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THE GLOBAL NONLINEAR STABILITY OF MINKOWSKI SPACE
FOR SELF-GRAVITATING MASSIVE FIELDS.
The Wave-Klein-Gordon Model

PHILIPPE G. LEFLOCH AND YUE MA

ABSTRACT. The Hyperboloidal Foliation Method (introduced by the authors in 2014) is ex-
tended here and applied to the Einstein equations of general relativity. Specifically, we establish
the nonlinear stability of Minkowski spacetime for self-gravitating massive scalar fields, while
existing methods only apply to massless scalar fields. First of all, by analyzing the structure of
the Einstein equations in wave coordinates, we exhibit a nonlinear wave-Klein-Gordon model
defined on a curved background, which is the focus of the present paper. For this model, we
prove here the existence of global-in-time solutions to the Cauchy problem, when the initial data
have sufficiently small Sobolev norms. A major difficulty comes from the fact that the class of
conformal Killing fields of Minkowski space is significantly reduced in presence of a massive
scalar field, since the scaling vector field is not conformal Killing for the Klein-Gordon operator.
Our method relies on the foliation (of the interior of the light cone) of Minkowski spacetime by
hyperboloidal hypersurfaces and uses Lorentz-invariant energy norms. We introduce a frame
of vector fields adapted to the hyperboloidal foliation and we establish several key properties:
Sobolev and Hardy-type inequalities on hyperboloids, as well as sup-norm estimates which cor-
respond to the sharp time decay for the wave and the Klein-Gordon equations. These estimates
allow us to control interaction terms associated with the curved geometry and the massive field,
by distinguishing between two levels of regularity and energy growth and by a successive use of
our key estimates in order to close a bootstrap argument.
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1.1. The global existence problem. In this paper and its companion [23], we study the global-
in-time existence problem for small amplitude solutions to nonlinear wave equations, with a two-

fold objective:

e First, we provide a significant extension of the Hyperboloidal Foliation Method, recently
proposed by the authors [22]. This method is based on a foliation of the interior of the
future light cone by hyperboloidal hypersurfaces and on Sobolev and Hardy inequalities
adapted to this foliation. This method takes its root in work by Klainerman [19] and,
later on, Hormander [13] concerning the standard Klein-Gordon equation. In comparison
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2 PHILIPPE G. LEFLOCH AND YUE MA

to our earlier theory in [22], we are now able to encompass a much broader class of coupled
wave-Klein-Gordon systems.

e Our second objective is to apply this method to the Einstein equations of general relativity
and arrive at a new approach for proving the nonlinear stability of Minkowski spacetime.
Our method covers self-gravitating massive scalar fields (as will be presented in full details
in [23]), while earlier works were restricted to vacuum spacetimes or to spacetimes with
massless scalar fields; cf. Christodoulou and Klainerman [7], and Lindblad and Rodnianski
[26, 27], as well as Bieri and Zipser [4].

The problem of the global dynamics of self-gravitating massive fields had remained open until now.
The presence of a mass term poses a major challenge in order to establish a global existence theory
for the Einstein equations (and construct future geodesically complete spacetimes). Namely, the
class of conformal Killing fields of Minkowski spacetime is reduced in presence of a massive scalar
field, since the so-called scaling vector field is no longer conformal Killing and, therefore, cannot
be used in implementing Klainerman’s vector field method [18, 19].

In suitably chosen coordinates, the Einstein equations take the form of a coupled system of
nonlinear wave-Klein-Gordon equations. More precisely, as in [27], we introduce wave coordinates,
also called harmonic or De Donder gauge [1], which allows one to exhibit the (quasi-null, see below)
structure of the Einstein equations. The Hyperboloidal Foliation Method [22] was introduced
precisely to handle such systems. Yet, due to the presence of metric-related terms in the system
under consideration, an important generalization is required before we can tackle the Einstein
equations. Proposing such a generalization is our main purpose in the present paper.

By imposing asymptotically flat initial data on a spacelike hypersurface with sufficiently small
ADM mass, one can first solve the Cauchy problem for the Einstein equations within a neigh-
borhood of this hypersurface (see [22] for a sketch of the argument') and, next, formulate the
Cauchy problem when the initial data are posed on a hyperboloidal hyperspace or, alternatively,
on a hyperboloid for the flat Minkowski metric after introducing suitable coordinates. In fact,
the hyperboloidal Cauchy problem is, both, geometrically and physically natural. More precisely,
let us consider Minkowski spacetime in standard Cartesian coordinates (¢, z', 22, 2%) and observe
that points on a hypersurface of constant time ¢ cannot be connected by a timelike curve, while
points on a hyperboloid can be connected by such curves. Hence, hyperboloidal initial data can
be “physically prepared”, while data on standard flat hypersurfaces cannot. An alternative stand-
point would be to pose the Cauchy problem on a light cone, but while it is physically appealing
and the Cauchy problem on a light cone has not been proven to be convenient for global analysis.

We emphasize that hyperboloidal foliations were used by Friedrich [11, 12] in order to establish
the stability of Minkowski space in the future of a hyperboloidal hypersurface. Hyperboloidal
foliations have also been found to be very efficient in numerical computations [10, 29, 30, 34].

As was demonstrated in [22] for a rather general class of nonlinear wave equations, analyzing
the global existence problem is quite natural in the hyperboloidal foliation of Minkowski spacetime
and, importantly, lead to uniform bounds on the energy of the solutions. Before proceeding with
further details, let us summarize the main features of the method we propose:

e Lorentz invariance. We rely on the foliation of Minkowski space by hyperboloids (de-
fined as the level sets of constant Lorentzian distance from some origin), so that the
fundamental energy of the wave-Klein-Gordon equations remains invariant under Lorentz
transformations of Minkowski spacetime. Observe that in our construction, all the hyper-
boloids are asymptotic to the same limiting cone and approach the same sphere at infinity.
(In particular, no energy can escape through null infinity.)

e Smaller set of Killing fields. We avoid using the scaling vector field S := rd, + to,
which is the key in order to handle Klein-Gordon equations and cover the Einstein-matter
system when the evolution equation for the matter is not conformally invariant.

IThe time of existence of the solution can be made arbitrarily large for compactly supported initial data with
sufficiently small norm, so that this neighborhood does contain a hyperboloidal hypersurface.
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e Sharp rate of time decay. In order to control source-terms related to the curved
geometry, we establish sharp pointwise bounds for solutions to wave equations and Klein-
Gordon equations with source-terms.

In the rest of this introduction, we explain how to derive, from the Einstein equations, a model
problem which will be our main focus in the present paper.

1.2. Einstein equations for massive scalar fields. We thus consider the Einstein equations
for an unknown spacetime (M, g):

R
(11) Ra[g - 590@3 = 87TTa/3,

where R,p denotes® the Ricci curvature tensor and R = g*’R,s denotes the scalar curvature.
The matter is taken to be a massive scalar field with potential V' = V(¢) and stress-energy tensor

1
(1.2) Tag i= VoV = (3V10V76 + V(6) ) gas
and, specifically,

(13) V()= 56"

where ¢? > 0 represents the mass of the scalar field. By applying V® to (1.2) and using the Bianchi
identity

V®(Rap — (R/2)gas) = 0,
we easily check that the Einstein—scalar field system implies

(1.4a) Rap =87 (VadVpe + V() gas),

(1.4b) (y0 = V'(¢) = 26
The Cauchy problem for the Einstein-scalar field equations is formulated as follows [5]. An
initial data set consists of a Riemannian three-manifold (M, g), a symmetric two-tensor K defined

on M, and two scalar fields (¢g,®;) defined on M. We then seek for a (3 + 1)-dimensional
Lorentzian manifold (M, g) satisfying the following properties:

o There exists an embedding i : M — M such that the induced metric i*(g) coincides with g,
while the second fundamental form of (M) < M coincides with the prescribed two-tensor
K.

e The restriction of ¢ and £,¢ to i(M) coincides with the data ¢o and ¢; respectively, where

v denotes the (future-oriented) unit normal to i(M) < M.
e Moreover, the manifold (M, g) satisfies the Einstein equations (1.4).

More precisely, one seeks for a globally hyperbolic development of the given initial data, that
is, a Lorentzian manifold such that every time-like geodesic extends toward the past direction in
order to meet the initial hypersurface M. Furthermore, a notion of maximal development was
defined by Choquet-Bruhat and Geroch [6, 5] and such a development was shown to exist for a
large class of matter models. The maximal development need not be future geodesically complete,
and a main challenge in the field of mathematical general relativity is the construction of classes
of future geodesically complete spacetimes.

Furthermore, it should be emphasized that, in order to fulfill the equations (1.4), the initial
data set (M, g, K) cannot be arbitrary and must satisfy Einstein’s constraint equations:

( ) E + Kij Kij - (KZ)Q = 87TT00,

1.5 — —
leij - ijll = 87T'T0j7
where R is the scalar curvature of the metric g and v denotes its Levi-Civita connection, and the
terms Tpp and Tp; are determined from the data ¢, and ¢ .

2Through0ut, Greek indices «, 8,7 take values 0, 1,2, 3 and Einstein convention is used.
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Minkowski spacetime provides one with a trivial solution to the Einstein equations, which
satisfies the Cauchy problem associated with the initial data (M,g, K, ¢y, ®,) when M = R3 is
endowed with the standard Euclidian metric and K = 0, while the matter terms vanish identically
¢y = ¢; = 0. The question we address in the present paper is whether this solution is dynamically
stable under small perturbations of the initial data. More precisely, given an initial data set
(M,g, K, ¢y, ;) such that M is diffeomorphic to R?, g is close to the flat metric and K, ¢, ¢, are
sufficiently small, does the associated solution (M, g) to the Einstein-massive scalar field system
remain close to the flat Minkowski spacetime R'*3 ?

Clearly, this nonlinear stability problem is of fundamental importance in physics. It is expected
that Minkowski spacetime is the ground state state of the theory with the lowest possible energy.
As far as massless scalar fields are concerned, the nonlinear stability of Minkowski spacetime was
indeed established in Christodoulou and Klainerman’s pioneering work [7]. In the present work
(including [23]), we solve this question for massive scalar fields.

1.3. Einstein-scalar field equations in wave coordinates. Our first task is to express the
field equations (1.4) in a well-chosen coordinate system and then derive our wave-Klein-Gordon
model problem. We follow [5, 26] and work in wave coordinates satisfying, by definition,

(1.6) O,z = 0.

We postpone to [23] the details of the derivation and directly write the formulation of the Einstein-
massive scalar field equations in wave coordinates:

(1.7a) [ly9as = Qus(g; 09,09) + Pag(g; 09, 0g) — 167 (0addsd + V(6)gas),

(1.7b) Cy¢ — V'(¢) =0,

where [, := ¢g*#0,0p is referred to as the (reduced) wave operator in curved space. In (1.7), we
distinguish between several types of nonlinearity:

e Null terms. The quadratic terms

Qap =9 9% 0sgar05 gpx — g™ 9°° (35garOrgss — 05985 Orgar)

’ / 1 ’ /
(1.8) + 9™ % (0agns 05975 — Cagrplsgns) + 59” 9% (0agr80x G551 — OalssOxgrg)

AN 88

1 ’ ’
+ 9™ 9% (089n5059ra — O89ralsgns) + 59’\’\ g (

289ra0xgssr — 08955 Ox Gaa)
are standard null forms with cubic corrections. Their treatment in a global existence proof
is a now classical matter and, in particular, are already dealt with by standard methods.
¢ Quasi-null terms. The quadratic terms

1 ’ ’ 1 ! ’
(1-9) Pup = —igM 955 Oagsx aBg,\af + 1965 QM 3,6965/%%\»

are referred to as “weak null” terms in [26], but we prefer to propose the new terminology
“quasi-null terms”. As first noted in [26], quasi-null terms are found to be analogous to
standard null terms, provided the tensorial structure of the Einstein equations and the
wave coordinate condition are carefully taken into account.

e Curved metric terms. Setting now

(1.10) R = g*B —maB, hag := Map — gap

3

and considering the term ﬁg gap, We see that we must also treat the quasi-linear terms
WP O dghap, ¥ 0ndpo.

We will deal with these metric-related terms by the following two approaches:
— First, thanks to the wave coordinate condition, we can assume that h*? behaves
essentially like a null quadratic form and consider, therefore, that h%? is null. More
precisely, the first term

h% 00 dphas,  h®® being a null form
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can be treated by our arguments in [22].

— The second quasi-linear term halﬁl(?a/ﬁg/gb (without necessarily imposing the null
condition) requires our new technique which is presented in this paper and is based on
sharp sup-norm bounds for solutions to wave equations and Klein-Gordon equations.

Our aim is presenting first in a simplifed form several arguments that will be required to cope
with the full system of Einstein equations in [23]. In order to derive here a model problem, we
proceed by removing (from (1.7)):

e the null terms Qup (which are handled in [22]),

e the quasi-null terms P, 5 (postponed to [23], where the structure of the Einstein equations
and the wave coordinate condition will be discussed), and

e the quasi-linear terms h“lﬁléalﬁg/hag (to be treated by the wave coordinate condition and,
in turn, the method already presented in [22]).

These formal simplifications, therefore, lead us to the model®

Uhag = 0a®09 + masV (¢),
¢ = H*P (h)0adsd + V' (9),

with unknowns hag, ¢ defined on Minkowski space, where H*?(h) can be assumed to depend

linearly on h,s. We are primarily interested in the potential V(¢) = %(bQ and, therefore after

changing the notation, we arrive at the following system of two coupled equations:

—[u = P”‘ﬂé’avé’gv + Rv?,
—[w + H“Buéaﬁgv + v =0,

where u, v are two scalar unknowns and P®?, H*? R, ¢ are given constants (and only the obvious
positivity condition ¢? > 0 is relevant).

1.4. Analysis on the model problem. As illustrated by the derivation above, in order to deal
with the Einstein-massive scalar field equations, we must weaken a key assumption made in [22]
and, as we will see, cope with wave equations posed on a curved space for which the Minkowski
metric need not represent the underlying geometry in a sufficiently accurate manner. Namely, we
recall that, in the notation of [22, Section 1], interaction terms like u;00vy involving components u;
of wave equations and component vy of Klein-Gordon equations were not included in our theory.
The same restriction was also assumed in a pioneering work by Katayama [16, 17] on wave-Klein-
Gordon equations. In the present paper, we overcome this challenging difficulty and extend our
earlier analysis (of the system (1.2.1) in [22] by now removing the condition (1.2.4e) therein).
To this end, in the present paper, we derive and take advantage of two pointwise estimates:

e A sharp sup-norm estimate for solutions to the wave equation in Minkowski
space with source-term, as stated in Theorem 3.1, below. Suitable decay is assumed on
the source-term, as is relevant for our analysis, and the proof is based on the solution
formula available for the wave equation in flat space.

e A sharp sup-norm estimate for solutions to the Klein-Gordon equation in curved
space in (341)-dimensions (as stated in Theorem 3.3, below). Our estimate is motivated by
a pioneering work by Klainerman [19] on the global existence problem for small amplitude
solutions to nonlinear Klein-Gordon equations in four spacetime dimensions.

Note that an estimate as above could also be derived in (24 1)-dimensions with different rates [28].
Global existence results for nonlinear Klein-Gordon equations were also established by Shatah in
the pioneering work [31]. Klein-Gordon systems have received a lot of attention in the literature
and we can, for instance, refer to [2, 3, 8, 9, 13, 19] and the references therein.

30ur convention for the wave operator is []:= —0¢t0t + Y, 0ala-
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For clarity in the presentation, we do not treat the most general class of systems, but based
on our formal derivation from the Einstein equations, we now study the following wave-Klein-
Gordon model:

—[Ju= Paﬁé’av@gv + Rv?,

1.11
( ) —Dv-i—uH”‘ﬂ&a&gv—kc%:O,

with unknowns u, v posed on Minkowski space R3*! and prescribed initial data® ug, w1, vg, v1 posed
on the spacelike hypersurface t = 2:
ult—2 = uo, Oruli=2 = uy,

(1.12)
U|t:2 = Yo, atU|t:2 = V1.

Here, P*% R, H*? ¢ are given constants, and the initial data are sufficiently smooth functions that
are compactly supported in the unit ball {(x1)? + (22)? + (23)? < 1} with 2 = (21, 22, 73) € R3.

We emphasize that, according to our analysis in Section 1.3, (1.11) includes the essential dif-
ficulty arising in the Einstein-massive field system. Note in passing that, in (1.11), there is no
such term like Ru? which would imply finite time blow-up (as first pointed out by John [15]). Our
main result in the present paper is as follows.

Theorem 1.1 (Global existence theory for the wave-Klein-Gordon model). Consider the nonlinear
wave-Klein-Gordon system (1.11) for some given parameter values P*? R, H*? and ¢ > 0. Given
any integer N = 8, there exists a positive constant €9 = €o(N) > 0 such that if the initial data
satisfy

(1.13) (o, vo) [ v+ (rsy + [l (ur, v1) [ mv rs) < €o,
then the Cauchy problem (1.11)-(1.12) admits a global-in-time solution.

As done in [23], the Cauchy problem can be reformulated with initial data prescribed on a
hyperboloid and the smallness condition (1.13) leads to a similar smallness condition for the
hyperboloidal initial data. As already pointed out in [22], the presence of the quasi-linear term
uwH*P9, 0gv may possibly change the asymptotic behavior of solutions for large times. In fact, our
proof will only show that the lower-order energy of the wave component remains globally bounded
for all times, while the high-order energy of the wave component u and the lower-order energy
of the Klein-Gordon component v could in principle grow at the rate t° for some (small) § > 0.
On the other hand, the higher-order energy associated with the Klein-Gordon component v may
significantly increase at the rate t+1/2 for some (small) § > 0.

