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THE GLOBAL NONLINEAR STABILITY OF MINKOWSKI SPACE

FOR SELF-GRAVITATING MASSIVE FIELDS.

The Wave-Klein-Gordon Model

PHILIPPE G. LEFLOCH AND YUE MA

Abstract. The Hyperboloidal Foliation Method (introduced by the authors in 2014) is ex-

tended here and applied to the Einstein equations of general relativity. Specifically, we establish

the nonlinear stability of Minkowski spacetime for self-gravitating massive scalar fields, while
existing methods only apply to massless scalar fields. First of all, by analyzing the structure of

the Einstein equations in wave coordinates, we exhibit a nonlinear wave-Klein-Gordon model
defined on a curved background, which is the focus of the present paper. For this model, we

prove here the existence of global-in-time solutions to the Cauchy problem, when the initial data

have sufficiently small Sobolev norms. A major difficulty comes from the fact that the class of
conformal Killing fields of Minkowski space is significantly reduced in presence of a massive

scalar field, since the scaling vector field is not conformal Killing for the Klein-Gordon operator.

Our method relies on the foliation (of the interior of the light cone) of Minkowski spacetime by
hyperboloidal hypersurfaces and uses Lorentz-invariant energy norms. We introduce a frame

of vector fields adapted to the hyperboloidal foliation and we establish several key properties:

Sobolev and Hardy-type inequalities on hyperboloids, as well as sup-norm estimates which cor-
respond to the sharp time decay for the wave and the Klein-Gordon equations. These estimates

allow us to control interaction terms associated with the curved geometry and the massive field,

by distinguishing between two levels of regularity and energy growth and by a successive use of
our key estimates in order to close a bootstrap argument.
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1. Introduction

1.1. The global existence problem. In this paper and its companion [23], we study the global-
in-time existence problem for small amplitude solutions to nonlinear wave equations, with a two-
fold objective:

‚ First, we provide a significant extension of the Hyperboloidal Foliation Method, recently
proposed by the authors [22]. This method is based on a foliation of the interior of the
future light cone by hyperboloidal hypersurfaces and on Sobolev and Hardy inequalities
adapted to this foliation. This method takes its root in work by Klainerman [19] and,
later on, Hörmander [13] concerning the standard Klein-Gordon equation. In comparison

1Published in: Communications in Mathematical Physics (2016).
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2 PHILIPPE G. LEFLOCH AND YUE MA

to our earlier theory in [22], we are now able to encompass a much broader class of coupled
wave-Klein-Gordon systems.

‚ Our second objective is to apply this method to the Einstein equations of general relativity
and arrive at a new approach for proving the nonlinear stability of Minkowski spacetime.
Our method covers self-gravitating massive scalar fields (as will be presented in full details
in [23]), while earlier works were restricted to vacuum spacetimes or to spacetimes with
massless scalar fields; cf. Christodoulou and Klainerman [7], and Lindblad and Rodnianski
[26, 27], as well as Bieri and Zipser [4].

The problem of the global dynamics of self-gravitating massive fields had remained open until now.
The presence of a mass term poses a major challenge in order to establish a global existence theory
for the Einstein equations (and construct future geodesically complete spacetimes). Namely, the
class of conformal Killing fields of Minkowski spacetime is reduced in presence of a massive scalar
field, since the so-called scaling vector field is no longer conformal Killing and, therefore, cannot
be used in implementing Klainerman’s vector field method [18, 19].

In suitably chosen coordinates, the Einstein equations take the form of a coupled system of
nonlinear wave-Klein-Gordon equations. More precisely, as in [27], we introduce wave coordinates,
also called harmonic or De Donder gauge [1], which allows one to exhibit the (quasi-null, see below)
structure of the Einstein equations. The Hyperboloidal Foliation Method [22] was introduced
precisely to handle such systems. Yet, due to the presence of metric-related terms in the system
under consideration, an important generalization is required before we can tackle the Einstein
equations. Proposing such a generalization is our main purpose in the present paper.

By imposing asymptotically flat initial data on a spacelike hypersurface with sufficiently small
ADM mass, one can first solve the Cauchy problem for the Einstein equations within a neigh-
borhood of this hypersurface (see [22] for a sketch of the argument1) and, next, formulate the
Cauchy problem when the initial data are posed on a hyperboloidal hyperspace or, alternatively,
on a hyperboloid for the flat Minkowski metric after introducing suitable coordinates. In fact,
the hyperboloidal Cauchy problem is, both, geometrically and physically natural. More precisely,
let us consider Minkowski spacetime in standard Cartesian coordinates pt, x1, x2, x3q and observe
that points on a hypersurface of constant time t cannot be connected by a timelike curve, while
points on a hyperboloid can be connected by such curves. Hence, hyperboloidal initial data can
be “physically prepared”, while data on standard flat hypersurfaces cannot. An alternative stand-
point would be to pose the Cauchy problem on a light cone, but while it is physically appealing
and the Cauchy problem on a light cone has not been proven to be convenient for global analysis.

We emphasize that hyperboloidal foliations were used by Friedrich [11, 12] in order to establish
the stability of Minkowski space in the future of a hyperboloidal hypersurface. Hyperboloidal
foliations have also been found to be very efficient in numerical computations [10, 29, 30, 34].

As was demonstrated in [22] for a rather general class of nonlinear wave equations, analyzing
the global existence problem is quite natural in the hyperboloidal foliation of Minkowski spacetime
and, importantly, lead to uniform bounds on the energy of the solutions. Before proceeding with
further details, let us summarize the main features of the method we propose:

‚ Lorentz invariance. We rely on the foliation of Minkowski space by hyperboloids (de-
fined as the level sets of constant Lorentzian distance from some origin), so that the
fundamental energy of the wave-Klein-Gordon equations remains invariant under Lorentz
transformations of Minkowski spacetime. Observe that in our construction, all the hyper-
boloids are asymptotic to the same limiting cone and approach the same sphere at infinity.
(In particular, no energy can escape through null infinity.)

‚ Smaller set of Killing fields. We avoid using the scaling vector field S :“ rBr ` tBt,
which is the key in order to handle Klein-Gordon equations and cover the Einstein-matter
system when the evolution equation for the matter is not conformally invariant.

1The time of existence of the solution can be made arbitrarily large for compactly supported initial data with
sufficiently small norm, so that this neighborhood does contain a hyperboloidal hypersurface.
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‚ Sharp rate of time decay. In order to control source-terms related to the curved
geometry, we establish sharp pointwise bounds for solutions to wave equations and Klein-
Gordon equations with source-terms.

In the rest of this introduction, we explain how to derive, from the Einstein equations, a model
problem which will be our main focus in the present paper.

1.2. Einstein equations for massive scalar fields. We thus consider the Einstein equations
for an unknown spacetime pM, gq:

(1.1) Rαβ ´
R

2
gαβ “ 8π Tαβ ,

where Rαβ denotes2 the Ricci curvature tensor and R “ gαβRαβ denotes the scalar curvature.
The matter is taken to be a massive scalar field with potential V “ V pφq and stress-energy tensor

(1.2) Tαβ :“ ∇αφ∇βφ´
´1

2
∇γφ∇γφ` V pφq

¯

gαβ

and, specifically,

(1.3) V pφq :“
c2

2
φ2,

where c2 ą 0 represents the mass of the scalar field. By applying ∇α to (1.2) and using the Bianchi
identity

∇α
`

Rαβ ´ pR{2qgαβ
˘

“ 0,

we easily check that the Einstein–scalar field system implies

(1.4a) Rαβ “ 8π
`

∇αφ∇βφ` V pφq gαβ
˘

,

(1.4b) lgφ “ V 1pφq “ c2φ.

The Cauchy problem for the Einstein-scalar field equations is formulated as follows [5]. An
initial data set consists of a Riemannian three-manifold pM, gq, a symmetric two-tensor K defined
on M , and two scalar fields pφ0, φ1q defined on M . We then seek for a p3 ` 1q-dimensional
Lorentzian manifold pM, gq satisfying the following properties:

‚ There exists an embedding i : M ÑM such that the induced metric i˚pgq coincides with g,
while the second fundamental form of ipMq ĂM coincides with the prescribed two-tensor
K.

‚ The restriction of φ and Lνφ to ipMq coincides with the data φ0 and φ1 respectively, where
ν denotes the (future-oriented) unit normal to ipMq ĂM .

‚ Moreover, the manifold pM, gq satisfies the Einstein equations (1.4).

More precisely, one seeks for a globally hyperbolic development of the given initial data, that
is, a Lorentzian manifold such that every time-like geodesic extends toward the past direction in
order to meet the initial hypersurface M . Furthermore, a notion of maximal development was
defined by Choquet-Bruhat and Geroch [6, 5] and such a development was shown to exist for a
large class of matter models. The maximal development need not be future geodesically complete,
and a main challenge in the field of mathematical general relativity is the construction of classes
of future geodesically complete spacetimes.

Furthermore, it should be emphasized that, in order to fulfill the equations (1.4), the initial
data set pM, g,Kq cannot be arbitrary and must satisfy Einstein’s constraint equations:

(1.5)
R`Kij K

ij ´ pKi
i q

2 “ 8πT00,

∇i
Kij ´∇jK

l
l “ 8πT0j ,

where R is the scalar curvature of the metric g and ∇ denotes its Levi-Civita connection, and the
terms T00 and T0i are determined from the data φ0 and φ1.

2Throughout, Greek indices α, β, γ take values 0, 1, 2, 3 and Einstein convention is used.
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Minkowski spacetime provides one with a trivial solution to the Einstein equations, which
satisfies the Cauchy problem associated with the initial data pM, g,K, φ0, φ1q when M “ R3 is
endowed with the standard Euclidian metric and K ” 0, while the matter terms vanish identically
φ0 “ φ1 ” 0. The question we address in the present paper is whether this solution is dynamically
stable under small perturbations of the initial data. More precisely, given an initial data set
pM, g,K, φ0, φ1q such that M is diffeomorphic to R3, g is close to the flat metric and K,φ0, φ1 are
sufficiently small, does the associated solution pM, gq to the Einstein-massive scalar field system
remain close to the flat Minkowski spacetime R1`3 ?

Clearly, this nonlinear stability problem is of fundamental importance in physics. It is expected
that Minkowski spacetime is the ground state state of the theory with the lowest possible energy.
As far as massless scalar fields are concerned, the nonlinear stability of Minkowski spacetime was
indeed established in Christodoulou and Klainerman’s pioneering work [7]. In the present work
(including [23]), we solve this question for massive scalar fields.

1.3. Einstein-scalar field equations in wave coordinates. Our first task is to express the
field equations (1.4) in a well-chosen coordinate system and then derive our wave-Klein-Gordon
model problem. We follow [5, 26] and work in wave coordinates satisfying, by definition,

(1.6) lgx
α “ 0.

We postpone to [23] the details of the derivation and directly write the formulation of the Einstein-
massive scalar field equations in wave coordinates:

(1.7a) rlggαβ “ Qαβpg; Bg, Bgq ` Pαβpg; Bg, Bgq ´ 16π
`

BαφBβφ` V pφqgαβ
˘

,

(1.7b) rlgφ´ V
1pφq “ 0,

where rlg :“ gαβBαBβ is referred to as the (reduced) wave operator in curved space. In (1.7), we
distinguish between several types of nonlinearity:

‚ Null terms. The quadratic terms

(1.8)

Qαβ :“ gλλ
1

gδδ
1

Bδgαλ1Bδ1gβλ ´ g
λλ1gδδ

1`

Bδgαλ1Bλgβδ1 ´ Bδgβδ1Bλgαλ1
˘

` gλλ
1

gδδ
1`

Bαgλ1δ1Bδgλβ ´ BαgλβBδgλ1δ1
˘

`
1

2
gλλ

1

gδδ
1`

BαgλβBλ1gδδ1 ´ Bαgδδ1Bλ1gλβ
˘

` gλλ
1

gδδ
1`

Bβgλ1δ1Bδgλα ´ BβgλαBδgλ1δ1
˘

`
1

2
gλλ

1

gδδ
1`

BβgλαBλ1gδδ1 ´ Bβgδδ1Bλ1gλα
˘

are standard null forms with cubic corrections. Their treatment in a global existence proof
is a now classical matter and, in particular, are already dealt with by standard methods.

‚ Quasi-null terms. The quadratic terms

(1.9) Pαβ :“ ´
1

2
gλλ

1

gδδ
1

Bαgδλ1Bβgλδ1 `
1

4
gδδ

1

gλλ
1

Bβgδδ1Bαgλλ1

are referred to as “weak null” terms in [26], but we prefer to propose the new terminology
“quasi-null terms”. As first noted in [26], quasi-null terms are found to be analogous to
standard null terms, provided the tensorial structure of the Einstein equations and the
wave coordinate condition are carefully taken into account.

‚ Curved metric terms. Setting now

(1.10) hαβ :“ gαβ ´mαβ , hαβ :“ mαβ ´ gαβ

and considering the term rlggαβ , we see that we must also treat the quasi-linear terms

hα
1β1Bα1Bβ1hαβ , hα

1β1Bα1Bβ1φ.

We will deal with these metric-related terms by the following two approaches:
– First, thanks to the wave coordinate condition, we can assume that hαβ behaves

essentially like a null quadratic form and consider, therefore, that hαβ is null. More
precisely, the first term

hα
1β1Bα1Bβ1hαβ , hαβ being a null form
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can be treated by our arguments in [22].

– The second quasi-linear term hα
1β1Bα1Bβ1φ (without necessarily imposing the null

condition) requires our new technique which is presented in this paper and is based on
sharp sup-norm bounds for solutions to wave equations and Klein-Gordon equations.

Our aim is presenting first in a simplifed form several arguments that will be required to cope
with the full system of Einstein equations in [23]. In order to derive here a model problem, we
proceed by removing (from (1.7)):

‚ the null terms Qαβ (which are handled in [22]),
‚ the quasi-null terms Pαβ (postponed to [23], where the structure of the Einstein equations

and the wave coordinate condition will be discussed), and

‚ the quasi-linear terms hα
1β1Bα1Bβ1hαβ (to be treated by the wave coordinate condition and,

in turn, the method already presented in [22]).

These formal simplifications, therefore, lead us to the model3

lhαβ “ BαφBβφ`mαβV pφq,

lφ “ HαβphqBαBβφ` V
1pφq,

with unknowns hαβ , φ defined on Minkowski space, where Hαβphq can be assumed to depend

linearly on hαβ . We are primarily interested in the potential V pφq “ c2

2 φ
2 and, therefore after

changing the notation, we arrive at the following system of two coupled equations:

´lu “ PαβBαvBβv `Rv
2,

´lv `HαβuBαBβv ` c
2v “ 0,

where u, v are two scalar unknowns and Pαβ , Hαβ , R, c are given constants (and only the obvious
positivity condition c2 ą 0 is relevant).

1.4. Analysis on the model problem. As illustrated by the derivation above, in order to deal
with the Einstein-massive scalar field equations, we must weaken a key assumption made in [22]
and, as we will see, cope with wave equations posed on a curved space for which the Minkowski
metric need not represent the underlying geometry in a sufficiently accurate manner. Namely, we
recall that, in the notation of [22, Section 1], interaction terms like u

pıBBvq involving components u
pı

of wave equations and component v
q of Klein-Gordon equations were not included in our theory.

The same restriction was also assumed in a pioneering work by Katayama [16, 17] on wave-Klein-
Gordon equations. In the present paper, we overcome this challenging difficulty and extend our
earlier analysis (of the system (1.2.1) in [22] by now removing the condition (1.2.4e) therein).

To this end, in the present paper, we derive and take advantage of two pointwise estimates:

‚ A sharp sup-norm estimate for solutions to the wave equation in Minkowski
space with source-term, as stated in Theorem 3.1, below. Suitable decay is assumed on
the source-term, as is relevant for our analysis, and the proof is based on the solution
formula available for the wave equation in flat space.

‚ A sharp sup-norm estimate for solutions to the Klein-Gordon equation in curved
space in p3`1q-dimensions (as stated in Theorem 3.3, below). Our estimate is motivated by
a pioneering work by Klainerman [19] on the global existence problem for small amplitude
solutions to nonlinear Klein-Gordon equations in four spacetime dimensions.

Note that an estimate as above could also be derived in p2`1q-dimensions with different rates [28].
Global existence results for nonlinear Klein-Gordon equations were also established by Shatah in
the pioneering work [31]. Klein-Gordon systems have received a lot of attention in the literature
and we can, for instance, refer to [2, 3, 8, 9, 13, 19] and the references therein.

3Our convention for the wave operator is l :“ ´BtBt `
ř

a BaBa.
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For clarity in the presentation, we do not treat the most general class of systems, but based
on our formal derivation from the Einstein equations, we now study the following wave-Klein-
Gordon model:

(1.11)
´lu “ PαβBαvBβv `Rv

2,

´lv ` uHαβBαBβv ` c
2v “ 0,

with unknowns u, v posed on Minkowski space R3`1 and prescribed initial data4 u0, u1, v0, v1 posed
on the spacelike hypersurface t “ 2:

(1.12)
u|t“2 “ u0, Btu|t“2 “ u1,

v|t“2 “ v0, Btv|t“2 “ v1.

Here, Pαβ , R,Hαβ , c are given constants, and the initial data are sufficiently smooth functions that
are compactly supported in the unit ball tpx1q

2 ` px2q
2 ` px3q

2 ă 1u with x “ px1, x2, x3q P R3.
We emphasize that, according to our analysis in Section 1.3, (1.11) includes the essential dif-

ficulty arising in the Einstein-massive field system. Note in passing that, in (1.11), there is no
such term like Ru2 which would imply finite time blow-up (as first pointed out by John [15]). Our
main result in the present paper is as follows.

Theorem 1.1 (Global existence theory for the wave-Klein-Gordon model). Consider the nonlinear
wave-Klein-Gordon system (1.11) for some given parameter values Pαβ , R,Hαβ and c ą 0. Given
any integer N ě 8, there exists a positive constant ε0 “ ε0pNq ą 0 such that if the initial data
satisfy

(1.13) }pu0, v0q}HN`1pR3q ` }pu1, v1q}HN pR3q ă ε0,

then the Cauchy problem (1.11)-(1.12) admits a global-in-time solution.

As done in [23], the Cauchy problem can be reformulated with initial data prescribed on a
hyperboloid and the smallness condition (1.13) leads to a similar smallness condition for the
hyperboloidal initial data. As already pointed out in [22], the presence of the quasi-linear term
uHαβBαBβv may possibly change the asymptotic behavior of solutions for large times. In fact, our
proof will only show that the lower-order energy of the wave component remains globally bounded
for all times, while the high-order energy of the wave component u and the lower-order energy
of the Klein-Gordon component v could in principle grow at the rate tδ for some (small) δ ą 0.
On the other hand, the higher-order energy associated with the Klein-Gordon component v may
significantly increase at the rate tδ`1{2 for some (small) δ ą 0.

The proof of Theorem 1.1 will occupy the rest of this paper which we outline as follows:

‚ Proceeding with a bootstrap argument, we assume that, within some hyperbolic time
interval, the hyperboloidal energy of suitable derivatives of the unknowns (up to a certain
order) satisfy a set of bounds.

‚ Our assumptions use two levels of regularity and distinguish between the behavior of
lower-order and higher-order energy norms, the low-order derivatives enjoying a much
better control in time. Recall that, in [22], we could already prove that the lower-order
energy of the wave component is uniformly bounded in time, but the growth rate for the
high-order Klein Gordon energy was solely tδ.

‚ By Sobolev inequality (on hyperboloids), we can turn these L2 type inequalities to a set
of sup-norm estimates, which we refer to as basic decay estimates. These decay estimates
are not sharp enough in order to close our bootstrap argument.

‚ Relying on these basic decay estimates, we establish refined decay estimates by relying on
two technical sup-norm estimates established below for wave equations and Klein-Gordon
equations.

‚ Equipped with these refined decay estimates, we are able to improve our initial assumptions
and close the bootstrap argument.

4For convenience in the following proof and without loss of generality, we prescribe data at time t “ 2.
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Before we proceed with the details of the proof (which is rather long), the reader may find
it useful to read through the following heuristic arguments which rely on notations (only briefly
explained here) to be rigorously introduced only later (in the course of the following three sections).
Our proof proceeds with a bootstrap argument and considers the largest time interval r2, s˚s (in
the ‘hyperbolic time’ s defined as s2 “ t2 ´ r2) within which the following energy bounds hold:

Emps, B
ILJuq1{2 ď C1εs

kδ, |J | “ k, |I| ` |J | ď N, wave / high-order,

Emps, B
ILJuq1{2 ď C1ε, |I| ` |J | ď N ´ 4, wave / low-order,

Em,c2ps, B
ILJvq1{2 ď C1εs

1{2`kδ, |J | “ k, |I| ` |J | ď N, Klein-Gordon / high-order,

Em,c2ps, B
ILJvq1{2 ď C1εs

kδ, |J | “ k, |I| ` |J | ď N ´ 4 Klein-Gordon / low-order,

where ε, δ, C1 are parameters. These bounds concern the energy of the wave component u and
the Klein-Gordon component v, and distinguish between low-order and high-order derivatives. We
have denoted by Em the energy associated with the wave equation (for the flat metric m), while BI

are partial derivative operators and LJ are combinations of Lorentz boosts (see below for details).
The heart of our proof of Theorem 1.1 is proving that, by selecting a sufficiently large constant
C1 and sufficiently small ε, δ ą 0, the above energy bounds in fact imply the following improved
energy bounds (obtained by replacing C1 by C1{2):

Emps, B
ILJuq1{2 ď

1

2
C1εs

kδ, |J | “ k, |I| ` |J | ď N, wave / high-order,

Emps, B
ILJuq1{2 ď

1

2
C1ε, |I| ` |J | ď N ´ 4, wave / low-order,

Em,c2ps, B
ILJvq1{2 ď

1

2
C1εs

1{2`kδ, |J | “ k, |I| ` |J | ď N, Klein-Gordon / high-order,

Em,c2ps, B
ILJvq1{2 ď

1

2
C1εs

kδ, |J | “ k, |I| ` |J | ď N ´ 4 Klein-Gordon / low-order.

(Of course, it is then a standard matter to deduce from this property that, in fact, s˚ “ `8.)
To derive the improved energy bounds, we differentiate the equations (1.11) with BILJ with

|I| ` |J | ď N :

´lBILJu “ BILJ
`

PαβBαvBβv
˘

` BILJ
`

Rv2
˘

,

´lBILJv ` uHαβBILJv ` c2BILJv “ ´rBILJ , uHαβBαBβsv.

