Abdeljalil Saghe 
  
The field of Omicran-reals A new approach to nonstandard analysis

Keywords: Nonstadard analysis, hyppereals, Abraham Robinson, Internal set theory, infinitesimal

 

Introduction

In 1961 Abraham Robinson [START_REF] Robinson | Non standard analysis[END_REF] showed how infinitely large and infinitesimal numbers can be rigorously defined and used to develop the field of non-standard analysis. To understand his theory nonconstructively, it's necessary to use the essential proprieties given by the model theory and mathematical logic.

After the birth of this new theory, more mathematicians have found the important applications of the nonstandard analysis in physic [START_REF] Bagarello | Nonstandard Analysis in Classical Physics and Scattering[END_REF][START_REF] Cutland | Nonstandard Analysis and its Applications[END_REF][START_REF] Fittler | Asymptotic nonstandard quantum electrodynamics[END_REF], numerical analysis and variational methods [START_REF] Bagarello | Nonstandard variational calculus with applications to classical mechanics. I. An existence criterion[END_REF][START_REF] Bagarello | Nonstandard variational calculus with applications to classical mechanics. II. The inverse problem and more[END_REF].

In 1977 a new axiomatic representation of hyperreals is given by Edward Nelson [START_REF] Nelson | Internal Set Theory : a new approach to Nonstandard Analysis[END_REF], in the sense to simplify the Robinson's method, he proposed to add three axioms on the set theory and obtained a new theory called internal set theory [START_REF] Nelson | Internal Set Theory : a new approach to Nonstandard Analysis[END_REF].

From the construction of Robinson we can see every hyperreal as an element of R N modulo a maximal ideal M, the ideal M is defined with a non principal ultrafilter U, the existence of U is proved by the axiom of choice, by using the ultrafilter U we define the order relation in the field of hyperreals. Unfortunately, we can't determine exactly this order relation because the ultrafilter is unknown.

Our aims in this article is to give a new field which contains the infinite and infinitesimal numbers, without using the properties of model theory, and witout adding the new axioms to ZFC ( Zermelo-Frankel+Axiom of choice ). The new approach is very simple and we can determine precisely the order relation defined on the new field. The new field is noted O and called field of Omicran-reals.

In this paper we restart in the section of preliminary results by some notions to define the infinitesimal and infinite numbers. In the section 3, we construct a new unitary ring by using a strict subset of R N . After we define a ideal I of the above ring which maximal, and we deduce that the quotient of this ring by I is a new field. Finally, we construct the new field of Omicranreals which is a totally ordered field and a extension of R.

Preliminary results

Let H(D(0, ε)) the set of the holomorphic functions on the disk D(0, ε). * corresponding author: saghe007@gmail.com Therem 1 If h is a holomorphic fuction on the disk D(0, ε), and h(0) = 0 then : h(z) = z k g(z) on a neighborhood of 0, where k is a non-zero integer, and g ∈ H(D(0, ε)) and g(0) = 0.

Therem 2 The zeros of a nonconstant analytic function are isolated.

Definition 1 We define the following assertions :

• A totally ordered set (E, ) is called a ordered R-extension if R ⊆ E ; x y ⇔ x ≤ y ∀(x, y) ∈ R 2 . • In addition if (E, +) is a commutative group, we consider |α| = max(α, -α) = α , when -α α, -α , when α -α.
• We note x ≺ y while : x y and x = y.

• Let the set I E be defined as follows

I E = {α ∈ E / 0 ≺| α |≺ ε ∀ε ∈ R + * }. I E is a set of infinitesimals.
Remark 1 If it has not ambiguity we replace the symbol by ≤ , and ≺ by <.

To construct the new extension of R which contains the infinitesimals, it's sufficient to prove the following theorem :

Therem 3 There exist a extension field (E, +, .) of (R, +, .), and partiel order ≤ such that:

(E, ≤) is a ordered R-extension and I E = ∅. Remark 2 An element δ of I E = ∅ is called infinitesimal.
3 Construction of a new extension of the reals

The metalic map

Let D(0, 1) (resp.D ′ (0, 1)) the open (resp.closed ) disk of radius 1 and centre 0.