The proof of Theorem 1.1 will occupy the rest of this paper which we outline as follows:

e Proceeding with a bootstrap argument, we assume that, within some hyperbolic time
interval, the hyperboloidal energy of suitable derivatives of the unknowns (up to a certain
order) satisfy a set of bounds.

e Our assumptions use two levels of regularity and distinguish between the behavior of
lower-order and higher-order energy norms, the low-order derivatives enjoying a much
better control in time. Recall that, in [22], we could already prove that the lower-order
energy of the wave component is uniformly bounded in time, but the growth rate for the
high-order Klein Gordon energy was solely ¢°.

e By Sobolev inequality (on hyperboloids), we can turn these L? type inequalities to a set
of sup-norm estimates, which we refer to as basic decay estimates. These decay estimates
are not sharp enough in order to close our bootstrap argument.

e Relying on these basic decay estimates, we establish refined decay estimates by relying on
two technical sup-norm estimates established below for wave equations and Klein-Gordon
equations.

e Equipped with these refined decay estimates, we are able to improve our initial assumptions
and close the bootstrap argument.

4For convenience in the following proof and without loss of generality, we prescribe data at time ¢ = 2.
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Before we proceed with the details of the proof (which is rather long), the reader may find
it useful to read through the following heuristic arguments which rely on notations (only briefly
explained here) to be rigorously introduced only later (in the course of the following three sections).
Our proof proceeds with a bootstrap argument and considers the largest time interval [2,s*] (in
the ‘hyperbolic time’ s defined as s? = t? — r2) within which the following energy bounds hold:

Ep(s, 01 L7u)Y? < Cres™, |J|=Fk, |I|+]|J| <N, wave / high-order,
Epn(s, 0! L7u)Y? < Che, I +|J| < N —4, wave / low-order,
Epc2(s, TLI0)V2 < Ches' PR g =k, |I|+|J| <N, Klein-Gordon / high-order,
E,, 2 (s,[;’ILJv)l/2 < Ceshd, |[J| =k, |I|l+|J|<N-4 Klein-Gordon / low-order,

where €, 9, C; are parameters. These bounds concern the energy of the wave component u and
the Klein-Gordon component v, and distinguish between low-order and high-order derivatives. We
have denoted by E,, the energy associated with the wave equation (for the flat metric m), while 0!
are partial derivative operators and L7 are combinations of Lorentz boosts (see below for details).
The heart of our proof of Theorem 1.1 is proving that, by selecting a sufficiently large constant
C; and sufficiently small £, > 0, the above energy bounds in fact imply the following improved
energy bounds (obtained by replacing C; by C1/2):

Ep (s, 0'L7u)Y? < %Clssk‘s, |J| =k, |I|+|J] <N, wave / high-order,
B (s, 01 L7u)Y? < %015, [I| +|J| < N —4, wave / low-order,
Ep.e2(s, 0/ L70)Y? < %Clsslmké, \J| =k, |I|+]J| <N, Klein-Gordon / high-order,
By 2(s,0'L70)1/? < %C’lssk‘s, |[J| =k, |I|+|J|<N-4 Klein-Gordon / low-order.

(Of course, it is then a standard matter to deduce from this property that, in fact, s* = +0.)
To derive the improved energy bounds, we differentiate the equations (1.11) with 0/ L7 with
|I| +|J| < N:
—00"L7u = 0'L7 (P*P0,vd5v) + o' L7 (Rv?) ,
0 L7+ uHP 'L v + 'L v = —[0' L7 ,u H*?0,05]v.
For these differentiated equations, we perform energy estimates along the hyperboloidal foliation
and we are led to seek for an integrable time decay for the following the three terms®:

Tll,J(S) ;:H&IL‘] (Paﬁaavagv) HL?(%)’

(114 T () 1=10" L (%) |

B (5) =071 w B 6adslol 3,

For lower-order indices |I| + |J| < N — 4, the terms T}/ (s) and T2’ (s) are easily controlled,
since from the bootstrap assumption and the global Sobolev inequalities on hyperboloids we have
(basic) decay estimates which lead to time-integrable bounds:

(1.15) T/ (s) + T (s) < 5732+ (B+2)0 provided |I] + |.J| < N — 4 with [J| = k.

On the other hand, for higher-order derivatives these basic decay rates are not sufficient and we
can not conclude directly. In addition, for the third term T3/ (s) (for arbitrary |I| + |J|), we also
cannot conclude directly and we need sharper pointwise decay.

To overcome this challenge, we rely on our L®—L* sharp decay estimates, established below in
Proposition 3.1 (for the wave component) and Proposition 3.3 (for the Klein-Gordon component).

5See (2.7) for the notation.



8 PHILIPPE G. LEFLOCH AND YUE MA

These L*-L* bounds allow us to improve the basic pointwise estimates, and we find (for all
[I| +[J| < N —4):
|LTu| < Cret™tshd,
|61LJU‘ < COy¢ (S/t)2_768_3/2+k6,

|61LJ(90(U‘ < ClE (S/t)1_768_3/2+k6.

Returning to our bootstrap assumptions, we thus see that for all |I] + |J| < N
H@ILJ (aavﬁgv)HL?(}cs) ~ Z | L7 0,0 5I2LJZ&gUHL§(9cS)
(1.16) AR
SCres 2|0 L7 050] 12 (3¢,) < (Cre)?s™HHH

(by assuming, without loss of generality, |I1| + |J1] < N — 4 in the above calculation). Similarly,
we also obtain

(1.17) o' L (v?) L2 ac,) < (Cre)?s™ 14k,

We thus succeed to uniformly control the terms T3/ (s) and T3/ (s) (for all relevant I,.J), and this
is already sufficient to conclude with the desired improved energy bounds for the wave component.

Dealing with the last term T: 31 "](s) arising in the equation of the Klein-Gordon component is
more delicate. Observe that the commutator is a linear combination of the following three types
of terms:

(o1 L u)o™ LF20,05v, L+T=I Ji+Jy=1J |L|=>1,
(1.18) (L71u)d" L720,04v, Ji+Jy=J, Ji=1,
u0o 050 L v, J<J-1.

The first expression above is directly controled thanks to the available sharp decay estimate, while
for the second and third ones and due to the presence of the term L7u, a refined decay estimates
and a Hardy-type inequality (for the hyperboloidal foliation) must be used, as we now explain.

Let us begin by discussing derivatives of higher-order and consider (for instance) the second type
of terms in (1.18): for all |.J{| < N —4, we use the sharp decay bound |L{u| < C1et~1s* combined
with the energy bound on 0,0sv (implied by our bootstrap assumption). When |I|+ |J5| < N —4,
the sharp bound |0/ L70,v| < Cie (s/t)'~0s73/2+k and Hardy’s inequality are used. We thus
find

(1.19) [ [8ILJ,H0‘5(7Q(75]UHL? (o) S (Cre)2s™ 12+,

Dealing with lower-order derivatives is easier and, again, we take the second type of terms in
(1.18) as an example: for [J{| < |I| + |J| < N — 4, we apply directly the sharp bound |Lfu| <
C1et 5% and the energy bound given by our bootstrap assumption. This leads us to the stronger
decay

(1.20) H[aILJ,Haﬁaaaﬁ]v”L?(%S) < (Cre)?s™HH0.

In conclusion, in view of (1.15)—(1.20), we can gain enough time decay for all of the terms arising
in the evolution of our energy expressions and, therefore, the energy estimate on the hyperboloidal
foliation leads us to the desired improved energy bounds.

1.5. A general class of wave-Klein-Gordon systems. The technique presented here applies
immediately to a much broader class of systems. Indeed, it applies to the following system of
wave—Klein-Gordon equations

Chu; + Bj"‘ﬁujﬁaﬁgui = F;(u, du,v, 0v) = ngaﬁéauﬁguk + Riv? + S?ﬁﬁavﬁgv,

v + Bjo‘ﬁujaaégv —*? = 0,
wi|t:2 = Wi, U|t:2 = %o,

(1.21)

ath‘|t=2 = Wiy, atU|t=2 = 1,
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with unknowns u = (u;) (1 <4 < n) and v defined on Minkowski space R**1, while w;, vo, wi1, v1
are prescribed initial data and ¢ > 0 is a constant. As usual, we assume the symmetry conditions

(1.22) BiaBs — piba
and our main assumption is the null condition for the wave components w;:

(1.23) BIPe g5 = PI*Pe,e5 =0 forall (§)? — ) (€)? =0

a
In the earlier work [22], the nonlinear terms B/*w;d,dpv (actually denoted ngo‘ﬁ W30 0pWy,
therein) were assumed to be vanishing, and in fact this was our only genuine restriction since,
with such terms, solutions may not have the same time decay and asymptotics of solutions as
the ones of the homogeneous linear wave-Klein-Gordon equations in Minkowski space. With the
new technique in the present paper, the hyperboloidal foliation method does extend to encompass
these terms (provided B’® is a null quadratic form).

Let us consider the initial value problem (1.21) with sufficiently smooth initial data posed
on the spacelike hypersurface {¢ = 2} of constant time and compactly supported in the ball
{t = 2; |z| < 1}. Under the conditions (1.22)—(1.23), there exists a real ¢y > 0 such that, for all
initial data w;q, w1, vo,v1 : R? — R satisfying the smallness condition

(1.24) 2 I (wio, vo) [ sy + [ (win, 01) e~ (esy < €o,

the Cauchy problem (1.21) admits a unique, smooth global-in-time solution. In addition, the
lower-order energy of the wave components remains globally bounded in time.

2. THE HYPERBOLOIDAL FOLIATION METHOD

2.1. The semi-hyperboloidal frame. We begin with basic notions and consider the (3 + 1)-
dimensional Minkowski space with signature (—, +, 4+, +). In canonical Cartesian coordinates, we
write (t,z) = (2% 21,22, 23) and 7? = |z|*> = (2')? + (2?)% + (2%)%2. In addition to the partial

derivative fields ¢; = 0y and 0, we will also use the Lorentz boosts (for a = 1,2, 3):
(2.1) Ly = 2% +10, = 400 — 004,

where we raise and lower indices with the Minkowski metric.
More precisely, throughout, we analyze solutions defined in the interior of the future light cone

K:={(t,z)/r <t—1}

with vertex (1,0, 0, 0), and we introduce the following foliation of the interior of the cone {(t,z) /=] < t}
by hyperboloidal hypersurfaces with hyperbolic radius s:

He={(t,z)/t* —r? =5* t>0}.
The sub-domain of X limited by two hyperboloids (with s < s1) is denoted by
Kiso,s1] 1= {(t,2)/sg<t?—r’<si; r<t—1}cX.

Observe that the hyperboloids eventually “exit” the region X and are asymptote to the same light
cone {t —r = O}.
The semi-hyperboloidal frame, as we call it, is defined by rescaling the Lorentz boosts:

(2.2) 9y =0, 0, = %at Yo, (a=1,2,3).

a

Observe that the vectors ¢, generates the tangent space to the hyperboloids. Furthermore, we
also introduce the vector field 0, := 0; + %é’a, which is orthogonal to the hyperboloids for the
Minkowski metric. (This vector field also coincides, up to an essential factor 1/, with the scaling
vector field S.)
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To make explicit the change of frame formulas 0, = <I>§(35 and 0, = U/ 03, we need the following
matrices

1 0 0 0 1 0 0 0
'/t 10 0 —z't 1 0 0

BY _ BY — BY — BY —

(%a) = (®7) 2/ 0 1 0 (¥a) = (¥a") —z?/t 0 1 0
240 0 1 —23/t 0 0 1

Any tensor can be expressed in either the Cartesian natural frame {d,} or the semi-hyperboloidal
frame {0, }. We use standard letters for components in the Cartesian frame and we use underlined
letters for components in the semi-hyperboloidal frame, so that, for example, 7?9, ® Og =

IO‘BQQ ® Jg, and the relations between T and T*? are
% = w7 T = 39,05,
Associated with the semi-hyperboloidal frame, we have the dual semi-hyperboloidal frame
(2.3) 0° = dt — %dx“, 0° = dz®,

and the relations between the semi-hyperboloidal dual frame and the standard dual frame are
0% = \Dg,dma/, dz® = ®%,0% . Hence, for any two-tensor T,sdz® ® dz” = T,50" ®6”, we have the
change of basis formulas
— o &b _ o' B
ZaﬁiTa/B/@O& @ﬁ, TO‘B 7Ia’ﬁ/\:[la \I/ﬁ.

With the above notation, in the semi-hyperboloidal frame we can express the Minkowski metric
and its inverse as

-1 —al/t —a2/t —3/t
—— —zl/t 11— (2'/t)2  —al2?/t? —axlad/t?
“aop —z?/t  —x?2tt? 11— (22)t)2 —aP23/t? ’

—z3/t  —xdxt/t? =2/t 1 — (a3)t)?
-2/t —axl/t -2/t -2/t

1
w_ | -l 1 0 0
m —22/t 0 1 0
—a3/t 0 0 1

Furthermore, given any multi-index I = (@n,ap—1,...,a1) (where the order is chosen for

convenience), we denote by 01 := 0,04, _, - .. 04, the product of n = |I| partial derivatives (with
0 < a; < 3) and, similarly, by L = L, L .. Lq, the product of n = |J| Lorentz boosts (with
1<a; <3).

anp—1 *

2.2. The hyperbolic variables and the hyperboloidal frame. Within the future cone X, we
introduce the change of variables

(2.4) =—s:=\12—r2, T =21°

together with the corresponding natural frame
— t2 — 2
Jo 1= 05 = 200 = 4,
(2.5) L ¢
_ a

3, = Ope = %325-1-&1 - %aﬁ&a,

which we refer to as the hyperboloidal frame. The transition matrices between the hyperboloidal
frame and the Cartesian frame are

51//t 0 0 0

=3 =B z/t 1 0 0

(¢a) = (¢ a) = x2/t 01 0 )
3/t 0 0 1
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t/ls/ 0 00

—B\—1 =B —B —-z'/s 1 0 0

((I)a) = (\Da) - (\Ij a) = —22/s 0 1 0 |
—z3/s 0 0 1

so that d, = 6585 and 0, = @i%-
The dual hyperboloidal frame then reads dz° := ds = édt — %dw“ and dz® := dx®. The
Minkowski metric in the hyperboloidal frame reads®

-1 —al/s —a2%/s —aP/s
1
—ap | —x'/s 1 0 0
meE —a2s 0 1 0
—13/s 0 0 1

In summary, an arbitrary tensor can be expressed in three different frames: the standard frame
{0}, the semi-hyperboloidal frame {d,}, or the hyperboloidal frame {d,}. We use symbols,
underlined symbols, and overlined symbols for tensor components in these frames, respectively.
For example, a tensor T*?0,, ® dp is written as

T, ® 05 = T8, ® 05 = T 0 ® 05,

where Taﬁ = @Z,@g,Ta,B/ and, moreover, by setting C' := max,g |T*|, we have in the hyper-
boloidal frame

(2.6) | <cw/s)? T <cws), [T <c.

2.3. Energy estimate on hyperboloids. Throughout this paper, for any function u = wu(t, )
defined in R3T! (or a subset of it), we consider the integral of on the hyperboloids 3, defined as
follows:

(2.7) HuHL}(g{s) = Lc udr = J.R3 u(v/s? +r2, x)dx

The subscript refer the fact that we are endowing H, with the flat Euclidian metric. We emphasize
that this is not an integration with respect to the induced Riemannian metric and volume form
which should be (s/t) dz. This notation will be more convenient for our analysis in this paper but,
of course, it is completely straightforward to re-state all of our estimates by including the weight
s/t.

Consider the hyperboloidal foliation of a region K3, = U2<s<sl Hs, together with the hy-
perboloidal energy (associated to the Minkowski metric) at some hyperbolic time s € [2, s1]

Emo(s,u) = L ((atu)2 + 3 (0au)? + 2(2 /1) dudqu + c2u2)dx

s

28) [ (e + S + ) i

= L{ ((aLu)2 + Z ((s/t)0au)” + Z (t_lﬁabu)z + c2u> dx,

a a<b
where we have also introduced the rotational vector fields Qg 1= %0, — %0, (not directly used
here). When ¢ = 0, we also write E,,(s,u) := Ep, o(s,u) for short.
We will also need the hyperboloidal energy for the curved metric ¢®? = m®? + hP:

(2.9) Egc(s,u) := Ep c(s,u) + f (2h“ﬁé’tvﬁﬁvXa — ho‘ﬁﬁavagv) dz,
s
where we have used the notation X° =1 and X = —z%/t.

All of our estimates concern the interior of the light cone X n {t > 2} away from the origin.
From here onwards, we assume that all the functions under consideration are spatially compact

60ur sign convention is opposite to the one in our monograph [22], since the metric here has signature
(_’ +,+, +)
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and, in particular, vanish identically in a neighborhood of the light cone {t —1=lz| = r}. More
precisely, we assume that the initial data on the slice ¢t = 2 are supported in the ball |z| < M for
some M € (0, 1), and we construct solutions supported in the larger domain || < M +¢. In short,
we will say that the functions under consideration are spatially compactly supported in X
or, in short, spatially compactly supported.

We easily adapt the energy estimate in [22, Proposition 2.3.1] to the equation (1.11), as follows.

