector of the partial derivatives of hθ with respect to (w.r.t) θ and ∇2
θhθ is the Hessian

matrix of hθ w.r.t θ.

3.2. Assumptions. We consider the hidden discrete-time diffusion model (1). The assumptions are

the following.

A0 θ0 belongs to the interior Θ0 of a compact set Θ, θ0 ∈ Θ ⊂ Rp.

A1 The errors (εi)i≥0 are independent and identically distributed centered random variables with

finit variance, E
[
ε2

1

]
= s2

ε . The density of ε1, fε, belongs to L2(R), and for all x ∈ R, f∗ε (x) 6= 0.

A2 The innovations (ηi)i≥0 are independent and identically distributed centered random variables

with unit variance E
[
η2

1

]
= 1 and E

[
η3

1

]
= 0.

A3 The Xi’s are strictly stationary and ergodic with invariant density fθ0 .

A4 The sequences (Xi)i≥0 and (εi)i≥0 are independent. The sequence (εi)i≥0 and (ηi)i≥0 are

independent.
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A5 On Θ0, the functions θ 7→ bθ and σ 7→ σθ admit continuous derivatives with respect to θ up to

order 2.

A6 The function to estimate lθ :=
(
b2θ + σ2

θ

)
fθ belongs to L1(R) ∩ L2(R), is twice continuously

differentiable w.r.t θ ∈ Θ for any x and measurable w.r.t x for all θ in Θ. Each element of

∇θlθ and ∇2
θlθ belongs to L1(R) ∩ L2(R).

The compactness assumption A0 might be relaxed by assuming that θ0 is an element of the interior

of a convex parameter space Θ ∈ Rp. In this case, the statistical properties of the M-estimator can be

proved in the light of convex optimization arguments. Assumptions A1-A3 are quite standard when

considering estimation in the convolution model. On the other hand, Assumption A3 implies that if

(Xi)i≥0 is an ergodic process then (Yi)i≥0 is stationary and ergodic since it is the sum of an ergodic

process and an i.i.d. noise process ([Dedecker et al., 2007]). Consequently Yi = (Yi, Yi+1) inherits

the ergodicity property. According to Assumption A4 the unknown density gθ0 of the Yi’s is defined

to be fθ0 ∗ fε. It turns out that g∗θ0 = f∗θ0f
∗
ε and thus f∗θ0 = g∗θ0/f

∗
ε . Assumption A5 ensures some

smoothness for the functions to estimate. Note that Assumptions A2 and A3 imply that the sequence

(Xi)i≥0 is stationary and ergodic with invariant density fθ0 . Assumption A6 is also quite usual in the

literature and serves for the construction and for asymptotic properties of our estimator.

4. Parametric deconvolution estimator

In this section, we first define the contrast function. Then we state the definition of the parametric

deconvolution estimator. Finally the consistency and asymptotic normality of this estimator are

established.

4.1. The contrast function. Using Comte et al. (see [Comte et al., 2010]), the starting point of our

estimation procedure is to consider an estimator of the following contrast function.

Definition 1 (Contrast function). Suppose that Assumptions A1, A2, A4, A5 and A6 hold true,

the quantity ϕ(Y2)u∗lθ(Y1) has a finite expectation for some measurable function ϕ, and ulθ is square

integrable (A7). Then the contrast function is defined by:

E [mθ(Y1)] := ‖lθ‖2 − 2E
[
ϕ(Y2)u∗lθ(Y1)

]
,
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where ulθ(x) = 1
2π

v∗(−x)
f∗ε (x) . The function ϕ depends on the form of the diffusion function σθ0 i.e.

(1) ϕ : x ∈ R 7→ x, if σθ0 is a constant function of the hidden variable

(2) ϕ : x ∈ R 7→ x2 − s2
ε , if σθ0 is not a constant function of the hidden variable

and it satisfies

E
[
ϕ(Y2)u∗lθ(Y1)

]
= 〈lθ, lθ0〉 .

Several points are worth commenting. First, the empirical contrast is given by:

Pnmθ =
1

n

n∑
i=1

mθ(yi), (3)

where:

mθ(yi) : (θ,yi) ∈ (Θ× R2) 7→ mθ(yi) = ||lθ||2 − 2ϕ (yi+1)u∗lθ(yi).

As explained below, using the Ergodicity Theorem, it can be shown that Pnmθ converges in probability

towards Pmθ = E [mθ(Y1)] as n goes to infinity. Second, taking the various applications, the choice

of the function ϕ can be made explicit. Indeed, in the case of a constant diffusion function σθ with

respect to x the function ϕ is given by the identity function and lθ is given by:

lθ(x) = bθ(x)fθ(x)

This typical case is studied in [El Kolei, 2013].

On the other hand, when σθ is a nonlinear diffusion function with respect to x as in model (2), we

define the function ϕ by ϕ(x) = x2 − s2
ε and lθ(x) =

(
b2θ(x) + σ2

θ(x)
)
fθ(x).

Remark 2. As said in the introduction, the case where the diffusion function σθ0 is a constant function

of the hidden variable has already been studied in [El Kolei, 2013]. Therefore, from now on, we focus

on the case 2 in Definition (1) and we refer to the aforementioned paper for the case 1 in Definition

(1).
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It is straightforward to show that in this case:

E
[
ϕ(Y2)u∗lθ(Y1)

]
= 〈lθ, lθ0〉

and

E [mθ(Y1)] = ‖lθ‖2 − 2 〈lθ, lθ0〉 = ‖lθ − lθ0‖
2 − ‖lθ0‖

2 . (4)

Third, the information criterion (4) is minimum when θ = θ0. This requires the following identification

assumption:

A8 The information criterion E [mθ(Y1)] has a unique minimum at θ = θ0.

In this respect, the associated minimum-contrast estimator θ̂n is defined as follows.

Definition 2. The minimum-contrast estimator θ̂n solves:

θ̂n = arg min
θ∈Θ

Pnmθ. (5)

Remark 3. In this paper we consider the situation in which the observation noise variance is known.

This assumption, which is often not satisfied in practice, is necessary for the identifiability of the model

and so is a standard assumption for state-space models given in (1).

There is some restrictions on the distribution of the innovations in the Nadaraya-Watson approach. It

is known that the rate of convergence for estimating the function lθ is related to the rate of decreasing

of f∗ε . In particular, the smoother fε, the slower the rate of convergence for estimating is (The Gauss-

ian, log-chi squared or Cauchy distributions are super-smooth. The Laplace distribution is ordinary

smooth). This rate of convergence can be improved by assuming some additional regularity conditions

on lθ. There is a good discussion about this subject in [Comte et al., 2010] and [Comte et al., 2006].