Definition 2 Let u be a map from ]0, 1] to R, such that :

• There exists a map u is defined on D ′ (0, 1), and holomorphic in a neighborhood of 0.

• There exists ε > 0, such that ∀x ∈]0, ε[ we have a :

u(x) = u(x).
The u is called a metalic map, and u is a metalic extension of u.

Example 1 If f is defined in an interval ]0, 1] as : f (x) = 2x + 1 when x ∈]ε, 1], 1 -3x 2 when x ∈]0, ε] then a metalic extension f is given by : f (z) = 1 -3z 2 in the disk D ′ (0, 1).
Remark 3 If u is metalic, then the two metalics extension u and u of u are identic in a disk D(0, ε) from the theorem 2.

Definition 3 We note ∆ 1 = { u, u is a metalic map }, and we have the following definitions :

• ∆ 1 ( 1 n ) = { u( 1 n ) n≥1
, u is a metalic map }. • H 0 = the set of maps u defined on the disk D ′ (0, 1) and holomorphic in a neighborhood of 0.

• (H 0 , +) is a commutative group, let O 0 be a subgroup of H 0 containing the maps defined on the disk D ′ (0, 1) and are zero in a neighborhood of 0.

• Let θ 0 be a map defined as :

θ 0 : ∆ 1 ( 1 n ) -→ H 0 /O 0 u( 1 n ) n≥1 -→ C( u) which C( u) is the equivalence classe of u modulo O 0 .
The map θ 0 is a well-defined from the unicity of C( u).

• We consider the surjective map θ 1 defined as :

θ 1 : ∆ 1 ( 1 n ) -→ θ 0 (∆ 1 ( 1 n )) u( 1 n ) n≥1 -→ C( u)
and the set :

∆ 1 ( 1 n ) = { θ -1 1 (C( u)) , C( u) ∈ θ 0 (∆ 1 ( 1 n )) }. • We define on the set ∆ 1 ( 1 n ) the following equivalence relation ∼ : u( 1 n ) n≥1 ∼ v( 1 n ) n≥1 ⇐⇒ ∃n 0 , ∀n ≥ n 0 , u( 1 n ) = v( 1 n ). • u( 1 n ) n≥1 is the equivalence classe of u( 1 n ) n≥1 modulo ∼.
Remark 4 1. We can check the equality:

u( 1 n ) n≥1 = θ -1 1 (C( u)). Then : ∆ 1 ( 1 n ) = u( 1 n ) n≥1 , u ∈ ∆ 1 .
2. The sets ∆ 1 and ∆ 1 ( 1 n ) are commutative groups. 3. The map defined as :

θ 1 : ∆ 1 ( 1 n ) -→ E 1 = θ 0 (∆ 1 ( 1 n )) u( 1 n ) n≥1 -→ C( u) is an isomorphism between two groups. Definition 4 • A 2 = 1 u , u ∈ ∆ 1 ∀x ∈]0, 1] u(x) = 0 and lim u( 1 n ) = 0 . • ∆ 2 = v / v :]0, 1] -→ R, there exists 1/u ∈ A 2 and ε > 0 such that v /]0,ε] = ( 1 u ) /]0,ε] . • ∆ 2 ( 1 n ) = (v( 1 n )) n≥1 , v ∈ ∆ 2 .

Construction of a unitary ring

Lemma 1 Let ∆ = ∆ 1 ∪ ∆ 2 , (∆, +, .
) is a unitary ring.

Proof.

• The stability of the sum : The set ∆ is non-empty set, because ∆ 1 = ∅ and R ⊆ ∆ 1 (we identify the constant fonctions by the real numbers ). Show that : ∀g ∈ ∆, and h ∈ ∆ then g + h ∈ ∆.