Proposition 2.1 (Energy estimate for the hyperboloidal foliation). 1. For every function u which
is defined in the region K[z s and spatially supported in X, one has for all s > 2

S
(2.10) Bn(s0) < B (2,0)" + | Ol 300,05
2. Let v be a solution to the Klein-Gordon equation on a curved space (with the definition of [J
given earlier)
(2.11) —gv + v = f,

defined the region K3 5 and spatially supported in X. Suppose that hoB = goP —moP satisfies the
following two conditions (for some constant k = 1 and some function M ):

(2.12a) n*2E97c(s,v) < Epe(s,0) < /<;2Eg7c(s,v),

(2.12b) 'J (s/t) (&ahaﬁatvﬁgv - %@h“ﬁaav&gv) dz| < M(8)Em.(s,v)"2.
Hs

Then, the evolution of the hyperboloidal energy is controlled (for all s = 2) by

(2.13) B o(5,0)Y2 < K2E,(2,0)Y? + HZJ (HfHL‘;(&cg) + M(s)>d§.
2
Proof. We apply the multiplier d,u to [Ju and, by a standard calculation,
1
50 <(8tu)2 + Z(@au)Q) — 3 0u(Prudeu) = drulu.

We integrate this identity in K[, ;) and apply Stokes’ formula by observing that, by assumption,
the functions under consideration are spatially supported in X, so that there is no “boundary”
contribution, and we find (see [22, Sec. 2.3])

%Em(s,u) - %Em(Q,u) = J J (8/t)0ruTu dzds.
2 Jacs

We differentiate this identity with respect to s and apply Cauchy-Schwarz inequality, as follows:

d _
Em(s,u)1/2£Em(s,u)l/2 :f (5/t)0pvJuder < HDUHLZ}(HS) (S/t)atUHL;(}csy

Next, by recalling (2.8), we find £ E,,(s,u)"/? < HDuHL?(%S) and, by integration over [2,s], the
inequality (2.10) is established.
Next, for the derivation of (2.13), we rely on the multiplier div and, by a standard calculation,

we get

1
50t ((@0)” + za](aavﬁ +c%0?) + 2 0a (= Bavdv)
+ 0o (= h*Pogvov) + %at (h*Bd,v05v)

= 0w f — 0ag®P Ogvdsw + %(%gaﬁ(?av&gv.

As was done in the derivation of (2.10), we combine this identity with (2.12a)-(2.12b) and
obtain

d
Eg.c(s, v)1/2£Eg,c(8,v)1/2 < R(1fl2@c,) + M(8)) Eg,els,v) 2.
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We integrate this inequality on [2, s] and find
S

Eq (s, W)/? < Eg,c(27v)1/2 + /sJ; (|\f||L?(}C§) + M(3))ds.
Finally, we again apply (2.12a), and (2.13) is proven. d

2.4. Sobolev inequality on hyperboloids. In order to turn an L? energy estimate into an
L* estimate, we will rely on the following version of the Sobolev inequality (Klainerman [19],
Hoérmander [13, Lemma 7.6.1], LeFloch and Ma [22, Section 5]).

Proposition 2.2 (Sobolev-type estimate on hyperboloids). For any sufficiently smooth function
u = u(s,r) which is defined in Kz 4oy and is spatially supported in X, one has

(2.14) sup (s + [2))*? [u(s,2)] < D) L u(s, )20y 522
(s,2)eH s |1]<2 s

where the implied constant is independent of s and u.

Proof. Recalling that ¢ = 4/s? + |z|? on H, we consider the restriction to the hyperboloid

ws(x) :=u(r/$? + ||, x).

Fixing so and a point (to, zg) € Hy, (With tg = 1/s2 + |x¢|?), we observe that

(2.15) Oaws, () = Qau(q/sg + |w|2,x) = 0 u(t, ),
with ¢ = 4/s3 + |z|? and

(2.16) t0aws, (z) = td u(4/s2 + |z[2,t) = Lau(t, x).

We introduce the function gs, 1, (y) := ws,(xo + to y) and write

Gso.t0(0) = ws, (z0) = u(q/s% + |m0|27m0) = u(tg, xo).

By applying the standard Sobolev inequality to the function gy, +,, we find
2
GoteOF <C Y [ o)
|I]<2 B(0,1/3)

where B(0,1/3) < R? is the ball centered at the origin and with radius 1/3.
Next, taking into account the identity (with = = xq + toy)

CaFso.to(Y) = toCaws, (To + toy)
= to0qws, (T) = tOQau(t, x)
and, in view of (2.15), we find (for all ) 0/ g, 4, (y) = (tod) u(t, z) and, thus,
2 2
]gso,tO(O)] <C Z j ’(to@lu(t,x))‘ dy
B(0,1/3)

[11<2

=Ct,* ’(tOQ)Iu(t, z)) |2d:c.

=2 JB((to,mg),to/B)mHso
We note that
(1004 (to@pwso)) = 130, 05ws,
= (to/t)*(t0a) (t0)ws, — (to/t)* (2 /t) Lyws,
and that =/t = z8/t + yto/t = (xd/to + y)(to/t). Consequently, in the region y € B(0,1/3) of
interest, the factor |x®/t| is bounded by C(to/t) and we conclude that (for |I] < 2)

|(tod) ul < ) L7 ul(to/t)*.
i<l
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On the other hand, in the region |z¢| < tp/2, we have ¢y < %so and thus

to < Csp < Ch/|z|? + s2 = Ct

for some fixed constant C' > 0. When |z¢| = t¢/2 then in the region B((to,x0),t0/3) N Hs, we
have tg < Clz| < C/|z|? + s = Ct and, consequently,
(tod)Tul <C Y] L7y
IJ1<[1]
and

G010 (w0)|* <Ctg® Y] |(t0) u(t, )| da

|I|<2 JB(:Co,to/?))ﬂi}CsO

<Cty*? Z f ’Llu(t,x)|2 dzx.
[1]<2 Y s0

O

2.5. Hardy-type estimate along the hyperboloidal foliation. The following variant of Hardy’s
inequality was established in [22, Section 5]. This inequality plays an essential role in order to
estimate the L? norm of the wave component itself (but not only its gradient).

Proposition 2.3 (Hardy-type estimate on the hyperboloidal foliation). For any sufficiently
smooth function which is defined in the future region Ko 4 and is spatially supported in X, one
has for s = 2

s~ ulzz o) S Il ooty + D 120l 3 00,
(2.17) s
3], 57 1otz + 16021 130000) 5
where the implied constant is independent of s and u.

The proof uses a version of the classical Hardy inequality on hyperboloids, as well as a vector
field that will be introduced in the proof of the proposition, below.

Lemma 2.4. For any sufficiently smooth function which is defined in the future region Kz 4 and
is spatially supported in K, one has for all s = 2

Ir~tullzsoc) © 2 12aul L oc,)-
a

where the implied constant is independent of s and wu.

Proof. As in the proof of Proposition 2.2, we consider the function wg(z) := u(«/s2 + |:c|2,:c),
which satisfies d,ws(z) = Qau(N/SQ + |z|?, 1’), and we apply the classical Hardy inequality to ws.
It follows that

J lrtw, () |*dz < f \Vw,(z)]2dx = CZJ |0 u(v/'s? + T27x)’2d1'
RS R3 = JR3

< 2 Lc |Qau(t, x)’2d:1c.

Proof of Proposition 2.3. Let x be a a smooth cut-off function satisfying
0, 0<r<1/3
X(T) - {17 2/3<7",

and let us distinguish between the region “near” and “away” from the light cone. We consider the
decomposition

||5_1UHL§(5CS) < HX(T/t)S_1U||L§(9{S) + (1 - X(T/t))s_luﬂL?(}cs)-
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Our estimate of (1 — X(r/t))sfluHL?(%s) is based on the inequality (1 — x(r/t))s™! < Ct™* so
that, by Lemma 2.4,
[ = x(r/t))us™ 2 ac,) < I ul 2 90,

(2.18) -1
<|r UHL%(}Q) < OZ HQaUHLZ;(my
a
The estimate near the light cone is more delicate and we first observe that, in the region X,

of interest, x(r/t) < (1X+(:/2t))1/2 and, thus,

Ix(r/t)s ™l 2 e,y < Cllr(L+12) 7 2x(r/t)s ™ ul g2 gac.

and the right-hand side of this inequality is controlled as follows. We introduce the vector field
2
w = (0, —x“%) and compute its divergence
. - rx(r/tyu xtx(r/t) u rx(r/u X (r/t)r
diviv = —2s710, . —2s 1= :
v SN e 2s (122 T T p s+ )2 (14 r2)i2
r?t + 3t r’t 2
— 2 t)) .
((1 + 12)2s2 * 1+ 7’2)s4> (ux(r/1))

By applying Stokes’ theorem in the region X[y 4,1, we find

(2.19)

f divW dzdt = f W -ndo + W -ndo
Kiz,s1] e

:J‘}C 1_:7|ux(r/t)s_1|2dx— L{ T 2}ux r/t)s 1| dx.

Differentiating this identity with respect to s leads us to

d d
s div W dadt a1y
ds(Jx[zle ’ ) ds(Lc L+ Tl /) } x)

rux(r/t) d | rux(r/t)
s(1+1r2)1/2 e, ds | s(1+ r2)1/2

(2.20)

LQ(?CS).

We then integrate (2.19) in the region Kz 5,1 € K n {2 < V12 — 72 < 51}
J div W dwdt = —2 f sl<6au (/. _@t(r/t) )dxdt
Kiz,81] Kiz,81) (

1+ 72)125 (1 + r2)1/2

' /
_2J 1Y rx(r/z)zfz X (r/zt)dedet
Ky T S(LHTHV2(1+r2)Y

r2t + 3t 24 ,
B 2
J‘K[z,sl]<(1 + 12)252 + (1+ 7"2)s4> (ux(r/t))” dadt,

which yields the identity

L{ div W dadt = —zrlf (s/t)s—1< ug +(:§§3/25r(1atj(§2§?/2> dads

(251 J J s/t)s 1Y rx(r/hu X/,

rs(14r2)Y2 (1 +r2)1/2

[} Lo (e 2 ) ey s

S1
= J (T1 + 15 + Tg) ds.
2
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Here, we have T35 < 0, while

S L{ (5/8) (aau<rx(r/t)u 2ty (r/t) > o

14+ 7r2)12s5 (1 + r2)1/2

<os—1| _Tux(r/t)
s(1+72)1/2 L2 (3¢,)
> [(s/t)0aull L2 (s¢.) x(r/tztr (1 + Tz)_1/2||Lw(}CS)
_|| _rux(r/t)
<Cs™* S+ r2)12 ZH(S/t)aaUHLi.(gcs)

L2(3.) a

and

. u rx(r/t)u "(r/t)r
-at [ b e,

rux(r/t)
s(1+1r2)1/2
rux(r/t)
s(1 +r2)1/2
where Lemma 2.4 was used.
We write our identity in the form % ( Sj{[z %liVdedt) =T} + 15 + T35 and obtain

d(f didexdt)
ds Ki2,51]

- ! (r/t)(1 + %)

)Hurilﬂl@(?‘fs) HLOO(}CS)

L33,

-1

~x

oo Sl
f s

(2.21) rux(r/t)
< g AV
SR e B (sl 36, + I12atlz3.ac,) )
Finally, combining (2.21) and (2.20) yields us
d || rux(r/t) . s
— "= < —0q 0
ds| s(1 + r2)1/2 . K ; (Ht UHL2(}CS) + \Lau\|L2(9{s))

and, by integration over [2, s],

(1 + TQ)_I/QX(r/t)S_wH@(}cs)
(2.22) B B S .8 -
< HT(l + 7‘2) 1/2X(T/t)2 1u”L2(iH2) + EL 51 (H;aauHL?(:}Cg) + HQauHLﬁ(G{g))dS‘

From Lemma 2.4, we then deduce that

Ix(r/t)s ™ ull g2 5e,) < Ir(L+ r2)_1/2x(7'/t)5_1u|\Lz}(}(s)

(2.23) _ s 5 ~
<2 1UHL2(;(2) + ZL 5 l(Hg%uHL;(}cg) +[12qull £z (3¢, ) d5,
a

and remains to combine (2.18) with (2.23). O

3. SUP-NORM ESTIMATES FOR THE WAVE AND KLEIN-GORDON EQUATIONS
3.1. Statement for the wave equation.

Proposition 3.1 (A sup-norm estimate for the wave equation with source). Let u be a spatially
compactly supported to the wave equation
—[u = fv

3.1
( ) U|t=2 =0, atu‘t=2 =0,
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where the source f is spatially compactly supported in K and satisfies the estimate
[fl < Cpt=27"(t — )1
for some constants Cy >0, 0 < < 1/2, and 0 < |v| < 1/2. Then, the following estimate holds:

Gt (4 — pyp—vg=1, 0<v<1/2,
3.2 ta)l <9~
( ) ‘u( 1’)| {ﬁu(t—r)“t_l v —1/2§V<0.

We recall that the energy estimate on wave equation does not control the solution itself but
only its gradient. So when we apply the Sobolev inequality and obtain a sup-norm estimate (cf. for
example [22]), there is no immediate estimate on the sup-norm of the solution itself. The estimate
above yields a (sharp) sup-norm estimate on the solution itself and will play an essential role for
the control of the quasi-linear term u0;0;v in our model problem. We emphasize that the range
—1/2 < v < 0 will only be used in the second part [23].

3.2. Proof of the sup-norm estimate for the wave equation. We now state a technical
lemma and give the proof of Proposition 3.1, but postpone the proof of the lemma to the end of
this section. Let do be the Lebesgue measure on the sphere {|y| = 1 — A} and z € R? with r = |z|.
We are interested in controling the integral
d
I(\) = I(\ ta/t) = f o) __
lwl=1-A )% —yl<a—t=t (A= [§ —y])

Our bounds below are consistent with the obvious estimate where x = 0:
(3.3) I\ t,0) = 4m(2X — 1)~ (1 = N2,

Clearly, when 0 < A < =1+, one has I()) = 0.

Lemma 3.2. When = 7””1 < A < 1, the following estimate holds:

At(l— t—r t—r+1 t+r+1
— <A —,
2t 2t
—1+pn
t t 1 t—
(1—/\)<+T /\><2/\—) , Prrl <t
I()\)s 2t t
) t+r+1 t—r
provided <
2t t
1— —r\" - 1
(7>\)t t r , max ¢ 7:& <) A< 1.
wr t t 2t
Proof of Proposition 3.1. From the explicit expression
(1
34 t,xr) = — S,x —y)dods
(3.4) e ey dods

in which the integration is made on the intersection of the cone {(5,y) /|y —z| =t —5,2 <5 <t}
and {(t,z) /r <t—1,* —r* < s?,t > 2}, we obtain

t 72 v _ _ 1+p
lu(t, )| < ﬁf J (5 t|x8 Y= s
ly|=t—35,|z—y|<5 -

(1= X)"IA"2"dod) _ )
A:i=35/t =/t
4ﬂ-t1+u uf Jyl - )\\I—UK/\ -1 ( S/a Y y/)

(=[5 =y
Cr Jl -1 7271/[ do
—_— 11— dA
Amtityon %( ) ly'|=1-M |2 —y/l<r—t1 (A — |Z — y’|)1_“

When |£ — /| < XA —t~! holds, we obtain *=5*1 < A < 1. For convenience in the notation, in the
following calculation we replace y’ by y. We first assume that » > 0 and we distinguish between
two main cases:

)
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Case 1: t_TT > H;”l < r < % In Lemma 3.2, all three cases are possible:

1
|’U,(t, (E)| gL J (1 _ )‘)_1)‘_2_VJ dO' d>\
78
T \

AmtirTh Jepn y=t- g pla-tt (A= |2 —y)' "
t+r+1
C T (1 —=N) (t—r\"
< i f7 (1 _ A)*l)\*2*l/ ( ) r d)\
ptttv—n torl r t

Cy T 9y t+r t+r\
+ tl+v—p Jt+2¢~t+1 (1 - >\) A (1 - )‘) £ - A 2\ — ; dX

1 _ K
N fﬁ (1 -1z =M TW (t T) d,

,u/tlﬂ”’*ll« t—r t
thus
Cr  tft—r\" [
lu(t, z)| < 1 ;- d J A"V dA
ptttv=rp t —r+1
t—r _1+H
Cy t t+r t+r
A2 M) [2) = d\
s [ () (-5
Cy t(t—r\"!
+—a ! A2V d,
ptltv—p g t t=r
t
For the first integral, we recall that r < ! and that 0 < [v| < 1/2, and write
thrl 1+v
EJ 8 /\1”d/\$< t > <1,
r t*27't+1 t—r
so that

t4rtl

Cr tft—r\" [ =
f e r J‘ )\—1—1/ d)\
[LtlJrV*“ r t tr41

< Cpu Mt -

2

Next, for the second integral in the right-hand-side, we just remark that

t—r —1+p
: ¢ ¢
f A2 <+T _ )\> (2)\ _ it T) A
t,+2rt+1 t t

t

i—r —1+p I
t t 1 t
sf <2)\— ”) d>\=<2)\— ”)
ttrel t n t

2t

t—r
t

1
< -
t+r+1
2t H

This leads to

t

T —ltn
Cy N2 (t—}t—T‘_/\) (2/\_25—;—7‘) X < Cy

tHHv—p Jiprga ’ult1+l/7p,'
2%

For the third term, in view of &2 > 24 > 1 we obtain

RS _ oK L
1Cf, E t r J )\—Q—V d\ S Cf, E t r J 22+,LL d\
ptttv=—r e \ ¢t b ptttv=—r e\t tor

t
<SCru Mt —r)re Y,

So we conclude that in the case 0 < r < 51, |u(t, 2)| < Cppu= ' (t — r)rt=17v.

Case 2: % > t_T’” Sr = % The second case in Lemma 3.2 is not possible, and we have

Cf t—r ® t+2Tt,+1 1 1 9
< —1-v —2—v
lu(t, )| < ut“”"‘( " ) <J+ A d>\+ﬁ+r+l>\ dx | .

