
HAL Id: hal-01248431
https://hal.science/hal-01248431v2

Preprint submitted on 15 May 2016 (v2), last revised 19 Aug 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation of Kullback-Leibler losses for noisy recovery
problems within the exponential family

Charles-Alban Deledalle

To cite this version:
Charles-Alban Deledalle. Estimation of Kullback-Leibler losses for noisy recovery problems within the
exponential family. 2015. �hal-01248431v2�

https://hal.science/hal-01248431v2
https://hal.archives-ouvertes.fr


Estimation of Kullback-Leibler losses for

noisy recovery problems within the

exponential family

Charles-Alban Deledalle
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Abstract: We address the question of estimating Kullback-Leibler losses
rather than squared losses in recovery problems where the noise is dis-
tributed within the exponential family. We exhibit conditions under which
these losses can be unbiasedly estimated or estimated with a controlled bias.
Simulations on parameter selection problems in image denoising applica-
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Leibler losses and the proposed estimators.
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1. Introduction

We consider the problem of predicting an unknown vector µ ∈ R
d from noisy

measurements X ∈ X . Given a collection of parametric predictors of µ, we focus
on the selection of the predictor µ̂ that minimizes the discrepancy with the un-
known vector µ. In this vein, the common approach is to minimize an unbiased
estimate of the expected squared loss E||µ− µ̂||2, typically, with the Stein unbi-
ased risk estimator (SURE) [40]. Such estimators are classically built on some
statistical modeling of the noise, e.g., as being distributed within the exponen-
tial family. In this context, we investigate the interest of going beyond squared
losses by rather estimating a loss function grounded on an information based
criterion, namely, the Kullback-Leibler divergence. Towards this goal, we will
first recall some basic properties of the exponential family, give a quick review
on risk estimation and motivate the use of the Kullback-Leibler divergence.

Exponential family. We assume that in the aforementioned recovery prob-
lem the noise distribution belongs to the exponential family. Formally, the recov-
ery problem can be reparametrized using two one-to-one mappings ψ : X → Y
and φ : Rd → R

d such that Y = ψ(X) has a distribution Pθ characterized by a
probability density or mass function of the following form

p(y; θ) = h(y) exp (〈y, θ〉 −A(θ))
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Table 1

Example of univariate distribution of the exponential family

Distribution law θ = φ(µ) Λ(µ) h(y) A(θ)

Gaussian

1√
2πσ

exp

(

− (y − µ)2

2σ2

)

µ

σ2
σ2 e

−
y2

2σ2

√
2πσ

σ2θ2

2
Y = R, σ > 0, µ ∈ R

Gamma
LLyL−1

Γ(L)µL
e
−

Ly
µ 1R+(y)

−L

µ
µ2/L

LLyL−1

Γ(L)
1R+(y) −L log(−θ/L)

Y = R
+
∗ , L > 0, µ > 0

Poisson
µye−µ

y!
1N(y) log µ µ

1N(y)

y!
exp θ

Y = Z, µ > 0

Binomial
(

n

y

)

p
y(1− p)n−y

1[0,n](y) log
µ

n− µ
−µ2/n+ µ

(

n

y

)

1[0,n](y) n log(1 + eθ)

Y = Z, n > 0, p ∈ [0, 1],
µ = np

Negative Binomial
Γ(r + y)

y!Γ(r)
p
y(1− p)r1N(y) log

µ

r + µ
µ2/n− µ

Γ(r + y)

y!Γ(r)
1N(y) −r log(1− eθ)

Y = Z, r > 0, p ∈ [0, 1],
µ = rp/(1− p)

where θ = φ(µ) ∈ R
d. The distribution Pθ is said to be within the natural

exponential family. We call θ the natural parameter, Y a sufficient statistic for
θ, h : Y → R the base measure, and A : Rd → R the log-partition function.
Classical and important properties of the exponential family include A that is
convex, E[Y ] = ∇A(θ) and Var[Y ] = ∇∇tA(θ) (see, e.g., [3]).

Without loss of generality, we consider that Y is a minimal sufficient statistic.
As a consequence, ∇A is one-to-one, and we can choose φ as the canonical link
function satisfying φ = (∇A)−1 (as coined in the language of generalized linear
models). An immediate consequence is that Y has expectation E[Y ] = µ and its
variance is a function of µ given by Var[Y ] = Λ(µ) where Λ = (∇∇tA) ◦ φ. The
function Λ : Rd → R

d×d is the so-called variance function (see, e.g., [33]), also
known as the noise level function (in the language of signal processing).

Table 1 gives five examples of univariate distribution of the exponential family
– two of them are defined in a continuous domain, the other three are defined
in a discrete domain.

Risk estimation. We now assume that the predictor µ̂ of µ is a function of
Y only, hence, we write it µ̂(Y ), and we focus on estimating the loss associated
to µ̂(Y ) with respect to µ. When the noise has a Gaussian distribution with
independent entries, SURE [40] can be used to estimate the mean squared error
(MSE), or, in short, the risk, defined as: MSEµ = E||µ − µ̂(Y )||2. The resulting
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estimator being independent on the unknown predictor µ, it can serve in prac-
tice as an objective for parameter selection. Eldar [15] builds on Stein’s lemma
[40], a generalization of SURE valid for some continuous distributions of the ex-
ponential family. It provides an unbiased estimate of the “natural” risk, defined
as: MSEθ = E||φ(µ) − φ(µ̂(Y ))||2, i.e., the risk with respect to θ = φ(µ). In the
same vein, when the distribution is discrete, Hudson [24] provides another result
for estimating the “exp-natural” risk: MSEη = E|| expφ(µ)−exp φ(µ̂(Y ))||2, i.e.,
the risk with respect to η = exp θ, where exp : Rd → R

d is the entry-wise expo-
nential. As φ is assumed one-to-one, there is no doubt that if such loss functions
cancel then µ̂(Y ) = µ. In this sense, they provide good objectives for selecting
µ̂(Y ). However, within a family of parametric predictors and without strong
assumptions on µ, such a loss function might never cancel. In such a case, it
becomes unclear what its minimization leads to select, all the more when φ or
exp ◦φ are non-linear. Furthermore, even when they are linear (e.g., exp ◦φ = id
for Poisson noise), minimizing MSEµ = E||µ−µ̂(Y )||2 might not even be relevant
as it does not compensate for the heteroscedasticity of the noise (this will be
made clear in our experiments). Estimating the reweighted or Mahanalobis risk,
given by E||Λ(µ)−1/2(µ − µ̂(Y ))||2, could be more relevant in this case, but its
estimation is more intricated.

