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Abstract: This paper deals with the empirical validation of a building thermal model using a phase 

change material (PCM) in a complex roof. A mathematical model dedicated to phase change 

materials based on the heat apparent capacity method was implemented in a multi-zone building 

simulation code, the aim being to increase understanding of the thermal behavior of the whole 

building with PCM technologies. To empirically validate the model, the methodology is based both 

on numerical and experimental studies. A parametric sensitivity analysis was performed and a set 

of parameters of the thermal model have been identified for optimization. The use of a generic 

optimization program called GenOpt® coupled to the building simulation code enabled to 

determine the set of adequate parameters. We first present the empirical validation methodology 

and main results of previous work. We then give an overview of GenOpt® and its coupling with the 

building simulation code. Finally, once the optimization results are obtained, comparisons of 

thermal model of PCM with measurements are found to be acceptable and are presented. 

Keywords: Phase change materials; Building thermal simulation; Model Optimization; Model 

validation. 
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1. Introduction 

Buildings are indisputably considered as one of the largest energy consuming sector. According 

to the International Energy Agency (IEA), the average energy consumed by buildings represents 

32% of energy consumption worldwide, with approximately 40% of primary energy used in most 

countries. In France, the energetic consumption in the building sector is approximately about 43%, 

representing a quarter of national’s carbon dioxide emissions. The use of energy-hungry appliances 

to improve the thermal comfort is responsible both for the electrical energy consumption and the 

increase of greenhouse gas emissions [1]. 

For this reason, some actions are led to curb energy consumption and to protect environment, 

for example, the use of renewable energies, passive energy buildings and the use of building codes 

for new or retrofited buildings. Moreover, several studies and applications have shown that the 

building thermal inertia is among possible solutions and should be improved, in order to reach high 
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performance and low-energy buildings [2–4]. As a result, the question in the building sector arises as 

to the increase of the thermal energy capacity storage in the used materials.. With this target in mind, 

a technology such as the phase change materials may be integrated into building envelopes, both to 

enhance the thermal energy storage [5] and to improve the thermal comfort. Indeed, because of their 

higher thermal energy storage densities than other heat storage materials, these materials are able to 

store and release thermal energy as latent heat, when the phase change occurs. It is important to 

highlight the fact that the latent heat storage is much larger than the sensible heat storage [6]. 

Usually, organic and inorganic PCMs are often used and solid-liquid phases are chosen [7]. Despite 

its thermal conductivity that should be improved, paraffin is often used for latent heat thermal 

energy storage [8]. Indeed, it has useful thermal properties such as absence of super cooling, 

chemical stability and low vapor pressure [3,9]. 

The use of PCMs in the building envelope may reduce the peak loads and heating, ventilating 

and air conditioning (HVAC) energy consumptions by increasing the thermal inertia of each walls of 

the building. Indeed, the peak load may be shifted to the off peak load periods of energy use [10]. In 

addition, the results of PCM-oriented research on buildings have shown that the thermal comfort 

was improved and energy saving could be made.  

Among all the PCM applications to reach high energy efficiency buildings, for example PCM 

integrated wall, PCM assisted ceiling heating and cooling, photovoltaic system coupled with a 

PCM-based heat storage [11], and so on, this paper deals with the inclusion of PCMs in the roof 

system. Generally, the roof is considered as a thermal buffer between the indoor and outdoor 

environment. This is the part of the building most exposed to solar radiation in hot climates and 

considered as the weakest part of the building thermal performance [12,13]. 

A possible solution to reduce heat transfer from outside to inside of the building may be found 

in the increased use of mass insulation. Nevertheless, this type of thermal insulation allows to 

reduce heat transfer due to conduction, but does not reduce heat transfer by infrared radiation 

through the roofing. To overcome, a solution is based on the use of radiant barrier systems, which 

requires the presence of air layers in order to benefit a reflective radiation [12]. Based on the same 

approach, PCM under a flexible sheet form laminated both sides with an aluminum sheet is used in 

the lower part of the roof between the air layer and the drywall, both to enhance the thermal energy 

storage and to reduce the solar radiation through the roof system [14]. 

Furthermore, before integrating PCM into new or retrofit buildings, it will be interested to 

predict the thermal effects of these materials on the whole building. To contribute to the energy 

efficiency policy recommendations on buildings energy consumption, a one-dimensional simplified 

numerical model for phase change material has been developed and implemented in a prototype of 

building simulation code named ISOLAB. This one is able to take into account the building 

envelopes, including PCM or not, and the actual impact on energy consumption. Nevertheless, 

before using PCM model integrated in ISOLAB code and to ensure the reliability of the results, this 

article focuses on the empirically validation of the latter. We first present the tools used, building 

simulation code and the generic optimization program GenOpt®. We then briefly describe the 

studied system as well as main results of previous work. Finally, results of the experimental 

validation of the thermal model are presented and discussed. 