2t 2t
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Since % > 1/2, the second integral is bounded by a constant C. For the first integral, we see
that when v > 0,

t4r+l

J * A 1vdl < l (tTH> )
—rt1 v t

2t

So in this case when v > 0, we obtain |u(t,z)| < Cf(uv) 1 (t —r)r=vt= L.
When v < 0, we write

t4rtl

J * )\—1—Vd)\<l(w>_ Si

o= T t v

2t

and, therefore, we obtain |u(t,z)| < C(ulv|)~*(t — r)*t=177.
When r = 0, we make the following direct calculation, remark that in this case, % <A<,
by (3.3):

1
lu(t, z)| < &J (1—N)"IA"2v A do

AT g e OO e

1
< tlf%# f (1= A)"IA277(2 = )7 (1 — \)2dA
t+1

2t

C C
< Lyt —f(t — ) (since r = 0),
7 7

which completes the proof. O

Proof of Lemma 3.2. When r = 0, the estimate is trivial. When r > 0, without loss of generality,
let z = (r,0,0). The surface Sy := {|y| = 1= A} n {|2 — y| < A—t"'} is parameterized as follows:
e 0: angle from (1,0,0) to y with 0 < 6 < 7,
e ¢: angle from the plane determined by (1,0,0) and (0, 1,0) to the plane determined by y
and (1,0,0), with 0 < ¢ < 27.

Then, we have y = (1 — )\)(cos 0, sin 6 cos ¢, sin 0 sin (b) and we distinguish between two cases, as
follows.

Case 1. When =Jt1 < X\ < ™2+l we only have a part of the sphere {ly| = 1 — A} con-
. . N . (r/t)2+(1-N)2—(A—t"1)?
tained in the ball {|2 —y| < A — ¢7'} where cos(d) > OIS . So we set Oy :=

2 2 (y_—1)2
arccos (Wt) +((21T/;\))(1_(/\/\) ) > and see that

T r2 r
)\_‘t_y‘:)\—\/tQ+(1—)\)2—2t(1—/\)cost9

and do = (1 — X)?sin()dfd¢. The integral is estimated as follows:

J\ do
yi=1-n 2 gl (A= |2 —y[)' 7"

t

27 0o r2 r —1+p
:J d(bf (1—/\)23in9(/\—\/t2+(1—/\)2—2t(1—/\)0089> de
0

0

0o r2 r —1+p
:27TJ (1—)\)23in9<x\—\/t2+(1—)\)2—2t(1—)\)cosﬁ> do
0

) 6o ,,,_2 r —1+p
=—27(1—-X\) A— §+(1_A)2_2¥(1_A)C080 dcosf

0
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thus by setting w = cos @

J do
PR v

=27 (1 — \)? fl ()\ - \/;’; +(1=N)2— 2;(1 - /\)w> T

cos 0y

w1 —\) (Pt 1 mt(l—A) (MlEmANE
_ ( )J ()\—\/’7) +”d’y:2 ( )J C HM()\—OdCa
T %7(17/\”2 T t—1

where we have used v = ’;—2 +(1-X)?—2%(1—Aw and ¢ := A— /7. Then, we distinguish between
the following two sub-cases.

Case 1.1: 7 < 1— X or, equivalently, A < t_T’" We now find

o THL =) J*—HH)
r t

—1

A=) dC

Cowt(l— ) (20E) A(L—A) (t— 7)o
oMU [T - g ag s MO LT

Case 1.2: 1 — A\ < § or, equivalently, A > t*T’” We find

_ A= —(1=2)]
27Tt(1 A) f ! C—1+,u(>\ —¢)d¢

—1

t—

o= fﬁr A= Qd¢ s
t—1

M(1=X) (t—7)H
ur e

Case 12 When 2t < X < 1, the sphere {|y| = 1 — A} is entirely contained in {|(z/t) —y| <
A—t

J do B J do
i=t-nig st (A= £ —g) 7" Do (A= 2=y

4 r2 r —ltu
=2ﬂ-f (1)\)2sin0<)\* t2+(1)\)2*2t(1)\)cos0> do
C

)

= 27(1 — \)? fl </\ - \/7; + (-2 - 2%(1 - m) e

and thus

) prlE—ae)
do 2“(1T A)J T - g ac

le=1&|fy|</\t1 (A—[2—y) ™" A= (5 +(1-3)
(1 — )
T

Al E— (-]
_9 J RO = 0) dC.

t+
22—

We now distinguish between two sub-cases.

Case 2.1: When 7 < 1— X or, equivalently, A < t*T”, we find
271'15(1 - JAI(1A)|
r 22— 4T

-5 —1+
:QMJ g1+M(A—<)d<<0(1—A)<tJ;T—A) <2A—t+’“> "

2= t

A= QdC
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where we have observed that in the integral the function (~!*#(\ — () is decreasing and we can
bound this integral by the value of the function taken at the inferior boundary (which is 2\ — HTT)
times the length of the interval which is 2r/t.

Case 2.2: When 1 — A < £ or, equivalently, A > £, we have

2t — A A1E-N)
1 =) j CHE( — ¢) d¢

r 22—t
= QM ' CHEAN=Q)dc < C(1— )\)EJ ' SaLs
T 2A—tEr "Jan-tHr
- C(lf)\)tcﬂ T C=Nt [t "
ur 0 ur t

When % < t_TT, both case above may occur, while only Case 2.2 is possible if the opposite
inequality holds true. O

3.3. Statement for the Klein-Gordon equation. Consider (sufficiently smooth and spatially

compactly supported) solutions to a Klein-Gordon equation on a curved space and, specifically,
—Ogv + v = 1,

(3.5) 7

vla¢, = vo, Orvlac, = v1,

with initial data vy, v, given on Hy and compactly supported in Hy n K, and the metric has the
form g®# = m®# — h*8 with h*P is spatially compactly supported in K with sup |EOO\ < 1/3.

Before we can state our estimate, we need some notation. Given a constant C' > 0 and using
the notation s = v/t2 — r2, we consider the function

heo(N) 1= T (At/s, Aw/s),
and, by denoting by h; ,(\) for the derivative with respect to A,

B (V) = éaﬁ“(ws, Xafs) + -2.h" /s, e )

t
-0, h
Pl

OO(At/s,)\x/s).
We set
2, 0<r/t<3/5

3.6 So 1=
(36) ’ 4/1”, 3/5 <r/t <1,
—-Tr

and introduce the following function V' which is defined by distinguishing between the regions
“near” and “far” from the light cone:

(ool ooy + onl o) (1 [ 1, (9 10102 )
V= + F(s) + L F(3)|h) 4 (\)|eC 1 1Ml g5 0 < v/t < 3/5,
F(s)+ [ F )4 ()]eC 5 100 g 35 <t <1,
“
with

F(3):= J ((Rl [v] + Ra[v] + R3[v]) (At/s, Aa/s) + N2 f(At/s, Ax/s))d)\

S0
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and

Ry[v] —53/226(?U+ 551} 41/2v+2 1/2

o0/ 3 obe = —abe — e
Ry[v] := h00(4 52 +381/260v> — 33/2(2h 000pU + h 0q0pv —|—h°‘Bé’a\II§ (35,1)),

. 229 apb
R3[v] := R (295 $Y2000,v + 32(" v+ zlz&a&bv)

With these notations, our result is as follows.

Proposition 3.3 (A sup-norm estimate for the Klein-Gordon equation with source). Considering
the Klein-Gordon problem (3.5) for a every sufficiently smooth and spatially compactly supported
solution v defined the future region Kia 1o, one has (for all relevant (t,x))

(3.7) 53/2\U(t,x)| + (s/t)_183/2|QJ_v(t,a:)| <Vt x),

This result is motivated by a pioneering work by Klainerman [19] and the decomposition in
Lemma 3.4 below. An analogue statement in two spatial dimensions and flat Minkowski spacetime
is discussed in [28]; see also the earlier work [9].

3.4. Proof of the sup-norm estimate for the Klein-Gordon equation. We begin with two
technical results.

Lemma 3.4 (A decomposition identity). For every sufficiently smooth solution v to (3.5), the
function
wy o (N) 1= N20(\t /s, \x/s), (t,z) e X,
satisfies the following second-order ODE in \
d? ?
7wt,$()\) + —
d? 1+ 1 (s, \z/s)
— (147" (\/s, \x/s)) " (Ra[v] + Ralv] + Ra[v] + s%2f) (At/s, Aa/s).
Lemma 3.5 (Technical ODE estimate). Let G be a function defined on an interval [so, s1] and

satisfying sup |G| < 1/3. and k be an integrable function defined on [sg,s1]. Then, the solution z
to the ordinary differential equation

wt,x(/\)

53 T Trem
2(s0) = 20, 2 (s0) = 21,

with prescribed initial data zg, z1 satisfies the uniform bound

3.9) )+ 6 < (ol +lal = Ko) + [ (I + |l + K ) [6/(3)}eC €0 ds

2(A) = k(N),

for all s € [sg, $1] and with K (s S 5)|ds and a suitable constant C > 0.

Proof of Lemma 3.4. 1. Decomposition of the flat wave operator. By recalling s = /12 — 12
and r = |z|, an elementary calculation shows that the flat wave operator [] in the hyperboloidal
frame reads

_ — x%_ 3
1 —O0=000g — ) 040, +2 > —000, + —0p-
(3.10) U 000 %: + ; 500 +5(o

Given a function v, we can set
w(t,z) = s*o(t,x) = (£ = |2*)**o(t, ),
and obtain

3w

37 2.3 2> = 3077, w
(3.11) — 32w = Fpdow — g Jalaw + 2; —d0daw — 75— Za: .

2

452 s
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Again, we define a function of a single variable by

wy 2 (N) := w(At/s, Az /s) = A2v(\t/s, \x/s).

We see that
di)\wm()\) = (0o + s~ '2"0a)w(At/s, \/s) = EQLw (At/s, Axz/s)
and
d? _ % = xtal o -
(3.12) me()\) = (6030 + 2?606(1 + (9a6b>w()\t/s,>\x/s).

Combining this with (3.11) and recalling that w(t, z) = s3/uv(t,z), we get

a a.b
(aoao 2 E, 6a6b>w
S S
(3.13) .

mxb

52

_ _ 3 3%
= ¥+ Z 00w + 0aOpw + 4—8210 + Z S%aaw =+ Ry [v].

2. Decomposition of the curved wave operator. We write
[ = h*Pd,d5v — v + f
and, by performing a change of frame,
180,050 =h FaBav + hP2 T Tpv
8030w + 20" Bodyv + B Budpv + hOP,T) Fgrv.
Then, we obtain
—s3 2y = — 33/250050507) — %/2 (25%5055@ + Eubéagbv + h“ﬂaﬂgl 531}) — 3% + 53/2]”

= — 100 (s%%0) — 5%

h 3 F) 7 VYA A/ —ab= —= _nl
o (4;/2 i 381/260”) — $32(2R" BeB + B BaByv + hP0, T Fgv) + 5¥2,

and we conclude with
3v
451/2

— 32 (2" B0dyv + B BBy + hP0, Y D) + s¥2f
= —Eoogog@’w — C2’LU + R2 [’U] + 83/2f.
We then combine (3.13) with (3.14) and obtain

— 32 = 1" 80dow — Pw + h00< + 381/260v>

(3.14)

a a,.b

(3.15) Fodow + 2%505aw + %mbw — 1803w + 2w = Ri[v] + Ro[v] + s%2F.

3. Conclusion. We continue with (3.15) and write

a,.b

T T

(1+7%) (aoa0+2‘"’;aoaa+ . 5aab>w+02w

axb,

z aaab>w + Ri[v] + Ralv] + s¥2f

—00 [ 2%= =
s s
and, so, we have

I,a

a b 2
(8080 + 21;505(1 + ;ﬂ aaab> w + < 7;000
s s 1+h

=(1 +EOO)_1(R1[U] + Ro[v] + Rs[v] + 83/2f).

(3.16)
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It follows that

d? wy (M)

o Vt,x A — :

e )+ 1+ hoo()\t/s,)\x/s)

= (1+ EOO(/\t/s, /\x/s))_1 (Ri[v] + Ra[v] + Rs[v] + sg/zf) (At/s, Ax/s).

(3.17)

O

Proof of Lemma 3.5. We simply need to integrate out the ODE. We consider the vector field
_ RN . _ 0 1 — 0
b(A) = (2(A),2'(N))" and the matrix A(X) := < _E1+ 6 0 > . We write b’ = Ab+ < 1 ) .

and introduce the diagonalization of A = PQP~! with

o0 (ic(1+G)_1/2 0 )

0 —ic(1+ @)
and
(1+6)*?
P = ( ilc 1iC ) ) P_l = 1/2 12i(é 1/2 .
eI (e e 2 %5

We thus have b = PQP~1b + ( 0

i >, which leads us to

1y ~1 —1y/ ~1( 0
(P7'0) =Q(P~'b) + (P~ )b+ P <k)
We regard the term (P_l)lb as a source term and, by a standard formula,

S0

+ f M QEEE (P (X) b(N) dA.

Recall that when sup,c(; o [G(A)] < 1/3, the norm of P()) and P~"()) are bounded for A € [s, ].

We also remarks that the norm of (Pfl)/()\) is bounded by C|G’(\)| with C' a constant depending
only on ¢, and the norm of @ is also bounded by a constant C' > 0. Furthermore, we observe that

"oy [ RO s 0
L Q(5)ds = < 0 —ic§5(1+G)~Y2(5)ds
and thus
oS5 QB)ds _ eic§(1+G) 713 (5)ds 0
= 0 e*icSi(lJrg)fl/z(g)dg

The norm of the matrix eix @(5)ds

is now proven:

is uniformly bounded by a constant, and the following estimate

|2(s)] + |2 (s)] < C(|z(s0)| + | (s0)]) + C K(s) + CJ IG"N) (12N + 12/ (V)]) dA,
and we conclude with Gronwall’s lemma. O

Proof of Proposition 3.3. The proof is based on a combination of the bounds (3.9) and (3.17). By
recalling the definition of wy 5 (\), we have

Wz (A) = A3/2v()\t/s, Az/s),

t
wy ,(A) = g)\l/Z’U(/\t/S, Az/s) + ;)\3/2le()\1€/$, Ax/s).
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That is, w; , is the restriction of w(t, z) = s¥2v(t, ) on the line segment {(\t/s, Az/s), A € [so, 5]}
We then apply (3.9) and (3.17) to this line segment, with

2, 0<r/t<3/5

S0 = t+r
Al 3/b<r/t<1.
L ’I"’ / T/

This segment is the part of the line {(\t/s, Az/s)} between the point (¢,z) and the boundary of
Kisor+00)-

Recall that v is supported in K. and the restriction of v on the initial hyperboloid Hy is
supported in Hy N K. We recall that when 3/5 < r/t <1, w; (so) = 0 and when 0 < r/t < 3/5,
Wy z(S0) is determined by vy.

When 0 < 7/t < 3/5, we apply (3.9) with s9 = 2. When A\ = 2, we write w;,(2) =
w(2t/s, 2x/s) = 2520 (2t/s,2x/s) = 2%/%vy(22/s), and

w (2) :%()‘3/2U()‘t/5’ )‘x/s))‘A:2

%ﬁv(Qt/s 2x/s) + 252 (s/t) 710, v(2t/s, 2z /s)
3\—Fv(2t/s 2x/s) + 252 (s/t) Lo (2t /s, 22 /s) + 2%/% (2% /5)dqv (2t /s, 22:/5)
:¥vo(2x/s) + 252(29)8)0qv0 (22 /5) + 252 (s/t) " tu1 (2t /s, 22/ 5).

Recall that when 0 < r/t < 3/5, we have 4/5 < s/t < 1. So we see that |wy ,(s0)| + |w} . (s0)] <
C(Jvollze(scsy + il Lo (sc,)). Then by (3.9) and (3.17) we have

w12 (8)] + w1 ()] < C(lvollL=(aes) + [v1l=(3¢,)) + CF(s)

+cxwﬂLQHﬁ+nmmﬁwbﬂfsmgxawcﬁmwOWMdg
N CJ (5)]C 5 IWea A g
We recall that when 3/5 < r/t < 1, w +(S0) = w; ,(s0) = 0 and so we have
[we 2 (5)] + |wi . (s)] SCF(s) + (Jf F(§)|h2’$(§)|6052 [P = MdX g5
50

which leads to |w; . (s)| + [w; ,(s)] < V(¢ 2). It remains to recall the relation between v and w,
that is, v(t, ) = s%/?w; . (s) and
—1.3/2 / 3 12 / 3 1
(/1) 7120, 0(t,2) = ] (5) — S8 20(t,2) = wf o) — 25w a(s),
and the desired estimate is established. O

4. COMMUTATOR ESTIMATES

4.1. Algebraic decomposition of the commutators. We consider the commutators [X, Y |u :=
X(Yu) — Y(Xu) of operators associated with our vector fields when the function v is defined in
the future cone X = {|z| < t — 1}. Our uniform bounds rely on homogeneity arguments and on
the observation that the coefficients of our decompositions are smooth in XK.

First of all, the vector fields d,, and L, are Killing fields for the (flat) wave operator [], so that
the following commutation relations hold:

(4.1) [0a, O] =0, [Lo, O] = 0.
By introducing the notation

(4.2) [La05] = 0050y, [0a,@5) =t ' M140,,  [La,@5] = 0140,
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we find easily that

@ZO = _5;/7 @Zb = _5ab§ga
b
X
(43) Mgb = _?53 = \112537 MZCO =Y MZb = 5ab537
e :,§7+i57:7(§7+¢a57 oY ziﬂbéwijoéy
~~a0 a t 0 a o%Y0>» ~~ab t e b%a>

where ® and ¥ were defined at the beginning of Section 2. All of these coefficients are smooth in
the (open) cone X and homogeneous of degree 0. Furthermore, we can also check that

(4.4) O =0, sothat [Lq,d)] =050,

which means that the commutator of a “good” derivative ¢, with L, is again a “good” derivative.
(That is, these derivatives enjoy better decay compared to the gradient itself.)