For these differentiated equations, we perform energy estimates along the hyperboloidal foliation
and we are led to seek for an integrable time decay for the following the three terms5:

(1.14)

T I,J1 psq :“
›

›BILJ
`

PαβBαvBβv
˘
›

›

L2
f pHsq

,

T I,J2 psq :“
›

›BILJ
`

Rv2
˘
›

›

L2
f pHsq

,

T I,J3 psq :“
›

›rBILJ , uHαβBαBβsv
›

›

L2
f pHsq

.

For lower-order indices |I| ` |J | ď N ´ 4, the terms T I,J1 psq and T I,J2 psq are easily controlled,
since from the bootstrap assumption and the global Sobolev inequalities on hyperboloids we have
(basic) decay estimates which lead to time-integrable bounds:

(1.15) T I,J1 psq ` T I,J2 psq À s´3{2`pk`2qδ, provided |I| ` |J | ď N ´ 4 with |J | “ k.

On the other hand, for higher-order derivatives these basic decay rates are not sufficient and we

can not conclude directly. In addition, for the third term T I,J3 psq (for arbitrary |I| ` |J |), we also
cannot conclude directly and we need sharper pointwise decay.

To overcome this challenge, we rely on our L8–L8 sharp decay estimates, established below in
Proposition 3.1 (for the wave component) and Proposition 3.3 (for the Klein-Gordon component).

5See (2.7) for the notation.
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These L8–L8 bounds allow us to improve the basic pointwise estimates, and we find (for all
|I| ` |J | ď N ´ 4):

|LIu| À C1ε t
´1skδ,

|BILJv| À C1ε ps{tq
2´7δs´3{2`kδ,

|BILJBαv| À C1ε ps{tq
1´7δs´3{2`kδ.

Returning to our bootstrap assumptions, we thus see that for all |I| ` |J | ď N

(1.16)

›

›BILJ pBαvBβvq
›

›

L2
f pHsq

»
ÿ

I1`I2“I
J1`J2“J

}BI1LJ1Bαv B
I2LJ2Bβv}L2

f pHsq

ÀC1εs
´3{2}BI2LJ2Bβv}L2

f pHsq
À pC1εq

2s´1`kδ

(by assuming, without loss of generality, |I1| ` |J1| ď N ´ 4 in the above calculation). Similarly,
we also obtain

(1.17) }BILJ
`

v2
˘

}L2
f pHsq

À pC1εq
2s´1`kδ.

We thus succeed to uniformly control the terms T I,J1 psq and T I,J2 psq (for all relevant I, J), and this
is already sufficient to conclude with the desired improved energy bounds for the wave component.

Dealing with the last term T I,J3 psq arising in the equation of the Klein-Gordon component is
more delicate. Observe that the commutator is a linear combination of the following three types
of terms:

(1.18)

pBI1LJ1uqBI2LL2BαBβv, I1 ` I2 “ I, J1 ` J2 “ J, |I1| ě 1,

pLJ
1
1uqBILJ

1
2BαBβv, J 11 ` J

1
2 “ J, J 11 ě 1,

uBαBβB
ILJ

1

v, J 1 ď J ´ 1.

The first expression above is directly controled thanks to the available sharp decay estimate, while
for the second and third ones and due to the presence of the term LJu, a refined decay estimates
and a Hardy-type inequality (for the hyperboloidal foliation) must be used, as we now explain.

Let us begin by discussing derivatives of higher-order and consider (for instance) the second type
of terms in (1.18): for all |J 11| ď N´4, we use the sharp decay bound |LIu| À C1εt

´1skδ combined
with the energy bound on BαBβv (implied by our bootstrap assumption). When |I|` |J 12| ď N ´4,

the sharp bound |BILJBαv| À C1ε ps{tq
1´7δs´3{2`kδ and Hardy’s inequality are used. We thus

find

(1.19)
›

›rBILJ , HαβBαBβsv
›

›

L2
f pHsq

À pC1εq
2s´1{2`kδ.

Dealing with lower-order derivatives is easier and, again, we take the second type of terms in
(1.18) as an example: for |J 11| ď |I| ` |J | ď N ´ 4, we apply directly the sharp bound |LIu| À
C1ε t

´1skδ and the energy bound given by our bootstrap assumption. This leads us to the stronger
decay

(1.20)
›

›rBILJ , HαβBαBβsv
›

›

L2
f pHsq

À pC1εq
2s´1`kδ.

In conclusion, in view of (1.15)–(1.20), we can gain enough time decay for all of the terms arising
in the evolution of our energy expressions and, therefore, the energy estimate on the hyperboloidal
foliation leads us to the desired improved energy bounds.

1.5. A general class of wave-Klein-Gordon systems. The technique presented here applies
immediately to a much broader class of systems. Indeed, it applies to the following system of
wave–Klein-Gordon equations

(1.21)

$

’

’

’

&

’

’

’

%

lui `B
jαβujBαBβui “ Fipu, Bu, v, Bvq “ P jkαβi BαujBβuk `Riv

2 ` Sαβi BαvBβv,

lv `BjαβujBαBβv ´ c
2v2 “ 0,

wi|t“2 “ wi0, v|t“2 “ v0,

Btwi|t“2 “ wi1, Btv|t“2 “ v1,
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with unknowns u “ puiq (1 ď i ď n) and v defined on Minkowski space R3`1, while wi0, v0, wi1, v1

are prescribed initial data and c ą 0 is a constant. As usual, we assume the symmetry conditions

(1.22) Bjαβ “ Bjβα

and our main assumption is the null condition for the wave components wi:

(1.23) Bjαβξαξβ “ P jkαβi ξαξβ “ 0 for all pξ0q
2 ´

ÿ

a

pξaq
2 “ 0.

In the earlier work [22], the nonlinear terms BjαβwjBαBβv (actually denoted Bpqkαβ
qı w

pBαBβwqk
therein) were assumed to be vanishing, and in fact this was our only genuine restriction since,
with such terms, solutions may not have the same time decay and asymptotics of solutions as
the ones of the homogeneous linear wave-Klein-Gordon equations in Minkowski space. With the
new technique in the present paper, the hyperboloidal foliation method does extend to encompass
these terms (provided Bjαβ is a null quadratic form).

Let us consider the initial value problem (1.21) with sufficiently smooth initial data posed
on the spacelike hypersurface tt “ 2u of constant time and compactly supported in the ball
tt “ 2; |x| ď 1u. Under the conditions (1.22)–(1.23), there exists a real ε0 ą 0 such that, for all
initial data wi0, wi1, v0, v1 : R3 Ñ R satisfying the smallness condition

(1.24)
ÿ

i

}pwi0, v0q}HN`1pR3q ` }pwi1, v1q}HN pR3q ă ε0,

the Cauchy problem (1.21) admits a unique, smooth global-in-time solution. In addition, the
lower-order energy of the wave components remains globally bounded in time.

2. The hyperboloidal foliation method

2.1. The semi-hyperboloidal frame. We begin with basic notions and consider the p3 ` 1q-
dimensional Minkowski space with signature p´,`,`,`q. In canonical Cartesian coordinates, we
write pt, xq “ px0, x1, x2, x3q and r2 :“ |x|2 “ px1q2 ` px2q2 ` px3q2. In addition to the partial
derivative fields Bt “ B0 and Ba, we will also use the Lorentz boosts (for a “ 1, 2, 3):

(2.1) La :“ xaBt ` tBa “ xaB0 ´ x0Ba,

where we raise and lower indices with the Minkowski metric.
More precisely, throughout, we analyze solutions defined in the interior of the future light cone

K :“ tpt, xq { r ă t´ 1u

with vertex p1, 0, 0, 0q, and we introduce the following foliation of the interior of the cone
 

pt, xq { |x| ă t
(

by hyperboloidal hypersurfaces with hyperbolic radius s:

Hs :“
 

pt, xq { t2 ´ r2 “ s2; t ą 0
(

.

The sub-domain of K limited by two hyperboloids (with s0 ă s1) is denoted by

Krs0,s1s :“
 

pt, xq { s2
0 ď t2 ´ r2 ď s2

1; r ă t´ 1
(

Ă K.

Observe that the hyperboloids eventually “exit” the region K and are asymptote to the same light
cone

 

t´ r “ 0
(

.
The semi-hyperboloidal frame, as we call it, is defined by rescaling the Lorentz boosts:

(2.2) B0 :“ Bt, Ba :“
xa
t
Bt ` Ba pa “ 1, 2, 3q.

Observe that the vectors Ba generates the tangent space to the hyperboloids. Furthermore, we

also introduce the vector field BK :“ Bt `
xa

t Ba, which is orthogonal to the hyperboloids for the
Minkowski metric. (This vector field also coincides, up to an essential factor 1{t, with the scaling
vector field S.)
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To make explicit the change of frame formulas Bα “ ΦβαBβ and Bα “ Ψβ
αBβ , we need the following

matrices

`

Φβα
˘

“
`

Φα
β
˘

“

¨

˚

˚

˚

˚

˝

1 0 0 0

x1{t 1 0 0

x2{t 0 1 0

x3{t 0 0 1

˛

‹

‹

‹

‹

‚

,
`

Ψβ
α

˘

“
`

Ψα
β
˘

“

¨

˚

˚

˚

˚

˝

1 0 0 0

´x1{t 1 0 0

´x2{t 0 1 0

´x3{t 0 0 1

˛

‹

‹

‹

‹

‚

.

Any tensor can be expressed in either the Cartesian natural frame tBαu or the semi-hyperboloidal
frame tBαu. We use standard letters for components in the Cartesian frame and we use underlined
letters for components in the semi-hyperboloidal frame, so that, for example, TαβBα b Bβ “

TαβBα b Bβ , and the relations between Tαβ and Tαβ are

Tαβ “ Ψα
α1Ψ

β
β1T

α1β1 , Tαβ “ Φαα1Φ
β
β1T

α1β1 .

Associated with the semi-hyperboloidal frame, we have the dual semi-hyperboloidal frame

(2.3) θ0 :“ dt´
xa

t
dxa, θa :“ dxa,

and the relations between the semi-hyperboloidal dual frame and the standard dual frame are

θα “ Ψα
α1dx

α1 , dxα “ Φαα1θ
α1 . Hence, for any two-tensor Tαβdx

αb dxβ “ Tαβθ
α
b θβ , we have the

change of basis formulas

Tαβ “ Tα1β1Φ
α1

α Φβ
1

β , Tαβ “ Tα1β1Ψ
α1

α Ψβ1

β .

With the above notation, in the semi-hyperboloidal frame we can express the Minkowski metric
and its inverse as

mαβ “

¨

˚

˚

˝

´1 ´x1{t ´x2{t ´x3{t
´x1{t 1´ px1{tq2 ´x1x2{t2 ´x1x3{t2

´x2{t ´x2x1{t2 1´ px2{tq2 ´x2x3{t2

´x3{t ´x3x1{t2 ´x3x2{t2 1´ px3{tq2

˛

‹

‹

‚

,

mαβ “

¨

˚

˚

˝

´s2{t2 ´x1{t ´x2{t ´x3{t
´x1{t 1 0 0
´x2{t 0 1 0
´x3{t 0 0 1

˛

‹

‹

‚

.

Furthermore, given any multi-index I “ pαn, αn´1, . . . , α1q (where the order is chosen for
convenience), we denote by BI :“ BαnBαn´1

. . . Bα1
the product of n “ |I| partial derivatives (with

0 ď αi ď 3) and, similarly, by LJ “ LanLan´1
. . . La1

the product of n “ |J | Lorentz boosts (with
1 ď ai ď 3).

2.2. The hyperbolic variables and the hyperboloidal frame. Within the future cone K, we
introduce the change of variables

(2.4) x0 “ s :“
a

t2 ´ r2, xa “ xa,

together with the corresponding natural frame

(2.5)
B0 :“ Bs “

s

t
Bt “

?
t2 ´ r2

t
Bt,

Ba :“ Bxa “
xa

t
Bt ` Ba “

xa

t
Bt ` Ba,

which we refer to as the hyperboloidal frame. The transition matrices between the hyperboloidal
frame and the Cartesian frame are

`

Φ
β

α

˘

“
`

Φ
β
α

˘

“

¨

˚

˚

˝

s{t 0 0 0
x1{t 1 0 0
x2{t 0 1 0
x3{t 0 0 1

˛

‹

‹

‚

,
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`

Φ
β

α

˘´1
“
`

Ψ
β

α

˘

“
`

Ψ
β
α

˘

“

¨

˚

˚

˝

t{s 0 0 0
´x1{s 1 0 0
´x2{s 0 1 0
´x3{s 0 0 1

˛

‹

‹

‚

,

so that Bα “ Φ
β

αBβ and Bα “ Ψ
β

αBβ .

The dual hyperboloidal frame then reads dx0 :“ ds “ t
sdt ´

xa

s dx
a and dxa :“ dxa. The

Minkowski metric in the hyperboloidal frame reads6

mαβ “

¨

˚

˚

˝

´1 ´x1{s ´x2{s ´x3{s
´x1{s 1 0 0
´x2{s 0 1 0
´x3{s 0 0 1

˛

‹

‹

‚

.

In summary, an arbitrary tensor can be expressed in three different frames: the standard frame
tBαu, the semi-hyperboloidal frame tBαu, or the hyperboloidal frame tBαu. We use symbols,
underlined symbols, and overlined symbols for tensor components in these frames, respectively.
For example, a tensor TαβBα b Bβ is written as

TαβBα b Bβ “ TαβBα b Bβ “ T
αβ
Bα b Bβ ,

where T
αβ
“ Ψ

α

α1Ψ
β

β1T
α1β1 and, moreover, by setting C :“ maxαβ |T

αβ |, we have in the hyper-
boloidal frame

(2.6) |T
00
| ď Cpt{sq2, |T

a0
| ď C pt{sq, |T

ab
| ď C.

2.3. Energy estimate on hyperboloids. Throughout this paper, for any function u “ upt, xq
defined in R3`1 (or a subset of it), we consider the integral of on the hyperboloids Hs defined as
follows:

(2.7) }u}L1
f pHsq

:“

ż

Hs

u dx “

ż

R3

u
`

a

s2 ` r2, x
˘

dx

The subscript refer the fact that we are endowing Hs with the flat Euclidian metric. We emphasize
that this is not an integration with respect to the induced Riemannian metric and volume form
which should be ps{tq dx. This notation will be more convenient for our analysis in this paper but,
of course, it is completely straightforward to re-state all of our estimates by including the weight
s{t.

Consider the hyperboloidal foliation of a region Kr2,s1s “
Ť

2ďsďs1
Hs, together with the hy-

perboloidal energy (associated to the Minkowski metric) at some hyperbolic time s P r2, s1s

(2.8)

Em,cps, uq :“

ż

Hs

´

pBtuq
2 `

ÿ

a

pBauq
2 ` 2pxa{tqBtuBau` c

2u2
¯

dx

“

ż

Hs

´

`

ps{tqBtu
˘2
`
ÿ

a

pBauq
2 ` c2u2

¯

dx

“

ż

Hs

˜

pBKuq
2 `

ÿ

a

pps{tqBauq
2
`

ÿ

aăb

`

t´1Ωabu
˘2
` c2u

¸

dx,

where we have also introduced the rotational vector fields Ωab :“ xaBb ´ xbBa (not directly used
here). When c “ 0, we also write Emps, uq :“ Em,0ps, uq for short.

We will also need the hyperboloidal energy for the curved metric gαβ “ mαβ ` hαβ :

(2.9) Eg,cps, uq :“ Em,cps, uq `

ż

Hs

´

2hαβBtvBβvXα ´ h
αβBαvBβv

¯

dx,

where we have used the notation X0 “ 1 and Xa “ ´xa{t.
All of our estimates concern the interior of the light cone K X

 

t ě 2
(

away from the origin.
From here onwards, we assume that all the functions under consideration are spatially compact

6Our sign convention is opposite to the one in our monograph [22], since the metric here has signature
p´,`,`,`q.
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and, in particular, vanish identically in a neighborhood of the light cone
 

t´ 1 “ |x| “ r
(

. More
precisely, we assume that the initial data on the slice t “ 2 are supported in the ball |x| ďM for
some M P p0, 1q, and we construct solutions supported in the larger domain |x| ďM ` t. In short,
we will say that the functions under consideration are spatially compactly supported in K

or, in short, spatially compactly supported.
We easily adapt the energy estimate in [22, Proposition 2.3.1] to the equation (1.11), as follows.

Proposition 2.1 (Energy estimate for the hyperboloidal foliation). 1. For every function u which
is defined in the region Kr2,ss and spatially supported in K, one has for all s ě 2

(2.10) Emps, uq
1{2 ď Emp2, uq

1{2 `

ż s

2

}lu}L2
f pHs̄q

ds̄.

2. Let v be a solution to the Klein-Gordon equation on a curved space (with the definition of rl

given earlier)

(2.11) ´rlgv ` c
2v “ f,

defined the region Kr2,ss and spatially supported in K. Suppose that hαβ “ gαβ ´mαβ satisfies the
following two conditions (for some constant κ ě 1 and some function M):

(2.12a) κ´2Eg,cps, vq ď Em,cps, vq ď κ2Eg,cps, vq,

(2.12b)

ˇ

ˇ

ˇ

ˇ

ż

Hs

ps{tq
´

Bαh
αβBtvBβv ´

1

2
Bth

αβBαvBβv
¯

dx

ˇ

ˇ

ˇ

ˇ

ďMpsqEm,cps, vq
1{2.

Then, the evolution of the hyperboloidal energy is controlled (for all s ě 2) by

(2.13) Em,cps, vq
1{2 ď κ2Emp2, vq

1{2 ` κ2

ż s

2

´

}f}L2
f pHs̄q

`Mpsq
¯

ds̄.

Proof. We apply the multiplier Btu to lu and, by a standard calculation,

1

2
Bt

´

pBtuq
2 `

ÿ

a

pBauq
2
¯

´
ÿ

a

BapBtuBauq “ Btulu.

We integrate this identity in Kr2,ss and apply Stokes’ formula by observing that, by assumption,
the functions under consideration are spatially supported in K, so that there is no “boundary”
contribution, and we find (see [22, Sec. 2.3])

1

2
Emps, uq ´

1

2
Emp2, uq “

ż s

2

ż

Hs̄

ps̄{tqBtulu dxds̄.

We differentiate this identity with respect to s and apply Cauchy-Schwarz inequality, as follows:

Emps, uq
1{2 d

ds
Emps, uq

1{2 “

ż

Hs

ps̄{tqBtvlu dx ď }lu}L2
f pHsq

}ps{tqBtu}L2
f pHsq

.

Next, by recalling (2.8), we find d
dsEmps, uq

1{2 ď }lu}L2
f pHsq

and, by integration over r2, ss, the

inequality (2.10) is established.

Next, for the derivation of (2.13), we rely on the multiplier Btv and, by a standard calculation,
we get

1

2
Bt
`

pBtvq
2 `

ÿ

a

pBavq
2 ` c2v2

˘

`
ÿ

a

Ba
`

´ BavBtv
˘

` Bα
`

´ hαβBβvBtv
˘

`
1

2
Bt
`

hαβBαvBβv
˘

“ Btvf ´ Bαg
αβBβvBtv `

1

2
Btg

αβBαvBβv.

As was done in the derivation of (2.10), we combine this identity with (2.12a)-(2.12b) and
obtain

Eg,cps, vq
1{2 d

ds
Eg,cps, vq

1{2 ď κ
`

}f}L2
f pHsq

`Mpsq
˘

Eg,cps, vq
1{2.
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We integrate this inequality on r2, ss and find

Eg,cps, vq
1{2 ď Eg,cp2, vq

1{2 ` κ

ż s

2

`

}f}L2
f pHs̄q

`Mps̄q
˘

ds.

Finally, we again apply (2.12a), and (2.13) is proven. �

2.4. Sobolev inequality on hyperboloids. In order to turn an L2 energy estimate into an
L8 estimate, we will rely on the following version of the Sobolev inequality (Klainerman [19],
Hörmander [13, Lemma 7.6.1], LeFloch and Ma [22, Section 5]).

Proposition 2.2 (Sobolev-type estimate on hyperboloids). For any sufficiently smooth function
u “ ups, xq which is defined in Kr2,`8q and is spatially supported in K, one has

(2.14) sup
ps,xqPHs

ps` |x|q3{2 |ups, xq| À
ÿ

|I|ď2

}LIups, ¨q}L2
f pHsq

, s ě 2,

where the implied constant is independent of s and u.

Proof. Recalling that t “
a

s2 ` |x|2 on Hs, we consider the restriction to the hyperboloid

wspxq :“ up
a

s2 ` |x|2, xq.

Fixing s0 and a point pt0, x0q P Hs0 (with t0 “
a

s2
0 ` |x0|

2), we observe that

(2.15) Baws0pxq “ Bau
`

b

s2
0 ` |x|

2, x
˘

“ Baupt, xq,

with t “
a

s2
0 ` |x|

2 and

(2.16) tBaws0pxq “ tBau
`

b

s2
0 ` |x|

2, t
˘

“ Laupt, xq.

We introduce the function gs0,t0pyq :“ ws0px0 ` t0 yq and write

gs0,t0p0q “ ws0px0q “ u
`

b

s2
0 ` |x0|

2, x0

˘

“ upt0, x0q.

By applying the standard Sobolev inequality to the function gs0,t0 , we find

ˇ

ˇgs0,t0p0q
ˇ

ˇ

2
ď C

ÿ

|I|ď2

ż

Bp0,1{3q

|BIgs0,t0pyq|
2 dy,

where Bp0, 1{3q Ă R3 is the ball centered at the origin and with radius 1{3.
Next, taking into account the identity (with x “ x0 ` t0y)

Bags0,t0pyq “ t0Baws0px0 ` t0yq

“ t0Baws0pxq “ t0Bau
`

t, xq

and, in view of (2.15), we find (for all I) BIgs0,t0pyq “ pt0Bq
Iupt, xq and, thus,

ˇ

ˇgs0,t0p0q
ˇ

ˇ

2
ďC

ÿ

|I|ď2

ż

Bp0,1{3q

ˇ

ˇpt0Bq
Iu
`

t, xq
˘
ˇ

ˇ

2
dy

“Ct´3
0

ÿ

|I|ď2

ż

Bppt0,x0q,t0{3qXHs0

ˇ

ˇpt0Bq
Iu
`

t, xq
˘
ˇ

ˇ

2
dx.