Kullback-Leibler divergence. The Kullback-Leibler (KL) divergence [25] is
a measure of information loss when an alternative distribution P1 is used to ap-
proximate the underlying one P0. Its formal definition is given by D(P0‖P1) =∫
dP0 log

dP0

dP1
. Unlike squared losses, it does not measure the discrepancy be-

tween an unknown parameter and its estimate, but between the unknown dis-
tribution P0 of Y and its estimate P1. As a consequence, it is invariant with
one-to-one reparametrization of the parameters and, hence, becomes a serious
competitor to squared losses. Remark that it is also invariant under one-to-
one transformations of Y because such transforms do not affect the quantity
of information carried by Y . Interestingly, provided P0 and P1 belongs to the
same member of the natural exponential family respectively with parameters θ0
and θ1, the KL divergence can be written in terms of the Bregman divergence
associated with A for points θ0 and θ1, i.e.,

D(P0‖P1) = A(θ1)−A(θ0)− 〈∇A(θ0), θ1 − θ0〉 . (1)

While squared losses are defined irrespective of the noise distribution, the KL
divergence adjusts its penalty with respect to the scales and the shapes of the
deviations. In particular, it accounts for heteroscedasticity.

Contributions. In this paper, we address the problem of estimating KL
losses, i.e., losses based on the KL divergence. As it is a non symmetric dis-
crepancy measure, we can define two KL loss functions. The first one

MKLA = E[D(Pθ‖Pθ̂(Y ))] (MKLA)

will be referred to as the mean KL analysis loss as it can be given the following
interpretation: “how well might Pθ̂(Y ) explain independent copies of Y ”. The
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Table 2

Summary of what can be estimated provided y 7→ µ̂(y) is sufficiently regular

Continuous Discrete

MSEµ if φ(µ) = αµ+ β if φ(µ) = log(αµ + β)
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MKLA if φ(µ) = αµ+ β if φ(µ) = log(αµ + β)
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(Gaussian) (Poisson)

yes, when Y results from a large sample mean
(Gaussian, Gamma, . . . ) (Poisson, NegBin, Binomial, . . . )

MKLS yes ∗

∗ yes, for kernel smoothing under Poisson noise [23]

mean KL analysis loss is inherent to many statistical problems as it takes as
reference the true underlying distribution. It is at the heart of the maximum
likelihood estimator and is typically involved in non-parametric density esti-
mation, oracle inequalities, mini-max control, etc. (see, e.g., [21, 17, 38]). The
second one will be referred to as the mean KL synthesis loss given by

MKLS = E[D(Pθ̂(Y )‖Pθ)] (MKLS)

which can be given the following interpretation: “how well might Pθ̂(Y ) generate
independent copies of Y ”. The mean KL synthesis loss has also been considered
in different statistical studies. For instance, the authors of [43] consider this
loss function to design a James Stein-like shrinkage predictor. The authors of
[23] address a very similar problem to ours, by designing a consistent estimator
of MKLS used as an objective for bandwidth selection in kernel smoothing
problems subject to Poisson noise. Table 2 gives a summary of our contributions.
It highlights which loss can be estimated and under which conditions of the
exponential family. The main contributions of our paper are:

1. provided y 7→ µ̂(y) and the base measure h are both weakly differentiable,
MKLS can be unbiasedly estimated (Theorem 1),

2. for any mapping y 7→ µ̂(y), MKLA can be unbiasedly estimated for Poisson
variates (Theorem 2),

3. provided y 7→ µ̂(y) is k > 3 times differentiable with bounded k-th deriva-
tive, MKLA can be estimated with vanishing bias when Y results from a
large sample mean of independent random vectors with finite k-th order
moments (Theorem 3).

It is worth mentioning that a symmetrized version of the mean Kullback-Leibler
loss: MKLA + MKLS, can be estimated as soon as MKLA and MKLS can be
both estimated (e.g., for continuous distributions according to Table 2).

2. Risk estimation under Gaussian noise

This section recalls important properties of the MSE and the definition of
SURE under additive noise models of the form Y = µ+Z where Z ∼ N (0, σ2Id).
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Before turning to the unbiased estimation of MSEµ, it is important to recall
that for any additive models and zero-mean noise with variance σ2Id, provided
the following quantities exists, we have

MSEµ = E||Y − µ̂(Y )||2 − dσ2

︸ ︷︷ ︸

expected data fidelity

+2 trCov(Y, µ̂(Y ))
︸ ︷︷ ︸

model complexity

(2)

where Cov(Y, µ̂(Y )) is the cross-covariance matrix between Y and µ̂(Y ). Equa-
tion (2) gives a variational interpretation of the minimization of the MSE as the
optimization of a trade-off between overfitting (first term) and complexity (sec-
ond term). In fact, σ−2 tr Cov(Y, µ̂(Y )) is a classical measures of the complexity
of a statistical modeling procedure, known as the degrees of freedom (DOF), see,
e.g., [13]. The DOF plays an important role in model validation and model selec-
tion rules, such as, Akaike information criteria (AIC) [1], Bayesian information
criteria (BIC) [39], and the generalized cross-validation (GCV) [20].