First case : if (g, h) = (u, v) ∈ ∆ 2 1
, we verify that the function s = f + g is matalic map, and :

s = u + v. Second case : if (g, h) ∈ ∆ 2 2 , there exists (u, v) ∈ ∆ 2 1 such that lim u( 1 n ) = lim v( 1 n ) = 0 and u(x)v(x) = 0 for every x ∈]0, ε], for ε > 0 small enough, in addition : g /]0,ε] = 1 u /]0,ε] and h /]0,ε] = 1 v /]0,ε]
. Since u and v are holomorphic functions on a neighborhood of 0, there exists (m, n, l) ∈ N 3 such that :

u(z) = z n b 1 (z), v(z) = z m b 2 (z) and u(z) + v(z) = z l b 3 (z). where b 1 , b 2 , b 3 are 3 holomorphic functions on a neighborhood of 0, such that : b 1 (0)b 2 (0)b 3 (0) = 0. Let : ψ(x) = u(x)v(x) u(x) + v(x)
.

The map g + h is defined in the interval ]0, 1], for ε > 0 small enough, and b 1 (z)b 2 (z)b 3 (z) = 0 in the disk D(0, ε), we have :

g(x) + h(x) = 1 u(x) + 1 v(x) = 1 ψ(x) = x l-m-n b3(x) b1(x)b2(x) , for every x ∈]0, ε]. If l -m -n ≥ 0, The map defined as φ(z) = z l-m-n b3(z) b1(z)b2(z) in D(0, ε) 1 if not is a metalic extension of g + h, then g + h is a element of ∆ 1 .
1. We assume that g, h ∈ ∆ 1 . From the Intermediate value theorem we deduce that there exists

β k ∈| 1 n k , 1 n ′ k
| such that (gh)(β k ) = 0, (we can choose the β k so that the sequence (β k ) is strictly decreasing), then the holomorphic function gh has an infinite number of roots in neighborhood of 0, from the theorem2, we deduce that the function gh is the zero function, then g = h, which is absurd.

2. Now, we suppose that g, h ∈ ∆ 2 . There exists (u, v) ∈ ∆ 2 1 , such that : u /]0,ε] = ( 1 g ) /]0,ε] and v /]0,ε] = ( 1 h ) /]0,ε] . from the above results, we deduce that : u(δ) ≤ v(δ) ou v(δ) ≤ u(δ). which implies that: g(δ) and h(δ) are comparable.

3. In the case of g ∈ ∆ 1 and h ∈ ∆ 2 . There exists h 1 ∈ ∆ 1 and ε > 0, such that: h /]0,ε[ = ( 1 h1 ) /]0,ε[ . Since h 1 is a metalic function, then the sequence (h 1 ( 1 n )) keeps a contant sign from a certain rank, in fact: if it's not the case, then ∀k ∈ N there exists

n k > k et n ′ k > k such that: h 1 ( 1 n k ) > 0 and h 1 ( 1 n ′ k ) < 0.
From the Intermediate value theorem we deduce that there exists

β k ∈| 1 n k , 1 n ′ k
| and (h 1 )(β k ) = 0, (we can choose the β k such that the sequence (β k ) is strictly decreasing), from the theorem2, h 1 is the zero function on the neighborhood of 0, which absurd( because we suppose (h 1 ( 1 n )) does not keep a constant sign from a certain rank) Finally, we deduce that the sequence

(h 1 ( 1 n )) keeps a constant sign, since lim h 1 ( 1 n ) = 0, then lim 1 h1( 1 n ) exists, and lim 1 h1( 1 n ) = ±∞, which implies lim h( 1 n ) = ±∞. -if lim h( 1 n ) = +∞, then g(δ) ≤ h(δ) ( because g( 1 n ) ≤ h( 1 n ), from a certain rank ). -if lim h( 1 n ) = -∞, then h(δ) ≤ g(δ) ( because h( 1 n ) ≤ g( 1 n
), from a certain rank ). • Now, it remains to show that:

I O = ∅.
For that, it is necessary to find a element δ ∈ O which infinitesimal. for u : x -→ x, we have u ∈ ∆ (more precisely ∆ 1 ) and δ = u(δ) = u( 1 n ) n≥1 . In addition, we have : 0 < δ < ε for every real strictly positive ε, because there exists p ∈ N such that: 0 < u( 1 n ) < ε, for every integer n > p. Then δ is infinitesimal.