We note that

pt0Bapt0Bbws0qq “ t20BaBbws0

“ pt0{tq
2ptBaqptBbqws0 ´ pt0{tq

2pxa{tqLbws0

and that xa{t “ xa0{t ` yt0{t “ pxa0{t0 ` yqpt0{tq. Consequently, in the region y P Bp0, 1{3q of
interest, the factor |xa{t| is bounded by Cpt0{tq and we conclude that (for |I| ď 2)

|pt0Bq
Iu| ď

ÿ

|J|ď|I|

|LJu|pt0{tq
2.
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On the other hand, in the region |x0| ď t0{2, we have t0 ď
2?
3
s0 and thus

t0 ď Cs0 ď C
b

|x|2 ` s2
0 “ Ct

for some fixed constant C ą 0. When |x0| ě t0{2 then in the region Bppt0, x0q, t0{3q XHs0 we

have t0 ď C|x| ď C
a

|x|2 ` s2
0 “ Ct and, consequently,

|pt0Bq
Iu| ď C

ÿ

|J|ď|I|

|LJu|

and
ˇ

ˇgs0,t0py0q
ˇ

ˇ

2
ďCt´3

0

ÿ

|I|ď2

ż

Bpx0,t0{3qXHs0

ˇ

ˇptBqIu
`

t, xq
˘
ˇ

ˇ

2
dx

ďCt´3
0

ÿ

|I|ď2

ż

Hs0

ˇ

ˇLIupt, xq
ˇ

ˇ

2
dx.

�

2.5. Hardy-type estimate along the hyperboloidal foliation. The following variant of Hardy’s
inequality was established in [22, Section 5]. This inequality plays an essential role in order to
estimate the L2 norm of the wave component itself (but not only its gradient).

Proposition 2.3 (Hardy-type estimate on the hyperboloidal foliation). For any sufficiently
smooth function which is defined in the future region Kr2,ss and is spatially supported in K, one
has for s ě 2

(2.17)

}s´1u}L2
f pHsq

À}u}L2pH2q `
ÿ

a

}Bau}L2
f pHsq

`
ÿ

a

ż s

2

s̄´1
´

}Bau}L2
f pHs̄q

` }ps̄{tqBau}L2
f pHs̄q

¯

ds̄,

where the implied constant is independent of s and u.

The proof uses a version of the classical Hardy inequality on hyperboloids, as well as a vector
field that will be introduced in the proof of the proposition, below.

Lemma 2.4. For any sufficiently smooth function which is defined in the future region Kr2,ss and
is spatially supported in K, one has for all s ě 2

}r´1u}L2
f pHsq

À
ÿ

a

}Bau}L2
f pHsq

,

where the implied constant is independent of s and u.

Proof. As in the proof of Proposition 2.2, we consider the function wspxq :“ u
`
a

s2 ` |x|2, x
˘

,

which satisfies Bawspxq “ Bau
`
a

s2 ` |x|2, x
˘

, and we apply the classical Hardy inequality to ws.
It follows that

ż

R3

|r´1wspxq|
2dx À

ż

R3

|∇wspxq|2dx “ C
ÿ

a

ż

R3

ˇ

ˇBaup
a

s2 ` r2, xq
ˇ

ˇ

2
dx

À
ÿ

a

ż

Hs

ˇ

ˇBaupt, xq
ˇ

ˇ

2
dx.

�

Proof of Proposition 2.3. Let χ be a a smooth cut-off function satisfying

χprq “

#

0, 0 ď r ď 1{3

1, 2{3 ď r,

and let us distinguish between the region “near” and “away” from the light cone. We consider the
decomposition

}s´1u}L2
f pHsq

ď }χpr{tqs´1u}L2
f pHsq

` }p1´ χpr{tqqs´1u}L2
f pHsq

.
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Our estimate of }p1 ´ χpr{tqqs´1u}L2
f pHsq

is based on the inequality
`

1 ´ χpr{tq
˘

s´1 ď Ct´1 so

that, by Lemma 2.4,

(2.18)

}p1´ χpr{tqqus´1}L2
f pHsq

ď }t´1u}L2
f pHsq

ď }r´1u}L2
f pHsq

ď C
ÿ

a

}Bau}L2
f pHsq

.

The estimate near the light cone is more delicate and we first observe that, in the region Kr2,ss

of interest, χpr{tq À χpr{tqr
p1`r2q1{2

and, thus,

}χpr{tqs´1u}L2
f pHsq

ď C}rp1` r2q´1{2χpr{tqs´1u}L2
f pHsq

,

and the right-hand side of this inequality is controlled as follows. We introduce the vector field

W “
`

0,´xa tpuχpr{tqq
2

p1`r2qs2

˘

and compute its divergence

(2.19)

divW “ ´2s´1Bau
rχpr{tqu

p1` r2q1{2s
¨
xatχpr{tq

rp1` r2q1{2
´ 2s´1u

r

rχpr{tqu

sp1` r2q1{2
¨
χ1pr{tqr

p1` r2q1{2

´

ˆ

r2t` 3t

p1` r2q2s2
` 2

r2t

p1` r2qs4

˙

`

uχpr{tq
˘2
.

By applying Stokes’ theorem in the region Kr2,s1s, we find
ż

Kr2,s1s

divW dxdt “

ż

Hs

W ¨ ndσ `

ż

H2

W ¨ ndσ

“

ż

Hs

r2

1` r2

ˇ

ˇuχpr{tqs´1
ˇ

ˇ

2
dx´

ż

H2

r2

1` r2

ˇ

ˇuχpr{tqs´1
ˇ

ˇ

2
dx.

Differentiating this identity with respect to s leads us to

(2.20)

d

ds

ˆ
ż

Kr2,s1s

divW dxdt

˙

“
d

ds

ˆ
ż

Hs

r2

1` r2

ˇ

ˇuχpr{tqs´1
ˇ

ˇ

2
dx

˙

“ 2

›

›

›

›

ruχpr{tq

sp1` r2q1{2

›

›

›

›

L2pHsq

d

ds

›

›

›

›

ruχpr{tq

sp1` r2q1{2

›

›

›

›

L2pHsq

.

We then integrate (2.19) in the region Kr2,s1s Ă KX t2 ď
?
t2 ´ r2 ď s1u:

ż

Kr2,s1s

divW dxdt “ ´2

ż

Kr2,s1s

s´1

ˆ

Bau
rχpr{tqu

p1` r2q1{2s

xatχpr{tq

rp1` r2q1{2

˙

dxdt

´ 2

ż

Kr2,s1s

s´1u

r

rχpr{tqu

sp1` r2q1{2

χ1pr{tqr

p1` r2q1{2
dxdt

´

ż

Kr2,s1s

ˆ

r2t` 3t

p1` r2q2s2
` 2

r2t

p1` r2qs4

˙

`

uχpr{tq
˘2
dxdt,

which yields the identity
ż

Kr2,s1s

divW dxdt “ ´2

ż s1

2

ż

Hs

ps{tqs´1

ˆ

Bau
rχpr{tqu

p1` r2q1{2s

xatχpr{tq

rp1` r2q1{2

˙

dxds

´ 2

ż s1

2

ż

Hs

ps{tqs´1u

r

rχpr{tqu

sp1` r2q1{2

χ1pr{tqr

p1` r2q1{2
dxds

´

ż s1

2

ż

Hs

ps{tq

ˆ

r2t` 3t

p1` r2q2s2
` 2

r2t

p1` r2qs4

˙

`

uχpr{tq
˘2
dxds

“:

ż s1

2

`

T1 ` T2 ` T3

˘

ds.
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Here, we have T3 ď 0, while

T1 “´ 2s´1

ż

Hs

ps{tq

ˆ

Bau
rχpr{tqu

p1` r2q1{2s

xatχpr{tq

rp1` r2q1{2

˙

dx

ď2s´1

›

›

›

›

ruχpr{tq

sp1` r2q1{2

›

›

›

›

L2
f pHsq

¨
ÿ

a

}ps{tqBau}L2
f pHsq

›

›χpr{tqxatr´1p1` r2q´1{2
›

›

L8pHsq

ďCs´1

›

›

›

›

ruχpr{tq

sp1` r2q1{2

›

›

›

›

L2
f pHsq

ÿ

a

}ps{tqBau}L2
f pHsq

and

T2 “´ 2s´1

ż

Hs

ps{tq
u

r

rχpr{tqu

sp1` r2q1{2

χ1pr{tqr

p1` r2q1{2
dx

ďCs´1

›

›

›

›

ruχpr{tq

sp1` r2q1{2

›

›

›

›

L2
f pHsq

}ur´1}L2
f pHsq

›

›rχ1pr{tqp1` r2q´1{2
›

›

L8pHsq

ďCs´1

›

›

›

›

ruχpr{tq

sp1` r2q1{2

›

›

›

›

L2
f pHsq

ÿ

a

}Bau}L2
f pHsq

,

where Lemma 2.4 was used.

We write our identity in the form d
ds

ˆ

ş

Kr2,ss
divW dxdt

˙

“ T1 ` T2 ` T3 and obtain

(2.21)

d

ds

ˆ
ż

Kr2,s1s

divW dxdt

˙

À s´1

›

›

›

›

ruχpr{tq

sp1` r2q1{2

›

›

›

›

L2
f pHsq

ÿ

a

´

}ps{tqBa}L2
f pHsq

` }Bau}L2
f pHsq

¯

.

Finally, combining (2.21) and (2.20) yields us

d

ds

›

›

›

›

ruχpr{tq

sp1` r2q1{2

›

›

›

›

L2pHsq

À s´1
ÿ

a

`

}
s

t
Bau}L2pHsq ` }Bau}L2pHsq

˘

and, by integration over r2, ss,

(2.22)

›

›rp1` r2q´1{2χpr{tqs´1u
›

›

L2
f pHsq

ď
›

›rp1` r2q´1{2χpr{tq2´1u
›

›

L2pH2q
`
ÿ

a

ż s

2

s̄´1
`

}
s̄

t
Bau}L2

f pHs̄q
` }Bau}L2

f pHs̄q

˘

ds̄.

From Lemma 2.4, we then deduce that

(2.23)

}χpr{tqs´1u}L2
f pHsq

À }rp1` r2q´1{2χpr{tqs´1u}L2
f pHsq

À
›

›2´1u
›

›

L2pH2q
`
ÿ

a

ż s

2

s̄´1
`

}
s̄

t
Bau}L2

f pHs̄q
` }Bau}L2

f pHs̄q

˘

ds̄,

and remains to combine (2.18) with (2.23). �

3. Sup-norm estimates for the wave and Klein-Gordon equations

3.1. Statement for the wave equation.

Proposition 3.1 (A sup-norm estimate for the wave equation with source). Let u be a spatially
compactly supported to the wave equation

(3.1)
´lu “ f,

u|t“2 “ 0, Btu|t“2 “ 0,
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where the source f is spatially compactly supported in K and satisfies the estimate

|f | ď Cf t
´2´νpt´ rq´1`µ

for some constants Cf ą 0, 0 ă µ ď 1{2, and 0 ă |ν| ď 1{2. Then, the following estimate holds:

(3.2) |upt, xq| À

#

Cf
νµ pt´ rq

µ´νt´1, 0 ă ν ď 1{2,
Cf
|ν|µ pt´ rq

µt´1´ν , ´1{2 ď ν ă 0.

We recall that the energy estimate on wave equation does not control the solution itself but
only its gradient. So when we apply the Sobolev inequality and obtain a sup-norm estimate (cf. for
example [22]), there is no immediate estimate on the sup-norm of the solution itself. The estimate
above yields a (sharp) sup-norm estimate on the solution itself and will play an essential role for
the control of the quasi-linear term uBtBtv in our model problem. We emphasize that the range
´1{2 ď ν ă 0 will only be used in the second part [23].

3.2. Proof of the sup-norm estimate for the wave equation. We now state a technical
lemma and give the proof of Proposition 3.1, but postpone the proof of the lemma to the end of
this section. Let dσ be the Lebesgue measure on the sphere t|y| “ 1´λu and x P R3 with r “ |x|.
We are interested in controling the integral

Ipλq “ Ipλ, t, x{tq :“

ż

|y|“1´λ,| xt´y|ďλ´t
´1

dσpyq
`

λ´
ˇ

ˇ

x
t ´ y

ˇ

ˇ

˘1´µ .

Our bounds below are consistent with the obvious estimate where x “ 0:

(3.3) Ipλ, t, 0q “ 4πp2λ´ 1q´1`µp1´ λq2.

Clearly, when 0 ă λ ď t´r`1
2t , one has Ipλq “ 0.

Lemma 3.2. When t´r`1
2t ď λ ď 1, the following estimate holds:

Ipλq À

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

λtp1´ λq

µr

ˆ

t´ r

t

˙µ

,
t´ r ` 1

2t
ď λ ď

t` r ` 1

2t
,

p1´ λq

ˆ

t` r

t
´ λ

˙ˆ

2λ´
t` r

t

˙´1`µ

,
t` r ` 1

2t
ď λ ď

t´ r

t
,

provided
t` r ` 1

2t
ď
t´ r

t
,

p1´ λqt

µr

ˆ

t´ r

t

˙µ

, max

ˆ

t´ r

t
,
t` r ` 1

2t

˙

ď λ ď 1.

Proof of Proposition 3.1. From the explicit expression

(3.4) upt, xq “
1

4π

ż t

2

1

t´ s̄

ż

|y|“t´s̄

fps̄, x´ yq dσds̄,

in which the integration is made on the intersection of the cone
 

ps̄, yq { |y´ x| “ t´ s̄, 2 ď s̄ ď t
(

and
 

pt, xq { r ă t´ 1, t2 ´ r2 ď s2, t ě 2
(

, we obtain

|upt, xq| ď
Cf
4π

ż t

2

ż

|y|“t´s̄,|x´y|ďs̄´1

s̄´2´νps̄´ |x´ y|q´1`µ

t´ s̄
dσds̄

“
Cf

4πt1`ν´µ

ż 1

2
t

ż

|y1|“1´λ,| xt´y
1|ďλ´t´1

p1´ λq´1λ´2´νdσdλ
`

λ´
ˇ

ˇ

x
t ´ y

1
ˇ

ˇ

˘1´µ pλ :“ s̄{t, y1 :“ y{tq

“
Cf

4πt1`ν´µ

ż 1

2
t

p1´ λq´1λ´2´ν

ż

|y1|“1´λ,| xt´y
1|ďλ´t´1

dσ
`

λ´
ˇ

ˇ

x
t ´ y

1
ˇ

ˇ

˘1´µ dλ.

When |xt ´ y
1| ď λ´ t´1 holds, we obtain t´r`1

2t ď λ ď 1. For convenience in the notation, in the
following calculation we replace y1 by y. We first assume that r ą 0 and we distinguish between
two main cases:



18 PHILIPPE G. LEFLOCH AND YUE MA

Case 1: t´r
t ą t`r`1

2t ô r ď t´1
3 . In Lemma 3.2, all three cases are possible:

|upt, xq| ď
Cf

4πt1`ν´µ

ż 1

t´r`1
2t

p1´ λq´1λ´2´ν

ż

|y|“1´λ,| xt´y|ďλ´t
´1

dσ
`

λ´
ˇ

ˇ

x
t ´ y

ˇ

ˇ

˘1´µ dλ

À
Cf

µt1`ν´µ

ż
t`r`1

2t

t´r`1
2t

p1´ λq´1λ´2´ν λtp1´ λq

r

ˆ

t´ r

t

˙µ

dλ

`
Cf

t1`ν´µ

ż
t´r
t

t`r`1
2t

p1´ λq´1λ´2´νp1´ λq

ˆ

t` r

t
´ λ

˙ˆ

2λ´
t` r

t

˙´1`µ

dλ

`
Cf

µt1`ν´µ

ż 1

t´r
t

p1´ λq´1λ´2´ν p1´ λqt

r

ˆ

t´ r

t

˙µ

dλ,

thus

|upt, xq| À
Cf

µt1`ν´µ
t

r

ˆ

t´ r

t

˙µ ż t`r`1
2t

t´r`1
2t

λ´1´ν dλ

`
Cf

t1`ν´µ

ż
t´r
t

t`r`1
2t

λ´2´ν

ˆ

t` r

t
´ λ

˙ˆ

2λ´
t` r

t

˙´1`µ

dλ

`
Cf

µt1`ν´µ
t

r

ˆ

t´ r

t

˙µ ż 1

t´r
t

λ´2´ν dλ.

For the first integral, we recall that r ď t´1
3 and that 0 ă |ν| ď 1{2, and write

t

r

ż
t`r`1

2t

t´r`1
2t

λ´1´ν dλ À

ˆ

t

t´ r

˙1`ν

À 1,

so that
ˇ

ˇ

ˇ

ˇ

ˇ

Cf
µt1`ν´µ

t

r

ˆ

t´ r

t

˙µ ż t`r`1
2t

t´r`1
2t

λ´1´ν dλ

ˇ

ˇ

ˇ

ˇ

ˇ

À Cfµ
´1pt´ rqµt´1´ν .

Next, for the second integral in the right-hand-side, we just remark that

ż
t´r
t

t`r`1
2t

λ´2´ν

ˆ

t` r

t
´ λ

˙ˆ

2λ´
t` r

t

˙´1`µ

dλ

À

ż
t´r
t

t`r`1
2t

ˆ

2λ´
t` r

t

˙´1`µ

dλ “
1

µ

ˆ

2λ´
t` r

t

˙µ ˇ
ˇ

ˇ

ˇ

t´r
t

t`r`1
2t

À
1

µ
.

This leads to

Cf
t1`ν´µ

ż
t´r
t

t`r`1
2t

λ´2´ν

ˆ

t` r

t
´ λ

˙ˆ

2λ´
t` r

t

˙´1`µ

dλ À
Cf

µt1`ν´µ
.

For the third term, in view of t´r
t ě t`r`t1

2t ě 1
2 , we obtain

Cf
µt1`ν´µ

t

r

ˆ

t´ r

t

˙µ ż 1

t´r
t

λ´2´ν dλ À
Cf

µt1`ν´µ
t

r

ˆ

t´ r

t

˙µ ż 1

t´r
t

22`µ dλ

ÀCfµ
´1pt´ rqµt´1´ν .

So we conclude that in the case 0 ă r ď t´1
3 , |upt, xq| À Cfµ

´1pt´ rqµt´1´ν .

Case 2: t`r`1
2t ě t´r

t ô r ě t´1
3 . The second case in Lemma 3.2 is not possible, and we have

|upt, xq| À
Cf

µt1`ν´µ

ˆ

t´ r

t

˙µ
˜

ż
t`r`1

2t

t´r`1
2t

λ´1´ν dλ`

ż 1

t`r`1
2t

λ´2´ν dλ

¸

.



THE NONLINEAR STABILITY OF MINKOWSKI SPACE FOR MASSIVE FIELDS 19

Since t`r`1
2t ě 1{2, the second integral is bounded by a constant C. For the first integral, we see

that when ν ą 0,
ż
t`r`1

2t

t´r`1
2t

λ´1´ν dλ À
1

ν

ˆ

t´ r ` 1

t

˙´ν

.

So in this case when ν ą 0, we obtain |upt, xq| À Cf pµνq
´1pt´ rqµ´νt´1.

When ν ă 0, we write

ż
t`r`1

2t

t´r`1
2t

λ´1´ν dλ À
1

|ν|

ˆ

t` r ` 1

t

˙´ν

À
1

|ν|

and, therefore, we obtain |upt, xq| À Cf pµ|ν|q
´1pt´ rqµt´1´ν .

When r “ 0, we make the following direct calculation, remark that in this case, t`1
2t ď λ ď 1,

by (3.3):

|upt, xq| ď
Cf

4πt1`ν´µ

ż 1

t´r`1
2t

p1´ λq´1λ´2´ν dλ

ż

|y|“1´λ,| xt´y|ďλ´t
´1

dσ
`

λ´
ˇ

ˇ

x
t ´ y

ˇ

ˇ

˘1´µ

À
Cf

t1`ν´µ

ż 1

t`1
2t

p1´ λq´1λ´2´νp2´ λq´1`µp1´ λq2dλ

À
Cf
µ
t´1´ν`µ “

Cf
µ
pt´ rqµt´1´ν (since r “ 0),

which completes the proof. �

Proof of Lemma 3.2. When r “ 0, the estimate is trivial. When r ą 0, without loss of generality,
let x “ pr, 0, 0q. The surface Sλ :“ t|y| “ 1´ λuX t

ˇ

ˇ

x
t ´ y

ˇ

ˇ ď λ´ t´1u is parameterized as follows:

‚ θ: angle from p1, 0, 0q to y with 0 ď θ ď π,
‚ φ: angle from the plane determined by p1, 0, 0q and p0, 1, 0q to the plane determined by y

and p1, 0, 0q, with 0 ď φ ď 2π.

Then, we have y “ p1 ´ λq
`

cos θ, sin θ cosφ, sin θ sinφ
˘

and we distinguish between two cases, as
follows.

Case 1. When t´r`1
2t ď λ ď t`r`1

2t , we only have a part of the sphere t|y| “ 1 ´ λu con-

tained in the ball t
ˇ

ˇ

x
t ´ y

ˇ

ˇ ď λ ´ t´1u where cospθq ě
pr{tq2`p1´λq2´pλ´t´1q

2

p2r{tqp1´λq . So we set θ0 :“

arccos

ˆ

pr{tq2`p1´λq2´pλ´t´1q
2

p2r{tqp1´λq

˙

and see that

λ´
ˇ

ˇ

x

t
´ y

ˇ

ˇ “ λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λq cos θ

and dσ “ p1´ λq2 sinpθqdθdφ. The integral is estimated as follows:

ż

|y|“1´λ,| xt´y|ďλ´t
´1

dσ
`

λ´
ˇ

ˇ

x
t ´ y

ˇ

ˇ

˘1´µ

“

ż 2π

0

dφ

ż θ0

0

p1´ λq2 sin θ

ˆ

λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λq cos θ

˙´1`µ

dθ

“2π

ż θ0

0

p1´ λq2 sin θ

ˆ

λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λq cos θ

˙´1`µ

dθ

“´ 2πp1´ λq2
ż θ0

0

ˆ

λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λq cos θ

˙´1`µ

d cos θ
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thus by setting ω “ cos θ
ż

|y|“1´λ,| xt´y|ďλ´t
´1

dσ
`

λ´
ˇ

ˇ

x
t ´ y

ˇ

ˇ

˘1´µ

“2πp1´ λq2
ż 1

cos θ0

ˆ

λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λqω

˙´1`µ

dω

“
πtp1´ λq

r

ż pλ´t´1
q
2

| rt´p1´λq|
2

`

λ´
?
γ
˘´1`µ

dγ “ 2
πtp1´ λq

r

ż λ´| rt´p1´λq|

t´1

ζ´1`µpλ´ ζq dζ,

where we have used γ “ r2

t2 `p1´λq
2´2 rt p1´λqω and ζ :“ λ´

?
γ. Then, we distinguish between

the following two sub-cases.