For linear predictors of the form µ̂(y) = Wy, W ∈ R
d×d (think of least-

square or ridge regression), the DOF boils down to trW . As a consequence, the
random quantity ||Y − µ̂(Y )||2 − dσ2 + 2 trW becomes an unbiased estimator
of MSEµ, that depends solely on Y without prior knowledge on µ. If W is a
projector, the DOF corresponds to the dimension of the target space, and we
retrieve the well known Mallows’ Cp statistic [32] as well as the aforementioned
AIC. The SURE provides a generalization of these results, not only restricted
to linear predictors, but that can be applied to weakly differentiable mappings.
A comprehensive account on weak differentiability can be found in e.g. [16, 18].
Let us now recall Stein’s lemma [40].

Lemma 1 (Stein lemma). Assume f is weakly differentiable with essentially
bounded weak partial derivatives on R

d and Y ∼ N (µ, σ2Idn), then

Cov(Y, f(Y )) = σ2
E

[

tr
∂f(y)

∂y

∣
∣
∣
∣
Y

]

.

A direct consequence of Stein’s Lemma is, provided µ̂ fulfills the assumptions
of Lemma 1, that

SURE = ||Y − µ̂(Y )||2 − dσ2 + 2σ2 tr
∂µ̂(y)

∂y

∣
∣
∣
∣
Y

(3)

satisfies ESURE = MSEµ. Applications of SURE emerged for choosing the
smoothing parameters in families of linear predictors [28] such as for model
selection, ridge regression, smoothing splines, etc. After its introduction in the
wavelet community with the SURE-Shrink algorithm [11], it has been widely
used to various image restoration problems, e.g. with sparse regularizations [2,
35, 6, 34, 5, 30, 36] or with non-local filters [41, 12, 9, 42].

3. Risk estimation for the exponential family and beyond

In this section, we recall how SURE has been extended, beyond Gaussian
noises, towards noises distributed within the natural exponential family.
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Continuous exponential family. We first consider continuous noise models,
e.g., Gamma noise. To start with, we recall a well known result derived by Eldar
[14], that can be traced back to Hudson1 in the case of independent entries [24],
and that can be seen as a generalization of Stein’s lemma.

Lemma 2 (Generalized Stein’s lemma). Assume f is weakly differentiable with
essentially bounded weak partial derivatives on R

d and Y follows a distribution
of the natural exponential family with natural parameter θ, provided h is also
weakly differentiable on R

d, we have

E[〈θ, f(Y )〉] = −E

[〈∇h(Y )

h(Y )
, f(Y )

〉

+ tr
∂f(y)

∂y

∣
∣
∣
∣
Y

]

.

Lemma 2, whose proof can be found in [14], provides an estimator of the dot
product E 〈θ, f(Y )〉 that solely depends on Y without reference to θ. As a
consequence, the Generalized SURE (as coined by [14]) defined by

GSURE = ||θ̂(Y )||2 + 2

〈∇h(Y )

h(Y )
, θ̂(Y )

〉

+ 2 tr
∂θ̂(y)

∂y

∣
∣
∣
∣
∣
Y

+
1

h(Y )
tr
∂2h(y)

∂y2

∣
∣
∣
∣
Y

(4)

is an unbiased estimator of MSEθ, i.e., EGSURE = MSEθ, provided θ̂, h and ∇h
are weakly differentiable2. Note that omitting the last term in (4) leads to the
seminal definition of GSURE given in [14] which provides an unbiased estimate
of MSEθ − ||θ||2, even though ∇h is not weakly differentiable.

The GSURE can be specified to Gaussian noise, and in this case GSURE =
σ−4SURE and the “natural” risk boils down to the risk as MSEθ = σ−4MSEµ.
In general, such a linear relationship between the “natural” risk and the risk of
interest might not be met. For instance, under Gamma noise with expectation
µ and independent entries, the GSURE reads as

GSURE
gamma

=

d∑

i=1

L2

µ̂(Yi)2
− 2L(L− 1)

Yiµ̂i(Y )
+

2L

µ̂i(Y )2
∂µ̂(y)

∂y

∣
∣
∣
∣
Y

+
(L− 1)(L− 2)

Y 2
i

(5)

which, as soon as L > 2 and µ̂ fulfills the assumptions of Lemma 2, unbiasedly
estimates MSEθ = L2

E||µ−1 − µ̂(Y )−1||2, where (·)−1 is the entry-wise inver-
sion3. We will see in practice that minima of MSEθ can strongly departs from
those of interest. As the GSURE can only measure discrepancy in the “natural”
parameter space, its applicability in real scenario can thus be seriously limited.

Discrete exponential family. We now consider discrete noises distributed
within the natural exponential family, e.g., Poisson or binomial. Before turning

1In his paper, Hudson mentioned that Stein already knew about this result.
2Eq. (4) is obtained by applying Lemma 2 on

〈

θ, θ̂(Y )
〉

, 〈θ, θ〉 and
〈

h(Y )−1∇h(Y ), θ
〉

.
3L > 2 implies that h and ∇h are weakly differentiable. By omitting the last term of

GSURE, an unbiased estimate of L2
E||µ−1−µ̂(Y )−1||2−L2||µ−1||2 is obtained as soon as L>1.
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to the general result, let us focus on Poisson noise with mean µ and independent
entries for which the Poisson unbiased risk estimator (PURE) defined as

PURE= ||µ̂(Y )||2 − 2 〈Y, µ̂↓(Y )〉+ 〈Y, Y −1〉 where µ̂↓(Y )i= µ̂i(Y −ei), (6)

unbiasedly estimates MSEµ, see, e.g., [7, 24]. The vector ei is defined as (ei)i = 1
and (ei)j = 0 for j 6= i. The PURE is in fact the consequence of the following
lemma also due to Hudson [24].