2. Presentation of tools  

2.1. A building simulation code: ISOLAB 

Developed by MIRANVILLE, ISOLAB is a prototype of building simulation software 

developed with the Matlab environment [15]. Nodal description of buildings and finite difference 

scheme of the time variable in one-dimensional are used to simulate the dynamic thermal behavior 

of a monozone or multi-zone building according to its environment (weather data and location). In 

order to determine temperatures of the whole building, the following matricial formalism (1) is 

solved by using an implicit finite-difference method [16]. 
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CwṪw=AwTw+Bw, (1) 

Where the index w is used for walls and windows. Aw is the state matrix including the terms 

linked to heat conduction and the interior linearized convective exchanges. Bw is the vector 

containing outside or internal solicitations of the system. Cw is the capacities matrix. Tw is the state 

vector containing every temperatures of each wall, Ṫw and is the temperature derivative of Tw.   

ISOLAB code has already been validated with the IEA BESTEST procedure (International 

Energy Agency, Building Energy Simulation Test), concerned with buildings without PCMs [15]. 

2.2. A generic optimization program: GenOpt®  

The optimization process consists in running several model simulations with different 

parameters set. The chosen parameters are identified by performing a mathematical tool like 

parametric sensitivity analysis. Thereafter, each simulation is launched with a different set of 

parameters (continuous parameters, discrete parameters, or both), and the associated cost function 

value, with or without constraints, is recorded. Finally, to ensure convergence to the best set of 

parameters, it is necessary to run many simulations on each parameter for the right different 

parameter range.  

A generic optimization program, called GenOpt® from the Lawrence Berkeley National 

Laboratory of University of California, developed with the Java environment by Mickael Wetter is 

used to optimize the unknown parameters [17]. The choice of GenOpt® has also been made 

according to its simulation program interface that allows the coupling with any simulation program, 

without requiring code modifications. Indeed, the coupling is done by creating some files required 

by GenOpt® to run an optimization and also an auto-executable version of the model [18]. In 

addition, GenOpt® is dedicated for the thermal building simulation. For more details about the 

generic optimization program, the interested reader may refer to [17].  

Before performing the optimization sequences with GenOpt®, the studied system with the main 

results of previous work are presented in the following paragraph. 

3. Experimental set up of a complex standard roof including phase change materials 

3.1 Introduction  

The objective of this part is to show the main results of experimental investigations on a 

complex roof incorporating PCM panels. The use of such a database allows to empirically validate 

the numerical code developed and implemented in a prototype of building simulation software to 

determinate the thermal performance of any building envelopes with PCM. 

First, a description of the roofing complex and the different associated instrumentation is 

presented in the following paragraph. 

3.2. Localization and structure of the test cell  

With dimensions of 3m (height) × 3m (width) × 3m (length) and an internal volume about 30 m3, 

the test cell, called LGI, can be considered as a typical room of buildings existing in Reunion Island. 

It has been designed according to a flexible structure in order to study several configurations and 

phenomena. Thanks to its modular structure, the movable walls allow to include PCM panels to the 

standard roof inclined at 20° to the horizontal. The whole building envelopes are constituted of 

vertical opaque walls, a jalousie, a glass door and a complex roof with PCM panels. The roofing 

complex is an assembly of homogeneous or inhomogeneous materials, separated by one or several 

air layers [12,14,18]. The building components of LGI are given in Table 1, and an overall view is 

depicted in Figure 1a. 
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Table 1. Arrangement of LGI test cell [13] 

Element Composition Remark(s) 

Opaque vertical walls 
Sandwich board 80mm thick 

cement-fiber/polyurethane/cement-fiber 
 

Window Aluminium frame, 8 mm clear glass Blind-type 0.8x0.8m 

Glass door Aluminium frame, 8mm clear glass 

Glass in upper and 

lower parts, 

0.7x2.2m 

Roofing complex 

Corrugated galvanised steel 1 mm/air 

layer of 280 mm thick/PCM 5.26 mm thick/ 

Plasterboard 12.5 mm 

PCM is laminated 

to aluminium 

protective foils. 

Roof inclined at 20° 

Floor 
Concrete slabs 80mm thick on 60 mm 

thick polystyrene 
 

 

 

(a) 

 

(b) 

Figure 1. (a) LGI cell; (b) Experimental platform. 

Located at a low altitude sea level (55 m), the experimental set up was erected on the 

experimental platform of the University Institute of Technology of Saint-Pierre (Reunion Island). 

The choice of this location results in a tropical climate with strong solar radiation and humidity. 