Case 1.1: r
t ď 1´ λ or, equivalently, λ ď t´r

t . We now find

2
πtp1´ λq

r

ż λ´| rt´p1´λq|

t´1

ζ´1`µpλ´ ζq dζ

“ 2
πtp1´ λq

r

ż 2pλ´ t´r2t q

t´1

ζ´1`µpλ´ ζq dζ À
λtp1´ λq

µr

pt´ rqµ

tµ
.

Case 1.2: 1´ λ ă r
t or, equivalently, λ ą t´r

t . We find

2
πtp1´ λq

r

ż λ´| rt´p1´λq|

t´1

ζ´1`µpλ´ ζq dζ

“ 2
πtp1´ λq

r

ż
t´r
t

t´1

ζ´1`µpλ´ ζq dζ À
λtp1´ λq

µr

pt´ rqµ

tµ
.

Case 2. When t`r`1
2t ď λ ď 1, the sphere t|y| “ 1 ´ λu is entirely contained in t|px{tq ´ y| ď

λ´ t´1u:
ż

|y|“1´λ,| xt´y|ďλ´t
´1

dσ
`

λ´
ˇ

ˇ

x
t ´ y

ˇ

ˇ

˘1´µ “

ż

|y|“1´λ

dσ
`

λ´
ˇ

ˇ

x
t ´ y

ˇ

ˇ

˘1´µ

“ 2π

ż π

0

p1´ λq2 sin θ

ˆ

λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λq cos θ

˙´1`µ

dθ

“ 2πp1´ λq2
ż 1

´1

ˆ

λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λqω

˙´1`µ

dω

and thus
ż

|y|“1´λ,| xt´y|ďλ´t
´1

dσ
`

λ´
ˇ

ˇ

x
t ´ y

ˇ

ˇ

˘1´µ “ 2
πtp1´ λq

r

ż λ´| rt´p1´λq|

λ´p rt`p1´λqq

ζ´1`µpλ´ ζq dζ

“ 2
πtp1´ λq

r

ż λ´| rt´p1´λq|

2λ´ t`rt

ζ´1`µpλ´ ζq dζ.

We now distinguish between two sub-cases.

Case 2.1: When r
t ď 1´ λ or, equivalently, λ ď t´r

t , we find

2
πtp1´ λq

r

ż λ´| rt´p1´λq|

2λ´ t`rt

ζ´1`µpλ´ ζq dζ

“ 2
πtp1´ λq

r

ż 2λ´ t´rt

2λ´ t`rt

ζ´1`µpλ´ ζq dζ ď Cp1´ λq

ˆ

t` r

t
´ λ

˙ˆ

2λ´
t` r

t

˙´1`µ

,
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where we have observed that in the integral the function ζ´1`µpλ ´ ζq is decreasing and we can
bound this integral by the value of the function taken at the inferior boundary (which is 2λ´ t`r

t )
times the length of the interval which is 2r{t.

Case 2.2: When 1´ λ ă r
t or, equivalently, λ ą t´r

t , we have

2
πtp1´ λq

r

ż λ´| rt´p1´λq|

2λ´ t`rt

ζ´1`µpλ´ ζq dζ

“ 2
πtp1´ λq

r

ż
t´r
t

2λ´ t`rt

ζ´1`µpλ´ ζq dζ ď Cp1´ λq
t

r

ż
t´r
t

2λ´ t`rt

ζ´1`µdζ

ď
Cp1´ λqt

µr
ζµ
ˇ

ˇ

ˇ

ˇ

t´r
r

0

“
Cp1´ λqt

µr

ˆ

t´ r

t

˙µ

.

When t`r`1
2t ď t´r

t , both case above may occur, while only Case 2.2 is possible if the opposite
inequality holds true. �

3.3. Statement for the Klein-Gordon equation. Consider (sufficiently smooth and spatially
compactly supported) solutions to a Klein-Gordon equation on a curved space and, specifically,

(3.5)
´ rlgv ` c

2v “ f,

v|H2
“ v0, Btv|H2

“ v1,

with initial data v0, v1 given on H2 and compactly supported in H2 XK, and the metric has the

form gαβ “ mαβ ´ hαβ with hαβ is spatially compactly supported in K with sup |h
00
| ď 1{3.

Before we can state our estimate, we need some notation. Given a constant C ą 0 and using
the notation s “

?
t2 ´ r2, we consider the function

ht,xpλq :“ h
00
pλt{s, λx{sq,

and, by denoting by h1t,xpλq for the derivative with respect to λ,

h1t,xpλq “
t

s
Bth

00
pλt{s, λx{sq `

xa

s
Bah

00
pλt{s, λx{sq

“
t

s
BKh

00
pλt{s, λx{sq.

We set

(3.6) s0 :“

$

&

%

2, 0 ď r{t ď 3{5,
c

t` r

t´ r
, 3{5 ď r{t ď 1,

and introduce the following function V which is defined by distinguishing between the regions
“near” and “far” from the light cone:

V :“

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

`

}v0}L8pH2q ` }v1}L8pH2q

˘

´

1`

ż s

2

|h1t,xps̄q|e
C

şs
s̄
|h1t,xpλq|dλ ds̄

¯

` F psq `

ż s

2

F ps̄q|h1t,xpλq|e
C

şs
s̄
|h1t,xpλq|dλ ds̄, 0 ď r{t ď 3{5,

F psq `

ż s

s0

F ps̄q|h1t,xps̄q|e
C

şs
s̄
|h1t,xpλq|dλ ds̄, 3{5 ă r{t ă 1,

with

F ps̄q :“

ż s̄

s0

ˆ

`

R1rvs `R2rvs `R3rvs
˘

pλt{s, λx{sq ` λ3{2fpλt{s, λx{sq

˙

dλ
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and

R1rvs :“ s3{2
ÿ

a

BaBav `
xaxb

s1{2
BaBbv `

3

4s1{2
v `

ÿ

a

3xa

s1{2
Bav,

R2rvs :“ h
00
ˆ

3v

4s1{2
` 3s1{2B0v

˙

´ s3{2
`

2h
0b
B0Bbv ` h

ab
BaBbv ` h

αβBαΨ
β1

β Bβ1v
˘

,

R3rvs :“ h
00
ˆ

2xas1{2B0Bav `
2xa

s1{2
Bav `

xaxb

s1{2
BaBbv

˙

.

With these notations, our result is as follows.

Proposition 3.3 (A sup-norm estimate for the Klein-Gordon equation with source). Considering
the Klein-Gordon problem (3.5) for a every sufficiently smooth and spatially compactly supported
solution v defined the future region Kr2,`8q, one has (for all relevant pt, xq)

(3.7) s3{2|vpt, xq| ` ps{tq´1s3{2|BKvpt, xq| À V pt, xq,

This result is motivated by a pioneering work by Klainerman [19] and the decomposition in
Lemma 3.4 below. An analogue statement in two spatial dimensions and flat Minkowski spacetime
is discussed in [28]; see also the earlier work [9].

3.4. Proof of the sup-norm estimate for the Klein-Gordon equation. We begin with two
technical results.

Lemma 3.4 (A decomposition identity). For every sufficiently smooth solution v to (3.5), the
function

wt,xpλq :“ λ3{2vpλt{s, λx{sq, pt, xq P K,

satisfies the following second-order ODE in λ

d2

dλ2
wt,xpλq `

c2

1` h
00
pλt{s, λx{sq

wt,xpλq

“
`

1` h
00
pλt{s, λx{sq

˘´1`
R1rvs `R2rvs `R3rvs ` s

3{2f
˘

pλt{s, λx{sq.

Lemma 3.5 (Technical ODE estimate). Let G be a function defined on an interval rs0, s1s and
satisfying sup |G| ď 1{3. and k be an integrable function defined on rs0, s1s. Then, the solution z
to the ordinary differential equation

(3.8)
z2pλq `

c2

1`Gpλq
zpλq “ kpλq,

zps0q “ z0, z1ps0q “ z1,

with prescribed initial data z0, z1 satisfies the uniform bound

(3.9) |zpsq| ` |z1psq| À
`

|z0| ` |z1| `Kpsq
˘

`

ż s

s0

´

|z0| ` |z1| `Kps̄q
¯

|G1ps̄q|eC
şs
s̄
|G1pλq|dλ ds̄

for all s P rs0, s1s and with Kpsq :“
şs

s0
|kps̄q| ds̄ and a suitable constant C ą 0.

Proof of Lemma 3.4. 1. Decomposition of the flat wave operator. By recalling s “
?
t2 ´ r2

and r “ |x|, an elementary calculation shows that the flat wave operator l in the hyperboloidal
frame reads

(3.10) ´l “ B0B0 ´
ÿ

a

BaBa ` 2
ÿ

a

xa

s
B0Ba `

3

s
B0.

Given a function v, we can set

wpt, xq “ s3{2vpt, xq “ pt2 ´ |x|2q3{4vpt, xq,

and obtain

(3.11) ´s3{2lv “ B0B0w ´
ÿ

a

BaBaw ` 2
ÿ

a

xa

s
B0Baw ´

3w

4s2
´
ÿ

a

3xaBaw

s2
.
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Again, we define a function of a single variable by

wt,xpλq :“ wpλt{s, λx{sq “ λ3{2vpλt{s, λx{sq.

We see that
d

dλ
wt,xpλq “

`

B0 ` s
´1xaBa

˘

wpλt{s, λx{sq “
t

s
BKw pλt{s, λx{sq

and

(3.12)
d2

dλ2
wt,xpλq “

ˆ

B0B0 ` 2
xa

s
B0Ba `

xaxb

s2
BaBb

˙

wpλt{s, λx{sq.

Combining this with (3.11) and recalling that wpt, xq “ s3{2vpt, xq, we get

(3.13)

ˆ

B0B0 ` 2
xa

s
B0Ba `

xaxb

s2
BaBb

˙

w

“ ´s3{2lv `
ÿ

a

BaBaw `
xaxb

s2
BaBbw `

3

4s2
w `

ÿ

a

3xa

s2
Baw “ ´s

3{2lv `R1rvs.

2. Decomposition of the curved wave operator. We write

´lv “ hαβBαBβv ´ c
2v ` f

and, by performing a change of frame,

hαβBαBβv “h
αβ
BαBβv ` h

αβBαΨ
β1

β Bβ1v

“h
00
B0B0v ` 2h

0b
B0Bbv ` h

ab
BaBbv ` h

αβBαΨ
β1

β Bβ1v.

Then, we obtain

´s3{2lv “´ s3{2h
00
B0B0v ´ s

3{2
`

2h
0b
B0Bbv ` h

ab
BaBbv ` h

αβBαΨ
β1

β Bβ1v
˘

´ c2s3{2v ` s3{2f

“´ h
00
B0B0

`

s3{2v
˘

´ c2s3{2v

` h
00
ˆ

3v

4s1{2
` 3s1{2B0v

˙

´ s3{2
`

2h
0b
B0Bbv ` h

ab
BaBbv ` h

αβBαΨ
β1

β Bβ1v
˘

` s3{2f,

and we conclude with

(3.14)

´s3{2lv “ ´h
00
B0B0w ´ c

2w ` h
00
ˆ

3v

4s1{2
` 3s1{2B0v

˙

´ s3{2
`

2h
0b
B0Bbv ` h

ab
BaBbv ` h

αβBαΨ
β1

β Bβ1v
˘

` s3{2f

“ ´h
00
B0B0w ´ c

2w `R2rvs ` s
3{2f.

We then combine (3.13) with (3.14) and obtain

(3.15) B0B0w ` 2
xa

s
B0Baw `

xaxb

s2
BaBbw ´ h

00
B0B0w ` c

2w “ R1rvs `R2rvs ` s
3{2f.

3. Conclusion. We continue with (3.15) and write

`

1` h
00˘

ˆ

B0B0 ` 2
xa

s
B0Ba `

xaxb

s2
BaBb

˙

w ` c2w

“ h
00
ˆ

2
xa

s
B0Ba `

xaxb

s2
BaBb

˙

w `R1rvs `R2rvs ` s
3{2f

and, so, we have

(3.16)

ˆ

B0B0 ` 2
xa

s
B0Ba `

xaxb

s2
BaBb

˙

w `
c2w

1` h
00

“
`

1` h
00˘´1`

R1rvs `R2rvs `R3rvs ` s
3{2f

˘

.
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It follows that

(3.17)

d2

dλ2
wt,xpλq `

c2wt,xpλq

1` h
00
pλt{s, λx{sq

“
`

1` h
00
pλt{s, λx{sq

˘´1`
R1rvs `R2rvs `R3rvs ` s

3{2f
˘

pλt{s, λx{sq.

�

Proof of Lemma 3.5. We simply need to integrate out the ODE. We consider the vector field

bpλq “
`

zpλq, z1pλq
˘T

and the matrix Apλq :“

ˆ

0 1
´c2p1`Gq´1 0

˙

. We write b1 “ Ab`

ˆ

0
k

˙

.

and introduce the diagonalization of A “ PQP´1 with

Q “

˜

ic
`

1`G
˘´1{2

0

0 ´ic
`

1`G
˘´1{2

¸

and

P “

ˆ

1 1
ic

p1`Gq1{2
´ ic
p1`Gq1{2

˙

, P´1 “

˜

1{2 p1`Gq1{2

2ic

1{2 ´
p1`Gq1{2

2ic

¸

.

We thus have b1 “ PQP´1b`

ˆ

0
k

˙

, which leads us to

`

P´1b
˘1
“ Q

`

P´1b
˘

`
`

P´1
˘1
b` P´1

ˆ

0
k

˙

.

We regard the term
`

P´1
˘1
b as a source term and, by a standard formula,

P´1bpsq “ e
şs
s0
Qps̄qds̄

P´1bps0q `

ż s

s0

e
şs
λ
Qps̄qds̄P´1

ˆ

0
k

˙

dλ

`

ż s

s0

e
şs
λ
Qps̄qds̄

`

P´1
˘1
pλq bpλq dλ.

Recall that when supλPr1,ss |Gpλq| ď 1{3, the norm of P pλq and P´1pλq are bounded for λ P rs0, ss.

We also remarks that the norm of
`

P´1
˘1
pλq is bounded by C|G1pλq| with C a constant depending

only on c, and the norm of Q is also bounded by a constant C ą 0. Furthermore, we observe that
ż s

λ

Qps̄qds̄ “

ˆ

ic
şs

λ
p1`Gq´1{2ps̄qds̄ 0

0 ´ic
şs

λ
p1`Gq´1{2ps̄qds̄

˙

and thus

e
şs
λ
Qps̄qds̄ “

˜

eic
şs
λ
p1`Gq´1{2

ps̄qds̄ 0

0 e´ic
şs
λ
p1`Gq´1{2

ps̄qds̄

¸

.

The norm of the matrix e
şs
λ
Qps̄qds̄ is uniformly bounded by a constant, and the following estimate

is now proven:

|zpsq| ` |z1psq| ď Cp|zps0q| ` |z
1ps0q|q ` C Kpsq ` C

ż s

s0

|G1pλq|
`

|zpλq| ` |z1pλq|
˘

dλ,

and we conclude with Gronwall’s lemma. �

Proof of Proposition 3.3. The proof is based on a combination of the bounds (3.9) and (3.17). By
recalling the definition of wt,xpλq, we have

wt,xpλq “ λ3{2vpλt{s, λx{sq,

w1t,xpλq “
3

2
λ1{2vpλt{s, λx{sq `

t

s
λ3{2BKvpλt{s, λx{sq.
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That is, wt,x is the restriction of wpt, xq “ s3{2vpt, xq on the line segment
 

pλt{s, λx{sq, λ P rs0, ss
(

.
We then apply (3.9) and (3.17) to this line segment, with

s0 “

$

&

%

2, 0 ď r{t ď 3{5,
c

t` r

t´ r
, 3{5 ď r{t ď 1.

This segment is the part of the line tpλt{s, λx{squ between the point pt, xq and the boundary of
Krs0,`8q.

Recall that v is supported in K. and the restriction of v on the initial hyperboloid H2 is
supported in H2 XK. We recall that when 3{5 ď r{t ď 1, wt,xps0q “ 0 and when 0 ď r{t ď 3{5,
wt,xps0q is determined by v0.

When 0 ď r{t ď 3{5, we apply (3.9) with s0 “ 2. When λ “ 2, we write wt,xp2q “

wp2t{s, 2x{sq “ 23{2vp2t{s, 2x{sq “ 23{2v0p2x{sq, and

w1s,xp2q “
d

dλ

`

λ3{2vpλt{s, λx{sq
˘
ˇ

ˇ

λ“2

“
3
?

2

2
vp2t{s, 2x{sq ` 23{2ps{tq´1BKvp2t{s, 2x{sq

“
3
?

2

2
vp2t{s, 2x{sq ` 23{2ps{tq´1Btvp2t{s, 2x{sq ` 23{2pxa{sqBavp2t{s, 2x{sq

“
3
?

2

2
v0p2x{sq ` 23{2pxa{sqBav0p2x{sq ` 23{2ps{tq´1v1p2t{s, 2x{sq.

Recall that when 0 ď r{t ď 3{5, we have 4{5 ď s{t ď 1. So we see that |wt,xps0q| ` |w
1
t,xps0q| ď

Cp}v0}L8pH2q ` }v1}L8pH2qq. Then by (3.9) and (3.17) we have

|wt,xpsq| ` |w
1
t,xpsq| ďCp}v0}L8pH2q ` }v1}L8pH2qq ` CF psq

` Cp}v0}L8pH2q ` }v1}L8pH2qq

ż s

2

|h1t,xps̄q|e
C

şs
s̄
|h1t,xpλq|dλ ds̄

` C

ż s

2

F ps̄q|h1t,xps̄q|e
C

şs
s̄
|h1t,xpλq|dλ ds̄.

We recall that when 3{5 ď r{t ď 1, wt,xps0q “ w1t,xps0q “ 0 and so we have

|wt,xpsq| ` |w
1
t,xpsq| ďCF psq ` C

ż s

s0

F ps̄q|h1t,xps̄q|e
C

şs
s̄
|h1t,xpλq|dλ ds̄,

which leads to |wt,xpsq| ` |w
1
t,xpsq| À V pt, xq. It remains to recall the relation between v and w,

that is, vpt, xq “ s3{2wt,xpsq and

ps{tq´1s3{2BKvpt, xq “ w1t,xpsq ´
3

2
s1{2vpt, xq “ w1t,xpsq ´

3

2
s´1wt,xpsq,

and the desired estimate is established. �

4. Commutator estimates

4.1. Algebraic decomposition of the commutators. We consider the commutators rX,Y su :“
XpY uq ´ Y pXuq of operators associated with our vector fields when the function u is defined in
the future cone K “ t|x| ă t ´ 1u. Our uniform bounds rely on homogeneity arguments and on
the observation that the coefficients of our decompositions are smooth in K.

First of all, the vector fields Bα, and La are Killing fields for the (flat) wave operator l, so that
the following commutation relations hold:

(4.1) rBα, ls “ 0, rLa, ls “ 0.

By introducing the notation

(4.2) rLa, Bβs “: Θγ
aβBγ , rBα, Bβs “: t´1Mγ

αβBγ , rLa, Bβs “: Θγ
aβBγ ,
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we find easily that

(4.3)

Θγ
a0 “ ´δ

γ
a , Θγ

ab “ ´δabδ
γ
0 ,

Mγ
0b “ ´

xb

t
δγ0 “ Ψ0

bδ
γ
0 , Mγ

α0 “ 0, Mγ
ab “ δabδ

γ
0 ,

Θγ
a0 “ ´δ

γ
a `

xa

t
δγ0 “ ´δ

γ
a ` Φa0δ

γ
0 , Θγ

ab “ ´
xb

t
δγa “ Ψ0

bδ
γ
a ,

where Φ and Ψ were defined at the beginning of Section 2. All of these coefficients are smooth in
the (open) cone K and homogeneous of degree 0. Furthermore, we can also check that

(4.4) Θ0
ab “ 0, so that rLa, Bbs “ Θc

abBc,

which means that the commutator of a “good” derivative Bb with La is again a “good” derivative.
(That is, these derivatives enjoy better decay compared to the gradient itself.)

Lemma 4.1 (Algebraic decomposition of commutators. I). There exist constants λIaJ such that

(4.5) rBI , Las “
ÿ

|J|ď|I|

λIaJB
J .

Proof. We proceed by induction on |I|. For |I| “ 1, the result is guaranteed by (4.2). Suppose
that (4.5) holds for all |I1| ď m, we will prove that it is still valid for |I| ď m ` 1. Let I “
pα, αm, αm´1, . . . , α1q and I1 “ pαm, αm´1, . . . , α1q, so that BI “ BαB

I1 . Then we have

rBI , Las “ rBαB
I1 , Las “ Bα

`

rBI1 , Las
˘

` rBα, LasB
I1 “ Bα

ˆ

ÿ

|J|ď|I1|

λI1aJB
J

˙

´Θγ
aαBγB

I1

“
ÿ

|J|ď|I1|

λI1aJBαB
J ´Θγ

aαBγB
I1 ,

which yields the desired statement for |I| “ m` 1. �

Lemma 4.2 (Algebraic decomposition of commutators. II). There exist constants θIγαJ such that

(4.6) rLI , Bαs “
ÿ

|J|ď|I|´1,γ

θIγαJBγL
J .