Lemma 3 (Hudson’s lemma). Assume Y follows a discrete distribution on Z
d

of the natural exponential family with natural parameter θ, then

E 〈exp θ, f(Y )〉 = E

[〈
h↓(Y )

h(Y )
, f↓(Y )

〉]

where h↓(Y )i = h(Y − ei)

holds for every mappings f : Zd → R where exp is the entry-wise exponential.

Hudson’s lemma provides an estimator of the dot product E 〈exp θ, f(Y )〉
that solely depends on Y without reference to the parameter η = exp θ. As a
consequence, we can define a Generalized PURE (GPURE) as

GPURE = || exp θ̂(Y )||2 − 2

〈
h↓(Y )

h(Y )
, exp θ̂↓(Y )

〉

+

〈

h↓(Y )

h(Y )
,

(
h↓
h

)

↓

(Y )

〉

(7)

which unbiasedly estimates MSEη for the discrete natural exponential family4.
As for GSURE, GPURE cannot in general measure discrepancy in the pa-

rameter space of interest, and for this reason, its applicability in real scenario
can also be limited. However, under Poisson noise, the “exp-natural” space coin-
cides with the parameter space of interest as η = exp(φ(µ)) = µ, hence, leading
to the PURE. Another interesting case, already investigated in [24], is the one
of noise with a negative binomial distribution with mean µ and independent
entries, for which the “exp-natural” space does not match with the one of µ but
with the one of the underlying probability vector p ∈ [0, 1]d as defined in Table
1 (we have θi = log pi). In such a case, GPURE reads, for r ∈ R

+
∗ /{1, 2}, as

GPURE
negbin

= ||p̂(Y )||2 − 2

d∑

i=1

Yip̂i(Yi − 1)

Yi + r − 1
+

d∑

i=1

Yi(Yi − 1)

(Yi + r − 1)(Yi + r − 2)
(8)

and is an unbiased estimator of E
[
||p̂(Y )− p||2

]
.

Other related works. It is worth mentioning that they have been several
works focusing on estimating mean squared errors in other scenarios. For in-
stance, when Y has an elliptical-contoured distribution with a finite known
covariance matrix Σ, the works of [26, 22] provide a generalization of Stein’s
lemma that can also be used to estimate the risk associated to µ. In [37], the
authors provide a versatile approach that provides unbiased risk estimators in

4 Eq. (7) is obtained by applying three times Lemma 3.
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many cases, including, all members of the exponential family (continuous or
discrete), the Cauchy distribution, the Laplace distribution, and the uniform
distribution [37]. The authors of [31] use a similar approach to design such an
estimator in the case of the non-centered χ2 distribution [31].

4. Kullback-Leibler loss estimation for the exponential family

We now turn to our first contribution that provides, for continuous distribu-
tions of the natural exponential family, an unbiased estimator of the Kullback-
Leibler synthesis loss.

Theorem 1 (Stein Unbiased KLS estimator). Assume y 7→ µ̂(y) is weakly
differentiable with essentially bounded weak partial derivatives on R

d and Y
follows a distribution of the natural exponential family with natural parameter
θ, provided h is weakly differentiable on R

d, the following

SUKLS =

〈

θ̂(Y ) +
∇h(Y )

h(Y )
, µ̂(Y )

〉

+ tr
∂µ̂(y)

∂y

∣
∣
∣
∣
Y

−A(θ̂(Y ))

where θ̂(Y ) = φ(µ̂(Y )), is an unbiased estimator of MKLS−A(θ).

Proof. Remark that MKLS = E

[〈

θ̂(Y )− θ, µ̂(Y )
〉

−A(θ̂(Y ))
]

+ A(θ) since

∇A(θ̂(Y )) = µ̂(Y ). Hence, Lemma 2 leads to

E [〈θ, µ̂(Y )〉] = −E

[〈∇h(Y )

h(Y )
, µ̂(Y )

〉

+ tr
∂µ̂(y)

∂y

∣
∣
∣
∣
Y

]

, (9)

which concludes the proof.

As GSURE, SUKLS can be specified to Gaussian noise, and in this case
SUKLS = (2σ2)−1(SURE− ||Y ||2+ dσ2) and the Kullback-Leibler synthesis loss
boils down to the risk as MKLS = (2σ2)−1MSEµ. More interestingly, consider
the following example of Gamma noise.

Example 1. Under Gamma noise with expectation µ, shape parameter L (as
defined in Table 1) and independent entries, SUKLS reads as

SUKLS
Gamma

=
d∑

i=1

[
(L− 1)µ̂(Y )i

Yi
− L log(µ̂(Y )i)− L

]

+ tr
∂µ̂(y)

∂y

∣
∣
∣
∣
Y

(10)

which, up to a constant, and provided L > 1, unbiasedly estimates

MKLS
Gamma

=

d∑

i=1

E

[

L
µ̂(Y )i
µi

− L log

(
µ̂(Y )i
µi

)

− L

]

. (11)

In our experiments, we will see that minimizing MKLS (or its SUKLS estimate)
leads to relevant selections, unlike minimizing MSEθ (or its GSURE estimate).
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Theorem 1 is a straightforward application of Lemma 2 that applies since
MKLS − A(θ) depends only on θ through a dot product 〈θ, f(Y )〉 for some
mappings f . For discrete distribution, Lemma 3 only provides an estimate of
〈exp(θ), f(Y )〉 and hence cannot be applied to estimate MKLS. Alternatively,
we can focus on estimating the Kullback-Leibler analysis loss MKLA. To this
end, a formula that provides an estimate of 〈∇A(θ), f(Y )〉 for some mappings
f , is needed. Of course, if ∇A(θ) = θ for some continuous distributions, Lemma
2 applies and can be used to design an estimator of MKLA. However, the only
distribution satisfying ∇A(θ) = θ is the normal distribution, for which SURE
can already be used to estimate MKLA = (2σ2)−1MSEµ. More interestingly,
if ∇A(θ) = exp(θ) for some discrete distributions, Lemma 3 applies and can
be used to design an unbiased estimator of MKLA. The Poisson distribution
satisfies this relation leading us to state the following theorem.