The procedure: Let us explain the choice of the contrast function and how the strategy of

deconvolution works. The convergence of Pnmθ to Pmθ = E [mθ(Y1)] as n tends to the infinity is

provided by the Ergodicity Theorem. Moreover, the limit E [mθ(Y1)] of the contrast function can be
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explicitly computed. Using (1) and Assumptions A1-A3, we obtain:

E
[
(Y 2

2 − s2
ε)u
∗
lθ

(Y1)
]

= E
[(
X2

2 + 2X2ε2 + ε2
2 − s2

ε

)
u∗lθ(Y1)

]
= E

[
X2

2u
∗
lθ

(Y1)
]

by assumption A1

= E
[(
b2θ0(X1) + σ2

θ0(X1)η2
2 + 2bθ0(X1)σθ0(X1)η2

)
u∗lθ(Y1)

]
= E

[(
b2θ0(X1) + σ2

θ0(X1)
)
u∗lθ(Y1)

]
by assumption A2,

Using Fubini’s Theorem and (1), it follows that:

E
[(
b2θ0(X1) + σ2

θ0(X1)
)
u∗lθ(Y1)

]
= E

[(
b2θ0(X1) + σ2

θ0(X1)
) ∫

eiY1yulθ(z)dz

]
= E

[(
b2θ0(X1) + σ2

θ0(X1)
) ∫ 1

2π

1

f∗ε (z)
eiY1z(lθ(−z))∗dy

]
=

1

2π

∫
E
[(
b2θ0(X1) + σ2

θ0(X1)
)
ei(X1+ε1)z

] 1

f∗ε (z)
(lθ(−z))∗dz

=
1

2π

∫ E
[
eiε1z

]
f∗ε (z)

E
[(
b2θ0(X1) + σ2

θ0(X1)
)
eiX1z

]
(lθ(−z))∗dy

=
1

2π
E
[(
b2θ0(X1) + σ2

θ0(X1)
) ∫

eiX1z(lθ(−z))∗dz
]

=
1

2π
E
[(
b2θ0(X1) + σ2

θ0(X1)
)

((lθ(−X1))∗)∗
]

= E
[(
b2θ0(X1) + σ2

θ0(X1)
)
lθ(X1)

]
.

=

∫ (
b2θ0(x) + σ2

θ0(x)
)
fθ0(x)

(
b2θ(x) + σ2

θ(x)
)
fθ(x)dx

= 〈lθ, lθ0〉 .

Then,

E [mθ(Y1)] = ‖lθ‖2 − 2 〈lθ, lθ0〉 = ‖lθ − lθ0‖
2 − ‖lθ0‖

2 .

Using Definition 2, we are now in position to explicit the contrast function and the minimization

problem for the examples in Section 2.2

2All the proofs are derived in Appendix 7 and 7.4.
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The existence of our estimator follows from regularity properties of the function lθ and compactness

argument of the parameter space, it is explained in Appendix 7 Section 7.1.

4.2. Asymptotic properties. In this section we show that our estimator is weakly consistent and

asymptotically normally distributed for mixing processes. In this respect, we further assume that:

A9 (Local dominance): E
[
supθ∈Θ

∣∣∣ϕ(Yi+1)u∗lθ(Yi)
∣∣∣] <∞.

A10 The application θ 7→ Pmθ admits a unique minimum and its Hessian matrix, denoted by Vθ,

is non-singular in θ0.

For the CLT, we need to add two assumptions:

A11 (Moment condition): For some δ > 0, E
[∣∣∣ϕ(Yi+1)u∗∇θlθ(Yi)

∣∣∣2+δ
]
<∞.

A12 (Hessian Local dominance): For some neighbourhood U of θ0:

E
[
sup
θ∈U

∥∥∥ϕ(Yi+1)u∗∇2
θlθ

(Yi)
∥∥∥] <∞

.

4.2.1. Consistency. The first result regards the (weak) consistency of our estimator.

Theorem 1. Consider the model (1) under the assumptions A0-A7 and suppose that the conditions

A8-A10 hold true. Then θ̂n defined by (5) is weakly consistent:

θ̂n −→ θ0 as n→∞ in Pθ0 − probability.2

Proof: See Appendix 7 Section 7.2.
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The main idea for proving the consistency of a M-estimator comes from the following observation:

if Pnmθ converges to Pmθ in probability, and if the true parameter solves the limit minimization

problem, then, the limit of the argminimum θ̂n is θ0. By using an argument of uniform convergence

in probability and by compactness of the parameter space, we show that the argminimum of the limit

is the limit of the argminimum. A standard method to prove the uniform convergence is to use the

Uniform Law of Large Numbers (see Lemma 1 in Appendix 7). Combining these arguments with the

dominance argument (A9) give the consistency of our estimator, and then, the Theorem 1.

4.2.2. Asymptotic normality. The second result states our estimator is
√
n-consistent and asymptot-

ically normally distributed. Besides, regarding the variance-covariance matrix, Corollary 1 provides

the different terms of the variance-covariance matrix for stochastic processes with nonlinear diffusion.

For the CLT, we need to recall some mixing properties (we refer the reader to [Dedecker et al., 2007]

for a complete revue of mixing processes). Let Kθ(x, dy) be a Markov transition kernel on a general

space (X ,B(X ))) and let Kn
θ (x, dy) denotes the n step Markov transition corresponding to Kθ. Then,

for k ∈ N, x ∈ X and a measurable set A:

Kn
θ (x, dy) = Pθ(Xn+k ∈ A|Xk = x)

Let M(x) be a nonnegative function and γ(n) be a nonnegative decreasing function on Z+ such

that:

(C) ||Kn
θ (x, .)− fθ(.)||V T ≤M(x)γ(n)

where ||.||V T denotes the total variation norm.

Definition 3 (α-mixing (strongly mixing process)). Let Y := {Yn} denotes a general sequence of

random variables on a probability space (Ω,F ,P) and let Fmk = σ(Yk, · · · , Ym). The sequence Y is

said to be α-mixing if α(n)→ 0 as n→∞ where
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α(n) := sup
k≥1

sup
A∈Fk1 B∈F∞k+n

|Pθ(A ∪ B)− Pθ(A)Pθ(B)|

where A and B are two measurable sets.

Definition 4 (ρ-mixing (asymptotically uncorrelated)). The sequence Y is said to be ρ-mixing if

ρ(n)→ 0 as n→∞ where

ρ(n) := sup
{
corr(U, V ), U ∈ L2(Fk1 ), V ∈ L2(F∞k+n), k ≥ 1

}
.