Lemma 4.1 (Algebraic decomposition of commutators. I). There exist constants A ; such that
(4.5) [0, Lol = > ALyo7.
[JI<]

Proof. We proceed by induction on |I]. For |I| = 1, the result is guaranteed by (4.2). Suppose
that (4.5) holds for all |I1| < m, we will prove that it is still valid for |I|] < m + 1. Let I =
(Qty Qs 1, - - - ya1) and Iy = (Q, 1, - . ., 1), so that 07 = 0,0"*. Then we have

(07, La] = [000"™, La] = 0a([0", La]) + [0a, La]d™ = aa( 3 Ag{,aJ) —0),0,0h

[JI<|1]

D1 Aldad” - 0],0,0",

RASEE

which yields the desired statement for |I| = m + 1. O

Lemma 4.2 (Algebraic decomposition of commutators. II). There exist constants 05} such that
I 1 J
(4.6) (L, 0a]= > 0y0,L7.
IJIsHI-1y

Proof. We proceed by induction and observe that the case |I| = 1 is already covered by (4.2). We
assume that (4.6) is valid for |I| < m and we will prove that it is still valid when |I| = m + 1. For
this purpose, we take L! = L,L"* with |I;| = m, and we have

[LT,04] =[LaL™, 0a] = La([L™, 0u]) + [La, 0a]L"™
=La( > 9@1]37LJ) +>107,0,L"
EETAREE 2
= > 0Ll +) e],0,L"
<=1y Y
and, therefore,
L 0] = > 0o Lo+ > 00)[Le, 0517 + ) 02,0,L"
1< =1y 1<l =1,y v
= > eoLJg’+ Y emere,L’ +) e),0,L"
B[S R FISTARSE 2

An immediate consequence of (4.6) is

(4.7) [0'L7 dalu="> 073,0,0"L7 u.
|71<171,7
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Lemma 4.3 (Algebraic decomposition of commutators. III). In the future cone X, the following
identity holds:

(4.8) [0'L7,0,4] = DN
[T I< T
[T+ 7| <|T]+]J]

where the coefficients Qé‘gj, are smooth functions and satisfy (in X)

1 v nlJ
(4.9) 0" L7057,

< C(, 11, [ L, [Jaf) ¢ 10 when |J'| < |J|,
S e, |10, L ) = when (T < .

Proof. Consider the identity

[67L7,85] = [0'L7, ®}0,] =®}["L7,0,] + > ohLh ey L0,
Iy +Ig=1,J1+Jg=J
[T+ T < T]+]J]

In the first sum, we commute 02 L7 and 0 and obtain
[0'L7,05] =®}[0'L7, 0]
- > oh L @0 0L + > ol ey[e L7, 0,

I +Ig=1,J1+Jo=J Iy +Iy=1,01+Jo=J
[T+ I<T]+]J] [Ty [+ 1T I<[T[+]]]

= D oL @Yo 0L+ N ah L e[ L7, 0,]

Iy +Ig=1,J1+J3=J I +1Ig=1
[T1 1+ I<[T[+]J] Ji+Jdo=J
/
= > ahrhejeetLr+ Y, Y, (hLe)) 6050 L.
Iy +Ig=1I,J1 +J32=J Ii+Ia=1 | J/|<|Jy| 2
[T+ T I<TI+]J] Ji+Jo=Jd 72

Hence, 6777, are linear combinations of ¢'* L71®7 and (oL <I>"Y)9J2‘,S and J; + Jo = J, which
2 B B~ JY

yields (4.8). Note that 97‘]?]2 are constants, so that

ofeL7s (a1 LN @)0:3)) = 6% 0" Lol LM @,

By definition, @g is a homogeneous function of degree zero, so that ¢/* L7t @g is again homogeneous

but with degree < 0. We thus arrive at (4.9). O

Lemma 4.4 (Algebraic decomposition of commutators. IV). Within the future cone X, the
following identity holds

(4'10) [LI’Q(:] = Z UggQaLJv

[J]<[1]
where the coefficients a4 are smooth functions and satisfy (in X)
(4.11) oL als] < O, 1) | e

Proof. This is also by induction. Again, when || = 1, (4.10) together with (4.11) are guaranteed
by (4.4). Assume that (4.10) and (4.11) hold for |I| < m, we will prove that they are valid for
|I| = m + 1. We take L! = L,L” with |J| = m, and obtain

[LI?QC] =[LGLJ7QC] = LU«([LJ’QCJ) + [LCHQC]LJ
_La< Z Ug}aaLJ/> + @ZchLJ
L7 |<|J]|

= > Leolto, L+ ) olhLeo, L7 + 650,17,
|77[<]J] | 7[<]J]
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so that
M Laolo L+ Y oo Lol + Y olh[La 007 + ©5.0,L7
l/I<l] 17/I<l7] 17/I<l7]
D Laola L+ Y ol Lal” + ) olhed,e,L” + 650,
17/I<l] l7/I<l] 17/[<7]

In each term the coefficients are homogeneous of degree 0 (by applying (4.11)), and the desired
result is proven. O

The following result is also checked by induction along the same lines as above, and so its proof
is omitted.

Lemma 4.5 (Algebraic decomposition of commutators. V). Within the future cone X, the fol-
lowing identity holds:

(4.12) [0, 0,] =t > pl,o7,
I<i|

where the coefficients p£ 5 are smooth functions and satisfy (in K)
(4.13) 0" L7 pl| < C(I1, 1], | s |y,

4.2. Estimates for the commutators. The following statements are now immediate in view of
(4.5), (4.6), and (4.10), and (4.12).

Proposition 4.6 (Estimates on commutators. ). For all sufficiently reqular functions u defined
in the future cone X, the following estimates hold:

(4.14) [0"L7, dalu| < C(IT1, 1)) D) [0s0" L7 ul,
|7 |<|J1],8
(4.15) 0717, 0,1u| < C(|1], J|)< D12, L+, |af’LJ’u>,
[J/1<|J],a [T1]<|1]
|177|<11] [71<1J07|

(416)  [["L7 2pu| < CUILIIDEY Y |0 L |+ (1) Y [os0 1w

B,117|<|1] B |<|I]
[J<[J] I <] J|

(4.17) [0'L7 dadplul < C(IL1T) D) [640,0" L7 ul,
n<Ir <

(4.18)
10'27,0,251u] + |[0 L, 2,2, ]ul

c<|f|,|J|>( DI N AT R D W N A T D) |M”L°"u>-

e, [ T< 1] ey, [ <|I] ¥ <1
[J71<1J] [J1<1J] [J/1<] 7]

Further estimates will be also needed, as now stated.

Proposition 4.7 ([Estimates on commutators. II). For all sufficiently regular functions u defined
in the future cone X, the following estimate holds (for all I, J, )

(4.19) 0" L7 ((s/t)dau)| < [(s/6)0a0 L7 u| + C(T|,1T]) D] |(s/t)0s0" L u|.
ke
Recall that the proof of the above result (given in [22]) relies on the following technical obser-
vation, concerning products of first-order linear operators with homogeneous coefficients of order
0or 1.
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Lemma 4.8. For all multi-indices I, the function
=07 = (t/s)0" L7 (s/t),

defined in the closed cone K = {|z| < t—1}, is smooth and all of its derivatives (of any order) are
bounded in K. Furthermore, it is homogeneous of degree n with n < 0.

5. INITIALIZATION OF THE BOOTSTRAP ARGUMENT

From this section onwards, we begin the proof of Theorem 1.1, which is a rather involved
bootstrap argument along the lines of the method presented in [22]. We fix some integer N > 8
throughout, and first summarize our strategy, as follows.

Let (u,v) be the local-in-time solution to the Cauchy problem associated with the system (1.11).
From a standard local existence result (cf., for instance, [22, Section 11]), we can construct a local-
time solution from the data given on the initial hypersurface and, consequently, guarantee that on
the initial hyperboloid and for all |I| + |J| < N,

Em(2,0'L7u)V? < Coe,  Ep(2,0'L70)Y? < Cpe

for some uniform constant Cy > 0. On some (hyperbolic) time interval [2, s1], we can thus assume
the following energy conditions for some constants C,e,d > 0 (yet to be determined):
(5.1)

Ep (s, 0" L7 u)Y? < C1est?, || = k, 7| + |J] < N, wave / high-order,
Ep(s, 0 L7u)'? < Che, [I| +|J| < N —4, wave / low-order,
Ep(s, 0T L70)Y? < Cres' /2R | J| = k, [I| +]J] <N,  Klein-Gordon / high-order,
Ep(s, 01 L70)Y? < Ches®?, |J| =k, [I|+|J| <N —4 Klein-Gordon / low-order.

We will prove that on the same interval the following improved energy bounds are valid when ¢ is
sufficiently small and Cy > Cy with 35 <6 < & (fixed once for all):

0N

(5.2)
1

B (s, 0T L7u)Y? < §C153k5, || =k, [I| + |J] < N, wave / high-order,
1

Ep(s,0'L7u)'? < 5015, [I| + |J] < N —4, wave / low-order,
1

Ep(s,0'L70v)Y? < 501631/2+k6, |J| =k, |I| +|J| <N,  Klein-Gordon / high-order,
1

B (s, 01 L70v)Y? < 50165“, || =k, [I|+|J| <N -4 Klein-Gordon / low-order.

Once this property is proven, we set
$1 = sup {s/(5.1) holds on [2,5]}

and we can deduce that s; = +00. Indeed, by a continuity argument, C; > Cj implies s; > 2.
Again by a continuity argument, we deduce that when s = s, at least one of the inequalities (5.1)
must be an equality. But, when (5.2) holds, none of them can become an equality. This means
that s; = 400 and the rest of our work consists of proving (5.2).

Proposition 5.1 (Formulation of the bootstrap argument). Given any integer N = 8 and ﬁ <
0 < 5LN, there exist constants Cq,e > 0 satisfying eC1 < 1 such that any local-in-time solution
(u,v) to (1.11), defined in the time interval [2,s1] and satisfying the energy conditions (5.1) for
some ¢ € (0,&¢], also satisfies the improved energy bounds (5.2).

The remaining text is devoted to the proof of this proposition, which we decompose into three
parts. First, we derive a series of L? and sup-norm estimates directly from (5.1), and from the
Sobolev inequality on hyperboloids (2.14) and the commutator estimates (i.e. Propositions 4.6 and
4.7). Second, we improve the sup-norm estimates by using (3.2) and (3.7). Finally, we combine
the improved sup-norm estimates and the L? estimates established in the first part and we get
the improved energy estimates (5.2).
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From now on, we consider a solution satisfying the energy bound (5.1) and throughout
we set |J| = k.
6. BASIC ESTIMATES

6.1. Basic L? estimates of the first generation. Throughout, we always assume that 2 < s <
s1. We begin by stating the L? type estimates provided to us by the energy assumption (5.1). For
all |I| + |J| < N with |J| = k, we have the high-order bounds

(/200" L7 ul2sc,y + 1(5/0200" Ll 30,y < Cres™,

HQaaILJuHL?(}(S) + HQL(}ILJU“L?(}CS) < Cla’:‘sk&’
(6.1) [(s/)0a0" L7 0] 2 a¢,) + 1 (5/8)2a0" L7 0] 12 (3¢,) < Cres'>HH,
”Qa&ILJ’UHLi(}CS) + ”QLaILJU“L?(}(S) < C1551/2+k5’

”aILJU”L?(:}cS) < Chest/?ho,

where the last estimate implies, for all |I| + |J| < N — 1 and |J| = k, the following estimate
(6.2) 10007 L7 0] 13 9¢,) < Cres™*HH,
as well as, for |I]| + |J| < N — 4 with |J| = k, the low-order energy bounds imply:
(/200" L7 ul3(5c,) + 1(5/0240' Ll 3 3c,) < Cie
10007 L ull 12 3¢,y + 120" L7 ull 2 (5¢,) < Ce,
(63) (/000" L0l 12 3.y + 1 (5/0202" L 0l 1200,y S Cres™.
10,07 L7 vl 2 9¢,) + 100" L7 0] 12 ¢,y < Cres™,
H&ILJUHL?(}CS) < Cesh.
In addition, they also imply, for all |I| + |J| < N — 5 with |J| = k,
(6.4) ||aaafLJv||L§,(g{s) < Cys™.
6.2. Basic L? estimates of the second generation. The following estimates are obtained

by applying the above energy estimate combined with the commutator estimates presented in
Proposition 4.6. For all |[I| + |J| < N with |J| = k, we have the high-order bounds

I(s/0)0" L7 daull 12 (3¢, + I(s/t)0" L7 00l 12 9¢,) < Cres™,

10" L7 0,ull 2 3¢,y + 19T L7 @y u] 13 9¢,) < Cres™,
(6.5) [(s/)0" L7 davl 12 9c,) + (/)T L7 0] 12 3¢,y < Cres™>HH?,
|\9ILJQM|\L§(9{S) + ||5ILJQGU||L’;’(J{3) < Cyes'/?Hho,
HéILJUHL;(ﬂ{S) < Cqest/2tks,

which, for |I| +|J| < N — 1 with |J| = k, imply the low-order bounds (for instance, by expressing
td, = L, in the first inequality):

Ht@aaILJUHL?(:HS) < Cest/2HE+1I

HtaILJQaUHL?(:}cS) < Cyest/2HE+1S
o HaILJaaUHL?(Hs) + HaILJQaUHL?(i}CS) < Chest/2HRs
[(s/)0" L7 2a05v] 3 3¢y + (/)0 L7 050l 13 3¢,y S Cres™ 7™,

50" L7 208yl 23 5c.) + 1507 L7 80@avl L3 5c,) < Cres™2HEHD,
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Observe especially that, for derivation of the last term, we write
0'L70,0,v = 0" (t ' Lad,v) = >, "L Lad w0 L (t7)
Iy 4+1Ip=1

Jy+Jdo=J

and then we proceed by homogeneity (by noting that ¢! is homogeneous of degree —1 and its
derivatives are homogeneous of degree < —1):

50" 172,000 2 0cy € ) IstT N L Ladwlizoey € D) (/0008 LM Ladyol 1o,

1<) 1y I<1]
[J1I<|J] |J11<1J]
< 01681/2+(\J1\+1)5 < 01681/2+(k+1)5.
We also have, for [I| + [J| < N — 2,
6.7 O"L”0,05v] 2 (5¢.) < Cres'/?HHe,
5 Lf(g{s)
For |I| +|J| < N — 4 with |J| = k, we have
(/0 L7 2atl 3o, + (/00 L7 2l 30, < Che,
10" L7 dgull 2 s¢,) + 107 L7 1 ull g2 (sc,) < Cue,
(6.8) [(s/t)0" L7 davll 2 ac,) + I(5/t)0" L7 00v] 12 (3¢,) S Cres™
10 L7, vl 2 ac,) + 107 L7 vl L2 5¢,) < Cres™,

HaILJU”L?(S}CS) < Ches®

For |I| + |J| < N — 5, |J| = k, we have
||tQa51LJUHL§(:}fS) + Ht&ILJQavHL?(% ) S C1€8(k+1)6,
10" L7 0avl L2 3¢,y + 107 L7 20l p2 ¢,y S Cres™
(/007 L? 2adgvliaocs) + (/00 L 20250l 12 ac,) < Cres™

HsajLJQaQbU”L;(r}cs) + \|551LJQaQaUHL§(:}cS) < Cies kﬂ)a-

(6.9)

For |I| + |J| < N — 6, we have
HaILJa a/@'UHLQ(j{ ) + H@ILJﬁ aﬁ’UHLQ(g{ ) R 0158

(6.10)
||taIL]QaQBUHL§(9CS) + HfalLJQﬂQa”HL;(fHS) < C'1’35(k+1)5~

6.3. Basic sup-norm estimates of the first generation. We combine the Sobolev inequality
on hyperboloids (2.14) with our L? estimates. In view of the high-order L? bounds, for |I|+|J| <
N — 2 with |J| = k we have

sup (t1/25|8 o' L7 u|) + sup (t1/25|(9 'L ul) < Cres®
¥, 9,

+2)8
sup (t/%10,0" L7 ul) + sup (1210, 0 L7ul) < Gy

) 5
)
(6.11) up (t'25]0,0"L7v]) + up (t"/25]0,0"L7v]) < Cres/>HE+29,
e (%12, 0" L7 ]) TP (t7210,0"L7v]) < Cres'/2HE+20,
) =

sup (t3/2|6ILJv| < Chest/?t(E+2)5,

s

For |I| + |J| < N — 3 with |J| = k, we have
(6.12) sup (t%2]0,0" L7 v|) < Cyes'/2HH+29,
¥

s
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From the low-order L? bounds, for |I| + |J| < N — 6 with |J| = k we have

sup (t"2s]0ad" L7 ul) + Sup (t'2s]0,0' L7 ul) < Che,
sup (t3/2|ga01L‘]u\) + sup (t‘S/Q\QL(?I L'u|) < Che,
(6.13) Sup Etl/QSI@aﬁ’LJvl) + s}lg: (t/25]0,0'L7v]) < Chesk+2),
sup (t3210, 0" L7 v]) + up (t%210,0" L7 v]) < Cresh+2)?
s s;flp (t3/2|8ILJv|) < cg(k+2)8

s

For |I| +|J| < N — 7 with |J| = k, we have

(6.14) sup (t3/2|6a81LJv|) < Chestkt2)9,

s

6.4. Basic sup-norm estimates of the second generation. For |I|+|J| < N—2 with |J| = k,
we have the high-order bounds

sup (t'/2s[0T L7 0qul) + sup (t"25]0" L7 0,u]) < Cres®+2)0,
;}lép (t3/2|aILJQau|) + Sg;p (t3/2|aILJQLU|) < Cpesht)s
(6.15) S}Lclp Etl/QS‘alLJaavD + S;Clps (t1/2s|(9ILJQav|) <O 881/2+(k+2)5
S;{lp (t3/2|8ILJQav|) < 01681/2+(k+2)
;up (32|07 L7 v]) S Crest/?Hk+2)0

and, for |I| + |J| < N — 3 with |J| = k,
S}ICIP (t5/2|Qa61LJv\ <0 esl/2+( k+3)6

sup (t5/2|aILJQaU‘ < C 581/2+(k+3)5
Fs

(6.16) sup (t3/2|6ILJ6av|) + Sjl{lp (t3/2|61LJQav

< Oy 512+ 042)5.