Theorem 2 (Poisson Unbiased KLA estimator). Assume Y follows a Poisson
distribution with expectation µ and independent entries, then

PUKLA = ||µ̂(Y )||1 − 〈Y, log µ̂↓(Y )〉 ,

is an unbiased estimator of MKLA
Poisson

+ ||µ||1 − 〈µ, log µ〉 where

MKLA
Poisson

= E [||µ̂(Y )||1 − 〈µ, log µ̂(Y )− logµ〉]− ||µ||1

and log is the entry-wise logarithm.

Proof. The expression of MKLA follows directly from Table 1 and Equation (1)
since exp θ = µ. From Lemma 3, we get

E [〈µ, log(µ̂(Y ))〉] = E

[〈

exp θ, θ̂(Y )
〉]

= E

[〈
h↓(Y )

h(Y )
, θ̂↓(Y )

〉]

, (12)

which concludes the proof as h↓(y)/h(y) = y and θ̂↓(Y ) = log µ̂↓(Y ).

With such results at hand, only the Poisson distribution admits an unbiased
estimator of the mean Kullback-Leibler analysis loss. In order to design an
estimator of MKLA for a larger class of natural exponential distributions, we
will make use of the following proposition.

Proposition 1. For any probability density or mass function y 7→ p(y; θ) of
the natural exponential family of parameter θ, the Kullback-Leibler analysis loss
associated to y 7→ θ̂(y) can be decomposed as follow

MKLA = −E log
p(Y ; θ̂(Y ))

p(Y ; θ)
︸ ︷︷ ︸

expected data fidelity loss

+Cov
(

θ̂(Y ), Y
)

︸ ︷︷ ︸

model complexity

,

where − E log
p(Y ; θ̂(Y ))

p(Y ; θ)
= E

[

A(θ̂(Y )) −A(θ)−
〈

Y, θ̂(Y )− θ
〉]

and Cov
(

θ̂(Y ), Y
)

= E

[〈

Y − µ, θ̂(Y )
〉]

.
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Proof. Subtracting and adding
〈

Y, θ̂(Y )− θ
〉

in the MKLA definition leads to

MKLA = E

[

A(θ̂(Y ))−A(θ) −
〈

Y, θ̂(Y )− θ
〉

+
〈

Y −∇A(θ), θ̂(Y )− θ
〉]

.

As − log p(Y ; θ) = − log h(Y ) − 〈Y, θ〉 + A(θ) and ∇A(θ) = µ = E[Y ], this
concludes the proof.

In the same vein as for the decomposition (2), Proposition 1 provides a varia-
tional interpretation of the minimization of MKLA, valid for noise distributions
within the exponential family. Minimizing MKLA leads to a maximum a pos-
teriori selection promoting faithful models with low complexity. It boils down
to (2) when specified to Gaussian noise. As for the MSE, the fidelity term can
always be unbiasedly estimated, up to an additive constant, without knowledge
on θ. Only the complexity term Cov(θ̂(Y ), Y ), which generalizes the notion of
degrees of freedom, requires to be estimated. Except for the Poisson distribu-
tion, none of the previous lemma can be applied to unbiasedly estimate this
term. However, we will show that it can be biasedly estimated, with vanishing
bias depending on both the “smoothness” of θ̂ and the behavior of the moments
of Y . Toward this goal, let us first recall the Delta method.

Lemma 4 (Delta method). Let Yn = 1
n (Z1+ . . .+Zn), n > 1, where Z1, Z2, . . .

is an infinite sequence of independent and identically distributed random vectors
in R

d with EZi = µ, Var[Zi] = Σ and finite moments up to order k > 3. Let
f : Rd → R be k times totally differentiable with bounded k-th derivative. Then

E [f(Yn)− f(µ)] =
1

2n
tr

(

Σ
∂2f(y)

∂y2

∣
∣
∣
∣
µ

)

+O(n−2) = O(n−1).

Lemma 4 is a direct d-dimensional extension of [27] (Theorem 5.1a, page 109),
that allows us to introduce our biased estimator of MKLA.

Theorem 3 (Delta KLA estimator). Let Yn = 1
n (Z1 + . . .+Zn), n > 1, where

Z1, Z2, . . . is an infinite sequence of independent random vectors in R
d iden-

tically distributed within the natural exponential family with natural parameter
θ, log-partition function A, expectation µ, variance function Λ and finite mo-
ments up to order k > 3. As a result, the distribution of Yn is also in the
natural exponential family parametrized by θn = nθ with log-partition function
An(θn) = nA(θn/n), expectation µ and variance function Λn = Λ/n. Provided

θ̂n reads as θ̂n = nθ̂, and θ̂ : Rd → R
d is k times totally differentiable with

bounded k-th derivative, then

DKLAn = An(θ̂n(Yn))−
〈

Yn, θ̂n(Yn)
〉

+ tr

(

Λn(Yn)
∂θ̂n(y)

∂y

∣
∣
∣
∣
∣
Yn

)

satisfies EDKLAn = MKLAn − 〈µ, θn〉+An(θn) +O(n−1)

where MKLAn is the KL analysis loss associated to θ̂n with respect to θn.
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Proof. Let f(y) =
〈

θ̂(y), y − µ
〉

. We have f(µ) = 0 and ∂2f(y)
∂y2

∣
∣
∣
µ
= 2 ∂θ̂(y)

∂y

∣
∣
∣
µ
.