Remark 4. X is geometrically ergodic if (C) holds with γ(n) = tn for some t < 1. X is uniform

ergodic if (C) holds with M bounded and γ(n) = tn for some t < 1. X is polynomial ergodic of order

m where m ≥ 0 if (C) holds with γ(n) = n−m. The strong Markov property implies that ρ-mixing

sequences are also α-mixing and, in fact, 4α(n) ≤ ρ(n).

The following theorem states our estimator is asymptotically normally distributed. In this respect,

we further assume that:

A14 The stochastic process Xi is α-mixing.

Theorem 2. Consider the model (1) under the assumptions A0-A8, and suppose that the conditions

A9-A14 hold true.

If (C) holds such that E[M(X1)] < ∞ and γ(n) satisfies
∑

n γ(n)
δ

2+δ < ∞ where δ is given in

assumption A12, then θ̂n defined by (5) is a
√
n-consistent estimator of θ0 which satisfies:

√
n(θ̂n − θ0)

L→ N (0,Σ(θ0))

where the variance-covariance matrix is given by:

Σ(θ0) = V −1
θ0

Ω(θ0)V −1′

θ0

Proof. See Appendix 7 Section 7.3. �

The following corollary gives an expression of the matrix Ω(θ0) and Vθ0 of Theorem 2 for the practical

implementation:
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Corollary 1. Under our assumptions, the matrix Ω(θ0) is given by:

Ω(θ0) = Ω0(θ0) + 2

+∞∑
j=2

Ωj−1(θ0),

where:

Ω(θ0) = Var (∇θmθ(Y1)) + 2
+∞∑
j=2

Cov (∇θmθ(Y1),∇θmθ(Yj)) ,

= Ω1(θ0) + 2

+∞∑
j=2

Ωj(θ0)

where

Ω1(θ0) = 4

{
E
[(
ϕ(Y2)u∗∇θlθ0

(Y1)
)(

ϕ(Y2)u∗∇θlθ0
(Y1)

)′]
− E

[(
b2θ0(X1) + σ2

θ0(X1)
)
∇θlθ0(X1)

]
E
[(
b2θ0(X1) + σ2

θ0(X1)
)
∇θlθ0(X1)

]′}
Ωj(θ0) = 4

{
E
[(
b2θ0(X1) + σ2

θ0(X1)
)
∇θlθ0(X1)

((
b2θ0(Xj) + σ2

θ0(Xj)
)
∇θlθ0(Xj)

)′]
−E

[(
b2θ0(X1) + σ2

θ0(X1)
)
∇θlθ0(X1)

]
E
[(
b2θ0(X1) + σ2

θ0(X1)
)
∇θlθ0(X1)

]′}
.

Furthermore, the Hessian matrix Vθ0 is given by:

(
[Vθ0 ]j,k

)
1≤j,k≤r

= 2

(〈
∂lθ
∂θk

,
∂lθ
∂θj

〉)
j,k

at point θ = θ0.

Proof: See Appendix 7 Section 7.4.

The asymptotic normality follows essentially from Central Limit Theorem for mixing processes (see

[Jones, 2004]). Thanks to the consistency, the proof is based on a moment condition of the Jacobian

vector of the function mθ(y) and on a local dominance condition of its Hessian matrix. To refer to
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likelihood results, one can see these assumptions as a moment condition of the score function and a

local dominance condition of the Hessian (see [Van der Vaart, 1998]).

5. Applications

5.1. Contrast estimator for the CIR process. In this part, we will consider the discrete time

version of the CIR proces (2):

Xi+1 = Xi + κ(µ−Xi)∆ + σ
√

∆Xiηi+1 (6)

with ∆ the sampling interval.

The unobserved variance process Xi is driven by a mean reverting stochastic process which was in-

troduced in [Cox et al., 1985] to model the short term interest rates. The parameter κ is the positive

mean reverting parameter, µ is the positive long run parameter and σ the positive volatility of the

variance process.

We assume that the variance process Xi is greater than zero. To ensure that this is satisfied, we

make the following assumption:

F a =
2κθ

σ2
≥ 1 and c =

2κ

σ2
> 0,

this condition is known as the Feller condition (see [Cox et al., 1985]) and implies that the variance

process Xi is ergodic and ρ-mixing (see Definition (4)). Furthermore, the stationary distribution fθ

writes:

fθ(x) =
ca

Γ(a)
xa−1e−cx ∀x > 0.

This is the gamma distribution Γ(a, c) (see [Genon-Catalot et al., 1999]).

Then, the discrete time Heston model is given by the following nonlinear state space model with

additive noises:
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 Yi = Xi + εi

Xi+1 = Xi + κ(µ−Xi)∆ + σ
√

∆Xiηi+1

(7)

with εi follows a log chi-squared distribution and ηi a gaussian distribution.

On the other hand, the functions b·, σ· and l· are given by:

bθ(x) = (1− κ)x+ κθ, σθ(x) = σ
√
x and lθ =

(
b2θ(x) + σ2

θ(x)
)

Γ(a, c).

where θ = (κ, µ, σ).

Using the Fourier transform of the Gamma and the log chi-squared density, we have

f∗θ (x) =

(
1− ix

c

)−a
and f∗ε (x) =

1√
π

2ixΓ(
1

2
+ ix) exp(−iCx)

with C the expectation of the logarithm of a chi-squared random variable, i.e. C = −1.27 (see

[Abramowitz and Stegun, 1992] and Appendix 7.4 for the expression of the Fourier transform).

As well as the one of lθ is given by

l∗θ(x) = −α1

[
−a
c2

(a+ 1)

(
1− ix

c

)−a−2
]

+ iα2
a

c

(
1− ix

c

)−a−1

+ α3

(
1− ix

c

)−a
.

with α1 = (1− κ)2 , α2 = 2 (1− κ)κθ + σ2, α3 = (κθ)2.

Furthermore, the L2-norm of lθ is given by:
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‖lθ‖22 = α2
12−(2a+3)c−3 Γ(2a+ 3)

Γ2(a)
+ 2α1α22−(2a+2)c−2 Γ(2a+ 2)

Γ2(a)

+
(
2α1α3 + α2

2

)
2−(2a+1)c−1 Γ(2a+ 1)

Γ2(a)
+ α2α32−(2a) Γ(2a)

Γ2(a)

+α2
32−2a+1c

Γ(2a− 1)

Γ2(a)
.

where Γ corresponds to the Gamma function given by

Γ(z) =

∫
R+

tz−1 exp(−t)dt

Proof. see Appendix 7.4. �

Remark 5. In our simulation study, we take s2
ε = 0.1 instead of π2/2 which is the variance of a

log(χ2) random variable (see [Abramowitz and Stegun, 1992]). By transformation (see Appendix 7.4)

we take

f∗ε (x) =
1√
π

2iβxΓ(
1

2
+ iβx) exp(−iC̃x)

with β =
√

2s2
ε/π

2 and C̃ = βC where C is defined above.