sup (t1/2s|6ILJ6a6/3v|) + S&lclp (t1/2s\61L‘]QaQﬁU

s

)=
) S
) < 01651/2+ k+2)6
) S
)=

S;{lp (t3/25|6ILJQaQbUD + S;Clp (t3/25|61L‘]QaQ5v\ < Oy st /2 k+3)8

For |I| +|J| < N — 6 with |J| = k, we have
sup (t1/2s|(3IL‘]é’auD + sup (t1/25|61LJQau| < Cye,
I, €,

) =

sup (t3/2| o' L7 0,ul) + sup (t3/2\(7ILJ6 ul) < Cie,

(6.17) e o 5
)

sup (tl/QslﬁlLJé’avD + sup (t1/25|61LJQav| < ChesF+2)9,
Hs Hs

sup (t320' L7v|) < Cres*2)°

s
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In addition, for |I| + |J| < N — 7 with |J| = k, we have

sup (t7%10,0" L7v|) < Cresk+¥)0
Hs

s

sup (t5/2|81LJQav|) < Cyeskt3)d
Hs
(6.18) sup (t3/2|(7ILJ§avD + sup (t3/2\&IL‘]QaU|) < CresF+2)0
Hs Hs
sup (t1/2s L‘Jﬁaﬁgﬂ) + s;{lp (t1/23|81LJQaQBU|) < Oy skt

sup (t*2s[0' L7 0,,0,v]) + sup (t*?s|0'L7 2, 050
H. ¥,

Moreover, |I]| + |J| < N — 8 with |J| = k, we have
(t?’/Q\&ILJ&a&gvD + sup (t3210' L7 0,04v]) < Oy,
(6.19) ’
(t3/2\6a858[L']v\) + sup (£%2|0,0,0" L7v]) < C1s* 2.
s

6.5. Estimates based on Hardy’s inequality on hyperboloids. We now substitute the basic
L? estimates in Hardy’s inequality (2.17) and find

(6.20a) Is™ L7l 12 oc,) < Coe + Cres™, L[S N

as well as the inequality (which will not be used in the following)

(620b) ‘|871LJUHL§(}CS) < (C() + 01)6 + Cielns, |L| < N —4.

6.6. Estimate based on integration along radial rays. By the first estimate in (6.13) and
since t=1/2571 < t7(t — r)~ Y2 (in the domain of interest), we obtain

10,01 L7 u(t,z)| < Cret™*(t —r)~Y2,  |I|+|J|< N —6.
Then we integrate this inequality in space along the rays (t, A\x)|o<a<¢—1 for any x € S%:
(6.21) 0T L7 u(t, )| < Cret™ (t — )% ~ Cret™%%s,  |I|+|J| < N —6.

7. REFINED SUP-NORM ESTIMATES

7.1. Overview of the analysis in this section. We now proceed by using the structure of the
nonlinear wave system under consideration, and relying now on sharp sup-norm estimates. In the
following sections we are going to establish the following estimates: For |I| < N — 4, we have

(7.1a) sup tlu| < Che,
Kisg.an)
(7.1b) sup ((s/t)73/2+45t3/2|QL0[11|) + sup ((5/t)71/2+45t3/2|81v|) < Che,
3, Hs
and, more generally, for |I| + |J| < N —4 with |J| = k,
(7.2a) supt|L7u| < Chest
(7.2b) sup ((s/t)_3/2+4‘5t3/2|QL61L‘]U|) + sup ((s/t)_1/2+45t3/2\BILJUD < Cesh?
s Hs

The property (7.1) is essentially a special case of (7.2): we will establish it first and it will next
serve in the proof of (7.2), done by induction on k.

The sup-norm estimate for the Klein-Gordon component (3.7) and the sup-norm estimate for
the wave equation (3.2) will now be used. We proceed with the following calculation:

(7.3) —(0"L7u) = P*P 0" L7 (0,v0v) + RO'LY (v?),

(7.4) ~0(0"L7v) + H*udadsd' L7 v + 20T L7 v = [H*Pud,05,0 L7 Jv.
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We also recall by (3.7), the R; terms in this context (with h*? = H*Pu) read as follows:
I7J,1 _ | 372 33 I7J
Rl[aLv]_</Zaa+ maa 41/2+Z 1/M)aL

I
Ro[0TL7v] = 1 (%’ + 351/2aoafLJv>
S

— 220" B00p0" L7 v + 8,0, L0 + hoP 0, 3  L70),

—00 200~z
Rs[o"L7v] =R (29&“ V20000 + S50+ 150 6b>6ILJ

Hence, the following four terms must be controlled:
(7.5) O'LY (Gqvdgv), 'L (v?), Ri[0'L7v], [H*Yudnds, o’ L7 v.
7.2. First improvement of the sup-norm of the wave component. We now present esti-

mates which use only the basic sup-norm estimates already established in Sections 6.3 and 6.4.
We first estimate the terms 0/ L7 (dqvdpv) and 0/ L7 (v?).

Lemma 7.1. If the energy bounds (5.1) hold, then for all |I| + |J| < N — 7 with |J| = k, the
Jollowing estimate holds in the region X3 -

(7.6) ’aILJ(aaUaB’U)‘ n ’aILJ (vz)’ < C(Che)?t3sF+ 08

Proof. We have

(7.7) o'’ (aavé’ﬁu) — Z oh aa'UaIzLJQ’U7
AR

where, in the right-hand side, each term satisfies |I1| + |I2| = |I| and |Ji| + |J2| = |J|. Then we
obtain
|07 L7 0a00™ L7?0| < C(Cre)?s I 1F205U 7214200178 — ()23 5B H02,

where we have used the third inequality in (6.18) for each term. The estimate of 0! L’ (v2) is
derived similarly. O

We improve the bound on u, as follows.

Proposition 7.2 (First improvement of the sup-norm of the wave component). For |I]| + |J| <
N — 7 one has

(7.8) 01 Lu(t, )| S Coet™3/2 4 (Che)?(s/t) B0 1kt
Proof. The proof is a direct application of the sup-norm estimate for the wave equation (3.2).
First of all, &/ L”u solves the Cauchy problem
00" L7 u = o' L7 (PP 0,005v) + 0T L7 (Rv?),
L7 u(2,2) = Uo(I, J,z), 0:0"L7u(2,2) = Uy(I,J,2),
where Uy(I,J,z) and U, (I, J,z) are restrictions of 0/ LYu and 0’ L7u on the initial hyperplane

{t = 2}. We remark that they are linear combinations of 0w and 6,0 u with |I'| < |I| + |J|.
Hence, u is decomposed as follows:

u(t, ) = wi(t,x) + wa(t, )
with
OL ws = L7 (PP dqvdsv) + LY (Rv?),
wo(2,2) = dywa(2,z) = 0,

while
le = 07

wy(2,2) = Ui (1, J,2), Qw1 (2,2) =Ux(I,J, x).
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The sup-norm bound for w; comes directly from the explicit expression of the solutions (cf.,

for instance, [32]) while for we we apply (3.2). Observe that for the terms in the right-hand side:
- |07 L7 (PP 0,v050) | + [0T L (Rv?)| <(Che)t3sh 9

(79) §(015)2t—2—(1—(2+k/2)6)(t _ T)—1+(1+(2+k/2)5)

in Kpa 5] © Kp2,6,]- Recall that this estimate also holds in {(¢,z)r <t —1,t* —r? < s7,t > 2}.
Then by (3.2), the desired result is proven. O
We next estimate the terms R;[0f L7 v].

Lemma 7.3. For [I| +|J| < N — 4 with |J| = k, the following estimates hold in K[z ,1:

(7.10a) ]Rl[é”L‘]v]\ < Cre(s/t)3/2s—3/2+ (k+ 43
(7.10b) |Ro[0 L7 ]| < Cheltul(s/t)>/2s™3/2+ k303 1 (Cy2)2(5/t)3/2573/2+(h+3)3
(7.100) |R3[81L‘]U” < (Clg)z(s/t)8*2+(k+4)5 + 01€|tu‘(S/t)3/2373/2+(k+3)5.

Proof. The proof is a substitution of the basic sup-norm estimates into the corresponding expres-
sion. We begin with R; and focus first on 0,0,07 L7 v:

040p0" L7 v =t Lo (71 Lyd L7 v) = t ' Lo (t71 0" Ly L7 v + t 7 [ Ly, 0"]L70)
=t 'Lyt )0 LyL v + t 2Lo0" Ly L v+t Lo (1) [Ly, '] L7 v
(7.11) +t72Lg[ Ly, 0']L7v
=t 'L,(t )" LyL v + t 20" Ly Ly L7 v+t ?[L,, 0" Ly L7 v
+t Lo (t7 1) [Ly, 0"L v + ¢ 2Ly [ Ly, 0] L7 .
For the last term, we apply (4.5) as follows:
t72La[Ly, 01070 = —t72 Y AN Led" Lv

<]

=—t72 3 Npo"LeLv—t72 ) N p[La, 0" L7
<] <]

=—t72 3 MR L L+t D N DT AT LY,
<1 i< sir]

and the term [L,, d']L,L7v is bounded in the same manner. Then we conclude that

|t La[Ly, "L 0| < Ct72 Y [o" L
Liyie

In view of the inequality |Lq (t7)| < Ct7! (in X), the terms in the right-hand side of (7.11) are
bounded by Ct=23) 1<n yaf’LJ’v\. Then, by the last equation in (6.11), we have

|J/<|J|+2

|s3/25a5b61L‘]v‘ < Che(s/t)7/2s=3/2+ (k+0)3

and, similarly,
|$a871/25aaILJU| < Cla(s/t)3/25—3/2+(k+3)5’

|I’a$b871/25aébaILJ’U| < Clg<s/t)3/2sf3/2+(k+4)5’
‘S—I/ZaILJ,U‘ < Cle(s/t)3/23_3/2+(k+2)5.
So we conclude that
‘R1 [aILJ,U]‘ < Clat_3/2s(k+4)5 < Cle(s/t)3/25_3/2+(k+4)5.

For the derivation in the paragraph above, let us provide some more details by observing that,
for the first term,

104050 L7 v| = [t Ly (t 1 Lyd" L7 0| < t 72| Lo Lp0 L7 v| + t 7 Lo(t™1)| - |Lpd L7 v].
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Here, we remark that
3/2t_2\L Lyl L7v| < 720,532 2 S1/2+(I1+242)5;,-3/2 < (s/t)7/%s —3/2+(k+4)5
In the first inequality, we have used the fact that
|LoLyd' L7v| < |07 Lo Ly L7 v| + |[LaLs, 01 L7 ).

For the first term in the right-hand-side of the above inequality, we get the upper bound CCyet—3/251/2+(1J142+2)04-3/2

(for [I| +|J] +2 < N — 2) and for the second we recall the estimate on commutator (using (4.5)
twice), and see that

|[LaLb7aI:|LJ'U| < Z a]'lLJ/aI/LJ/,U| < let_3/281/2+(|J‘+1+2)6.

11|<|1]
[J<|T+1]

The estimates of Ry and Rz are quite similar. We just need to observe that, by (6.21) and by
recalling that |FOO\ < C(t/s)?, \ﬁao\ < C(t/s), and \ﬁab| < C, we obtain

(7.12) |EOO| = \ﬁ00u| < Crett?s71, |Ea0| < Cret™1/2, \Eabu| < Cret™32s

and L B
00040 L7 v| =(5/t)|0:040" L7 0|

<(s/t)t7?|La0" L7 v| + ¢ 71 (s/t)|04 Lad" L7 v).
As was done in (7.11) and by applying (4.5) and the fifth equation in (6.15) we find
(7.13) |000a0" L7 0| < Che(s/t)7/2g2+k+3)3
Equipped with (7.12) and (7.13), we see that in Ro[0!L7v],
|S_1/250051LJU} < (Cre)2(s/t)s~2HB+20 < (Cy2)2(s /)25~ 32+ (k423
|81/QEOOEOOILJU} < C’la|tu|(s/t)3/25_3/2+(k+2)6,
83/2|50b505581L']v} < Creltyl (S/t)5/25—3/2+(k+3)5,
2R 3,0,0" L7 | < (Cre)?(s/t)s 2 k9,
53/2|h“’86aﬁg 50(91L‘IU} < C’15|tu|(s/t)3/28_3/2+(k+2)5,
32|18 0,0} 3,0" L] = 0,
while, in the expression R3[0! L7 ]v,
‘Eoolasl/ngéaaILJU’ < Cheltul(s/t)¥/2s3/2+(h+3)38
‘Eoox“s_l/Qéaé’IL‘]v’ < (les)2(5/1&)3/25_3/2““3)‘57
s—1/2 yﬁooxaxbaﬁba][f}v’ < (015)2(s/t)s_2+(k+4)5.
O

7.3. Second improvement on the wave component and first improvement on the Klein-
Gordon component. We now establish (7.1a)-(7.1b) and, for latter use, we first derive the
following improved estimates on the terms R;.

Lemma 7.4. For |I| +|J| < N —4,|J| = k, the following estimates hold in Kz 5 1:
3
(7.14) Z Ri[o"L70]| < Cre(s/t)3/2s3/2+ (k4TS

Proof. This is a combination of Lemma 7.3 and (7.8) (take k = 0 then considering the condition
Cie < 1) and the fact that in K, tY/2 < s < t. O

Then we need to estimate the term |h; ,(\)| in Proposition 3.3.



THE NONLINEAR STABILITY OF MINKOWSKI SPACE FOR MASSIVE FIELDS 37
Lemma 7.5. The following estimate holds for (t,z) € K(z,5,1:
(7.15) f 11, (VA < Cre,

where hy () 1= ()\t/s Az/s) = ()\t/s Ax/s)u(At/s, Ax/s).
Proof. With the notation of Proposition 3.3, we have 7 = Foou and we observe that
" = HPU Ty = H(t/s)> 221{0& 2%/s) + ZH‘“’ 2b/s?).

Note that 7" (At/s, Ax/s) = (t x), so that 7" is constant along the segment (At/s, Az/s), so <
A < s. So we find

By (N) = H(t,)(t/s)2, u(At/s, Aa/s),
and we conclude that
|1y (N] < C(t/s5)%|0 u(t/s, Az /s)|.
Next, we observe the identity

a 2 a

82 T S
(7]‘6) Qlu = tjatu + Téau = tfzﬁtu + ?Lau

and, by the first inequality in (6.17) and (7.8) with 0/ L/ = L,
10, u| < Cre(s/t)t™>/% + Cre(s/t)> 125,
Therefore, we obtain
1} (V)] < Cre(s/t)THENT32 4 Cre(s/t) 1PN,

Then, to apply the sup-norm estimate for the Klein-Gordon equation (3.7), we proceed as
follows. In the range 0 < r/t < 3/5, we have 4/5 < s/t < 1, and

f |ht 2 (M]dA < Cﬂf AT32dN < Che.
S0 ’ 2
In the range 3/5 < r/t < 1, we obtain

f h L (N)]dA < Cre(s/t) /2 f

50

S

)\73/2 dX\ + Cle(s/t)flJrS&J )\72+55 d\
§Clg(s/t)—l/2381/2 + Cre(sft) 15055158,

We recall that, when 3/5 < r/t < 1, sg = /X~ > /s, so that S |h; . (A)]dA < Cie, and the
desired result is established. (]

Now we give a second application of the sup-norm estimate for the Klein-Gordon component
(3.7).

Proposition 7.6 (Second improvement on the wave component and first improvement on the
Klein-Gordon component). The following estimate also holds in Kz 5,1

(7.17a) [v(t, z)| + é@lv(t, z)| S Cre(s/t)? 705732,

(7.17b) lu(t, )| < Cret™.

Proof. We rely here on (3.7) and the sup-norm estimate for the wave equation (3.2), and we first
establish (7.17a). In view of (7.15), we have

[ e N a5 [ 0
S0

f 11, (5)[CC" ds < Che.
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On the other hand, to estimate F'(5), we write

Fls) — J " (Ru[o] + Ralv] + Rav]) (\/s, Aa/s) d

S0

< Clsf (s/t)¥2A=324T0 ) < Cye(s/t)?2sg /2HT.

50

Now for 0 < r/t < 3/5 we see that 4/5 < s/t < 1 and sg = 2, and we have

F(s) < Cre(s/t)¥?s5 2170 < Cre(s/t)> .

For 3/5 <r/t <1, we see that sy = /=~ < t/s, so that
(7.18) F(s) < Che(s/t)?7™.

Then, by combining (7.15), (7.18) and (3.7), we conclude that (7.17a) holds. On the other hand,
(7.17b) follows directly from substituting (7.17a) into (3.2).
Let us explain in more detail the above argument. In the equation

[ = Pagdavdsv + Rv?,

we need to estimate |P*?0,v05v| and |Rv?|. First we rewrite the expresison P*?0,v05v in the

semi-hyperboloidal frame:

?|

Po‘ﬁ&avagv =£O‘ﬁQan5v
=P%0,v0,v + P8, vov + P 0,vd,v + P2, vd,v.