Proof. We proceed by induction and observe that the case |I| “ 1 is already covered by (4.2). We
assume that (4.6) is valid for |I| ď m and we will prove that it is still valid when |I| “ m` 1. For
this purpose, we take LI “ LaL

I1 with |I1| “ m, and we have

rLI , Bαs “rLaL
I1 , Bαs “ La

`

rLI1 , Bαs
˘

` rLa, BαsL
I1

“La

ˆ

ÿ

|J|ď|I1|´1,γ

θI1γαJ BγL
J

˙

`
ÿ

γ

Θγ
aαBγL

I1

“
ÿ

|J|ď|I1|´1,γ

θI1γαJ LaBγL
J `

ÿ

γ

Θγ
aαBγL

I1

and, therefore,

rLI , Bαs “
ÿ

|J|ď|I1|´1,γ

θI1γαJ BγLaJ
J `

ÿ

|J|ď|I1|´1,γ

θI1γαJ rLa, BγsJ
J `

ÿ

γ

Θγ
aαBγL

I1

“
ÿ

|J|ď|I1|´1,γ

θI1γαJ BγLaJ
J `

ÿ

|J|ď|I1|´1,γ

θI1γαJ Θγ1

aγBγ1L
J `

ÿ

γ

Θγ
aαBγL

I1 .

�

An immediate consequence of (4.6) is

(4.7) rBILJ , Bαsu “
ÿ

|J 1|ă|J|,γ

θJγαJ 1BγB
ILJ

1

u.
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Lemma 4.3 (Algebraic decomposition of commutators. III). In the future cone K, the following
identity holds:

(4.8) rBILJ , Bβs “
ÿ

|J1|ď|J|,|I1|ď|I|

|I1|`|J1|ă|I|`|J|

θIJγβI1J 1BγB
I1LJ

1

,

where the coefficients θIJγβI1J 1 are smooth functions and satisfy (in K)

(4.9)
ˇ

ˇBI1LJ1θIJγβI1J 1

ˇ

ˇ ď

#

C
`

|I|, |J |, |I1|, |J1|
˘

t´|I1| when |J 1| ă |J |,

C
`

|I|, |J |, |I1|, |J1|
˘

t´|I1|´1 when |I 1| ă |I|.

Proof. Consider the identity

rBILJ , Bβs “ rB
ILJ ,ΦγβBγs “ΦγβrB

ILJ , Bγs `
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ă|I|`|J|

BI1LJ1ΦγβB
I2LJ2Bγ .

In the first sum, we commute BI2LJ2 and Bγ and obtain

rBILJ , Bβs “ΦγβrB
ILJ , Bγs

`
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ă|I|`|J|

BI1LJ1ΦγβBγB
I2LJ2 `

ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ă|I|`|J|

BI1LJ1ΦγβrB
I2LJ2 , Bγs

“
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ă|I|`|J|

BI1LJ1ΦγβBγB
I2LJ2 `

ÿ

I1`I2“I
J1`J2“J

BI1LJ1ΦγβrB
I2LJ2 , Bγs

“
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ă|I|`|J|

BI1LJ1ΦγβBγB
I2LJ2 `

ÿ

I1`I2“I
J1`J2“J

ÿ

|J 12|ă|J2|

`

BI1LJ1Φγβ
˘

θJ2δ
γJ 12
BδB

I2LJ
1
2 .

Hence, θIJαγI1J 1 are linear combinations of BI1LJ1Φγβ and
`

BI1LJ1Φγβ
˘

θJ2δ
γJ 12

and J1 ` J2 “ J , which

yields (4.8). Note that θJ2δ
γJ 12

are constants, so that

BI3LJ3
`

BI1LJ1Φγβθ
J2δ
γJ 12

˘

“ θJ2δ
γJ 12
BI3LJ3BI1LJ1Φγβ .

By definition, Φγβ is a homogeneous function of degree zero, so that BI1LJ1Φγβ is again homogeneous

but with degree ď 0. We thus arrive at (4.9). �

Lemma 4.4 (Algebraic decomposition of commutators. IV). Within the future cone K, the
following identity holds

(4.10) rLI , Bcs “
ÿ

|J|ă|I|

σIacJBaL
J ,

where the coefficients σIacJ are smooth functions and satisfy (in K)

(4.11)
ˇ

ˇBI1LJ1σIacJ
ˇ

ˇ ď Cp|I|, |J |, |I1|, |J1|qt
´|I1|.

Proof. This is also by induction. Again, when |I| “ 1, (4.10) together with (4.11) are guaranteed
by (4.4). Assume that (4.10) and (4.11) hold for |I| ď m, we will prove that they are valid for
|I| “ m` 1. We take LI “ LaL

J with |J | “ m, and obtain

rLI , Bcs “rLaL
J , Bcs “ La

`

rLJ , Bcs
˘

` rLa, BcsL
J

“La

ˆ

ÿ

|J 1|ă|J|

σJacJ 1BaL
J 1
˙

`Θb
acBbL

J

“
ÿ

|J 1|ă|J|

Laσ
Jb
cJ 1BbL

J 1 `
ÿ

|J 1|ă|J|

σJbcJ 1LaBbL
J 1 `Θb

acBbL
J ,
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so that

rLI , Bcs “
ÿ

|J 1|ă|J|

Laσ
Jb
cJ 1BbL

J 1 `
ÿ

|J 1|ă|J|

σJbcJ 1BbLaL
J 1 `

ÿ

|J 1|ă|J|

σJbcJ 1rLa, BbsL
J 1 `Θb

acBbL
J

“
ÿ

|J 1|ă|J|

Laσ
Jb
cJ 1BbL

J 1 `
ÿ

|J 1|ă|J|

σJbcJ 1BbLaL
J 1 `

ÿ

|J 1|ă|J|

σJbcJ 1Θ
d
abBdL

J 1 `Θb
acBbL

J .

In each term the coefficients are homogeneous of degree 0 (by applying (4.11)), and the desired
result is proven. �

The following result is also checked by induction along the same lines as above, and so its proof
is omitted.

Lemma 4.5 (Algebraic decomposition of commutators. V). Within the future cone K, the fol-
lowing identity holds:

(4.12) rBI , Bcs “ t´1
ÿ

|J|ď|I|

ρIcJB
J ,

where the coefficients ρIcJ are smooth functions and satisfy (in K)

(4.13)
ˇ

ˇBI1LJ1ρIcJ
ˇ

ˇ ď Cp|I|, |J |, |I1|, |J1|qt
´|I1|.

4.2. Estimates for the commutators. The following statements are now immediate in view of
(4.5), (4.6), and (4.10), and (4.12).

Proposition 4.6 (Estimates on commutators. I). For all sufficiently regular functions u defined
in the future cone K, the following estimates hold:

(4.14)
ˇ

ˇrBILJ , Bαsu
ˇ

ˇ ď Cp|I|, |J |q
ÿ

|J 1|ă|J|,β

|BβB
ILJ

1

u|,

(4.15)
ˇ

ˇrBILJ , Bcsu
ˇ

ˇ ď Cp|I|, |J |q

˜

ÿ

|J1|ă|J|,a

|I1|ď|I|

|BaB
I1LJ

1

u| ` t´1
ÿ

|I|ď|I1|

|J|ď|J1|

|BI
1

LJ
1

u|

¸

,

(4.16)
ˇ

ˇrBILJ , Bαus
ˇ

ˇ ď Cp|I|, |J |qt´1
ÿ

β,|I1|ă|I|

|J1|ď|J|

ˇ

ˇ

ˇ
BβB

I1LJ
1

u
ˇ

ˇ

ˇ
` Cp|I|, |J |q

ÿ

β,|I1|ď|I|

|J1|ă|J|

ˇ

ˇ

ˇ
BβB

I1LJ
1

u
ˇ

ˇ

ˇ
,

(4.17)
ˇ

ˇrBILJ , BαBβsu
ˇ

ˇ ď Cp|I|, |J |q
ÿ

γ,γ1

|I|ď|I1|,|J1|ă|I|

ˇ

ˇBγBγ1B
I1LJ

1

u
ˇ

ˇ,

(4.18)
ˇ

ˇrBILJ , BaBβsu
ˇ

ˇ`
ˇ

ˇrBILJ , BαBbsu
ˇ

ˇ

ď Cp|I|, |J |q

˜

ÿ

c,γ,|I1|ď|I|

|J1|ă|J|

ˇ

ˇBcBγB
I1LJ

1

u
ˇ

ˇ` t´1
ÿ

c,γ,|I1|ă|I|

|J1|ď|J|

ˇ

ˇBcBγB
I1LJ

1

u
ˇ

ˇ` t´1
ÿ

γ,|I1|ď|I|

|J1|ď|J|

ˇ

ˇBγB
I1LJ

1

u
ˇ

ˇ

¸

.

Further estimates will be also needed, as now stated.

Proposition 4.7 ([Estimates on commutators. II). For all sufficiently regular functions u defined
in the future cone K, the following estimate holds (for all I, J, α)

(4.19)
ˇ

ˇBILJ
`

ps{tqBαu
˘
ˇ

ˇ ď
ˇ

ˇps{tqBαB
ILJu

ˇ

ˇ` Cp|I|, |J |q
ÿ

β,|I1|ď|I|

|J1|ď|J|

ˇ

ˇps{tqBβB
I1LJ

1

u
ˇ

ˇ.

Recall that the proof of the above result (given in [22]) relies on the following technical obser-
vation, concerning products of first-order linear operators with homogeneous coefficients of order
0 or 1.
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Lemma 4.8. For all multi-indices I, the function

ΞI,J :“ pt{sqBILJps{tq,

defined in the closed cone K “ t|x| ď t´ 1u, is smooth and all of its derivatives (of any order) are

bounded in K. Furthermore, it is homogeneous of degree η with η ď 0.

5. Initialization of the bootstrap argument

From this section onwards, we begin the proof of Theorem 1.1, which is a rather involved
bootstrap argument along the lines of the method presented in [22]. We fix some integer N ě 8
throughout, and first summarize our strategy, as follows.

Let pu, vq be the local-in-time solution to the Cauchy problem associated with the system (1.11).
From a standard local existence result (cf., for instance, [22, Section 11]), we can construct a local-
time solution from the data given on the initial hypersurface and, consequently, guarantee that on
the initial hyperboloid and for all |I| ` |J | ď N ,

Emp2, B
ILJuq1{2 ď C0ε, Emp2, B

ILJvq1{2 ď C0ε

for some uniform constant C0 ą 0. On some (hyperbolic) time interval r2, s1s, we can thus assume
the following energy conditions for some constants C1, ε, δ ą 0 (yet to be determined):
(5.1)

Emps, B
ILJuq1{2 ď C1εs

kδ, |J | “ k, |I| ` |J | ď N, wave / high-order,

Emps, B
ILJuq1{2 ď C1ε, |I| ` |J | ď N ´ 4, wave / low-order,

Emps, B
ILJvq1{2 ď C1εs

1{2`kδ, |J | “ k, |I| ` |J | ď N, Klein-Gordon / high-order,

Emps, B
ILJvq1{2 ď C1εs

kδ, |J | “ k, |I| ` |J | ď N ´ 4 Klein-Gordon / low-order.

We will prove that on the same interval the following improved energy bounds are valid when ε is
sufficiently small and C1 ą C0 with 1

10N ď δ ď 1
5N (fixed once for all):

(5.2)

Emps, B
ILJuq1{2 ď

1

2
C1εs

kδ, |J | “ k, |I| ` |J | ď N, wave / high-order,

Emps, B
ILJuq1{2 ď

1

2
C1ε, |I| ` |J | ď N ´ 4, wave / low-order,

Emps, B
ILJvq1{2 ď

1

2
C1εs

1{2`kδ, |J | “ k, |I| ` |J | ď N, Klein-Gordon / high-order,

Emps, B
ILJvq1{2 ď

1

2
C1εs

kδ, |J | “ k, |I| ` |J | ď N ´ 4 Klein-Gordon / low-order.

Once this property is proven, we set

s1 :“ sup
!

s { (5.1) holds on r2, ss
)

and we can deduce that s1 “ `8. Indeed, by a continuity argument, C1 ą C0 implies s1 ą 2.
Again by a continuity argument, we deduce that when s “ s1, at least one of the inequalities (5.1)
must be an equality. But, when (5.2) holds, none of them can become an equality. This means
that s1 “ `8 and the rest of our work consists of proving (5.2).

Proposition 5.1 (Formulation of the bootstrap argument). Given any integer N ě 8 and 1
10N ă

δ ă 1
5N , there exist constants C1, ε ą 0 satisfying εC1 ă 1 such that any local-in-time solution

pu, vq to (1.11), defined in the time interval r2, s1s and satisfying the energy conditions (5.1) for
some ε P p0, ε0s, also satisfies the improved energy bounds (5.2).

The remaining text is devoted to the proof of this proposition, which we decompose into three
parts. First, we derive a series of L2 and sup-norm estimates directly from (5.1), and from the
Sobolev inequality on hyperboloids (2.14) and the commutator estimates (i.e. Propositions 4.6 and
4.7). Second, we improve the sup-norm estimates by using (3.2) and (3.7). Finally, we combine
the improved sup-norm estimates and the L2 estimates established in the first part and we get
the improved energy estimates (5.2).
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From now on, we consider a solution satisfying the energy bound (5.1) and throughout
we set |J | “ k.

6. Basic estimates

6.1. Basic L2 estimates of the first generation. Throughout, we always assume that 2 ď s ď
s1. We begin by stating the L2 type estimates provided to us by the energy assumption (5.1). For
all |I| ` |J | ď N with |J | “ k, we have the high-order bounds

(6.1)

}ps{tqBαB
ILJu}L2

f pHsq
` }ps{tqBαB

ILJu}L2
f pHsq

À C1εs
kδ,

}BaB
ILJu}L2

f pHsq
` }BKB

ILJu}L2
f pHsq

À C1εs
kδ,

}ps{tqBαB
ILJv}L2

f pHsq
` }ps{tqBαB

ILJv}L2
f pHsq

À C1εs
1{2`kδ,

}BaB
ILJv}L2

f pHsq
` }BKB

ILJv}L2
f pHsq

À C1εs
1{2`kδ,

}BILJv}L2
f pHsq

À C1εs
1{2`kδ,

where the last estimate implies, for all |I| ` |J | ď N ´ 1 and |J | “ k, the following estimate

(6.2) }BαB
ILJv}L2

f pHsq
À C1εs

1{2`kδ,

as well as, for |I| ` |J | ď N ´ 4 with |J | “ k, the low-order energy bounds imply:

(6.3)

}ps{tqBαB
ILJu}L2

f pHsq
` }ps{tqBαB

ILJu}L2
f pHsq

À C1ε,

}BaB
ILJu}L2

f pHsq
` }BKB

ILJu}L2
f pHsq

À C1ε,

}ps{tqBαB
ILJv}L2

f pHsq
` }ps{tqBαB

ILJv}L2
f pHsq

À C1εs
kδ,

}BKB
ILJv}L2

f pHsq
` }BaB

ILJv}L2
f pHsq

À C1εs
kδ,

}BILJv}L2
f pHsq

À C1εs
kδ.

In addition, they also imply, for all |I| ` |J | ď N ´ 5 with |J | “ k,

(6.4) }BαB
ILJv}L2

f pHsq
À C1s

kδ.

6.2. Basic L2 estimates of the second generation. The following estimates are obtained
by applying the above energy estimate combined with the commutator estimates presented in
Proposition 4.6. For all |I| ` |J | ď N with |J | “ k, we have the high-order bounds

(6.5)

}ps{tqBILJBαu}L2
f pHsq

` }ps{tqBILJBαu}L2
f pHsq

À C1εs
kδ,

}BILJBau}L2
f pHsq

` }BILJBKu}L2
f pHsq

À C1εs
kδ,

}ps{tqBILJBαv}L2
f pHsq

` }ps{tqBILJBαv}L2
f pHsq

À C1εs
1{2`kδ,

}BILJBKv}L2
f pHsq

` }BILJBav}L2
f pHsq

À C1εs
1{2`kδ,

}BILJv}L2
f pHsq

À C1εs
1{2`kδ,

which, for |I| ` |J | ď N ´ 1 with |J | “ k, imply the low-order bounds (for instance, by expressing
tBa “ La in the first inequality):

(6.6)

}tBaB
ILJv}L2

f pHsq
À C1εs

1{2`pk`1qδ,

}tBILJBav}L2
f pHsq

À C1εs
1{2`pk`1qδ,

}BILJBαv}L2
f pHsq

` }BILJBαv}L2
f pHsq

À C1εs
1{2`kδ,

}ps{tqBILJBαBβv}L2
f pHsq

` }ps{tqBILJBαBβv}L2
f pHsq

À C1εs
1{2`kδ,

}sBILJBαBbv}L2
f pHsq

` }sBILJBaBαv}L2
f pHsq

À C1εs
1{2`pk`1qδ.
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Observe especially that, for derivation of the last term, we write

BILJBaBαv “ B
ILJ

`

t´1LaBαv
˘

“
ÿ

I1`I2“I
J1`J2“J

BI1LJ1LaBαvB
I2LJ2pt´1q

and then we proceed by homogeneity (by noting that t´1 is homogeneous of degree ´1 and its
derivatives are homogeneous of degree ď ´1):

}sBILJBaBαv}L2
f pHsq

À
ÿ

|I1|ď|I|
|J1|ď|J|

}st´1BI1LJ1LaBαv}L2
f pHsq

À
ÿ

|I1|ď|I|
|J1|ď|J|

}ps{tqBI1LJ1LaBαv}L2
f pHsq

À C1εs
1{2`p|J1|`1qδ À C1εs

1{2`pk`1qδ.

We also have, for |I| ` |J | ď N ´ 2,

(6.7) }BILJBαBβv}L2
f pHsq

À C1εs
1{2`kδ.

For |I| ` |J | ď N ´ 4 with |J | “ k, we have

(6.8)

}ps{tqBILJBαu}L2
f pHsq

` }ps{tqBILJBαu}L2
f pHsq

À C1ε,

}BILJBau}L2
f pHsq

` }BILJBKu}L2
f pHsq

À C1ε,

}ps{tqBILJBαv}L2
f pHsq

` }ps{tqBILJBαv}L2
f pHsq

À C1εs
kδ,

}BILJBKv}L2
f pHsq

` }BILJBav}L2
f pHsq

À C1εs
kδ,

}BILJv}L2
f pHsq

À C1εs
kδ.

For |I| ` |J | ď N ´ 5, |J | “ k, we have

(6.9)

}tBaB
ILJv}L2

f pHsq
` }tBILJBav}L2

f pHsq
À C1εs

pk`1qδ,

}BILJBαv}L2
f pHsq

` }BILJBαv}L2
f pHsq

À C1εs
kδ,

}ps{tqBILJBαBβv}L2
f pHsq

` }ps{tqBILJBαBβv}L2
f pHsq

À C1εs
kδ,

}sBILJBαBbv}L2
f pHsq

` }sBILJBaBαv}L2
f pHsq

À C1εs
pk`1qδ.

For |I| ` |J | ď N ´ 6, we have

(6.10)
}BILJBαBβv}L2

f pHsq
` }BILJBαBβv}L2

f pHsq
À C1εs

kδ,

}tBILJBaBβv}L2
f pHsq

` }tBILJBβBav}L2
f pHsq

À C1εs
pk`1qδ.

6.3. Basic sup-norm estimates of the first generation. We combine the Sobolev inequality
on hyperboloids (2.14) with our L2 estimates. In view of the high-order L2 bounds, for |I|` |J | ď
N ´ 2 with |J | “ k we have

(6.11)

sup
Hs

`

t1{2s|BαB
ILJu|

˘

` sup
Hs

`

t1{2s|BαB
ILJu|

˘

À C1εs
pk`2qδ,

sup
Hs

`

t3{2|BaB
ILJu|

˘

` sup
Hs

`

t3{2|BKB
ILJu|

˘

À C1εs
pk`2qδ,

sup
Hs

`

t1{2s|BαB
ILJv|

˘

` sup
Hs

`

t1{2s|BαB
ILJv|

˘

À C1εs
1{2`pk`2qδ,

sup
Hs

`

t3{2|BKB
ILJv|

˘

` sup
Hs

`

t3{2|BaB
ILJv|

˘

À C1εs
1{2`pk`2qδ,

sup
Hs

`

t3{2|BILJv|
˘

À C1εs
1{2`pk`2qδ.

For |I| ` |J | ď N ´ 3 with |J | “ k, we have

(6.12) sup
Hs

`

t3{2|BαB
ILJv|

˘

À C1εs
1{2`pk`2qδ.
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From the low-order L2 bounds, for |I| ` |J | ď N ´ 6 with |J | “ k we have

(6.13)

sup
Hs

`

t1{2s|BαB
ILJu|

˘

` sup
Hs

`

t1{2s|BαB
ILJu|

˘

À C1ε,

sup
Hs

`

t3{2|BaB
ILJu|

˘

` sup
Hs

`

t3{2|BKB
ILJu|

˘

À C1ε,

sup
Hs

`

t1{2s|BαB
ILJv|

˘

` sup
Hs

`

t1{2s|BαB
ILJv|

˘

À C1εs
pk`2qδ,

sup
Hs

`

t3{2|BKB
ILJv|

˘

` sup
Hs

`

t3{2|BaB
ILJv|

˘

À C1εs
pk`2qδ,

sup
Hs

`

t3{2|BILJv|
˘

À C1εs
pk`2qδ.

For |I| ` |J | ď N ´ 7 with |J | “ k, we have

(6.14) sup
Hs

`

t3{2|BαB
ILJv|

˘

À C1εs
pk`2qδ.

6.4. Basic sup-norm estimates of the second generation. For |I|`|J | ď N´2 with |J | “ k,
we have the high-order bounds

(6.15)

sup
Hs

`

t1{2s|BILJBαu|
˘

` sup
Hs

`

t1{2s|BILJBαu|
˘

À C1εs
pk`2qδ,

sup
Hs

`

t3{2|BILJBau|
˘

` sup
Hs

`

t3{2|BILJBKu|
˘

À C1εs
pk`2qδ,

sup
Hs

`

t1{2s|BILJBαv|
˘

` sup
Hs

`

t1{2s|BILJBαv|
˘

À C1εs
1{2`pk`2qδ,

sup
Hs

`

t3{2|BILJBav|
˘

À C1εs
1{2`pk`2qδ,

sup
Hs

`

t3{2|BILJv|
˘

À C1εs
1{2`pk`2qδ

and, for |I| ` |J | ď N ´ 3 with |J | “ k,

(6.16)

sup
Hs

`

t5{2|BaB
ILJv|

˘

À C1εs
1{2`pk`3qδ,

sup
Hs

`

t5{2|BILJBav|
˘

À C1εs
1{2`pk`3qδ,

sup
Hs

`

t3{2|BILJBαv|
˘

` sup
Hs

`

t3{2|BILJBαv|
˘

À C1εs
1{2`pk`2qδ,

sup
Hs

`

t1{2s|BILJBαBβv|
˘

` sup
Hs

`

t1{2s|BILJBαBβv|
˘

À C1s
1{2`pk`2qδ,

sup
Hs

`

t3{2s|BILJBαBbv|
˘

` sup
Hs

`

t3{2s|BILJBaBβv|
˘

À C1s
1{2`pk`3qδ.