Hence, the M-estimator solves:

θ̂n = arg min
θ∈Θ

{
‖lθ‖22 −

2

n

n∑
i=1

Yi+1u
∗
lθ

(Yi)

}
(8)

where:

ulθ(y) =
√
π

α1

[
a
c2

(a+ 1)
(

1− iy
c

)−a−2
]

+ iα2
a
c

(
1− iy

c

)−a−1
+ α3

(
1− iy

c

)−a
2iβyΓ(1

2 + iβy) exp(−iC̃y)


5.2. Comparison with others methods.

5.2.1. NLSE:. A common and popular solution to find the vector of parameters is to find the set of

parameters which gives the correct market prices of options. This is called an inverse problem since we
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find indirectly the vector of parameters. The approach for solving this inverse problem is to minimize

the error between the model prices and the market prices. This turns out to be a nonlinear least

square optimisation problem and we can use one of the numerous algorithms of optimisation. More

precisely, for each time t, we have to minimize the following function:

Ft(θ̃) =

Nopt∑
i=1

wi

(
Ci,markett − Ci,Hestont (θ̃, Yt)

)2
, (9)

with respect to θ̃ = (Xt, θ). The variable N is the number of available options used for the calibration,

Ci,markett and Ci,Hestont (θ̃, Yt) are the ith option prices given by the market and the model respectively.

The variables wi are the weights corresponding to the contribution of the ith option.

The choice of the weights wi is very important. For example, by choosing wi = 1 for all i, we

assign more weight to the expensive options and less weight for the cheap options (see [Chen, 2007]

for different definitions of weights).

5.2.2. Particle filters estimators: Bootstrap, APF and KSAPF. For the particle filters, the vector of

parameters θ is supposed random obeying the prior distribution assumed to be known. We propose

to use the Kitagawa and al.’s approach (see [Doucet et al., 2001] chapter 10 p.189) in which the pa-

rameters are supposed time-varying: θi+1 = θi + Gi+1 where Gi+1 is a centered Gaussian random

with a variance matrix Q supposed to be known. Now, we consider the augmented state vector

X̃i+1 = (Xi+1, θi+1)′ where Xi+1 is the hidden state variable and θi+1 the unknown vector of param-

eters. For initialisation the distribution of X1
3 conditionally to θ1 is given by the stationary density

fθ1 , that is the Gamma density in our case.

For the comparison with our contrast estimator given in (8), we use the three methods: the Bootstrap

filter, the Auxiliary Particle filter (APF) and the Kernel Smoothing Auxiliary Particle filter (KSAPF).

3To avoid confusions between the true value θ0 and the initial value θ1 in the Bayesian algorithms, we start the algorithms
with i = 1.
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We refer the reader to [Doucet et al., 2001], [Pitt and Shephard, 1999] and [Liu and West, 2001] for a

complete revue of these methods.

6. A simulation study

In this section we present some Monte Carlo simulations using the model (7). For the analysis we

consider θ0 = (κ0, µ0, σ
2
0) = (4, 0.03, 0.4). This choice is consistent with empirical applications of

daily data (see [Do, 2005]). Thus, we have sampled the trajectory of the Xi, and conditionally to the

trajectory, we have sampled the variables Yi with a variance noise s2
ε = 0.1.

For particles methods, we take a number of particles M equal to 5000. Note that for the Bayesian

procedure (Bootstrap, APF and KSAPF) we need a prior on θ, and this only at the first step. The

prior for θ1 is taken to be the Uniform law and conditionally to θ1 the distribution of X1 is the

stationary law:

 p(θ1) = U(3, 5)× U(0.02, 0.04)× U(0.3, 0.5)

fθ1(X1) = Γ (a, b)

with a = 2κµ
σ2 and b = σ2

2κ .

For the KSAPF, we take a bandwidth h = 0.1 and Q =


1.10−3 0 0

0 0.1.10−4 0

0 0 1.10−4

 for the APF

and Bootstrap filter.

For the NLSE, we take for initial values of the parameters θ1 = (3, 0.02, 0.3) and we compute Nopt

equal to 183 options prices with a maturity T between one month and one year and with a strike K

between 65 and 106 (see [Heston, 1993] for the closed formula of option prices). Furthermore, in our

case, we take wi = 1 for all i = 1, · · · , Nopt.

The minimisation is not trivial since in general the function Ft(θ̃) is neither convex nor it has any

particular structure. Therefore, finding a global minimum is difficult and depends on the algorithm
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used. Furthermore, there is not an unique solution for Eq.(9), in which case only local minima can

be found (we refer the reader to [Moodley, 2005] in which Adaptive Simulated Annealing methods are

used to find a global minima). Another drawback is the initial condition for the vector θ1.

6.1. Numerical Results. In the numerical section we compare the different estimations: the NLS

estimator defined in Section 5.2.1, the Bayesian estimators defined in Section 5.2.2 and our contrast es-

timator defined in Eq (8). For the comparison of the computing time, we also compare our contrast es-

timator with the Monte Carlo Expectation Maximisation (MCEM) estimator (see [Lindstrom, 2012]).

6.1.1. Computing time. From a theoretical point of view, the MLE is asymptotically efficient. How-

ever, in practice since the states (X1 · · · , Xn) are unobservable and the Heston model is non Gaussian,

the likelihood is untractable. We have to use numerical methods to approximate it. In this section,

we illustrate the MCEM estimator which consists in approximating the likelihood and applying the

Expectation-Maximisation algorithm introduced by Dempster [Dempster et al., 1977] to find the pa-

rameter θ.

To illustrate the MCEM for the Heston model, we run an estimator with a number of observations n

equal to 1000. Although the estimation is good the computing time is very long compared with the

others methods (see Table [4]). This result illustrates the numerical complexity of the MCEM. There-

fore, in the following, we only compare our contrast estimator with the NLS estimator and particles

estimators.

Table 4. MCEM estimation for Heston model.

κ̂n µ̂n σ̂2
n CPU (sec)

4.07 0.02892 0.3878 217430

6.1.2. Parameter estimates. For the Heston model, we run N = 100 estimates for each method (NLS,

APF, KSAPF and Bootsrap filter). The number of observations n is equal to 1000.
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In order to compare the performance of our estimator with others methods, we compute for each

method the Mean Square Error (MSE) defined by:

MSE =
1

N

p∑
i=1

N∑
j=1

(θ̂ij − θi0)2 (10)

where p corresponds to the dimension of the vector of parameters.

We illustrate by boxplots the different estimates (see Figures [1] up to [3]). We also illustrate in

Table [5] the MSE for each estimator computed by equation (10) and the CPU for a number of ob-

servations n = 1000.