The last three terms in the right-hand-side can be controlled by applying the first and the third
inequalities in (6.18)

}PGOBQ({UQQ’U’ + ’Pabéaéb’v} < C(C18)2t74856.

2 x?
Orv = 2 (6&1 — taav> .

Then by (7.17a) and the third inequality in (6.18), we obtain

For the first term, we see that

[Oro] <CCye(s/t) 70572 4 COyet—26
<OCie(s/t) = Ts73/2,

This leads to
|£008tv8tv‘ < C(Cls)z(t B r)’1+(1/2’75/2%*2*(1/2*75/2).

The term |R’U2| is bounded directly by (7.17a), and we have
|Rv?| < C(Cre)2(s/t)* 19575 < CCyet ™,

Then by applying (3.2), the desired bound on u is guaranteed. O

With (7.17b), we can improve again the estimate on R;. Namely, the proof of the following
estimate is immediate by substituting (7.17b) into (7.7), and using (3.2).
Lemma 7.7. The following estimates hold:

3
(7.19) 2 Ri[0'L7v] < Cye(s/t)?/2s3/2+(k+4)3,

i=1
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7.4. Second improvement on the Klein-Gordon component. We now establish (7.1b) and,
to do so, our first task is to estimate the commutator [H*ud,ds, 0 L7]. First of all, from the
following identities

t2 tx® b

(720) 6,5 = E(Ql - (l‘a/t)éa)7 8a = *STQL + t2

O +
the following estimates are immediate:
000" L7 | < (t/s)*|2,0" L7 v| + (t/5)* > |2,0"L7v|,
(7.21) ¢
000" L7 0| < (t/)*|2, 0" L7 v| + C(t/5)* > |2,0" L7 |-
Based on this result, we estimate the commutator [H*?ud,ds,0']. (In the statement below, as
usual, a sum over the empty set vanishes.)
Lemma 7.8. The following estimates are valid in K for |I| +|J| < N —4 and |J| = k:
|[H*udads,0" L7 0|
SCiet ™ N(s/)2 D [210s0" L0+ ). |Lul 0" L720,05v]

it g
Jo|<|J[—-1 Ji|=
(7.22)

+ Chet™32(s/t) 3 Z 10, 05072 L72v)|

[I2|+|J2|<[I|+]|J|-1,8
N=7<[Ia|+|J3|<N—5

+ (015)2(8/t)3/28_3+(k+4)6.
Proof. We write the decomposition

[H*%udadp, 'L v =" > HPo" oM ud™L720,050 + H*Pud' (L7, 0,05]v)

I +Ip=1
Ji+JTa=J
[T ]+]J11=1

=Ty + T7.
We recall that by (4.17) and (7.17b), T7 is bounded as follows:
Tr| <Chet™ > [0 0adsL”v|
.
g 1<) -1
SCiet™'(t/s)* D> 10,0s0"L70| + Cret™ (t/s)* D) 12,050 L.
] B
[721<]7]—1 721<]71-1
The second term in the right-hand side is bounded as follows:
Cret™(t/s)?|0,050" L72v| < Chret™Y(t/s)2Cret5/2s1/2+(k+3)0
<(Cre)?(s/t)3/2s3+(k+3)8.
We then write
Tl < Y LMl e L0.050[ + D) L[0T L7 0ndpv)|

Iy +I9=1,|I1|>1 Jy+Jdo=J
J1+Jo=J,a,8,v [J1]=1,a,8
=T + T5.
Then we see that 77 is again decomposed as follows:
=) |01 L7 | |0% L2 0,050] + > |01 L) |02 L72 0,050
Iy +Ip=1,[I1|>1 Ij+Ig=1,[I1|>1
JytJdo=J,,8,y J1t+Jo=J,a,B8,y
|[Ig|+]Ja|<N—8 N—7<|I3|+|Ja|<N-5
=:T5 + T}y.

We have
Ty < Clgt—1/28—1+(u1\+2)5015t—3/28(|J2|+2)5 < (Clg)Q(S/t)28—3+(k+4)67
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where we applied (6.19) and the fourth estimate in (6.18). Then by applying (7.21) and in view
of (4.17), the term Ty is bounded by

Ty < > |07t L7 u) |00050™ L720|

Iy +Ig=1I,|I1|>1
[J1l+]T2]<[J] e, B,
N—7<|I3|+|J3|<N—5

<(t/s)? > |01 L7 | |0, 050%™ L720)
Iy +Ig=1,|I1|>1

[T+ T2 |<[T[ex, B,y
N—7<|I3|+|J2|<N-5

+ (t/s)? > |01 L7l |0,05072 L720] =2 Ty + Ts.
I +1o=1,]I1|>1
[T1l+]T2|<|T] a8,y
N—7<|I3|+|Jo|<N—5
Then, in the expression T5, N — 7 < |I2| + |Ja| < N — 5 implies |I1| + |J1| < 3 < N — 6 and recall
[I1] = 1, so we see [0 L7u| < CY 0,0"i L7 u were |I}| + |Ji| <2 < N — 6. Then by the first
estimate in (6.13), we find
Ts < Chet =32 (s/t) 3 > 10, 05072 L720)|.

[I2|+|J2|<|T|+]J]|-1
N=7<|I3|+|J2|<N -5

Furthermore, we have
Ts < (t/5)2Chet— Y2571 Cyet=5/25V2H (11214308 < (0 2)2 (s /t)s~ /24 (R +2)3
S(015)2(S/t)3/2573+(1c+3)6
and the desired estimate is established. O
We are now in a position to establish the desired bound (7.1b).

Proposition 7.9 (Second improvement on the Klein-Gordon component). The following estimate
holds in K[g 5,1 for [I| < N —4:

(7.23a) 10, 0%u(t, )] S Chre(s/t)*/ 240132,

(7.23b) |0 w(t, )| S Cre(s/t)/2~4013/2,
Proof. We first discuss the case where |I| —1 > N — 7 and, in this case, using (7.22)
[H*Pudadp, 0'o] < Cret™2(s/t)™> > |2,050"0] + (Cre)?(s/t)*?s 5+,

[Ia|<[T]—-1,8
N-7<|I3|<N-5

For all 5 € [so, s] using (7.19) and the above estimate we have

Z |R [07v] )\t/s,/\z/s)|d/\+f A2 [HYPudn 05, 0" Jo|dA

S0

SCle(s/t)?’/zf

S0

S
)\—3/2-0-3(5 d)\ + (018)2(8/t)3/2f )\_3/2+46d)\

S0

+Che(s/t)™? )] f 10, 05020 (Nt /s, Az /s)|dA

[T2]<[I]-1,8
N—7<|I3|<N-5

SCie(s/)™2 )] f 10,050™ 0( /5, A /s)| A + Ce(s/t)¥ sy /240,

[I2]<[I|-1,8 S0
N—7<|I3|<N-5

Case I: 3/5 <r/t <1. In this case, so = /2~ > t/s and we have
F(5) € Cre(s/)* % + Cae(s/t) %2 %) f 10, 250" 0(\ /s, A /5)|dA.

|[Ig]<|I|-1,8
N-7<|I3|<N-5
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We define
Vie(N) := (Mt/s)%? Z |0, 050"20(\t /s, Az /)|
N3 <N s
and find
(7.24) F(5) < Cie(s/t)> ™% + Cie f A2V, (AN dA, so <5 <s.

S0
Recalling the sup-norm estimate for the Klein-Gordon component (3.7) in the case 1 > r/t >
3/5, we obtain
12, 0%(t,z)| < Cs™ V2! (F(s) + f F(5) |1, (5)]el 1720140 dg).
S0
We replace (t,x) by (At/s, A\x/s) with sg < A < s, we see that (At/s, \x/s) is again contained in
Ki2,5,1- Then (3.7) still holds, and so

A
0, 0T v(At/s, Ax/s)| < C(s/t)A =% (F()\) + f F(3)|h} ,(5)]el 7. (O1d0 dg),

which implies
A
(\t/5)%2]0, 0l v(\t/s, Ax/s)| < Cre(s/t) =1/ (F()\) + f F(5)[1] ,(5)[el5 1 (D140 d§).

S0

Recall that (7.15) holds for 1 > r/t > 3/5 and that F is increasing, then

A A
f F(5) |1, (5)]e% M@l g5 < F()) J 1), (5)] el 1PN g5 < e P ().

S0 S0

So we see that
(At/s)%20, 0Tv(\t/s, Az /s)| S Cie(s/t)"V2F(N)
and, in combination with (7.24),

A
(At/s)%20, 0 u(\t/s, Az /s)| S Chre(s/t)>2740 + C’le(s/t)fl/QJ 5732V, . (5)ds,

S0

which implies (by taking sum over N — 6 < |I| < N —4):

A
(7.25) Vio(\) < Cre(s/t)¥>=4 + Cre(s/t)~V/? J 5732V, . (3)d5.
S0

Then, by Gronwall lemma, we see that

A A —1/2 (8 p—3/2
f 5792V, 4(5)d5 < C16(8/t)3/2_46J §8/2,CCe(s/) T2 670%d0

S0 S0

A
< Cuelsft)240 [ s secere e g

50

< 018(5/15)3/2746551/2€Ccle(s/t)_1/2551/2
Here we recall that sg = if—:: > t/s, then
(7.26) Viae(A) < Cle(s/t)3/2_45.
Now we substitute (7.26) into (7.24), and obtain
(7.27) F(5) S Cie(s/t)>™, 55 <5<s.

Then we apply the sup-norm estimate (3.7) in the case 1 > r/t > 3/5 and considering (7.15),
(7.28) 10, 0T0(t, )| S Cre(s/t)>*0s73/2, |0To(t, )| S Cre(s/t)> 405732,
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Case II: 0 < r/t < 3/5. In this case, 4/5 < s/t < 1 and s¢p = 2, so the discussion is simpler. We
just remark that as in the former case,

F(3) <Cre(s/t)*2sy 2% 4 Cre(s/t)™% ). J|QL636’12U(/\t/s,/\x/s)\d)\
0

[I2]<|I|-1,8 s
N-7<|I3|<N-5

<Cie + C’lsj A2V, . (N) dA.
2

Then by the sup-norm estimate (3.7) (with 0 < r/t < 3/5),

2,0 v(t,2)| < Coet 2 (1 + f [ (5)e 35 1 ) g5
2

+ 1732 (F(s) +J

2

S

F(3)|h} (5[5 POl g5 ).

Then similar to the former case, we get (recall (7.15))

A A

5732V, ,(5)d5 < Che + Claj 5732V, .(5)ds,

(\t/5)¥20, 0% o(t, 2)| < (Co + C1)e + Che f
2

2
provided by Cy = Cy, which implies

A
Vie(\) S Cre + Clsf 5732V, ,(5)ds
2

Then, Gronwall lemma implies V; ;(\) < Cie and, therefore,
|Qlalv(t7 x)‘ < Clst*S/Q < Ol(s/t)3/2745t73/2.

And again, as in the former case, we see that |0Tv(t, z)| < Cy(s/t)/2~40¢=3/2,
When |I| =1 < N — 7, we see that in this case

’[Haﬁuﬁaﬁg, 6I]v| < (Che)?(s/t)3/2s73+49,

A direct application of the sup-norm estimate (3.7) combined with (7.19) will give the estimate
on ¢'v and 0,0"v. Finally, combining these two cases, we see that the desired estimates are
established. O

7.5. Third improvement on the wave and Klein-Gordon components. We now establish
(7.2), by combining the sup-norm estimate for the Klein-Gordon equation (3.7) and the sup-norm
estimate for the wave equation (3.2), together with an additional bootstrap argument.

Proposition 7.10 (Third improvement on the wave and Klein-Gordon components). There exist
constants C,e9 > 0 (depending only on N = 8 and the structure of the model system (1.11)) such
that if the bootstrap assumption (5.1) holds for € < g9 and Cie < 1, then the following estimates
also hold for all s € [2,s1] and |I| +|J| < N —4, |J| = k:

(7.29a) sup (¢|L7ul) < Ciestd,
Fs
(7.29b) sup ((S/t)_3+7683/2|QL(’)1LJU|) + sup ((s/t)_2+7§s3/2\8ILJv|) < Cesh?,
s s
(7.29¢) sup ((s/t)_1+7553/2|(9a(91L‘]v|) < Cesh,

s

Furthermore, we see that by the commutator estimates in Proposition 4.6, the following refined
decay estimates are a direct consequence of (7.29¢):

(7.30) sup ((s/t) /247132107 L7 0,4v|) < Ches™, I+ |J| < N —4,|J| =k,
}Cs

(7.31) sup ((s/t)/2+704%2|0' L7 0,405v]) < Cres®,  |I|+|J| < N —5,1J| =k,

s
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(7.32) sup ((s/t) 2732|101 LY d0]) < Cres™®, Il +]J] < N —5,]J] =k,

s

(7.33) sup ((s/t)=*2¥7¢%2|6T L7 0,05v]) < Crest, Il +|J] < N —6,|]| =k.

Proof. We proceed by induction on |J| and introduce the notation

VeoA) = sup  sup ((s/t) 27053207 L7v]),
2<s< Tk JH{,
|I|+|J|<SN—4

Ver(N) = sup  sup ((s/t) 705320, 0 L)),
’ 2<s<A | T|<k F(,
[I|+]7|<N—4

and, with |J| < k, Ug(A) := SUP2<s<x SUDg, (t|{L7ul). To begin with, we observe that by (7.23)
J|<k s
and (7.17b), there exists a positive constant C' determined by the structure of the system (1.11)
such that
Voo(A) < Cie, Voa(A) < Che, Uo(N) < Cie,

That is, (7.29) is proved in the case where k = 0.

Then we suppose that for all 0 < j < k—1 < N — 5, there exists a (sufficient large) constant
Cj—1 depending only on the structure of the system (1.11) and a positive constant €} _; such that
for all e < ¢j_,

(734) ‘/j,o(s) < Ck_10185j6, VjJ(S) < Ck_10158j5, Uj < Ck_10165j6

hold on [2,s1] with Cy_; depending only on k and the structure of (1.11). Then we will prove
that there exists a pair of positive constant (C,e},) depending only on N and the structure of the
model system (1.11) such that if (5.1) holds with € < ¢}, and C1e < 1, then

(7.35) kao(s) < CkaESM, Vk71(8) < CkClask‘;, U, < CkCles’“;.

We rely on a bootstrap argument. First, we observe that on the initial hyperboloid s, there
exists a positive constant Cy > 0 such that

—1/247643/2) 71 7T, 1) <
‘”{Jl‘%}é“* Sﬂl{l? ((2/t) t32]0" L7 v]) < Co iChe,

(7.36) A Sup ((2/t)~2+75432)9 0T L7v]) < Co 1 Cie,
[J|<k 2

max sup (t|L7u|) < Co xCie.
[TI<k 3¢,

We choose C}, > Cp , and set
2,k 1= Sup {3 €[2,51] Viol(s) < CrCies™,
Viea(s) < C),Cres®, U < CkClssk‘s}.

By continuity, we have sy > 2. We will prove that for all sufficiently large constant Cj >
max{Cop r, Cx_1, 1} the following bounds hold on [2, s2 t]:

1 1 1
(7.37) Vk’o(s) < 56’;{0153’“5, Vk,1(8) < §Ck0168k6, Ui < ickclé‘ské

for sufficiently small €. Once this is proven, we conclude that ss ; = s;. Namely, proceeding by
contradiction, we see that in the opposite case at s, < s1, at least one of the following conditions
must hold:
Vk’o(s) = CkclESké, VkJ(S) = Ck0188k67 Uk = Ck01€sk5,
which contradicts the improved estimates (7.37).
It remains to establish (7.37) and we derive first the following estimate for |I| + |J| < N — 4,
|J| = j < k (again provided 2 < s < so1)

(7.38a) |0"L7v| < CypCye(s/t)? 0532430,
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(7.38h) |0a0" L7 v| < CiChe(s/t) T s3/208,

(7.38¢) |L7u| < CCret's7°.

The derivation of (7.38a) is direct from the decay assumption (7.34) and the induction assumption
(7.34), while (7.38b) follows directly from (7.21), the decay assumption (7.35) or the induction
assumption (7.34):

|00 L7 0| < (s/t) 2|2, 0" L7 0| + (s/t) 2 > ]|2,0"L7v|

SCRC1e(s/t) 2 (s/t)* T s78/2H90 4 Cye(s/t) 24 P/251/2H0F39
SCRCue(s/t) 573210 4 Cre(s/t)! /252U
SC}cCpE(S/iL)17755*3/%”57

where the first equation in (6.16) was used. On the other hand, (7.38¢) is also direct from (7.34)
and (7.35).
Then we need the following two estimates for [I| + |[J| < N —4, |J| = k:

(7.39) |31LJ (8av8ﬁv)’ 4 |51LJ (02)| < (C’kC’ls)zt*Z*(1/2775““5/2)(t o T)—1+(1/2776+k6/2)’

(7.40) ‘[H“ﬁuaaaﬁ, oL Y| <(CpChe)? (s /)2 05 5/2+kS
The estimate (7.39) follows directly from (7.38). We see that
'L () < > [o" o we L7

Iy +Ig=1I
Jy+Jo=J

< CkCIE(S/t)2—768—3/2+|J1|6Ck01€(s/t)2—758—3/2+\Jz\6
2(0]6016)2(8 _ r)—1+(1/2—76+k6/2)t—2—(1/2—76—k6/2)

and
0'L7 (davdgv)| < ) |0 L7 0,00" L2 050 < (CrCre)?(s/t)> 140573k

Iy +Ip=I
Jy+Jo=J
~ (O Che) 22 (1/2=T0-k08/2) (4 _ py=14(1/2=T5+kd/2)
The estimate of (7.40) is also direct by substituting (7.38). We recall (7.22) an write
\[H*udads,0" L7 0|

< Cls(s/t)72t71Cke(s/t)3775873/2+k5 + (CkE)Q Z tfls\Jl\5(S/t)1776573/2+|<]2|6
[J1]+] 2| <[]
+ Cret™*2(s/t) " Cre(s/t)*7 705 VA 4 (Cre)?(s/) 25000
< (C’kC’le)z(s/t)2*753*5/2+k5,

where we have assumed that C;, > C;.
Now we substitute (7.39) into (3.2) and find that (similar to the proof of Proposition 7.2)

(7.41) 07 L7 u| < Co 1 Cret ™/ + (Cr,Cre)?(s/t)t M,
which is
(7.42) Ui(s) S CorChe + (CCye)?sM.