For |I| ` |J | ď N ´ 6 with |J | “ k, we have

(6.17)

sup
Hs

`

t1{2s|BILJBαu|
˘

` sup
Hs

`

t1{2s|BILJBαu|
˘

À C1ε,

sup
Hs

`

t3{2|BILJBau|
˘

` sup
Hs

`

t3{2|BILJBKu|
˘

À C1ε,

sup
Hs

`

t1{2s|BILJBαv|
˘

` sup
Hs

`

t1{2s|BILJBαv|
˘

À C1εs
pk`2qδ,

sup
Hs

`

t3{2|BILJv|
˘

À C1εs
pk`2qδ.
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In addition, for |I| ` |J | ď N ´ 7 with |J | “ k, we have

(6.18)

sup
Hs

`

t5{2|BaB
ILJv|

˘

À C1εs
pk`3qδ,

sup
Hs

`

t5{2|BILJBav|
˘

À C1εs
pk`3qδ,

sup
Hs

`

t3{2|BILJBαv|
˘

` sup
Hs

`

t3{2|BILJBαv|
˘

À C1εs
pk`2qδ,

sup
Hs

`

t1{2s|BILJBαBβv|
˘

` sup
Hs

`

t1{2s|BILJBαBβv|
˘

À C1s
pk`2qδ,

sup
Hs

`

t3{2s|BILJBαBbv|
˘

` sup
Hs

`

t3{2s|BILJBaBβv|
˘

À C1s
pk`3qδ.

Moreover, |I| ` |J | ď N ´ 8 with |J | “ k, we have

(6.19)

sup
Hs

`

t3{2|BILJBαBβv|
˘

` sup
Hs

`

t3{2|BILJBαBβv|
˘

À C1s
pk`2qδ,

sup
Hs

`

t3{2|BαBβB
ILJv|

˘

` sup
Hs

`

t3{2|BαBβB
ILJv|

˘

À C1s
pk`2qδ.

6.5. Estimates based on Hardy’s inequality on hyperboloids. We now substitute the basic
L2 estimates in Hardy’s inequality (2.17) and find

(6.20a) }s´1LJu}L2
f pHsq

À C0ε` C1εs
kδ, |L| ď N,

as well as the inequality (which will not be used in the following)

(6.20b) }s´1LJu}L2
f pHsq

À pC0 ` C1qε` C1ε ln s, |L| ď N ´ 4.

6.6. Estimate based on integration along radial rays. By the first estimate in (6.13) and
since t´1{2s´1 À t´1pt´ rq´1{2 (in the domain of interest), we obtain

|BrB
ILJupt, xq| À C1εt

´1pt´ rq´1{2, |I| ` |J | ď N ´ 6.

Then we integrate this inequality in space along the rays pt, λxq|0ďλďt´1 for any x P S3:

(6.21) |BILJupt, xq| À C1εt
´1pt´ rq1{2 » C1εt

´3{2s, |I| ` |J | ď N ´ 6.

7. Refined sup-norm estimates

7.1. Overview of the analysis in this section. We now proceed by using the structure of the
nonlinear wave system under consideration, and relying now on sharp sup-norm estimates. In the
following sections we are going to establish the following estimates: For |I| ď N ´ 4, we have

(7.1a) sup
Krs0,s1s

t|u| À C1ε,

(7.1b) sup
Hs

`

ps{tq´3{2`4δt3{2|BKB
Iv|

˘

` sup
Hs

`

ps{tq´1{2`4δt3{2|BIv|
˘

À C1ε,

and, more generally, for |I| ` |J | ď N ´ 4 with |J | “ k,

(7.2a) sup
Hs

t|LJu| À C1εs
kδ,

(7.2b) sup
Hs

`

ps{tq´3{2`4δt3{2|BKB
ILJv|

˘

` sup
Hs

`

ps{tq´1{2`4δt3{2|BILJv|
˘

À C1εs
kδ.

The property (7.1) is essentially a special case of (7.2): we will establish it first and it will next
serve in the proof of (7.2), done by induction on k.

The sup-norm estimate for the Klein-Gordon component (3.7) and the sup-norm estimate for
the wave equation (3.2) will now be used. We proceed with the following calculation:

(7.3) ´l
`

BILJu
˘

“ PαβBILJ
`

BαvBβv
˘

`RBILJpv2q,

(7.4) ´l
`

BILJv
˘

`HαβuBαBβB
ILJv ` c2BILJv “ rHαβuBαBβ , B

ILJ sv.
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We also recall by (3.7), the Ri terms in this context (with hαβ “ Hαβu) read as follows:

R1rB
ILJvs “

ˆ

s3{2
ÿ

a

BaBa `
xaxb

s1{2
BaBb `

3

4s1{2
`
ÿ

a

3xa

s1{2
Ba

˙

BILJv,

R2rB
ILJvs “ h

00
ˆ

3BILJv

4s1{2
` 3s1{2B0B

ILJv

˙

´ s3{2
`

2h
0b
B0BbB

ILJv ` h
ab
BaBbB

ILJv ` hαβBαΨ
β1

β Bβ1B
ILJv

˘

,

R3rB
ILJvs “ h

00
ˆ

2xas1{2B0Ba `
2xa

s1{2
Ba `

xaxb

s1{2
BaBb

˙

BILJv.

Hence, the following four terms must be controlled:

(7.5) BILJ
`

BαvBβv
˘

, BILJpv2q, RirB
ILJvs, rHαβuBαBβ , B

ILJ sv.

7.2. First improvement of the sup-norm of the wave component. We now present esti-
mates which use only the basic sup-norm estimates already established in Sections 6.3 and 6.4.
We first estimate the terms BILJ

`

BαvBβv
˘

and BILJpv2q.

Lemma 7.1. If the energy bounds (5.1) hold, then for all |I| ` |J | ď N ´ 7 with |J | “ k, the
following estimate holds in the region Kr2,s1s:

(7.6)
ˇ

ˇBILJ
`

BαvBβv
˘
ˇ

ˇ`
ˇ

ˇBILJ
`

v2
˘
ˇ

ˇ ď CpC1εq
2t´3spk`4qδ.

Proof. We have

(7.7) BILJ
`

BαvBβv
˘

“
ÿ

I1`I2“I
J1`J2“J

BI1LJ1BαvB
I2LJ2v,

where, in the right-hand side, each term satisfies |I1| ` |I2| “ |I| and |J1| ` |J2| “ |J |. Then we
obtain

ˇ

ˇBI1LJ1BαvB
I2LJ2v

ˇ

ˇ ď CpC1εq
2sp|J1|`2qδsp|J2|`2qδt´3 “ CpC1εq

2t´3spk`4qδ,

where we have used the third inequality in (6.18) for each term. The estimate of BILJ
`

v2
˘

is
derived similarly. �

We improve the bound on u, as follows.

Proposition 7.2 (First improvement of the sup-norm of the wave component). For |I| ` |J | ď
N ´ 7 one has

(7.8) |BILJupt, xq| À C0εt
´3{2 ` pC1εq

2ps{tqpk`4qδt´1spk`4qδ.

Proof. The proof is a direct application of the sup-norm estimate for the wave equation (3.2).
First of all, BILJu solves the Cauchy problem

lBILJu “ BILJ
`

PαβBαvBβv
˘

` BILJ
`

Rv2
˘

,

BILJup2, xq “ U0pI, J, xq, BtB
ILJup2, xq “ U1pI, J, xq,

where U0pI, J, xq and U1pI, J, xq are restrictions of BILJu and BILJu on the initial hyperplane

tt “ 2u. We remark that they are linear combinations of BI
1

x u and BtB
I1

x u with |I 1| ď |I| ` |J |.
Hence, u is decomposed as follows:

upt, xq “ w1pt, xq ` w2pt, xq

with
lLJw2 “ LJ

`

PαβBαvBβv
˘

` LJ
`

Rv2
˘

,

w2p2, xq “ Btw2p2, xq “ 0,

while
lw1 “ 0,

w1p2, xq “ U1pI, J, xq, Btw1p2, xq “ U2pI, J, xq.
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The sup-norm bound for w1 comes directly from the explicit expression of the solutions (cf.,
for instance, [32]) while for w2 we apply (3.2). Observe that for the terms in the right-hand side:

(7.9)

ˇ

ˇBILJ
`

PαβBαvBβv
˘
ˇ

ˇ`
ˇ

ˇBILJ
`

Rv2
˘
ˇ

ˇ ÀpC1εq
2t´3spk`4qδ

ÀpC1εq
2t´2´p1´p2`k{2qδqpt´ rq´1`p1`p2`k{2qδq

in Kr2,ss Ă Kr2,s1s. Recall that this estimate also holds in tpt, xq|r ă t ´ 1, t2 ´ r2 ď s2
1, t ě 2u.

Then by (3.2), the desired result is proven. �

We next estimate the terms RirB
ILJvs.

Lemma 7.3. For |I| ` |J | ď N ´ 4 with |J | “ k, the following estimates hold in Kr2,s1s:

(7.10a)
ˇ

ˇR1rB
ILJvs

ˇ

ˇ À C1εps{tq
3{2s´3{2`pk`4qδ,

(7.10b)
ˇ

ˇR2rB
ILJvs

ˇ

ˇ À C1ε|tu|ps{tq
3{2s´3{2`pk`3qδ ` pC1εq

2ps{tq3{2s´3{2`pk`3qδ,

(7.10c)
ˇ

ˇR3rB
ILJvs

ˇ

ˇ À pC1εq
2ps{tqs´2`pk`4qδ ` C1ε|tu|ps{tq

3{2s´3{2`pk`3qδ.

Proof. The proof is a substitution of the basic sup-norm estimates into the corresponding expres-
sion. We begin with R1 and focus first on BaBbB

ILJv:

(7.11)

BaBbB
ILJv “ t´1La

`

t´1LbB
ILJv

˘

“ t´1La
`

t´1BILbL
Jv ` t´1rLb, B

I sLJv
˘

“ t´1La
`

t´1
˘

BILbL
Jv ` t´2LaB

ILbL
Jv ` t´1La

`

t´1
˘

rLb, B
I sLJv

` t´2LarLb, B
I sLJv

“ t´1La
`

t´1
˘

BILbL
Jv ` t´2BILaLbL

Jv ` t´2rLa, B
I sLbL

Jv

` t´1La
`

t´1
˘

rLb, B
I sLJv ` t´2LarLb, B

I sLJv.

For the last term, we apply (4.5) as follows:

t´2LarLb, B
I sLJv “´ t´2

ÿ

|I1|ď|I|

λIbI1LaB
I1LJv

“´ t´2
ÿ

|I1|ď|I|

λIbI1B
I1LaL

Jv ´ t´2
ÿ

|I1|ď|I|

λIbI1rLa, B
I1sLJv

“´ t´2
ÿ

|I1|ď|I|

λIbI1B
I1LaL

Jv ` t´2
ÿ

|I1|ď|I|

λIbI1
ÿ

|I2|ď|I1|

λI
1

aI2B
I2LJv,

and the term rLa, B
I sLbL

Jv is bounded in the same manner. Then we conclude that
ˇ

ˇt´2LarLb, B
I sLJv

ˇ

ˇ ď Ct´2
ÿ

|I1|ď|I|

|J1|ď|J|`1

ˇ

ˇBI
1

LJ
1

v
ˇ

ˇ.

In view of the inequality
ˇ

ˇLa
`

t´1
˘
ˇ

ˇ ď Ct´1 (in K), the terms in the right-hand side of (7.11) are

bounded by Ct´2
ř

|I1|ď|I|

|J1|ď|J|`2

ˇ

ˇBI
1

LJ
1

v
ˇ

ˇ. Then, by the last equation in (6.11), we have

ˇ

ˇs3{2BaBbB
ILJv

ˇ

ˇ À C1εps{tq
7{2s´3{2`pk`4qδ

and, similarly,
ˇ

ˇxas´1{2BaB
ILJv

ˇ

ˇ À C1εps{tq
3{2s´3{2`pk`3qδ,

ˇ

ˇxaxbs´1{2BaBbB
ILJv

ˇ

ˇ À C1εps{tq
3{2s´3{2`pk`4qδ,

ˇ

ˇs´1{2BILJv
ˇ

ˇ À C1εps{tq
3{2s´3{2`pk`2qδ.

So we conclude that
ˇ

ˇR1rB
ILJvs

ˇ

ˇ À C1εt
´3{2spk`4qδ À C1εps{tq

3{2s´3{2`pk`4qδ.

For the derivation in the paragraph above, let us provide some more details by observing that,
for the first term,

|BaBbB
ILJv| “ |t´1La

`

t´1LbB
ILJv| À t´2|LaLbB

ILJv| ` t´1|Lapt
´1q| ¨ |LbB

ILJv|.
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Here, we remark that

s3{2t´2|LaLbB
ILJv| À t´2C1εs

3{2t´2s1{2`p|I|`2`2qδt´3{2 À ps{tq7{2s´3{2`pk`4qδ.

In the first inequality, we have used the fact that

|LaLbB
ILJv| À |BILaLbL

Jv| ` |rLaLb, B
I sLJv|.

For the first term in the right-hand-side of the above inequality, we get the upper bound CC1εt
´3{2s1{2`p|J|`2`2qδt´3{2

(for |I| ` |J | ` 2 ď N ´ 2) and for the second we recall the estimate on commutator (using (4.5)
twice), and see that

|rLaLb, B
I sLJv| À

ÿ

|I1|ď|I|

|J1|ď|J`1|

BI
1

|LJ
1

BI
1

LJ
1

v| À C1εt
´3{2s1{2`p|J|`1`2qδ.

The estimates of R2 and R3 are quite similar. We just need to observe that, by (6.21) and by

recalling that |H
00
| ď Cpt{sq2, |H

a0
| ď Cpt{sq, and |H

ab
| ď C, we obtain

(7.12) |h
00
| “ |H

00
u| À C1εt

1{2s´1, |h
a0
| À C1εt

´1{2, |h
ab
u| À C1εt

´3{2s

and
ˇ

ˇB0BaB
ILJv

ˇ

ˇ “ps{tq
ˇ

ˇBtBaB
ILJv

ˇ

ˇ

ďps{tqt´2
ˇ

ˇLaB
ILJv

ˇ

ˇ` t´1ps{tq
ˇ

ˇBtLaB
ILJv

ˇ

ˇ.

As was done in (7.11) and by applying (4.5) and the fifth equation in (6.15) we find

(7.13)
ˇ

ˇB0BaB
ILJv

ˇ

ˇ À C1εps{tq
7{2s´2`pk`3qδ.

Equipped with (7.12) and (7.13), we see that in R2rB
ILJvs,

ˇ

ˇs´1{2h
00
BILJv

ˇ

ˇ À pC1εq
2ps{tqs´2`pk`2qδ À pC1εq

2ps{tq3{2s´3{2`pk`2qδ,
ˇ

ˇs1{2h
00
B0B

ILJv
ˇ

ˇ À C1ε|tu|ps{tq
3{2s´3{2`pk`2qδ,

s3{2
ˇ

ˇh
0b
B0BbB

ILJv
ˇ

ˇ À C1ε|tu|ps{tq
5{2s´3{2`pk`3qδ,

s3{2
ˇ

ˇh
ab
BaBbB

ILJv
ˇ

ˇ À pC1εq
2ps{tq5s´2`pk`4qδ,

s3{2
ˇ

ˇhαβBαΨ
0

β B0B
ILJv

ˇ

ˇ À C1ε|tu|ps{tq
3{2s´3{2`pk`2qδ,

s3{2
ˇ

ˇhαβBαΨ
b

β BbB
ILJv

ˇ

ˇ “ 0,

while, in the expression R3rB
ILJ sv,

ˇ

ˇh
00
xas1{2B0BaB

ILJv
ˇ

ˇ À C1ε|tu|ps{tq
3{2s´3{2`pk`3qδ,

ˇ

ˇ

ˇ
h

00
xas´1{2BaB

ILJv
ˇ

ˇ

ˇ
À pC1εq

2ps{tq3{2s´3{2`pk`3qδ,

s´1{2
ˇ

ˇh
00
xaxbBaBbB

ILJv
ˇ

ˇ À pC1εq
2ps{tqs´2`pk`4qδ.

�

7.3. Second improvement on the wave component and first improvement on the Klein-
Gordon component. We now establish (7.1a)-(7.1b) and, for latter use, we first derive the
following improved estimates on the terms Ri.

Lemma 7.4. For |I| ` |J | ď N ´ 4, |J | “ k, the following estimates hold in Kr2,s1s:

(7.14)
3
ÿ

i“1

ˇ

ˇRirB
ILJvs

ˇ

ˇ ÀC1εps{tq
3{2s´3{2`pk`7qδ.

Proof. This is a combination of Lemma 7.3 and (7.8) (take k “ 0 then considering the condition
C1ε ď 1) and the fact that in K, t1{2 ď s ď t. �

Then we need to estimate the term |h1t,xpλq| in Proposition 3.3.
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Lemma 7.5. The following estimate holds for pt, xq P Kr2,s1s:

(7.15)

ż s

s0

|h1t,xpλq|dλ À C1ε,

where ht,xpλq :“ h
00
pλt{s, λx{sq “ H

00
pλt{s, λx{squpλt{s, λx{sq.

Proof. With the notation of Proposition 3.3, we have h
00
“ H

00
u, and we observe that

H
00
“ HαβΨ

0

αΨ
0

β “ H00pt{sq2 ´ 2
ÿ

a

H0apxat{sq `
ÿ

a,b

Habpxaxb{s2q.

Note thatH
00
pλt{s, λx{sq “ H

00
pt, xq, so thatH

00
is constant along the segment pλt{s, λx{sq, s0 ď

λ ď s. So we find

h1t,xpλq “ H
00
pt, xqpt{sqBKupλt{s, λx{sq,

and we conclude that
|h1t,xpλq| ď Cpt{sq3|BKupλt{s, λx{sq|.

Next, we observe the identity

(7.16) BKu “
s2

t2
Btu`

xa

t
Bau “

s2

t2
Btu`

xa

t2
Lau

and, by the first inequality in (6.17) and (7.8) with BILJ “ La,

|BKu| À C1εps{tqt
´3{2 ` C1εps{tq

5δt´2s5δ.

Therefore, we obtain

|h1t,xpλq| À C1εps{tq
´1{2λ´3{2 ` C1εps{tq

´1`5δλ´2`5δ.

Then, to apply the sup-norm estimate for the Klein-Gordon equation (3.7), we proceed as
follows. In the range 0 ď r{t ď 3{5, we have 4{5 ď s{t ď 1, and

ż s

s0

|h1t,xpλq|dλ À C1ε

ż s

2

λ´3{2 dλ À C1ε.

In the range 3{5 ă r{t ă 1, we obtain
ż s

s0

|h1t,xpλq|dλ ÀC1εps{tq
´1{2

ż s

s0

λ´3{2 dλ` C1εps{tq
´1`5δ

ż s

s0

λ´2`5δ dλ

ÀC1εps{tq
´1{2s

´1{2
0 ` C1εps{tq

´1`5δs´1`5δ
0 .

We recall that, when 3{5 ă r{t ă 1, s0 “

b

t`r
t´r ě t{s, so that

şs

s0
|h1t,xpλq|dλ À C1ε, and the

desired result is established. �

Now we give a second application of the sup-norm estimate for the Klein-Gordon component
(3.7).

Proposition 7.6 (Second improvement on the wave component and first improvement on the
Klein-Gordon component). The following estimate also holds in Kr2,s1s:

(7.17a) |vpt, xq| `
t

s
|BKvpt, xq| À C1εps{tq

2´7δs´3{2,

(7.17b) |upt, xq| À C1εt
´1.

Proof. We rely here on (3.7) and the sup-norm estimate for the wave equation (3.2), and we first
establish (7.17a). In view of (7.15), we have

ż s

s0

|h1t,xps̄q|e
şs
s̄
|h1t,xpλq|dλ ds̄ ď

ż s

s0

|h1t,xps̄q|e
şs
s0
|h1t,xpλq|dλ ds̄

À

ż s

s0

|h1t,xps̄q|e
CC1ε ds̄ À C1ε.



38 PHILIPPE G. LEFLOCH AND YUE MA

On the other hand, to estimate F ps̄q, we write

F psq “

ż s

s0

`

R1rvs `R2rvs `R3rvs
˘

pλt{s, λx{sq dλ

ÀC1ε

ż s

s0

ps{tq3{2λ´3{2`7δdλ À C1εps{tq
3{2s

´1{2`7δ
0 .

Now for 0 ď r{t ď 3{5 we see that 4{5 ď s{t ď 1 and s0 “ 2, and we have

F psq À C1εps{tq
3{2s

´1{2`7δ
0 À C1εps{tq

2´7δ.

For 3{5 ă r{t ă 1, we see that s0 “

b

t`r
t´r ď t{s, so that

(7.18) F psq À C1εps{tq
2´7δ.

Then, by combining (7.15), (7.18) and (3.7), we conclude that (7.17a) holds. On the other hand,
(7.17b) follows directly from substituting (7.17a) into (3.2).

Let us explain in more detail the above argument. In the equation

lu “ PαβBαvBβv `Rv
2,

we need to estimate
ˇ

ˇPαβBαvBβv
ˇ

ˇ and
ˇ

ˇRv2
ˇ

ˇ. First we rewrite the expresison PαβBαvBβv in the
semi-hyperboloidal frame:

PαβBαvBβv “P
αβ
BαvBβv

“P 00
BtvBtv ` P

a0
BavBtv ` P

0b
BtvBbv ` P

ab
BavBbv.

The last three terms in the right-hand-side can be controlled by applying the first and the third
inequalities in (6.18)

ˇ

ˇP a0βBavBβv
ˇ

ˇ`
ˇ

ˇPαbBαBbv
ˇ

ˇ ď CpC1εq
2t´4s5δ.