We note that for all parameters, the EKF estimator is very bad since the Heston model is strongly

nonlinear, and its corresponding boxplots have the largest dispersion meaning that this filter is not

stable and not appropriated to estimate this model. Among particle filters, the KSAPF and the APF

are the best estimators although the dispersion is huge for the mean reversion parameter κ and the

volatility parameter σ.

Besides the Bootstrap filter is less efficient than the others particle filters. Our estimator and the NLSE

are stable, and if we compare the MSE, it is smallest for the contrast estimator. From a computational

point of view, all particles filters have a CPU equivalent. Besides, we can see that the NLSE is faster

than our contrast estimator since for the Heston model the function ulθ has not an explicit form, so

the function u∗lθ is approximated numerically in our approach. 4 In spite of this approximation, our

contrast estimator is fast and its implementation is straightforward and the MSE is smaller (see Table

5).

4We use a quadrature method implemented in Matlab to approximate the Fourier transform of ulθ (y). One can also use
the FFT method since the computation of the contrast estimator will be faster in this case.
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Figure 1. Boxplot of the parameter κ. True value equal to 4.
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Figure 2. Boxplot of the parameter µ. True value equal to 0.03.
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Figure 3. Boxplot of the parameter σ2. True value equal to 0.4.
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CPU MSE

Contrast 20.4074 0.124

Bootstrap 192.2166 0.205

EKF 0.2 0.43

APF 105.1695 0.189

KSAPF 93.8846 0.169

NLSE 0.0702 0.198

Table 5. Comparison of the computing time (CPU in seconds) and the MSE for the
number of observations n = 1000. The number of estimators is N = 100 for the MSE
(see Eq.(10)).

6.1.3. Confidence Interval of the contrast estimator. To illustrate the statistical properties of our

contrast estimator, we compute the confidence intervals computed with the confidence level 1 − α

equal to 0.95 for N = 1 estimator. The coverage corresponds to the number of times for which

the true parameter θi0, i = 1, · · · , p belongs to the confidence interval. The results are illustrated in

Figure [4]. We note that the coverage converges to 95% for a small number of observations and as

expected, the confidence interval decreases with the number of observations,. Note that of course a

MLE confidence interval would be smaller since the MLE is efficient but the corresponding computing

time would be huge (see Table 4).

Figure 4. Coverage with respect to the number of observations n = 500 up to 1000
for N = 100 estimators.

6.1.4. Ratio signal-noise of the contrast estimator. We denote by r = s2ε
σ2 the ratio signal-noise and in

Table (6) we compare the MSE for different r and different number of observations n for the contrast
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estimator. We note that the MSE decreases with the number of observations and is smaller for small

ratio-signal-noise. As we explained in Section 4.1, see [Comte et al., 2010] for more details, the rate

of convergence of our approach depends on the regularity of the noise density fε. And, in particular,

the smoother are the noises, the slower the rate of convergence is. For the Heston model, the density

of the noises and the function lθ are ordinary smooth, so we are in a favourable case.

Table 6. Ratio Signal-noise for the estimation of the Heston model

Mean(µ̂n) Mean(κ̂n) Mean(σ̂2
n) MSE

n = 500 and r = 0.1 0.0315 3.88 0.401 0.14

n = 500 and r = 1 0.0303 3.89 0.405 0.16

n = 1000 and r = 0.1 0.0312 3.76 0.401 0.11

n = 1000 and r = 1 0.0308 3.83 0.41 0.18

6.2. Summary and Conclusions. In this paper we have proposed a new method to estimate hidden

nonlinear diffusion process. This method is based on a deconvolution strategy and leads to consistent

and asymptotically normal estimator. We have empirically studied the performance of our estimator

in the Heston model and we were able to construct confidence interval (see Figure [4]). As the boxplots

[1] up to [3] show, only Contrast, NLS, APF, and KSAPF estimators are comparable. Indeed EKF

and Bootstrap Filter estimators are biased and their MSE are bad, especially for the EKF method

since the Heston model is nonlinear. Furthermore, if one compares the MSE of the particle filters, the

KSAPF estimator is the best method. Among particles filters, it is clearly known that the Bootstrap

filter is less efficient than the APF filter since the propagation step of the particles is made according

to the transition density which doesn’t take care the observations.

Then, the Contrast, NLS APF, and KSAPF methods lead to unbiased and not so much varying es-

timator. We emphasize that our estimator performs the others in a MSE aspect (see Table 5). Most
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importantly, our estimator can be constructed without any arbitrary parameters choice, is straight-

forward to implement, fast and allows to construct confidence interval.
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7. Appendix: Proofs

For the reader convenience we split the proof of Theorems 1 and 2 into three parts: in Subsection 7.1, we give

the proof of the existence of our contrast estimator defined in (5). In Subsection 7.2, we prove the consistency,

that is, the Theorem 1. Then, we prove the asymptotic normality of our estimator in Subsection 7.3, that is,

the Theorem 2. The Subsection 7.4 is devoted to Corollary 1.

Recall from Remark 2 that we only made the proof for the function ϕ defined by (2) in Definition 1 and we

refer to [El Kolei, 2013] for the proof in the case (1) of Definition 1.

7.1. Proof of the existence and measurability of the M-Estimator. By assumption, the function θ 7→

‖lθ‖22 is continuous. Moreover, l∗θ and then u∗lθ (x) = 1
2π

∫
eixy

l∗θ(−y)
f∗ε (y) dy are continuous w.r.t θ. In particular,

the function mθ(yi) = ‖lθ‖22 − 2ϕ(yi+1)u∗lθ (yi) is continuous w.r.t θ, for ϕ : x 7→ x2 − s2
ε. Hence, the function

Pnmθ = 1
n

∑n
i=1mθ(Yi) is continuous w.r.t θ belonging to the compact subset Θ. So, there exists θ̃ that

belongs to Θ such that:

inf
θ∈Θ

Pnmθ = Pnmθ̃. �

7.2. Proof of the Consistency. For the consistency of our estimator, we need to use the uniform convergence

given in the following Lemma. Let us consider the following quantities:

Pnhθ =
1

n

n∑
i=1

hθ(Yi); PnSθ =
1

n

n∑
i=1

∇θhθ(Yi) and PnHθ =
1

n

n∑
i=1

∇2
θhθ(Yi)

where hθ(y) is real function from Θ× Y with value in R.

Lemma 1. Uniform Law of Large Numbers (ULLN)(see [Newey and McFadden, 1994] for the proof.)

Let (Yi) be an ergodic stationary process and suppose that:

(1) hθ(y) is continuous in θ for all y and measurable in y for all θ in the compact subset Θ.

