Estimation of Kullback-Leibler losses for noisy recovery problems within the exponential family - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2017

Estimation of Kullback-Leibler losses for noisy recovery problems within the exponential family

Résumé

We address the question of estimating Kullback-Leibler losses rather than squared losses in recovery problems where the noise is distributed within the exponential family. Inspired by Stein unbiased risk estimator (SURE), we exhibit conditions under which these losses can be unbiasedly estimated or estimated with a controlled bias. Simulations on parameter selection problems in applications to image denoising and variable selection with Gamma and Poisson noises illustrate the interest of Kullback-Leibler losses and the proposed estimators.
Fichier principal
Vignette du fichier
klestimation_hal.pdf (1.5 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01248431 , version 1 (26-12-2015)
hal-01248431 , version 2 (15-05-2016)
hal-01248431 , version 3 (19-08-2017)

Identifiants

Citer

Charles-Alban Deledalle. Estimation of Kullback-Leibler losses for noisy recovery problems within the exponential family. Electronic Journal of Statistics , 2017, 11 (2), pp.3141-3164. ⟨hal-01248431v3⟩

Collections

CNRS IMB INSMI
258 Consultations
320 Téléchargements

Altmetric

Partager

More