On the other hand, the estimate on |0/ L7v| and |(7a(?ILJv| is a bit more difficult. We see that
5 3 5
F(s)< | DI Ri[&"L7v)(M/s, Ax/s)dX + f N2\ [H*Pudn05, 0" L7 Jv|(Mt/s, \w/s) d.

S0 4=1 S0
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By the sup-norm estimate (3.7), in the region X n {3/5 < r/t < 1}, recall that so > Ct/s, we
can calculate each term in the right-hand side of the above inequality with that aid of (7.40) and
(7.14) and find that

|F(s)| < Cre(s/t)> T0H 4 (CChre)>(s/t) sk
S Cie(s/6)* T0sM 4 (CCre)(s/1)" P = (Cre + (CrCre)?) (/8 75,

Then, we apply the sup-norm estimate (3.7) with (7.15) and by the same procedure in the proof
of Proposition (7.6), we conclude that when 3/5 < r/t < 1,

(7.43a) |QJ_8[LJU(t,x)| < (C’la + (C'kC'1€)2)(s/t)3_75s_3/2+k5,

(7.43b) 10T L7 v(t,2)| < (Cie + (CCre)?) (s/t)* 057 3/2Fke,
When 0 < r/t < 3/5, we see that 4/5 < s/t < 1, then
F(s) < (C1e + (CxCie)?)t 325k,
Then, also by the sup-norm estimate (3.7) and (7.15), we find that

(7.44a) 10,07 L7v| < (Cog + 1)Che(s/t)>"T0s73/2+k0 L (CrCre)?(s/t)3 705732k

(7.44b) 107 L7 0] < (Cop + 1)Che(s/t)> 07324k L (CpChe)?(s/t)2 7057 3/2Hk0

where we recall that C7; > C) -
Then we conclude that there exists a positive constant C' determined only by the structure of
the system (1.11) such that

(7.45a) Viea(s) < C(Cox + 1)Chesk® + ﬁ(CkCla)zské,

(7.45b) Vio(s) < C(Cop + 1)Ches™ + C(CCre)?s*°,

Now we consider together (7.42) and (7.45) and see that if Cj > 2C(Co 1, + 1), then we can take
Cr—2C(Co,j+1
ARES %fcfr) Then we find that
1 1 1
Vo.k(s) < ngClsské, Vik(s) < §Ck0155k5, Ui(s) < 50;@0155’“5

for all ¢ < ¢}.. This conclude that ss = sz so the case |J| = k is proven. Then by induction
we see that for all &k < N — 4, (7.34) is established. Then taking s := ming<ny_4{e},} and
Cy = maxg<y—4q C, we see that (7.29a) and (7.29b) are established for all £ < N — 4 and, more
precisely,

(7.46a) sup (t|L7u|) < CCyes™

(7.46b) sup ((s/t)_3+7583/2|QJ_(9[LJU|) + sup ((s/t)_2+7553/2|5’1LJv|) < Oy Chest®.
s Hs

(7.46¢) sup ((s/t)*””s?’ﬂ|6a61LJv|) < Oy Chesh?

s

From its definition, we see that Cy is determined only from the structure of the system and
therefore, we have proven (7.29). O
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8. REFINED ENERGY ESTIMATE AND COMPLETION OF THE BOOTSTRAP ARGUMENT

8.1. Overview. In this section, we derive the improved energy estimates (5.2) which concludes
the main result. The improved estimates are classified in two categories. The first refers to the
energy estimates of order higher than or equal to N — 3, the second refers to those of order lower
that or equal to N — 4.

First, we apply 0/L”7 (with |I| + |J] < N) to our system of equations

(8.1) —[0"'L7u = P*P0' L7 (04v05v) + RO'LY (v?),

(8.2) —0 L7 v + T L v + H*Pu0n050" L'v = [H*P 10005, 0" L Jv.
To be able to apply the energy estimate (Proposition 2.1), we need first to check (2.12a) and
(2.12b).

Lemma 8.1. There exists a positive constant €y such that if the energy assumption (5.1) is valid
with Cre < 1 and € < gq, then the following estimates hold:

1
(83) iEm,c < Eg,c < 2E’m,aa

J (5/1)|0ah®P 0,0T L7 v0g0" L7 v|dx + J (5/t)|0:h*P 040" L7 000" L v|dx
(8.4) Hs He

< M(s)E(s,0' L7 v)'/?

Cies 2+ N _3 < |1 +]J| <N,
M(s) < rs
Cres RO T+ |J| < N — 4.
Proof. The proof of (8.3) follows directly from (7.17b). We remark that
|h*P| = [H*Pu| < Cret™" < Che(s/t)?
where we have observed that t/2 < s <t in K. We get

J |hBo, 0T L vogo" L7 vlda < 015J (8/t)2000" L 0050 L' v|dx < C1€E, .(s,0' L),

s s

J K98 8,07 L7 0050  L7v] < Che f \(5/4)2000" L7 v050" L7 v|de < Che By o(s, 8 L7v),
Hs s
where we have used S}cs |(s/t)000" L v|2dx < Eg (s, 0! L7v).
So for some C’ > 0 we have
|Eg,c(s,0"L7v) — Epy o(s,0"L7v)| < C'C1eEy o(s,0" L7v),

and we choose g9 < ﬁ Then, for £ < gg, it holds

1
‘Eghc(s7 (3ILJU) — B (s, 6IL‘]U)| < CieEy (s, (9ILJU) < iEg,C(S, 6ILJU),
which yields (8.3).

To derive (8.4), we just need to observe that

J ’(%h“ﬂaaﬁlﬂfv‘zdx
Hs

< Cﬁf t=1s72(t/s)? ‘(s/t)aaalLJvfdx ~ Clsf t5*4}(s/t)6a61LJv‘2d:v
o

s s

< Cies 2B, (s, 0" L7v),
and we use the first estimate in (6.13):
C(Cre)?s 12k N 3 < |I|+|J| <N,

0, hP 0,0 L7 | dx <
Lfs & | C(Cie)®s 22 |I|+|J| < N —4.
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So we see that

f (/0)]0ah*70,0' L0050 L7 vlde < |0ah*® 200" L] 12 (3¢, | (/)95 L7 0] 12 (3¢,
which is bounded by the right-hand side of (8.4). The other term in the left-hand side is bounded
in the same manner and we thus omit the details. ]

8.2. Lower-order L? estimates. We remark that in lower order case where |I|+|J| < N —4, we
have M(s) < Cies™ ™% and we need again the estimate on the source term ¢’ L7 (P*?0,vd5v +
Rv?) and [H*%ud,d,0" L .

Lemma 8.2. Under the assumption of (5.1), the following estimates hold for |I| + |J| < N —4
with |J| = k:

(8.5) ||aILJ (Paﬁﬁavagv) )+ ||R6ILJUQHLZ}(5HS) < (Cre)2s3/2+k8,

luscoe

(8.6) I[P udads, o' L7 10| 12 5¢,) S (Cre)?s ™12

Proof. The estimates of these terms relies on the basic L? and refined sup-norm estimates. We
remark that

|67 L7 (Bavipv) HL?(:}CS) < Z o™ L7 oqvo™ L7 aﬁvHL?(:}cs)

Iy +Ig=1
Jy+Jdo=J

s Z HallLJlaa”HLoo(:H )
1<|I1|+J1|<N—-4 °

[I2]+]J2|<N-=5

+ H(t/s)aav”Lw(}Cs)”(s/t)aILJaﬂUHL?(Hs) =T + Ts.

aIZLJZ(}ﬁUH[g 96.)
f s

For Ty, we apply (7.23b) with |/| = 1 and (6.8) and we conclude that
Ty < Ce(s/t) V204732065110 < (O1)2s73/2FH0,
For Ty, we apply (7.30) and (6.9) and we conclude that
Ty < Cre(s/t)" V210432511100 gl 2100 < ()25~ 3/24H0

The estimate on the term ¢/ L7 (v?) is similar by apply (7.29b) (6.8) and we omit the details.
To see the estimate on [H“ud, 05,07 L7 v is quite similar, we just need to remark that it is a
linear combination of the following terms:

Lo L720,050, 01 L7 ud™L7?0,05v, udadpd’ L7 v

where Iy + Io = I, Jy + Jo = J, J{ + Jy = J with |J{| = 1, [I1] = 1 and |J§| < |J| — 1. For the last
term we apply (7.17b) and (6.3):

|udadpd L2 0

IpJy
‘L?(}CS) gH('5/“5)“HL00(9{S) (s/t)0a0p0" L 2””@(9@)
< 0163710158165 < (015)28717#“;.
For the first term, we see that |J{| < N — 4, then we apply (7.29a) and (6.3):

L0 0] ) < OO /1027 L

1290,
< Cres 1B O sl 2l < (C1e)257 1400,
For the second term, we see that when |I;| =1 and J; =0,
050" L7 0a05v] 12 ac,) <I(t/5)dyul e o) (/)0 L7 2ads0]| L2 (3¢,

<SChe||(t/s)t™ 257 | Lo 9,y Cres™® ~ (Cre)?s™1 TR,
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When |I1| + |J1| = 2, we see that |Iz| + |J2| < N — 6. Then by the first inequality in (6.11) and
(6.9), we find

H(?h Lo L2 &Q&BUHL?(%S) éH(}h L‘huHLm(G{S)

Loy Jo
0L ﬁa(?BUHL?(:}CS)
<Ches H2HINIF20 0y gl 210 < (02)25~3/2+(k+2)0
and we conclude with (8.6). O

8.3. Higher-order L? estimates. When N — 3 < |I| + |J| < N, the energy estimate is more
complicated. For the source terms we have the following estimates.

Lemma 8.3. Under the energy assumption (5.1) the following estimates hold for N—4 < |I|+|J| <
N and |J| = k:

(87) HaILJ (P(XB[}OC'U@@U) ) + HaILJ (R’UQ) : < (016)28_1+k67

HL?(}C HLft(Hs

(8.8) |[H*ud05,0" L < (Che)?s7 /24K,

J]””L;(g{s)

Proof. The proof relies on the refined decay estimate (7.29) and the basic L? estimates. We begin
with (8.7). We remark that 0/ L7 (0,v0sv) is a linear combination of the following terms

oL 0,vo"2 L2050

with Iy + Io = I, J; + J2 = J. We see that when |I;| + |J1| = 0, we apply (7.23b) on dyv ( with
1< N —4) and (6.5)

H&Il L7 0,002 L7 (951)HL? = (t/s)&av(s/t)&ILJagvHL?

(:}CS) (j’cs)
< Crel(t/5)(s/0) 742 pacac CChes >+
< (Che)2s ke,

When 1 < [I1| + |J1] < N —4, we see that 4 < |I3] + |Jo| < N —1. Then we apply (7.29¢) and the
third inequality in (6.6):

|ohr L (3@1)812LJ265UHL? ey <fonL” aav||Lx(%S)|}asz=’255U\|L? 90
< Ck01€H(S/t)—1/2—76t—3/2+|J1|§HLOO(HS)01€SI/2+\JQ\6
<SCR(Cre)?s7 11k,

When N — 3 < |I1] + |J1] < N — 1, we see that 1 < |I3]| + |J2] < 3 < N —4. Then we apply the
third inequality in (6.6) and (7.29¢). Similar to the former case,

H&hL‘h aavabLJzaﬁng_fs < (Clg)stlJrké.

When |I;| + |J1| = N and |I3] + |J2| = 0, the estimate is derived similarly as in the first case by
exchanging the role of dov and dgv. The we conclude that

H@Ith@av@IzL‘]Z@gvHLZ)(% ) < (015)25_1+k5.
2(3,

The estimate on ¢/ L7 (v?) is quite similar by applying (6.5) and (7.29b), we omit the detail.
The estimate on [H*ud, 05, 0" L”]v is as follows: we observe that this term is a linear combi-
nation of the following terms
LMo ' L720,050, 01 Lo L720,050, 100030 L% v
where Iy + Io = I, Jy + Jo = J, J| + J5 = J with |J{| = 1 |I1| = 1 and |J§| < |J| — 1. The last
term is bounded by applying (7.17) and (6.5):

|udadpd= L2 v (s/t)0a030™ L2 v

}Li(:}fa‘) < H(t/S)UHLOO(J'fS) ‘L?(ﬂ'&)

"
SClES_101881/2+|J2|5 < (015)28_1/2+k6.
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For the first term, we make the following observation. When 1 < |Jj| < N — 4, we have
4 < |I| + |J2| < N — 1. Then we apply (7.29a) and (6.7):

1

| L7 ud" L7200050] g, <[(t/5)L7

UHLOO(.'HS) (S/t)aILJzaaaBUHLmS)
< 0158—18|J{|501581/2+|J§|6 < (015)23_1/2+k5.

When N —3 < |J{| < N, we see that |I| + |Jo|] <3 < N —5. Then we apply the Hardy inequality
in the form (6.20a) as well as (7.31). So we see that

HL‘]iuaILJéaaaﬂUlefc(%s) < Hs_lLJi“HL;( |5&1LJ§‘3aaﬂ”HLw(st)

5.)|
! !
< Cl€S|J1|6018571/2+|J2|6 < (015)2871/2+k6.

The second term is easier, since the factor 0/t L/1u has better decay when |I;| > 1. Then we see
that when |I;| = 1 and |J3] = 0,

H811u812L‘]@aaﬁvHL?(%s) < ||(t/s)8llu (s/t)&lZ’L‘]&aagUHL?(j{s)
< (016)Ht1/28_2||Lx(g.cs)01881/2+k6 ~ (015)28_1/2+k5

when 2 < |I1] + |J1| < N =2, |I3| + |J2| < N — 2. Then we apply the third inequality in (6.6) and
we see that

H&IlL‘]] u612 LJ2 aaa[j’UHLZ}(}fﬁ) < HaIILJluHLOO(}CS) (912 LJ2 6046/31;”@(%5)
< (018)2871+(k+2)5 < 0(018)2871/2+k6.

When N — 1 < |I1| + |Ji| < N, |Iz] +|J2] <1 < N — 7 then we apply (6.5) and (7.33). Then, we
obtain

H(711LJ1u512LJ28a(751)HL?(g{S) < H(s/f)afl LJIUHL?(}CS) (t/S)5I2LJ20aaﬁ”UHLoo(g{S)
< 0158‘J1|5C0158*3/2+|12|5 < (C1€)2871/2+k5,

which completes the argument. O

8.4. Proof of Proposition 5.1. Our aim is to establish the improved energy estimate (5.2) and
to conclude the proof of Theorem 1.1, that is, we now establish Proposition 5.1. The strategy is
to apply the energy estimate 2.1 with (8.3), (8.4), (8.5), (8.6), (8.7), and (8.8).

We need to specify the constants and we denote by C' a sufficiently large constant determined
only by the structure of the system such that all of the above estimates hold true. We derive the
wave equation of (1.11) by ¢/L”:

—[00"L7u = 0" L7 (P*P04vd5v) + 0" L7 (v?).
Recall the energy estimate (2.10)
S
En (s, aILJU)1/2 < En(2, aILJu)l/Q + J ”DUHL?(HQ ds
2

with HDuHL?(}CE) < oL’ (Pocﬁaav&iv) HL?(}CS) +|lofL? (RM)HL?(}CS). Then by (8.5), when |I]| +
|J| < N — 4, we have HDUHL?(}{E) < C(Che)?s73/2+k% " and we conclude that

(8.9) Ep(s, 0 L7 u)Y? < CChe + C(Cie)?.

When N —3 < |I|+|J| < N and |J| = k, by (8.7)

B (5,0 L7u)Y? <CChe + C(Cie)? J 51RO g5
2

<CCye + 6(018)28k5.

(8.10)

For the energy estimates on v, we apply 0/ L” to the Klein-Gordon equation in (1.11) and obtain
—00"L7v + H*udWdpd" L7 v + ?0T L7 v = [H*Pud,05, 0 L7 Jv.
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Then by (2.13), and (8.3) (with x = 1/2), we find

Em,c(sv (}ILJU)l/Q < HzEm,c(2a aILJU)l/z + K> J2 H-fHL?(?C%) ds + K? L ”M(E)HL?(.’}Q) ds.

When |I| + |J| < N — 4, we rely (8.6) and (8.4) and observe that

(8.11)

Epme(s,0'L70)/? < CCpe + C(Che)? J 571k g5
2

< CChe + C(Cye)?s™.

When N — 3 < |I| +|J| < N, we apply (8.8) and (8.4) and observe that

(8.12)

S
Epe(s, 0" L70)/? <CCoe +€(Cla)QJ S-1/24k0 g
2

< 6006 + 6(016)281/2+k5.

Finally, by choosing C; > 4CCj and £ < (4CC;)7 1, (8.9)—(8.12) lead to (5.2).
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