(2) There exists a function s(y) (called the dominating function) such that |hθ(y)| ≤ s(y) for all θ ∈ Θ and

E[s(Y1)] <∞. Then:

sup
θ∈Θ
|Pnhθ −Phθ| → 0 in probability as n →∞.
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Moreover, Phθ is a continuous function of θ.

By assumption lθ is continuous w.r.t θ for any x and measurable w.r.t x for all θ which implies the continuity

and the measurability of the function Pnmθ on the compact subset Θ. Furthermore, the local dominance

assumption (A9) implies that E [supθ∈Θ |mθ(Yi)|] is finite. Indeed,

|mθ(yi)| =
∣∣∣‖lθ‖22 − 2ϕ(yi+1)u∗lθ (yi)

∣∣∣
≤ ‖lθ‖22 + 2

∣∣ϕ(yi+1)u∗lθ (yi)
∣∣ .

with ϕ the function x 7→ x2 − s2
ε.

As ‖lθ‖22 is continuous on the compact subset Θ, supθ∈Θ ‖lθ‖
2
2 is finite. Therefore, E [supθ∈Θ |mθ(Yi)|] is

finite if E
[
supθ∈Θ

∣∣ϕ(Yi+1)u∗lθ (Yi)
∣∣] is finite. Lemma ULLN 1 gives us the uniform convergence in probability

of the contrast function: for any ε > 0,

lim
n→+∞

P
(

sup
θ∈Θ
|Pnmθ −Pmθ| ≤ ε

)
= 1.

Combining the uniform convergence with Theorem 2.1 p. 2121 chapter 36 in [Hansen and Horowitz, 1997]

yields the weak (convergence in probability) consistency of the estimator. �

7.3. Proof of the asymptotic normality. Consider the model (1) under the assumptions A0-A8. The proof

of the asymptotic normality results from assumptions A9-A14 and is a straighforward application of Hayashi

(2000, propostion 7.8. p. 472) and Galin (2004). In this respect, we need to check that

(1) (Moment condition): E
[
|mθ(Yi)|2+δ

]
for some δ > 0.

(2) (Hessian Local condition): For some neighbourhood U of θ0: E
[
supθ∈U

∥∥∇2
θmθ(Yi)

∥∥] <∞.

The proof is based on the following Lemma:

Lemma 2. Suppose that the conditions of the consistency hold. Suppose further that:

(1) Yi is α-mixing.

(2) (Moment condition): for some δ > 0 and for each j ∈ {1, · · · , r} :

E
[
|∂mθ(Y1)

∂θj
|2+δ

]
<∞
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.

(3) Assumption (C) given in Section 4.2.2 holds such that E[M(X1)] <∞ and γ(n) satisfies
∑
n γ(n)

δ
2+δ <

∞ where δ is given in condition 2.

(4) (Hessian Local condition): for some neighbourhood U of θ0 and for j, k ∈ {1, · · · , r}

E
[
sup
θ∈U

∣∣∣∣∂2mθ(Y1)

∂θj∂θk

∣∣∣∣] <∞.
Then, θ̂n defined in Eq.(5) is asymptotically normal with asymptotic covariance matrix given by:

Σ(θ0) = V −1
θ0

Ω(θ0)V −1
θ0

where Vθ0 is the Hessian of the application Pmθ given in Eq.(4).

Proof. The proof follows from Fumio’s [Hayashi, 2000] and Galin Proposition [Jones, 2004]. �

It just remains to check that the conditions (2) and (4) of Lemma 2 hold under our assumptions.

Moment condition. As the function lθ is twice continuously differentiable w.r.t θ, for all yi ∈ R2, the application

mθ(yi) : θ ∈ Θ 7→ mθ(yi) = ||lθ||22 − 2ϕ(yi+1)u∗lθ (yi) is twice continuously differentiable for all θ ∈ Θ and its

first derivatives are given by:

∇θmθ(yi) = ∇θ||lθ||22 − 2ϕ(yi+1)∇θu∗lθ (yi).

By assumption, for each j ∈ {1, · · · , r}, ∂lθ
∂θj
∈ L1(R), therefore one can apply the Lebesgue differentiation

Theorem and Fubini’s Theorem to obtain :

∇θmθ(yi) =
[
∇θ||lθ||22 − 2ϕ(yi+1)u∗∇θlθ (yi)

]
. (11)

Then, for some δ > 0:

|∇θmθ(yi)|2+δ
=

∣∣∇θ||lθ||22 − 2ϕ(yi+1)u∗∇θlθ (yi)
∣∣2+δ

≤ C1

∣∣∇θ||lθ||22∣∣2+δ
+ C2

∣∣ϕ(yi+1)u∗∇θlθ (yi)
∣∣2+δ

, (12)

where C1 and C2 are two positive constants. By assumption, the function ||lθ||22 is twice continuously differ-

entiable w.r.t θ. Hence, ∇θ||lθ||22 is continuous on the compact subset Θ and the first term of equation (12) is
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finite. The second term is finite by the moment assumption (A12).

Hessian Local dominance. For j, k ∈ {1, · · · , r}, ∂2lθ
∂θj∂θk

∈ L1(R), the Lebesgue differentiation Theorem gives:

∇2
θmθ(yi) = ∇2

θ||lθ||22 − 2ϕ(yi+1)u∗∇2
θlθ

(yi),

and, for some neighbourhood U of θ0:

E
[
sup
θ∈U

∥∥∇2
θmθ(Yi)

∥∥] ≤ sup
θ∈U

∥∥∇2
θ||lθ||22

∥∥+ 2E
[
sup
θ∈U

∥∥∥ϕ(Yi+1)u∗∇2
θlθ

(Yi)
∥∥∥] .

The first term of the above equation is finite by continuity and compactness argument. And, the second term

is finite by the Hessian local dominance assumption (A13). 2

7.4. Proof of Corollary 1. By replacing ∇θmθ(Y1) by its expression (11), we have:

Ω0(θ) = Var
[
∇θ||lθ||22 − 2ϕ(Y2)u∗∇θlθ (Y1)

]
= 4Var

[
ϕ(Y2)u∗∇θlθ (Y1)

]
= 4

[
E
[
ϕ(Y2)2

(
u∗∇θlθ (Y1)

) (
u∗∇θlθ (Y1)

)′]− E
[
ϕ(Y2)u∗∇θlθ (Y1)

]
E
[
ϕ(Y2)u∗∇θlθ (Y1)

]′]
.

Furthermore, by Eq.(1) and by independence of the centered noise (ε2) and (η2), we have:

E
[
ϕ(Y2)u∗∇θlθ (Y1)

]
= E

[
(b2θ0 + σ2

θ0)(X1)u∗∇θlθ (Y1)
]
.