Under the assumptions on θ̂, the second-order approximation of Lemma 4 applies

Cov(θ̂(Yn), Yn) , E [f(Yn)− f(µ)] =
1

n
tr



Λ(µ)
∂θ̂(y)

∂y

∣
∣
∣
∣
∣
µ



+O(n−2) . (13)

Moreover, under the assumptions on θ̂ and as Λ is in C∞, the first-order ap-
proximation of Lemma 4 applies and

E

[

tr

(

Λ(Yn)
∂θ̂(y)

∂y

∣
∣
∣
∣
∣
Yn

)]

= tr



Λ(µ)
∂θ̂(y)

∂y

∣
∣
∣
∣
∣
µ



+O(n−1) . (14)

Subsequently, we have

EDKLAn −MKLAn + 〈∇An(θn), θn〉 −An(θn)

= E

[

tr

(

Λn(Yn)
∂θ̂n(y)

∂y

∣
∣
∣
∣
∣
Yn

)

− Cov
(

θ̂n(Yn), Yn

)
]

(15)

= nE

[

1

n
tr

(

Λ(Yn)
∂θ̂(y)

∂y

∣
∣
∣
∣
∣
Yn

)

− Cov
(

θ̂(Yn), Yn

)
]

= O(n−1) (16)

and as ∇An(θn) = µ, this concludes the proof.

It is worth mentioning that Theorem 3 can be applied to Gaussian noise,
with DKLA boiling down to SURE, as DKLA = (2σ2)−1(SURE− ||Y ||2 + dσ2).
However, the conclusion is not as strong, as by virtue of Lemma 1, DKLA would
be in fact an unbiased estimator provided only that µ̂ is weakly differentiable.
More interestingly, consider the two following examples.

Example 2. Gamma random vectors Yn with expectation µ ∈ (R+
∗ )

d and shape
parameter Ln = n (as defined in Table 1) results from the sample mean of
n independent exponential random vectors with expectation µ (entries of the
vectors are supposed to be independent). As exponential random vectors have
finite moments, provided µ̂ is sufficiently smooth and since φ is continuously
differentiable in (R+

∗ )
d, Theorem 3 applies and we get

DKLAn
Gamma

=

d∑

i=1

−Ln log µ̂i(Yn) +
Ln(Yn)i
µ̂i(Yn)

+
(Yn)

2
i

µ̂i(Yn)2
∂µ̂i(y)

∂yi

∣
∣
∣
∣
Yn

satisfies EDKLAn
Gamma

= MKLAn
Gamma

+ Ln

d∑

i=1

log(µi)− Ln +O(n−1) (17)

where MKLAn
Gamma

= Ln

d∑

i=1

E

[

− log(µ̂i(Yn)) +
µi

µ̂i(Yn)
+ log(µi)− 1

]

.
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Example 3. Consider Yn the sample mean of n independent Poisson random
vectors with expectation µ ∈ (R+

∗ )
d. We have that Yn, for all n, belongs to the

natural exponential family with An(θn) = n exp(θn/n) and θn = n logµ (entries
of the vectors are supposed to be independent). As Poisson random vectors have
finite moments, provided µ̂ is sufficiently smooth and since φ is continuously
differentiable in (R+

∗ )
d, Theorem 3 applies and we get

DKLAn
Poisson

= n||µ̂(Yn)||1 −
〈

Yn, n log µ̂(Yn) + diag

(

∂ log µ̂(y)

∂y

∣
∣
∣
∣
Yn

)〉

satisfies EDKLAn
Poisson

= MKLAn
Poisson

− n 〈µ, logµ〉+ n||µ||1 +O(n−1) (18)

where MKLAn
Poisson

= nE [||µ̂(Yn)||1 − 〈µ, log µ̂(Yn)− log µ〉 − ||µ||1] .

Interestingly, remark that PUKLA(µ̂, Y ) ≈ DKLA(µ̂, Y ), as soon as we have
both µ̂(Y − 1) ≈ µ̂(Y )− µ̂′(Y ) and |µ̂(Y )| ≫ |µ̂′(Y )|.

5. Reliability study

In this section, we aim at studying and comparing the sensitivity of the
previously studied risk estimators. Little is known about the variance of SURE:

Var[SURE] = E

[

(SURE −MSE)
2
]

. It is in general an intricate problem, and

some studies [34, 29] focus instead on the reliability E

[

(SURE − SE)
2
]

where

SE = ||µ− µ̂(Y )||2 (note that MSE = E[SE]). Here, we do not aim at providing
tight bounds on the reliability as it would require more and specific assumptions
for each pair of loss functions and estimators. The next proposition provides only
crude bounds on the reliability of each estimators.

Proposition 2. Assume y 7→ θ̂(y) is weakly differentiable. Then, provided the
following quantities are finite, we have

1

2
E

[

(

GSURE− SEθ

)2
]1/2

6 E

[

〈

∇h(Y )

h(Y )
+ θ, θ̂(Y )

〉2
]1/2

+ E

[(

tr
∂θ̂(y)

∂y

∣

∣

∣

∣

∣

Y

)2]1/2

E

[

(

SUKLS−KLS
)2
]1/2

6 E

[

〈

∇h(Y )

h(Y )
+ θ, µ̂(Y )

〉2
]1/2

+ E

[

(

tr
∂µ̂(y)

∂y

∣

∣

∣

∣

Y

)2
]1/2

1

2
E

[

(

PURE− SEµ

)2
]1/2

6 E
[

〈µ, µ̂(Y )〉2
]1/2

+ E
[

〈Y, µ̂↓(Y )〉2
]1/2

E

[

(

PUKLA−KLA
)2
]1/2

6 E
[

〈µ, log µ̂(Y )〉2
]1/2

+ E
[

〈Y, log µ̂↓(Y )〉2
]1/2

E

[

(

DKLA−KLA
)2
]1/2

6 E

[

〈

Y − µ, θ̂(Y )
〉2
]1/2

+ E

[

tr

(

Λ(Y )
∂θ̂(y)

∂y

∣

∣

∣

∣

∣

Y

)2]1/2

where KLA = D(Pθ‖Pθ̂(Y )) (note that E[KLA] = MKLA), and KLS is defined
similarly. The over-line refers to quantities for which additive constant with
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respect to µ̂(Y ) are skipped, e.g., SEµ = SEµ − ||µ||2 = ||µ̂(Y )||2 − 2 〈µ̂(Y ), µ〉
and KLA = KLA +A(θ)− 〈∇A(θ), θ〉.
Proof. This is a straightforward consequence of Cauchy-Schwartz’ inequality.