Conclusions 1 Finally, we deduce that:

• (O, +, .) is a extension field of (R, +, .).

• (O, ≤) is a ordered R-extension, which contains the infinitesimal element δ.

The field (O, +, .) is called a field of Omicran-reals.

If m + nl < 0, the map defined as : ψ(z) = z m+n-l b1(z)b2(z) b3(z) in D(0, ε)

if not is a metalic extension of ψ, in addition lim ψ( 1 n ) = 0, we deduce that the is g + h is a element of ∆ 2 .

Third case : If (g, h) ∈ ∆ 1 × ∆ 2 , there exists (u, v) ∈ ∆ 2 1 , such that : g = u , h /]0,ε] = 1 v /]0,ε] , lim v(

Let k(z) = v(z) u(z) v(z) + 1 .

Since v(0) = 0, we have k(0) = 0, and k is a holomorphic function in a disk D(0, ε), for ε > 0 small enough. The map k is nonzero and holomorphic at z = 0, we can choose the ε so that k(x) = 0 for every x ∈]0, ε].

Let φ the function defined in ]0, 1] as :

We verify that :

Finally, we deduce that (∆, +) is a commutative group.

• Now, we can show the stability of the law (.) in ∆, for that, we distiguish tree cases :

1. We can easily verify that the product of two metalic functions is a metalic function.

In this case, we assume that g ∈ ∆ 1 and h ∈ ∆ 2 , we can show that gh ∈ ∆, in fact, there exists

-if lim u( 1 n ) = 0, then v u is holomorphic in the disk D(0, ε), which implies that :

3. In the case of g ∈ ∆ 2 and h ∈ ∆ 2 , we verify easily the stability of the law (.). Finally, we deduce that (∆, +, .) is a commutative and unitary ring, where the constant function 1 ∆ is a multiplicative identity of ∆.

Construction of the new field

Let I 0 the set defined as :

it is a set of maps defined in ]0, 1], and zero on ]0, ε] ( for 0 < ε ≤ 1 ).

Thus, we have demonstrated the following proposition.

Proposition 1 I 0 is a maximal ideal of ∆.

Therem 4

The ring (∆/I 0 , +, .) is a field.

Proof.

From the above proposition, the ideal I 0 is maximal, so we deduce that the ring (∆/I 0 , +, .) is a field.

The field of Omicran-reals

We consider the set defined as

The equivalence class is given by : g(

) is a field.

θ is an isomorphism.

Therem 5 There exists a set O and a total order ≤ such that :

) is an extension field of (R, +, .).

Proof.

The set ∆/I 0 is noted ∆ 0 , we replace C(g) = g by g ( if it has not ambiguity ). From what precedes, we deduce that the map :

Let δ an indeterminate, and O = ∆ 0 (δ) = { g(δ) , g ∈ ∆ 0 }. The map defined as :

is a ring isomorphism. Then (O, +, .) is a field, in addition, the map ϕ = δ * • θ defined as :

• for g = cste = l, we note l = (g( 1 n )) n≥1 , we identify l by the image of l by ϕ, and we find ϕ(l) = l. by using the identification, we deduce that : R ⊆ O.

• We can define on O the following relation ≤ :

g(δ) ≤ h(δ) if and only if there exists an integer n 0 , such that : g( 1 n ) ≤ h( 1 n ) for every n ≥ n 0 . It is easy to check that ≤ is reflexive, transitive and antisymmetric, then it is a partial order.

• To show that set (O, ≤) is ordered R-extension, we must show that relation ≤ is total.

For that we consider g, h ∈ ∆ 0 , we assume that these propositions are true ( not g(δ) ≤ h(δ)) and ( not h(δ) ≤ g(δ)).

Next, we need to find a contradiction. If the above propositions are true, then : ∀k ∈ N, ∃n k > k and ∃n

).