Using Fubini’s Theorem and Eq.(1) we obtain:

E
[
(b2θ0 + σ2

θ0)(X1)u∗∇θlθ (Y1)
]

= E
[
(b2θ0 + σ2

θ0)(X1)

∫
eiY1zu∇θlθ (z)dz

]
= E

[
(b2θ0 + σ2

θ0)(X1)

∫
1

2π

1

f∗ε (z)
eiY1z(∇θlθ)∗(−z)dz

]
=

1

2π

∫
E
[
(b2θ0 + σ2

θ0)(X1)ei(X1+ε1)z
] 1

f∗ε (z)
(∇θlθ)∗(−z)dz

=
1

2π

∫ E
[
eiε1z

]
f∗ε (z)

E
[
(b2θ0 + σ2

θ0)(X1)eiX1z
]

(∇θlθ)∗(−z)dz,
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so that

E
[
(b2θ0 + σ2

θ0)(X1)u∗∇θlθ (Y1)
]

=
1

2π

∫
E
[
(b2θ0 + σ2

θ0)(X1)ei(X1+ε1)z
] 1

f∗ε (z)
(∇θlθ)∗(−z)dz

=
1

2π

∫ E
[
eiε1z

]
f∗ε (z)

E
[
(b2θ0 + σ2

θ0)(X1)eiX1z
]

(∇θlθ)∗(−z)dz

=
1

2π
E
[
(b2θ0 + σ2

θ0)(X1)

∫
eiX1z(∇θlθ)∗(−z)dz

]
=

1

2π
E
[
(b2θ0 + σ2

θ0)(X1) ((∇θlθ)∗(−X1))
∗]

= E
[
(b2θ0 + σ2

θ0)(X1)∇θlθ(X1)
]
. (13)

Hence,

Ω0(θ) = 4 (P2 − P1) ,

where

P1 = E
[
(b2θ0 + σ2

θ0)(X1)∇θlθ(X1)
]
E
[
(b2θ0 + σ2

θ0)(X1)∇θlθ(X1)
]′
,

P2 = E
[
ϕ(Y2)2

(
u∗∇θlθ (Y1)

) (
u∗∇θlθ (Y1)

)′]
.

Calculus of the covariance matrix of Corollary (1): By replacing (∇θmθ(Y1)) by its expression (11) we have:

Ωj−1(θ) = Cov
(
∇θ||lθ||22 − 2ϕ(Y2)u∗∇θlθ (Y1),∇θ||lθ||22 − 2ϕ(Yj+1)u∗∇θlθ (Yj)

)
,

= 4Cov
(
ϕ(Y2)u∗∇θlθ (Y1), ϕ(Yj+1)u∗∇θlθ (Yj)

)
,

= 4
[
E
(
ϕ(Y2)u∗∇θlθ (Y1)ϕ(Yj+1)u∗∇θlθ (Yj)

)
− E

(
ϕ(Y2)u∗∇θlθ (Y1)

)
E
(
ϕ(Yj+1)u∗∇θlθ (Yj)

)′]
.

By using Eq.(13) and the stationary property of the Yi, one can replace the second term of the above equation

by:

E
[
(b2θ0 + σ2

θ0)(X1)∇θlθ(X1)
]
E
[
(b2θ0 + σ2

θ0)(X1)∇θlθ(X1)
]′
.

Furthermore, by using Eq.(1) we obtain:
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E
[
ϕ(Y2)ϕ(Yj+1)u∗∇θlθ (Y1)u∗∇θlθ (Yj)

]
= E

[
(b2θ0 + σ2

θ0)(X1)(b2θ0 + σ2
θ0)(Xj)u

∗
∇θlθ (Y1)u∗∇θlθ (Yj)

]
+ E

[
(b2θ0 + σ2

θ0)(X1) (ηj+1 + εj+1)u∗∇θlθ (Y1)u∗∇θlθ (Yj)
]

(14)

+ E
[
(b2θ0 + σ2

θ0)(Xj) (η2 + ε2)u∗∇θlθ (Y1)u∗∇θlθ (Yj)
]

(15)

+ E
[
(η2 + ε2) (ηj+1 + εj+1)u∗∇θlθ (Y1)u∗∇θlθ (Yj)

]
. (16)

By independence of the centered noise, the term (14), (15) and (16) are equal to zero. Now, if we use Fubini’s

Theorem we have:

E
[
(b2θ0 + σ2

θ0)(X1)(b2θ0 + σ2
θ0)(Xj)u

∗
∇θlθ (Y1)u∗∇θlθ (Yj)

]
= E

[
(b2θ0 + σ2

θ0)(X1)(b2θ0 + σ2
θ0)(Xj)∇θlθ(X1)∇θlθ(Xj)

]
.

(17)

Hence, the covariance matrix is given by:

Ωj−1(θ) = 4

(
E
[
(b2θ0 + σ2

θ0)(X1)(b2θ0 + σ2
θ0)(Xj) (∇θlθ(X1)) (∇θlθ(Xj))

′]
−E

[
(b2θ0 + σ2

θ0)(X1) (∇θlθ(X1))
]
E
[
(b2θ0 + σ2

θ0)(X1) (∇θlθ(X1))
]′)

= 4
(
C̃j−1 − E

[
(b2θ0 + σ2

θ0)(X1) (∇θlθ(X1))
]
E
[
(b2θ0 + σ2

θ0)(X1) (∇θlθ(X1))
]′)

= 4
(
C̃j−1 − P1

)
.

Finally, we obtain: Ω(θ) = Ω0(θ) + 2
∑∞
j>1 Ωj−1(θ) with Ω0(θ) = 4 (P2 − P1) and Ωj−1(θ) = 4

(
C̃j−1 − P1

)
.