Proposition 2 allows us to compare the relative sensitivities of the different
estimators. Comparing GSURE and SUKLS, one can notice that the bounds are
similar but the first one is controlled by θ̂(Y ) while the second one is controlled
by µ̂(Y ). While it is difficult to make a general statement, we believe SUKLS
estimates might be more stable than GSURE since µ̂(Y ) has usually better

control than θ̂(Y ), given the non-linearity of the canonical link function φ.

6. Numerical experiments

In this section, we consider that Y and µ are d dimensional vectors repre-
senting images on a discrete grid of d pixels, such that entries with index i are
located at pixel location δi ∈ ∆ ⊂ Z

2.

Risk computation All risk estimators designed for continuous distributions

rely on the computation of tr

[

g(y) ∂f(y)
∂y

∣
∣
∣
y

]

for some mappings g : Rd → R
d×d

and f : Rd → R
d. Following [19, 35], we suggest computing such a term by using

Monte-Carlo simulations, thanks to the following relation

tr

[

g(y)
∂f(y)

∂y

∣
∣
∣
∣
y

]

= E

〈

ζ, g(y)
∂f(y)

∂y

∣
∣
∣
∣
y

ζ

〉

for ζ ∼ N (0, Idd) (19)

where the directional derivative in the direction δ are computed by using algo-
rithm differentiations as described in [10]. In the Poisson setting, risk estimators
rely on the computation of 〈y, f↓(y)〉 for some mapping f : Rd → R

d. We empiri-
cally choose to perform Monte-Carlo simulations on the following approximation

〈y, f↓(y)〉 ≈
〈

y, f(y)− diag

((

∂f(y)

∂y

∣
∣
∣
∣
y

ζ

)

ζt

)〉

(20)

where ζ is Bernoulli distributed with p = 0.5 on {−1,+1}d. This approximation
leads in our numerical experiments to satisfactory results even though f was
chosen non-linear. This approximation clearly deserves more attention, but is
considered here as out-of-the-scope of this study.

Performance evaluation. In order to evaluate the proposed loss functions
and their estimates, visual inspection will be considered to assess the image
quality in terms of noise variance reduction and image content preservation.
In order to provide an objective measure of performance, taking into account
heteroscedasticity and tails of the noise, we will evaluate the mean normalized
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(a) Original image µ (b) Noisy image y

(c) MNAE = 0.972 (d) MNAE = 0.496 (e) MNAE = 0.500
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Fig 1. (a, b) Original and noisy image contaminated by Gamma noise with L = 3 (square-
root of the images are displayed for better visual inspection). (c, d, e) Results of linear filtering
for the optimal bandwidth with respect to the natural risk MSEθ MKLS and MKLA. The
MNAE is given for indication. (f,g,h) Risks and their estimates as a function of the bandwidth.
The optimal bandwidth τ⋆ is given for indication. Red accounts for unbiased estimation and
blue for biased estimation.

absolute deviation error defined as MNAE = d−1
√

π/2||Λ(µ)−1/2(µ − µ̂(Y ))||1.
The MNAE measures to which extent µ̂(Y ) might belong to a confident interval
around µ with dispersion related to Λ(µ). The MNAE is expected to be 1 when
µ̂(Y ) ∼ N (µ,Λ(µ)), and should get closer to 0 when µ̂(Y ) improves on Y itself.

Simulations in linear filtering. We consider here that µ̂ is the linear filter

µ̂(y) =Wy with Wi,j =
exp(−||δi − δj ||2/τ2)

∑

j exp(−||δi − δj ||2/τ2)
, (21)

where W ∈ R
d×d is a circulant matrix encoding a discrete convolution with

a Gaussian kernel of bandwidth τ > 0. In this context, we will evaluate
the relevance of the different proposed loss functions and their estimates as
objectives to select a bandwidth τ offering a satisfying denoising.

Figure 1 gives an example of a noisy observation y of an image µ represent-
ing fingerprints whose pixel values are independently corrupted by Gamma noise
with shape parameter L = 3. We have evaluated the relevance of the natural
risk MSEθ given by ||µ−1 − µ̂(Y )−1||2, MKLS and MKLA in selecting the band-
width τ . Visual inspection of the results obtained at the optimal bandwidth
for each criterion shows that the natural risk MSEθ fails in selecting a relevant
bandwidth while MKLS and MKLA both provides a better trade-off. The nat-
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Fig 2. (a,b,c) Risks and their estimates as a function of the bandwidth in the same setting
as in Figure 1 but for Gamma noise with L = 100. The optimal bandwidth τ⋆ and the MNAE
are given for indication. Red accounts for unbiased estimation and blue for biased estimation.

ural risk penalizes strongly small discrepancy at the lowest intensities while is
not sensitive enough for discrepancy at higher intensities. As the noisy image
has several isolated pixel values approaching 0, the natural risk will penalize
strongly smoothing effects of such isolated structures preventing for satisfying
noise variance reduction. The Kullback-Leibler loss functions take into account
that Gamma noise has a constant signal to noise ratio. Hence, it does not fa-
vor more the restoration of either bright or dark structures, allowing satisfying
smoothing for both, as assessed by the MNAE. Finally, estimators of these loss
functions with respectively GSURE, SUKLS and DKLA are given. Note that
for L = 3, the Gamma distribution is far from reaching the asymptotic condi-
tions of Theorem 3. As a result, bias is not negligible (it becomes obvious for
the lowest values of τ in Figure 1.h). Nevertheless, minimizing DKLA can still
provides an accurate location of the optimal parameter for MKLA.