For the first term, we see that

Btv “
t2

s2

ˆ

BKv ´
xa

t
Bav

˙

.

Then by (7.17a) and the third inequality in (6.18), we obtain

|Btv| ďCC1εps{tq
1´7δs´3{2 ` CC1εt

´5{2s3δ

ďCC1εps{tq
1´7δs´3{2.

This leads to
ˇ

ˇP 00
BtvBtv

ˇ

ˇ ď CpC1εq
2pt´ rq´1`p1{2´7δ{2qt´2´p1{2´7δ{2q.

The term
ˇ

ˇRv2
ˇ

ˇ is bounded directly by (7.17a), and we have

ˇ

ˇRv2
ˇ

ˇ ď CpC1εq
2ps{tq4´14δs´3 ď CC1εt

´3.

Then by applying (3.2), the desired bound on u is guaranteed. �

With (7.17b), we can improve again the estimate on Ri. Namely, the proof of the following
estimate is immediate by substituting (7.17b) into (7.7), and using (3.2).

Lemma 7.7. The following estimates hold:

(7.19)
3
ÿ

i“1

RirB
ILJvs À C1εps{tq

3{2s´3{2`pk`4qδ.
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7.4. Second improvement on the Klein-Gordon component. We now establish (7.1b) and,
to do so, our first task is to estimate the commutator rHαβuBαBβ , B

ILJ s. First of all, from the
following identities

(7.20) Bt “
t2

s2

`

BK ´ px
a{tqBa

˘

, Ba “ ´
txa

s2
BK `

xaxb

t2
Bb ` Ba,

the following estimates are immediate:

(7.21)

ˇ

ˇBtB
ILJv

ˇ

ˇ ď pt{sq2
ˇ

ˇBKB
ILJv

ˇ

ˇ` pt{sq2
ÿ

a

ˇ

ˇBaB
ILJv

ˇ

ˇ,

ˇ

ˇBaB
ILJv

ˇ

ˇ ď pt{sq2
ˇ

ˇBKB
ILJv

ˇ

ˇ` Cpt{sq2
ÿ

a

ˇ

ˇBaB
ILJv

ˇ

ˇ.

Based on this result, we estimate the commutator rHαβuBαBβ , B
I s. (In the statement below, as

usual, a sum over the empty set vanishes.)

Lemma 7.8. The following estimates are valid in K for |I| ` |J | ď N ´ 4 and |J | “ k:

(7.22)

ˇ

ˇrHαβuBαBβ , B
ILJ sv

ˇ

ˇ

À C1εt
´1ps{tq´2

ÿ

|I2|ď|I|,β
|J2|ď|J|´1

|BKBβB
I2LJ2v| `

ÿ

J1`J2“J
|J1|ě1

|LJ1u| |BILJ2BαBβv|

` C1εt
´3{2ps{tq´3

ÿ

|I2|`|J2|ď|I|`|J|´1,β
N´7ď|I2|`|J2|ďN´5

|BKBβB
I2LJ2v|

` pC1εq
2ps{tq3{2s´3`pk`4qδ.

Proof. We write the decomposition

rHαβuBαBβ , B
ILJ sv “

ÿ

I1`I2“I
J1`J2“J
|I1|`|J1|ě1

HαβBI1BJ1uBI2LJ2BαBβv `H
αβuBIprLJ , BαBβsvq

“:T0 ` T7.

We recall that by (4.17) and (7.17b), T7 is bounded as follows:

|T7| ÀC1εt
´1

ÿ

α,β
|J2|ď|J|´1

|BIBαBβL
J2v|

ÀC1εt
´1pt{sq2

ÿ

β
|J2|ď|J|´1

|BKBβB
ILJ2v| ` C1εt

´1pt{sq2
ÿ

a,β
|J2|ď|J|´1

|BaBβB
ILJ2v|.

The second term in the right-hand side is bounded as follows:

C1εt
´1pt{sq2|BaBβB

ILJ2v| ÀC1εt
´1pt{sq2C1εt

´5{2s1{2`pk`3qδ

ÀpC1εq
2ps{tq3{2s´3`pk`3qδ.

We then write
ˇ

ˇT0

ˇ

ˇ ď
ÿ

I1`I2“I,|I1|ě1
J1`J2“J,α,β,γ

|BI1LJ1u| |BI2LJ2BαBβv| `
ÿ

J1`J2“J
|J1|ě1,α,β

|LJ1u| |BILJ2BαBβv|

“:T1 ` T2.

Then we see that T1 is again decomposed as follows:

T1 “
ÿ

I1`I2“I,|I1|ě1
J1`J2“J,α,β,γ
|I2|`|J2|ďN´8

|BI1LJ1u| |BI2LJ2BαBβv| `
ÿ

I1`I2“I,|I1|ě1
J1`J2“J,α,β,γ

N´7ď|I2|`|J2|ďN´5

|BI1LJ1u| |BI2LJ2BαBβv|

“:T3 ` T4.

We have

T3 À C1εt
´1{2s´1`p|J1|`2qδC1εt

´3{2sp|J2|`2qδ À pC1εq
2ps{tq2s´3`pk`4qδ,
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where we applied (6.19) and the fourth estimate in (6.18). Then by applying (7.21) and in view
of (4.17), the term T4 is bounded by

T4 ď
ÿ

I1`I2“I,|I1|ě1
|J1|`|J2|ď|J|,α,β,γ
N´7ď|I2|`|J2|ďN´5

|BI1LJ1u| |BαBβB
I2LJ2v|

ďpt{sq2
ÿ

I1`I2“I,|I1|ě1
|J1|`|J2|ď|J|α,β,γ
N´7ď|I2|`|J2|ďN´5

|BI1LJ1u| |BKBβB
I2LJ2v|

` pt{sq2
ÿ

I1`I2“I,|I1|ě1
|J1|`|J2|ď|J|,a,β,γ
N´7ď|I2|`|J2|ďN´5

|BI1LJ1u| |BaBβB
I2LJ2v| “: T5 ` T6.

Then, in the expression T5, N ´ 7 ď |I2| ` |J2| ď N ´ 5 implies |I1| ` |J1| ď 3 ď N ´ 6 and recall

|I1| ě 1, so we see |BI1LJ1u| ď C
ř

γ BγB
I11LJ1u were |I 11| ` |J1| ď 2 ď N ´ 6. Then by the first

estimate in (6.13), we find

T5 À C1εt
´3{2ps{tq´3

ÿ

|I2|`|J2|ď|I|`|J|´1
N´7ď|I2|`|J2|ďN´5

|BKBβB
I2LJ2v|.

Furthermore, we have

T6 Àpt{sq
2C1εt

´1{2s´1 C1εt
´5{2s1{2`p|J2|`3qδ À pC1εq

2ps{tqs´7{2`pk`2qδ

ÀpC1εq
2ps{tq3{2s´3`pk`3qδ

and the desired estimate is established. �

We are now in a position to establish the desired bound (7.1b).

Proposition 7.9 (Second improvement on the Klein-Gordon component). The following estimate
holds in Kr2,s1s for |I| ď N ´ 4:

(7.23a) |BKB
Ivpt, xq| À C1εps{tq

3{2´4δt´3{2,

(7.23b) |BIvpt, xq| À C1εps{tq
1{2´4δt´3{2.

Proof. We first discuss the case where |I| ´ 1 ě N ´ 7 and, in this case, using (7.22)
ˇ

ˇrHαβuBαBβ , B
I sv

ˇ

ˇ ÀC1εt
´3{2ps{tq´3

ÿ

|I2|ď|I|´1,β
N´7ď|I2|ďN´5

|BKBβB
I2v| ` pC1εq

2ps{tq3{2s´3`4δ.

For all s̄ P rs0, ss, using (7.19) and the above estimate we have

F ps̄q ď
3
ÿ

i“1

ż s̄

s0

|RirB
Ivspλt{s, λx{sq|dλ`

ż s̄

s0

λ3{2
ˇ

ˇrHαβuBαBβ , B
I sv

ˇ

ˇdλ

ÀC1εps{tq
3{2

ż s̄

s0

λ´3{2`3δ dλ` pC1εq
2ps{tq3{2

ż s̄

s0

λ´3{2`4δdλ

` C1εps{tq
´3{2

ÿ

|I2|ď|I|´1,β
N´7ď|I2|ďN´5

ż s̄

s0

|BKBβB
I2vpλt{s, λx{sq|dλ

ÀC1εps{tq
´3{2

ÿ

|I2|ď|I|´1,β
N´7ď|I2|ďN´5

ż s̄

s0

|BKBβB
I2vpλt{s, λx{sq|dλ` C1εps{tq

3{2s
´1{2`4δ
0 .

Case I: 3{5 ă r{t ă 1. In this case, s0 “

b

t`r
t´r ě t{s and we have

F ps̄q À C1εps{tq
2´4δ ` C1εps{tq

´3{2
ÿ

|I2|ď|I|´1,β
N´7ď|I2|ďN´5

ż s̄

s0

|BKBβB
I2vpλt{s, λx{sq|dλ.
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We define

Vt,xpλq :“ pλt{sq3{2
ÿ

|I2|ď|I|´1,β
N´7ď|I2|ďN´5

|BKBβB
I2vpλt{s, λx{sq|

and find

(7.24) F ps̄q À C1εps{tq
2´4δ ` C1ε

ż s̄

s0

λ´3{2Vt,xpλq dλ, s0 ď s̄ ď s.

Recalling the sup-norm estimate for the Klein-Gordon component (3.7) in the case 1 ą r{t ą
3{5, we obtain

|BKB
Ivpt, xq| ď Cs´1{2t´1

´

F psq `

ż s

s0

F ps̄q|h1t,xps̄q|e
şs
s̄
|h1t,xpθq|dθ ds̄

¯

.

We replace pt, xq by pλt{s, λx{sq with s0 ď λ ď s, we see that pλt{s, λx{sq is again contained in
Kr2,s1s. Then (3.7) still holds, and so

|BKB
Ivpλt{s, λx{sq| ď Cps{tqλ´3{2

´

F pλq `

ż λ

s0

F ps̄q|h1t,xps̄q|e
şλ
s̄
|h1t,xpθq|dθ ds̄

¯

,

which implies

pλt{sq3{2|BKB
Ivpλt{s, λx{sq| À C1εps{tq

´1{2
´

F pλq `

ż λ

s0

F ps̄q|h1t,xps̄q|e
şλ
s̄
|h1t,xpθq|dθ ds̄

¯

.

Recall that (7.15) holds for 1 ą r{t ą 3{5 and that F is increasing, then
ż λ

s0

F ps̄q|h1t,xps̄q|e
şλ
s̄
|h1t,xpθq|dθ ds̄ ď F pλq

ż λ

s0

|h1t,xps̄q|e
şλ
s̄
|h1t,xpθq|dθ ds̄ À C1εF pλq.

So we see that

pλt{sq3{2|BKB
Ivpλt{s, λx{sq| À C1εps{tq

´1{2F pλq

and, in combination with (7.24),

pλt{sq3{2|BKB
Ivpλt{s, λx{sq| À C1εps{tq

3{2´4δ ` C1εps{tq
´1{2

ż λ

s0

s̄´3{2Vt,xps̄qds̄,

which implies (by taking sum over N ´ 6 ď |I| ď N ´ 4):

(7.25) Vt,xpλq À C1εps{tq
3{2´4δ ` C1εps{tq

´1{2

ż λ

s0

s̄´3{2Vt,xps̄qds̄.

Then, by Gronwall lemma, we see that
ż λ

s0

s̄´3{2Vt,xps̄qds̄ ÀC1εps{tq
3{2´4δ

ż λ

s0

s̄´3{2e
CC1εps{tq

´1{2
şs̄
s0
θ´3{2dθ

ds̄

ÀC1εps{tq
3{2´4δ

ż λ

s0

s̄´3{2eCC1εps{tq
´1{2s

´1{2
0 ds̄

ÀC1εps{tq
3{2´4δs

´1{2
0 eCC1εps{tq

´1{2s
´1{2
0

Here we recall that s0 “

b

t`r
t´r ě t{s, then

(7.26) Vt,xpλq À C1εps{tq
3{2´4δ.

Now we substitute (7.26) into (7.24), and obtain

(7.27) F ps̄q À C1εps{tq
2´4δ, s0 ď s̄ ď s.

Then we apply the sup-norm estimate (3.7) in the case 1 ą r{t ą 3{5 and considering (7.15),

(7.28) |BKB
Ivpt, xq| À C1εps{tq

3´4δs´3{2, |BIvpt, xq| À C1εps{tq
2´4δs´3{2.
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Case II: 0 ď r{t ď 3{5. In this case, 4{5 ď s{t ď 1 and s0 “ 2, so the discussion is simpler. We
just remark that as in the former case,

F ps̄q ÀC1εps{tq
3{2s

´1{2`6δ
0 ` C1εps{tq

´3{2
ÿ

|I2|ď|I|´1,β
N´7ď|I2|ďN´5

ż s̄

s0

|BKBβB
I2vpλt{s, λx{sq|dλ

ÀC1ε` C1ε

ż s̄

2

λ´3{2Vt,xpλq dλ.

Then by the sup-norm estimate (3.7) (with 0 ď r{t ď 3{5),

|BKB
Ivpt, xq| ÀC0εt

´3{2
´

1`

ż s

2

|h1t,xps̄qe
C

şs
s̄
|h1t,xpθqdθ|| ds̄

¯

` t´3{2
´

F psq `

ż s

2

F ps̄q|h1t,xps̄q|e
C

şs
s̄
θ|h1t,xpθq|dθ ds̄

¯

.

Then similar to the former case, we get (recall (7.15))

|pλt{sq3{2BKB
Ivpt, xq| À pC0 ` C1qε` C1ε

ż λ

2

s̄´3{2Vt,xps̄qds̄ À C1ε` C1ε

ż λ

2

s̄´3{2Vt,xps̄qds̄,

provided by C1 ě C0, which implies

Vt,xpλq À C1ε` C1ε

ż λ

2

s̄´3{2Vt,xps̄qds̄

Then, Gronwall lemma implies Vt,xpλq À C1ε and, therefore,

|BKB
Ivpt, xq| À C1εt

´3{2 À C1ps{tq
3{2´4δt´3{2.

And again, as in the former case, we see that |BIvpt, xq| À C1ps{tq
1{2´4δt´3{2.

When |I| ´ 1 ă N ´ 7, we see that in this case
ˇ

ˇrHαβuBαBβ , B
I sv

ˇ

ˇ À pC1εq
2ps{tq3{2s´3`4δ.

A direct application of the sup-norm estimate (3.7) combined with (7.19) will give the estimate
on BIv and BαB

Iv. Finally, combining these two cases, we see that the desired estimates are
established. �

7.5. Third improvement on the wave and Klein-Gordon components. We now establish
(7.2), by combining the sup-norm estimate for the Klein-Gordon equation (3.7) and the sup-norm
estimate for the wave equation (3.2), together with an additional bootstrap argument.

Proposition 7.10 (Third improvement on the wave and Klein-Gordon components). There exist
constants C, ε2 ą 0 (depending only on N ě 8 and the structure of the model system (1.11)) such
that if the bootstrap assumption (5.1) holds for ε ď ε2 and C1ε ď 1, then the following estimates
also hold for all s P r2, s1s and |I| ` |J | ď N ´ 4, |J | “ k:

(7.29a) sup
Hs

`

t|LJu|
˘

À C1εs
kδ,

(7.29b) sup
Hs

`

ps{tq´3`7δs3{2|BKB
ILJv|

˘

` sup
Hs

`

ps{tq´2`7δs3{2|BILJv|
˘

À C1εs
kδ,

(7.29c) sup
Hs

`

ps{tq´1`7δs3{2|BαB
ILJv|

˘

À C1εs
kδ.

Furthermore, we see that by the commutator estimates in Proposition 4.6, the following refined
decay estimates are a direct consequence of (7.29c):

(7.30) sup
Hs

`

ps{tq1{2`7δt3{2|BILJBαv|
˘

À C1εs
kδ, |I| ` |J | ď N ´ 4, |J | “ k,

(7.31) sup
Hs

`

ps{tq1{2`7δt3{2|BILJBαBβv|
˘

À C1εs
kδ, |I| ` |J | ď N ´ 5, |J | “ k,
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(7.32) sup
Hs

`

ps{tq´3{2`7δt3{2|BILJBαv|
˘

À C1εs
kδ, |I| ` |J | ď N ´ 5, |J | “ k,

(7.33) sup
Hs

`

ps{tq´3{2`7δt3{2|BILJBαBβv|
˘

À C1εs
kδ, |I| ` |J | ď N ´ 6, |J | “ k.

Proof. We proceed by induction on |J | and introduce the notation

Vk,0pλq :“ sup
2ďsďλ,|J|ďk
|I|`|J|ďN´4

sup
Hs

`

ps{tq´2`7δs3{2|BILJv|
˘

,

Vk,1pλq :“ sup
2ďsďλ,|J|ďk
|I|`|J|ďN´4

sup
Hs

`

ps{tq´3`7δs3{2|BKB
ILJv|

˘

,

and, with |J | ď k, Ukpλq :“ sup 2ďsďλ
|J|ďk

supHs

`

t|LJu|
˘

. To begin with, we observe that by (7.23)

and (7.17b), there exists a positive constant C determined by the structure of the system (1.11)
such that

V0,0pλq À C1ε, V0,1pλq À C1ε, U0pλq À C1ε,

That is, (7.29) is proved in the case where k “ 0.
Then we suppose that for all 0 ď j ď k ´ 1 ď N ´ 5, there exists a (sufficient large) constant

Ck´1 depending only on the structure of the system (1.11) and a positive constant ε1k´1 such that
for all ε ď ε1k´1,

(7.34) Vj,0psq ď Ck´1C1εs
jδ, Vj,1psq ď Ck´1C1εs

jδ, Uj ď Ck´1C1εs
jδ

hold on r2, s1s with Ck´1 depending only on k and the structure of (1.11). Then we will prove
that there exists a pair of positive constant pCk, ε

1
kq depending only on N and the structure of the

model system (1.11) such that if (5.1) holds with ε ď ε1k and C1ε ď 1, then

(7.35) Vk,0psq ď CkC1εs
kδ, Vk,1psq ď CkC1εs

kδ, Uk ď CkC1εs
kδ.

We rely on a bootstrap argument. First, we observe that on the initial hyperboloid H2, there
exists a positive constant C0 ą 0 such that

(7.36)

max
|I|`|J|ďN´4

|J|ďk

sup
H2

`

p2{tq´1{2`7δt3{2|BILJv|
˘

ď C0,kC1ε,

max
|I|`|J|ďN´4

|J|ďk

sup
H2

`

p2{tq´3{2`7δt3{2|BKB
ILJv|

˘

ď C0,kC1ε,

max
|J|ďk

sup
H2

`

t|LJu|
˘

ď C0,kC1ε.

We choose Ck ą C0,k and set

s2,k :“ sup
!

s P r2, s1s Vk,0psq ď CkC1εs
kδ,

Vk,1psq ď CkC1εs
kδ, Uk ď CkC1εs

kδ
)

.

By continuity, we have s2,k ą 2. We will prove that for all sufficiently large constant Ck ě
maxtC0,k, Ck´1, 1u the following bounds hold on r2, s2,ks:

(7.37) Vk,0psq ď
1

2
CkC1εs

kδ, Vk,1psq ď
1

2
CkC1εs

kδ, Uk ď
1

2
CkC1εs

kδ

for sufficiently small ε. Once this is proven, we conclude that s2,k “ s1. Namely, proceeding by
contradiction, we see that in the opposite case at s2,k ă s1, at least one of the following conditions
must hold:

Vk,0psq “ CkC1εs
kδ, Vk,1psq “ CkC1εs

kδ, Uk “ CkC1εs
kδ,

which contradicts the improved estimates (7.37).
It remains to establish (7.37) and we derive first the following estimate for |I| ` |J | ď N ´ 4,

|J | “ j ď k (again provided 2 ď s ď s2,k)

(7.38a)
ˇ

ˇBILJv
ˇ

ˇ À CkC1εps{tq
2´7δs´3{2`jδ,



44 PHILIPPE G. LEFLOCH AND YUE MA

(7.38b)
ˇ

ˇBαB
ILJv

ˇ

ˇ À CkC1εps{tq
1´7δs´3{2`jδ,

(7.38c)
ˇ

ˇLJu
ˇ

ˇ À CkC1εt
´1sjδ.

The derivation of (7.38a) is direct from the decay assumption (7.34) and the induction assumption
(7.34), while (7.38b) follows directly from (7.21), the decay assumption (7.35) or the induction
assumption (7.34):

ˇ

ˇBαB
ILJv

ˇ

ˇ Àps{tq´2
ˇ

ˇBKB
ILJv

ˇ

ˇ` ps{tq´2
ÿ

a

ˇ

ˇBaB
ILJv

ˇ

ˇ

ÀCkC1εps{tq
´2ps{tq3´7δs´3{2`jδ ` C1εps{tq

´2t´5{2s1{2`pj`3qδ

ÀCkC1εps{tq
1´7δs´3{2`jδ ` C1εps{tq

1{2s´2`pj`3qδ

ÀCkC1εps{tq
1´7δs´3{2`jδ,

where the first equation in (6.16) was used. On the other hand, (7.38c) is also direct from (7.34)
and (7.35).

Then we need the following two estimates for |I| ` |J | ď N ´ 4, |J | “ k:

(7.39)
ˇ

ˇBILJ
`

BαvBβv
˘
ˇ

ˇ`
ˇ

ˇBILJ
`

v2
˘
ˇ

ˇ À pCkC1εq
2t´2´p1{2´7δ`kδ{2qpt´ rq´1`p1{2´7δ`kδ{2q,

(7.40)
ˇ

ˇrHαβuBαBβ , B
ILJ sv

ˇ

ˇ ÀpCkC1εq
2ps{tq2´7δs´5{2`kδ.