Expression of the Hessian matrix Vθ : We have:

Pmθ = ||lθ||22 − 2 〈lθ, lθ0〉 . (18)

For all θ in Θ, the application θ 7→ Pmθ is twice differentiable w.r.t θ on the compact subset Θ. And for

j ∈ {1, · · · , r}:
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∂Pm

∂θj
(θ) = 2

〈
∂lθ
∂θj

, lθ

〉
− 2

〈
∂lθ
∂θj

, lθ0

〉
= 2

〈
∂lθ
∂θj

, lθ − lθ0
〉
,

= 0 at the point θ0,

and for j, k ∈ {1, · · · , r}:

∂2Pm

∂θj∂θk
(θ) = 2

(〈
∂2lθ
∂θjθk

, lθ − lθ0
〉

+

〈
∂lθ
∂θk

,
∂lθ
∂θj

〉)
j,k

= 2

(〈
∂lθ
∂θk

,
∂lθ
∂θj

〉)
j,k

at the point θ0.2

Appendix 3: M-estimator using the example in Section 5

Expression of f∗ε . Consider the random variable ε = ε−C√
V

with ε = log(X2) where X is standard Gaussian

random variable, C = E[log(X2)] and V = V[log(X2)]. The Fourier transform of ε is given by:

E [exp (iεy)] = exp

(
− iC√

V
y

)
E [exp (iεy)]

= exp

(
− iC√

V
y

)
E
[
X

2iy√
V

]
= exp

(
− iC√

V
y

)
1√
2π

∫ +∞

−∞
x

2iy√
V exp

(
−x

2

2

)
dx

Using a change of variable z = x2

2 , we get:

E [exp (iεy)] = exp

(
− iC√

V
y

)
2
iy√
V

√
π

∫ +∞

0

z
iy√
V
− 1

2 e−zdz

≡ exp

(
− iC√

V
y

)
2
iy√
V

√
π

Γ

(
1

2
+

iy√
V

)
.

Then

f∗ε = exp

(
− iC√

V
y

)
2
iy√
V

√
π

∫ +∞

0

z
iy√
V
− 1

2 e−zdz

≡ exp

(
− iC√

V
y

)
2
iy√
V

√
π

Γ

(
1

2
+

iy√
V

)
.
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Discrete time stochastic volatility model: Heston model. Taking that ηi+1 ∼ N (0, 1) and εi has a (log-) Chi-

squared probability density function, if the Feller’s condition holds true (a = 2κθ
σ2 ≥ 1) and c = 2κ

σ2 > 0, then

the volatility process Xi is stationary and ergodic and ρ−mixing. The stationary distribution fθ writes:

fθ(x) =
ca

Γ(a)
xa−1e−cx ∀x > 0.

This is the gamma distribution Γ(a, c) (Genon-Catalot et al., 2000). On the other hand, the functions bθ(x),

σθ(x) and lθ(x) are given by:

bθ(x) = (1− κ)x+ κθ and σθ(x) = σ
√
x

lθ =
(
b2θ(x) + σ2

θ(x)
)

Γ(a, c)

=
(

(1− κ)
2
x2 + 2x (1− κ)κθ + σ2 + (κθ)2

)
fθ(x),

=
(
α1x

2 + α2x+ α3

)
fθ(x).

where θ = (κ, µ, σ) and α1 = (1− κ)
2
, α2 = 2 (1− κ)κθ + σ2, α3 = (κθ)2.

Therefore

l∗θ(t) = E[eitX lθ(X)]

= α1E[X2eitX ] + α2E[XeitX ] + α3E[eitX ] with X ∼ Γ(a, c)

= −α1
∂2f∗θ
∂t2

(t)− iα2
∂f∗θ
∂t

(t) + α3f
∗
θ (t).

After replacing f∗θ (t) by
(
1− it

c

)−a
, we obtain:

l∗θ(x) = −α1

[
−a
c2

(a+ 1)

(
1− ix

c

)−a−2
]

+ iα2
a

c

(
1− ix

c

)−a−1

+ α3

(
1− ix

c

)−a
.

It follows that the squared norm of lθ(x) is given by:

‖lθ‖2 =

∫ (
b2θ + σ2

θ(x)
)2

Γ2(a, c)dx

=

∫ (
β1x

4 + β2x
3 + β3x

2 + β4x+ β5

)
Γ2(a, c)dx,
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where β1 = α2
1, β2 = 2α1α2, β3 = 2α1α3 +α2

2, β4 = 2α2α3, β3 = α2
3. Finally, using the non-centered moments

of a Gamma-distributed random variable, E[Xr] = Γ(a+r)
Γ(a)cr , we get:

β1

∫
x4Γ2(a, c)dx = β1

∫
x4 c2a

Γ2(a)
e−2cxx2a−2

= β12−(2a+3)c−3 Γ(2a+ 3)

Γ2(a)

∫
(2c)2a+3

Γ(2a+ 3)
e−(2c)xx(2a+3)−1dx

= β12−(2a+3)c−3 Γ(2a+ 3)

Γ2(a)

∫
Γ(2a+ 3, 2c)dx

= β12−(2a+3)c−3 Γ(2a+ 3)

Γ2(a)

and

β2

∫
x3Γ2(a, c)dx = β22−(2a+2)c−2 Γ(2a+ 2)

Γ2(a)

∫
Γ(2a+ 2, 2c)dx = β22−(2a+2)c−2 Γ(2a+ 2)

Γ2(a)
.

β3

∫
x2Γ2(a, c)dx = β32−(2a+1)c−1 Γ(2a+ 1)

Γ2(a)

∫
Γ(2a+ 1, 2c)dx = β32−(2a+1)c−1 Γ(2a+ 1)

Γ2(a)
.

β4

∫
xΓ2(a, c)dx = β42−(2a) Γ(2a)

Γ2(a)
.

β5

∫
Γ2(a, c)dx = β52−2a+1c

Γ(2a− 1)

Γ2(a)
.

and the expression of the contrast function (8) is obtained. It is worth noting that the function u∗lθ (y) must be

approximated numerically by using standard quadrature methods.

Checking assumptions for the Heston model.

Mixing: Under the Feller’s condition, the volatility process Xt is ρ−mixing and so α−mixing by using the

strong Markov property.

Regularity conditions: For the Heston model, the function lθ is given by the following polynomial function

(α1x
2 + α2x + α3)fθ(x) with α1 = (1− κ)

2
, α2 = 2 (1− κ)κθ + σ2, α3 = (κθ)2 and is regular w.r.t θ ∈ Θ.

Hence, it remains to prove the moment condition and the local dominance to apply Theorem 2.

Since the function lθ is polynomial w.r.t θ belonging to the compact subset Θ, all the derivatives exist and

in particular supθ∈Θ lθ and supθ∈Θ∇2
θlθ are finite. Furthermore, by combining the compactness argument and

as the Fourier transform f∗ε satisfies (see [Fan et al., 1990]):
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|f∗ε (x)| =
√

2 exp
(
−π

2
|x|
)(

1 +O

(
1

|x|

))
, |x| → ∞,

which means that fε is ordinary-smooth in its terminology, we obtain:


E
(
supθ∈Θ

∥∥ϕ(Y2)u∗lθ (Y1)
∥∥) <∞

E
(∣∣ϕ(Y2)u∗∇θlθ (Y1)

∣∣2+δ
)
<∞ for some δ > 0,

E
(

supθ∈U

∥∥∥ϕ(Y2)u∗∇2
θlθ

(Y1)
∥∥∥) <∞ for some neighbourhood U of θ0.

for ϕ : x 7→ x2 − s2
ε.
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