Figure 2 reproduces the same experiment but with Gamma noise with L =
100, i.e., with a much better signal to noise ratio. Interestingly, the bias of
DKLA gets much smaller than in the previous experiment. This was indeed
expected as with L = 100, the Gamma distribution fulfills much better the
asymptotic conditions of Theorem 3. Remark that MNAE values are still in
favors of Kullback-Leibler objectives, but the gains are much smaller. In fact,
all MNAE values get closer to 1 since noise reduction with signal preservation
using linear filtering becomes much harder in such a low signal to noise ratio
setting.

Simulations in non-linear filtering. We consider here that µ̂ is the non-
local filter [4] defined by

µ̂(y) =W (y)y with Wi,j(y) = exp

(

−d(Piy,Pjy)

τ

)

(22)

where Pi ∈ R
p×n is a linear operator extracting a patch (a small window of

fixed size) at location δi, d : Rp×R
p → R

+ is a dissimilarity measure (infinitely
differentiable and adapted to the exponential family following [8]) and τ > 0
a bandwidth parameter. Remark as W (y) ∈ R

d×d depends on y, µ̂(y) is
non-linear. In this context, we will evaluate again the relevance of the proposed
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(a) Original image µ (b) Noisy image y

(c) MNAE = 0.853 (d) MNAE = 0.249 (e) MNAE = 0.249
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Fig 3. (a, b) Original and noisy image contaminated by Gamma noise with L = 3 (squared
root versions of the images are displayed for better visual inspection). (c, d, e) Results of
non-local filtering for the optimal bandwidth with respect to the natural risk MSEθ MKLS and
MKLA. The MNAE is given for indication. (f,g,h) Risks and their estimates as a function of
the bandwidth. The optimal bandwidth τ⋆ is given for indication. Red accounts for unbiased
estimation and blue for biased estimation.

loss functions and their estimates as objectives to select the bandwidth τ .

Figure 3 gives an example of a noisy observation y of an image µ representing
a bright two dimensional chirp signal shaded gradually into a dark homoge-
neous region. The noisy observation y is contaminated by noise following a
Gamma distribution with shape parameter L = 3. We have again evaluated
the relevance of the natural risk MSEθ given by ||µ−1 − µ̂(Y )−1||2, MKLS and
MKLA in selecting the bandwidth parameter. Visual inspection of the results
obtained at the optimal bandwidth for each criterion shows that the natural
risk fails in selecting a relevant bandwidth while MKLS and MKLA both
provides more satisfying results. As the image µ is very smooth in the darker
region, the natural risk favors strong variance reduction leading to a strong
smoothing of the texture in the brightest area. Again, the Kullback-Leibler loss
functions find a good trade-off preserving simultaneously the bright texture
and reducing the noise in the dark homogeneous region, as assessed by the
MNAE. Finally, estimators of these loss functions with respectively GSURE,
SUKLS and DKLA are given.

Figure 4 gives a similar example where the image µ represents a two di-
mensional chirp signal shaded gratually into a bright homogeneous region. The
image is displayed in log-scale to better assess the variations of the texture in
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(a) Log-original image µ (b) Log-noisy image y

(c) MNAE=0.416 (d) MNAE=0.261 (e) MNAE=0.261
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Fig 4. (a, b) Original and noisy image contaminated by Poisson noise (log of the images
are displayed for better visual inspection). (c, d, e) Results of non-local filtering for the op-
timal bandwidth with respect to the risk MSEµ MKLS and MKLA. The MNAE is given for
indication. (f,g,h) Risks and their estimates (when available) as a function of the bandwidth.
The optimal bandwidth τ⋆ is given for indication. Red accounts for unbiased estimation and
blue for biased estimation.

the darkest region. The noisy observation y is corrupted by independent noise
following a Poisson distribution. We have evaluated the relevance of the risk
MSEµ, MKLS and MKLA in selecting the bandwidth parameter. Visual inspec-
tion of y shows that darker regions are more affected by noise than brightest
ones. This is due to the fact that Poisson corruptions lead to a signal to noise
ratio evolving as

√
µ. It follows that the MSE will essentially penalizes the resid-

ual variance of the brightest region hence leading to a strong smoothing of the
texture in the darkest area. Again, Kullback-Leibler losses lead to selecting a
more relevant bandwidth, smoothing less the brightest area but preserving bet-
ter the texture, as assessed by the MNAE. Finally, estimators of the MSE with
PURE and MKLA with PUKLA and DKLA are given. Note that estimators of
MKLS are not available for non-local filtering under Poisson noise.

7. Conclusion

We addressed the problem of using and estimating Kullback-Leibler losses for
model selection in recovery problems involving noise distributed within the ex-
ponential family. Our conclusions are threefold: 1) Kullback-Leibler losses have
shown empirically to be more relevant than squared losses for model selection in
the considered scenarios; 2) Kullback-Leibler losses can be estimated in many
cases unbiasedly or with controlled bias depending on the regularity of both
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the predictor and the noise; 3) Even though the estimation is subject to vari-
ance and bias, the subsequent selection has shown empirically to be close to
the optimal one associated to the loss being estimated. Future works should
focus on understanding under which conditions such a behavior can be guar-
anteed. This includes establishing tighter bounds on the reliability, consistency
with respect to the data dimension d and asymptotic optimality results for some
given class of predictors. Estimation of Kullback-Leibler losses and other dis-
crepancies (e.g., Battacharyya, Hellinger, Mahanalobis, Rényi or Wasserstein
distances/divergences) beyond the exponential family and requiring less regu-
larity on the predictor should also be investigated.
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