The estimate (7.39) follows directly from (7.38). We see that
ˇ

ˇBILJpv2q
ˇ

ˇ ď
ÿ

I1`I2“I
J1`J2“J

ˇ

ˇBI1BJ1vBI2LJ2v
ˇ

ˇ

ÀCkC1εps{tq
2´7δs´3{2`|J1|δCkC1εps{tq

2´7δs´3{2`|J2|δ

»pCkC1εq
2ps´ rq´1`p1{2´7δ`kδ{2qt´2´p1{2´7δ´kδ{2q

and
ˇ

ˇBILJ
`

BαvBβv
˘
ˇ

ˇ ď
ÿ

I1`I2“I
J1`J2“J

ˇ

ˇBI1LJ1BαvB
I2LJ2Bβv

ˇ

ˇ À pCkC1εq
2ps{tq2´14δs´3`kδ

»pCkC1εq
2t´2´p1{2´7δ´kδ{2qpt´ rq´1`p1{2´7δ`kδ{2q.

The estimate of (7.40) is also direct by substituting (7.38). We recall (7.22) an write
ˇ

ˇrHαβuBαBβ , B
ILJ sv

ˇ

ˇ

À C1εps{tq
´2t´1Ckεps{tq

3´7δs´3{2`kδ ` pCkεq
2

ÿ

|J1|`|J2|ď|J|

t´1s|J1|δps{tq1´7δs´3{2`|J2|δ

` C1εt
´3{2ps{tq´3Ckεps{tq

3´7δs´3{2`kδ ` pC1εq
2ps{tq3{2s´3`pk`4qδ

À pCkC1εq
2ps{tq2´7δs´5{2`kδ,

where we have assumed that Ck ě C1.
Now we substitute (7.39) into (3.2) and find that (similar to the proof of Proposition 7.2)

(7.41)
ˇ

ˇBILJu
ˇ

ˇ À C0,kC1εt
´3{2 ` pCkC1εq

2ps{tqkδt´1skδ,

which is

(7.42) Ukpsq À C0,kC1ε` pCkC1εq
2skδ.

On the other hand, the estimate on |BILJv| and
ˇ

ˇBαB
ILJv

ˇ

ˇ is a bit more difficult. We see that

F ps̄q ď

ż s̄

s0

3
ÿ

i“1

RirB
ILJvspλt{s, λx{sq dλ`

ż s̄

s0

λ3{2
ˇ

ˇrHαβuBαBβ , B
ILJ sv

ˇ

ˇpλt{s, λx{sq dλ.
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By the sup-norm estimate (3.7), in the region K X t3{5 ă r{t ă 1u, recall that s0 ě Ct{s, we
can calculate each term in the right-hand side of the above inequality with that aid of (7.40) and
(7.14) and find that

ˇ

ˇF psq
ˇ

ˇ ÀC1εps{tq
2´7δ´kδ ` pCkC1εq

2ps{tq2´7δskδ

ÀC1εps{tq
2´7δskδ ` pCkC1εq

2ps{tq2´7δskδ »
`

C1ε` pCkC1εq
2
˘

ps{tq2´7δskδ.

Then, we apply the sup-norm estimate (3.7) with (7.15) and by the same procedure in the proof
of Proposition (7.6), we conclude that when 3{5 ă r{t ă 1,

(7.43a) |BKB
ILJvpt, xq| À

`

C1ε` pCkC1εq
2
˘

ps{tq3´7δs´3{2`kδ,

(7.43b) |BILJvpt, xq| À
`

C1ε` pCkC1εq
2
˘

ps{tq2´7δs´3{2`kδ.

When 0 ď r{t ď 3{5, we see that 4{5 ď s{t ď 1, then

F psq À
`

C1ε` pCkC1εq
2
˘

t´3{2skδ.

Then, also by the sup-norm estimate (3.7) and (7.15), we find that

(7.44a) |BKB
ILJv| À pC0,k ` 1qC1εps{tq

3´7δs´3{2`kδ ` pCkC1εq
2ps{tq3´7δs´3{2`kδ,

(7.44b) |BILJv| À pC0,k ` 1qC1εps{tq
2´7δs´3{2`kδ ` pCkC1εq

2ps{tq2´7δs´3{2`kδ,

where we recall that C1 ą C0

Then we conclude that there exists a positive constant C determined only by the structure of
the system (1.11) such that

(7.45a) Vk,1psq ď CpC0,k ` 1qC1εs
kδ ` CpCkC1εq

2skδ,

(7.45b) Vk,0psq ď CpC0,k ` 1qC1εs
kδ ` CpCkC1εq

2skδ.

Now we consider together (7.42) and (7.45) and see that if Ck ą 2CpC0,k ` 1q, then we can take

ε1k :“
Ck´2CpC0,k`1q

2CC2
kC1

. Then we find that

V0,kpsq ď
1

2
CkC1εs

kδ, V1,kpsq ď
1

2
CkC1εs

kδ, Ukpsq ď
1

2
CkC1εs

kδ,

for all ε ď ε1k. This conclude that s2,k “ s2 so the case |J | “ k is proven. Then by induction
we see that for all k ď N ´ 4, (7.34) is established. Then taking ε2 :“ minkďN´4tε

1
ku and

C8 :“ maxkďN´4 Ck, we see that (7.29a) and (7.29b) are established for all k ď N ´ 4 and, more
precisely,

(7.46a) sup
Hs

`

t|LJu|
˘

ď C8C1εs
kδ,

(7.46b) sup
Hs

`

ps{tq´3`7δs3{2|BKB
ILJv|

˘

` sup
Hs

`

ps{tq´2`7δs3{2|BILJv|
˘

ď C8C1εs
kδ.

(7.46c) sup
Hs

`

ps{tq´1`7δs3{2|BαB
ILJv|

˘

ď C8C1εs
kδ.

From its definition, we see that C8 is determined only from the structure of the system and
therefore, we have proven (7.29). �
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8. Refined energy estimate and completion of the bootstrap argument

8.1. Overview. In this section, we derive the improved energy estimates (5.2) which concludes
the main result. The improved estimates are classified in two categories. The first refers to the
energy estimates of order higher than or equal to N ´ 3, the second refers to those of order lower
that or equal to N ´ 4.

First, we apply BILJ (with |I| ` |J | ď N) to our system of equations

(8.1) ´lBILJu “ PαβBILJ
`

BαvBβv
˘

`RBILJpv2q,

(8.2) ´lBILJv ` c2BILJv `HαβuBαBβB
ILJv “ rHαβuBαBβ , B

ILJ sv.

To be able to apply the energy estimate (Proposition 2.1), we need first to check (2.12a) and
(2.12b).

Lemma 8.1. There exists a positive constant ε0 such that if the energy assumption (5.1) is valid
with C1ε ď 1 and ε ď ε0, then the following estimates hold:

(8.3)
1

2
Em,c ď Eg,c ď 2Em,c,

(8.4)

ż

Hs

ps{tq|Bαh
αβBtB

ILJvBβB
ILJv|dx`

ż

Hs

ps{tq|Bth
αβBαB

ILJvBβB
ILJv|dx

ÀMpsqEps, BILJvq1{2

with

Mpsq ď

#

C1εs
´1{2`kδ, N ´ 3 ď |I| ` |J | ď N,

C1εs
´1`kδ, |I| ` |J | ď N ´ 4.

Proof. The proof of (8.3) follows directly from (7.17b). We remark that

|hαβ | “ |Hαβu| À C1εt
´1 À C1εps{tq

2

where we have observed that t1{2 ď s ď t in K. We get
ż

Hs

|hαβBtB
ILJvBβB

ILJv|dx À C1ε

ż

Hs

|ps{tq2BαB
ILJvBβB

ILJv|dx À C1εEg,cps, B
ILJvq,

ż

Hs

|hαβBαB
ILJvBβB

ILJv| À C1ε

ż

Hs

|ps{tq2BαB
ILJvBβB

ILJv|dx À C1εEg,cps, B
ILJvq,

where we have used
ş

Hs
|ps{tqBαB

ILJv|2dx ď Eg,cps, B
ILJvq.

So for some C 1 ą 0 we have
ˇ

ˇEg,cps, B
ILJvq ´ Em,cps, B

ILJvq
ˇ

ˇ ď C 1C1εEg,cps, B
ILJvq,

and we choose ε0 ď
1

2C1C1
. Then, for ε ď ε0, it holds

ˇ

ˇEg,cps, B
ILJvq ´ Em,cps, B

ILJvq
ˇ

ˇ À C1εEg,cps, B
ILJvq ď

1

2
Eg,cps, B

ILJvq,

which yields (8.3).
To derive (8.4), we just need to observe that

ż

Hs

ˇ

ˇBγh
αβBαB

ILJv
ˇ

ˇ

2
dx

À C1ε

ż

Hs

t´1s´2pt{sq2
ˇ

ˇps{tqBαB
ILJv

ˇ

ˇ

2
dx » C1ε

ż

Hs

ts´4
ˇ

ˇps{tqBαB
ILJv

ˇ

ˇ

2
dx

À C1εs
´2Eg,cps, B

ILJvq,

and we use the first estimate in (6.13):
ż

Hs

ˇ

ˇBγh
αβBαB

ILJv
ˇ

ˇ

2
dx ď

#

CpC1εq
2s´1`2kδ, N ´ 3 ď |I| ` |J | ď N,

CpC1εq
2s´2`2kδ, |I| ` |J | ď N ´ 4.
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So we see that
ż

Hs

ps{tq|Bαh
αβBtB

ILJvBβB
ILJv|dx ď }Bαh

αβBtB
ILJv}L2

f pHsq
}ps{tqBβB

ILJv}L2
f pHsq

,

which is bounded by the right-hand side of (8.4). The other term in the left-hand side is bounded
in the same manner and we thus omit the details. �

8.2. Lower-order L2 estimates. We remark that in lower order case where |I|`|J | ď N´4, we
have Mpsq À C1εs

´1`kδ and we need again the estimate on the source term BILJ
`

PαβBαvBβv `

Rv2
˘

and rHαβuBαBβ , B
ILJ sv.

Lemma 8.2. Under the assumption of (5.1), the following estimates hold for |I| ` |J | ď N ´ 4
with |J | “ k:

(8.5)
›

›BILJ
`

PαβBαvBβv
˘
›

›

L2
f pHsq

`
›

›RBILJv2
›

›

L2
f pHsq

À pC1εq
2s´3{2`kδ,

(8.6) }rHαβuBαBβ , B
ILJ sv}L2

f pHsq
À pC1εq

2s´1`kδ.

Proof. The estimates of these terms relies on the basic L2 and refined sup-norm estimates. We
remark that

›

›BILJ
`

BαvBβv
˘
›

›

L2
f pHsq

ď
ÿ

I1`I2“I
J1`J2“J

›

›BI1LJ1BαvB
I2LJ2Bβv

›

›

L2
f pHsq

ď
ÿ

1ď|I1|`J1|ďN´4
|I2|`|J2|ďN´5

›

›BI1LJ1Bαv
›

›

L8pHsq

›

›BI2LJ2Bβv
›

›

L2
f pHsq

`
›

›pt{sqBαv
›

›

L8pHsq

›

›ps{tqBILJBβv
›

›

L2
f pHsq

“: T1 ` T2.

For T2, we apply (7.23b) with |I| “ 1 and (6.8) and we conclude that

T2 À C1εps{tq
´1{2´7δt´3{2C1εs

|J|δε À pC1εq
2s´3{2`kδ.

For T1, we apply (7.30) and (6.9) and we conclude that

T1 À C1εps{tq
´1{2´7δt´3{2s|J1|δC1εs

|J2|δε À pC1εq
2s´3{2`kδ.

The estimate on the term BILJ
`

v2
˘

is similar by apply (7.29b) (6.8) and we omit the details.

To see the estimate on rHαβuBαBβ , B
ILJ sv is quite similar, we just need to remark that it is a

linear combination of the following terms:

LJ
1
1uBILJ

1
2BαBβv, BI1LJ1uBI2LJ2BαBβv, uBαBβB

ILJ
2
2 v

where I1 ` I2 “ I, J1 ` J2 “ J, J 11 ` J
1
2 “ J with |J 11| ě 1, |I1| ě 1 and |J22 | ď |J | ´ 1. For the last

term we apply (7.17b) and (6.3):
›

›uBαBβB
ILJ

2
2 v
›

›

L2
f pHsq

ď
›

›pt{squ
›

›

L8pHsq

›

›ps{tqBαBβB
ILJ

2
2 v
›

›

L2
f pHsq

ÀC1εs
´1C1εs

kδ À pC1εq
2s´1`kδ.

For the first term, we see that |J 11| ď N ´ 4, then we apply (7.29a) and (6.3):
›

›LJ
1
1uBILJ

1
2v
›

›

L2
f pHsq

ď
›

›pt{sqLJ
1
1u
›

›

L8pHsq

›

›ps{tqBILJ
1
2v
›

›

L2
f pHsq

ÀC1εs
´1`|J 11|δC1εs

|J 12|δ À pC1εq
2s´1`kδ.

For the second term, we see that when |I1| “ 1 and J1 “ 0,

}BγuB
I2LJBαBβv}L2

f pHsq
ď}pt{sqBγu}L8pHsq }ps{tqB

ILJBαBβv}L2
f pHsq

ÀC1ε}pt{sqt
´1{2s´1}L8pHsq C1εs

kδ » pC1εq
2s´1`kδ.
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When |I1| ` |J1| ě 2, we see that |I2| ` |J2| ď N ´ 6. Then by the first inequality in (6.11) and
(6.9), we find

›

›BI1LJ1uBI2LJ2BαBβv
›

›

L2
f pHsq

ď
›

›BI1LJ1u}L8pHsq

›

›BI2LJ2BαBβv
›

›

L2
f pHsq

ÀC1εs
´3{2`p|J1|`2qδC1εs

|J2|δ À pC1εq
2s´3{2`pk`2qδ

and we conclude with (8.6). �

8.3. Higher-order L2 estimates. When N ´ 3 ď |I| ` |J | ď N , the energy estimate is more
complicated. For the source terms we have the following estimates.

Lemma 8.3. Under the energy assumption (5.1) the following estimates hold for N´4 ď |I|`|J | ď
N and |J | “ k:

(8.7)
›

›BILJ
`

PαβBαvBβv
˘
›

›

L2
f pHsq

`
›

›BILJ
`

Rv2
˘
›

›

L2
f pHsq

À pC1εq
2s´1`kδ,

(8.8)
›

›rHαβuBαBβ , B
ILJ sv

›

›

L2
f pHsq

À pC1εq
2s´1{2`kδ.

Proof. The proof relies on the refined decay estimate (7.29) and the basic L2 estimates. We begin
with (8.7). We remark that BILJ

`

BαvBβv
˘

is a linear combination of the following terms

BI1LJ1BαvB
I2LJ2Bβv

with I1 ` I2 “ I, J1 ` J2 “ J . We see that when |I1| ` |J1| “ 0, we apply (7.23b) on Bαv ( with
1 ď N ´ 4) and (6.5)

›

›BI1LJ1BαvB
I2LJ2Bβv

›

›

L2
f pHsq

“
›

›pt{sqBαvps{tqB
ILJBβv

›

›

L2
f pHsq

À C1ε}pt{sqps{tq
1{2´7δt´3{2}L8pHsqCC1εs

1{2`kδ

À pC1εq
2s´1`kδ.

When 1 ď |I1| ` |J1| ď N ´ 4, we see that 4 ď |I2| ` |J2| ď N ´ 1. Then we apply (7.29c) and the
third inequality in (6.6):

›

›BI1LJ1BαvB
I2LJ2Bβv

›

›

L2
f pHsq

ď
›

›BI1LJ1Bαv
›

›

L8pHsq

›

›BI2LJ2Bβv
›

›

L2
f pHsq

ÀCkC1ε}ps{tq
´1{2´7δt´3{2`|J1|δ}L8pHsqC1εs

1{2`|J2|δ

ÀCkpC1εq
2s´1`kδ.

When N ´ 3 ď |I1| ` |J1| ď N ´ 1, we see that 1 ď |I2| ` |J2| ď 3 ď N ´ 4. Then we apply the
third inequality in (6.6) and (7.29c). Similar to the former case,

›

›BI1LJ1BαvB
I2LJ2Bβv

›

›

Hs
À pC1εq

2s´1`kδ.

When |I1| ` |J1| “ N and |I2| ` |J2| “ 0, the estimate is derived similarly as in the first case by
exchanging the role of Bαv and Bβv. The we conclude that

›

›BI1LJ1BαvB
I2LJ2Bβv

›

›

L2
f pHsq

À pC1εq
2s´1`kδ.

The estimate on BILJ
`

v2
˘

is quite similar by applying (6.5) and (7.29b), we omit the detail.

The estimate on rHαβuBαBβ , B
ILJ sv is as follows: we observe that this term is a linear combi-

nation of the following terms

LJ
1
1uBILJ

1
2BαBβv, BI1LJ1uBI2LJ2BαBβv, uBαBβB

I2LJ
2
2 v

where I1 ` I2 “ I, J1 ` J2 “ J , J 11 ` J 12 “ J with |J 11| ě 1 |I1| ě 1 and |J22 | ď |J | ´ 1. The last
term is bounded by applying (7.17) and (6.5):

›

›uBαBβB
I2LJ

2
2 v
›

›

L2
f pHsq

ď}pt{squ}L8pHsq

›

›ps{tqBαBβB
I2LJ

2
2 v
›

›

L2
f pHsq

ÀC1εs
´1C1εs

1{2`|J22 |δ À pC1εq
2s´1{2`kδ.
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For the first term, we make the following observation. When 1 ď |J 11| ď N ´ 4, we have
4 ď |I| ` |J2| ď N ´ 1. Then we apply (7.29a) and (6.7):

›

›LJ
1
1uBILJ

1
2BαBβv

›

›

LpHsq
ď
›

›pt{sqLJ
1
1u
›

›

L8pHsq

›

›ps{tqBILJ
1
2BαBβv

›

›

LpHsq

ÀC1εs
´1s|J

1
1|δC1εs

1{2`|J 12|δ À pC1εq
2s´1{2`kδ.

When N ´ 3 ď |J 11| ď N , we see that |I| ` |J2| ď 3 ď N ´ 5. Then we apply the Hardy inequality
in the form (6.20a) as well as (7.31). So we see that

›

›LJ
1
1uBILJ

1
2BαBβv

›

›

L2
f pHsq

ď
›

›s´1LJ
1
1u
›

›

L2
f pHsq

›

›sBILJ
1
2BαBβv

›

›

L8pHsq

ÀC1εs
|J 11|δC1εs

´1{2`|J 12|δ À pC1εq
2s´1{2`kδ.

The second term is easier, since the factor BI1LJ1u has better decay when |I1| ě 1. Then we see
that when |I1| “ 1 and |J2| “ 0,

}BI1uBI2LJBαBβv}L2
f pHsq

ď}pt{sqBI1u ps{tqBI2LJBαBβv
›

›

L2
f pHsq

ÀpC1εq}t
1{2s´2}L8pHsqC1εs

1{2`kδ » pC1εq
2s´1{2`kδ

when 2 ď |I1| ` |J1| ď N ´ 2, |I2| ` |J2| ď N ´ 2. Then we apply the third inequality in (6.6) and
we see that

}BI1LJ1uBI2LJ2BαBβv}L2
f pHsq

ď}BI1LJ1u}L8pHsq

›

›BI2LJ2BαBβv
›

›

L2
f pHsq

ÀpC1εq
2s´1`pk`2qδ ď CpC1εq

2s´1{2`kδ.

When N ´ 1 ď |I1| ` |J1| ď N , |I2| ` |J2| ď 1 ď N ´ 7 then we apply (6.5) and (7.33). Then, we
obtain

}BI1LJ1uBI2LJ2BαBβv}L2
f pHsq

ď}ps{tqBI1LJ1u}L2
f pHsq

›

›pt{sqBI2LJ2BαBβv}L8pHsq

ÀC1εs
|J1|δCC1εs

´3{2`|J2|δ À pC1εq
2s´1{2`kδ,

which completes the argument. �

8.4. Proof of Proposition 5.1. Our aim is to establish the improved energy estimate (5.2) and
to conclude the proof of Theorem 1.1, that is, we now establish Proposition 5.1. The strategy is
to apply the energy estimate 2.1 with (8.3), (8.4), (8.5), (8.6), (8.7), and (8.8).

We need to specify the constants and we denote by C a sufficiently large constant determined
only by the structure of the system such that all of the above estimates hold true. We derive the
wave equation of (1.11) by BILJ :

´lBILJu “ BILJ
`

PαβBαvBβv
˘

` BILJ
`

v2
˘

.

Recall the energy estimate (2.10)

Emps, B
ILJuq1{2 ď Emp2, B

ILJuq1{2 `

ż s

2

}lu}L2
f pHs̄q

ds̄

with }lu}L2
f pHs̄q

ď
›

›BILJ
`

PαβBαvBβv
˘
›

›

L2
f pHsq

`
›

›BILJ
`

Rv2
˘
›

›

L2
f pHsq

. Then by (8.5), when |I| `

|J | ď N ´ 4, we have }lu}L2
f pHs̄q

ď CpC1εq
2s´3{2`kδ, and we conclude that

(8.9) Emps, B
ILJuq1{2 ď CC0ε` CpC1εq

2.

When N ´ 3 ď |I| ` |J | ď N and |J | “ k, by (8.7)

(8.10)
Emps, B

ILJuq1{2 ďCC0ε` CpC1εq
2

ż s

2

s̄´1`kδ ds̄

ďCC0ε` CpC1εq
2skδ.

For the energy estimates on v, we apply BILJ to the Klein-Gordon equation in (1.11) and obtain

´lBILJv `HαβuBαBβB
ILJv ` c2BILJv “ rHαβuBαBβ , B

ILJ sv.
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Then by (2.13), and (8.3) (with κ “ 1{2), we find

Em,cps, B
ILJvq1{2 ď κ2Em,cp2, B

ILJvq1{2 ` κ2

ż s

2

}f}L2
f pHs̄q

ds̄` κ2

ż s

2

}Mps̄q}L2
f pHsq

ds̄.

When |I| ` |J | ď N ´ 4, we rely (8.6) and (8.4) and observe that

(8.11)
Em,cps, B

ILJvq1{2 ďCC0ε` CpC1εq
2

ż s

2

s̄´1`kδ ds̄

ďCC0ε` CpC1εq
2skδ.

When N ´ 3 ď |I| ` |J | ď N , we apply (8.8) and (8.4) and observe that

(8.12)
Em,cps, B

ILJvq1{2 ďCC0ε` CpC1εq
2

ż s

2

s̄´1{2`kδ ds̄

ďCC0ε` CpC1εq
2s1{2`kδ.

Finally, by choosing C1 ě 4CC0 and ε ď p4CC1q
´1, (8.9)–(8.12) lead to (5.2).
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