Besides, the test cell is oriented north in order to receive symmetrical solar radiation during the day 

[14]. With the aim of obtaining extreme solicitations input from the roof, a dark blue color has been 

chosen for the corrugated iron. During the procedure of experimental validation, the blind windows 

and the window panes were masked, and the test cell was kept closed, without using mechanical 

ventilation or air-conditioning system [13]. 

Furthermore, near to the experimental devices, two meteorological stations (a weather station 

in red circle is depicted in Figure 1b) are installed in order to collect data from the environment, such 

as solar radiation (global, direct and diffuse, on a horizontal plane), ambient air temperature, 

exterior relativity humidity, wind speed and direction. As depicted in Figure 2 and because of the 

important number of days (92 days approximately) of the chosen experimental sequence and, in 

order not to overload the graphs, only four days of data from August to October 2012 are presented 

in this paper. 
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Figure 2. Solar irradiation from 20th September to 24th September 2012 [13]. 

3.2.1. Instrumentation of the enclosure 

Located both in the enclosure and on the roof of the LGI test cell, sixty sensors have been used. 

The walls (north, south, east and west, inside and outside) are equipped with thermal sensors 

on surfaces, such as T-type thermocouples and flux meters in order to measure the inside or outside 

surface temperature of each wall. For air temperature, the thermocouples are inserted into 

aluminum cylinders. For radiant temperature, the thermocouples are contained in a black globe. 

To assess the stratification of the air, the interior volume was measured at three different 

heights from floor to ceiling (see Figure 3). Many heat sensors have been sealed in the concrete slabs 

supporting the cell, in order to assess the information on the boundary conditions from the ground. 

Indeed, the ground model is difficult to develop and to avoid modeling errors concerning this part 

of the buildings not directly linked to our study, the database from the ground measures will be 

used during the code validation step. 

 

For more details on sensors location and set-up and the on the associated errors, the interested 

reader may refer to [13]. 
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Figure 3. Simplified scheme of LGI cell and instrumentation 

3.2.2. Instrumentation of the roof 

To ensure reliable measurements from the complex roof components, sensors have been located 

as depicted in Figure 3. To assess the temperatures and the heat flux meters from to the corrugated 

iron to the ceiling, each component of the complex roof was instrumented. The heat sensors are 

spread over on both sides of the surfaces of the corrugated iron, on PCM panels and on drywall. 

Between PCM panels and the corrugated iron, the air layer is not ventilated, and the dry-air and 

black globe temperatures were also measured.  

Before using heat sensors, the thermocouples were calibrated and verified on site according to 

protocol dictates. Heat flux sensors were calibrated by manufacturer. The accuracy of the 

thermocouples is estimated to ±0.5°C, and according to manufacturer, the relative error of flux 

meters is approximately about 5%. In order to avoid air bubbles for both thermocouples and flux 

meters, a conductive heat paste was applied on the surfaces. 

A data logger was installed in the LGI cell in order to collect data from all sensors every 15 min. 

All data were saved on a computer [13]. 

4. Previous investigation 

4.1. Introduction 

Since May 2013, both the thermal behavior of building envelopes including PCM and 

time-varying thermal properties of materials were not taken into account by ISOLAB. For this, a 

simplified numerical model of the thermal behavior of phase change materials was developed and 

implemented. However, many constraints on the PCM model have been imposed, such as the 

respect of the state system formalism and the use of implicit scheme in one-dimension according to 

the finite difference approach. The apparent heat method capacity has moreover been used.  

4.2. Description of the roofing complex 

The model is intended to predict temperature behavior of each component of the whole 

building, including the inside air of enclosures. The studied LGI cell is considered as well-isolated 
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and divided into two thermal zones. Indeed, the ceiling is a specific wall separating two zones. It 

plays the role of ceiling for the first zone and of floor for the second zone. We note that the air gap 

simulated in zone 2 is considered as a thermal zone in our multi-zone building model (see Figure 3). 

The presence of an air layer between the corrugated iron and PCM panels allows to benefit the 

principle of action of reflective insulation, which is closely linked to the radiative properties of the 

surfaces of PCM panels. Taking into account the air layer with the combination of homogenous and 

inhomogeneous materials, the roof system can be qualified as complex with coupled heat transfers 

involved (conduction, convection and radiative transfers) [19]. Therefore, the chosen configuration 

may complicate the determination of thermal performances due to the multiple configurations of the 

air layer: opened or closed, naturally ventilated or forced-ventilated [14]. This is the raison 

explaining that in the proposed approach in this paper, the enclosed air space is considered as a 

thermal zone. 

4.3. Description of PCM test 

PCM tested is the commercial product from Dupont™ Energain®. It is a flexible sheet 5 mm 

thick, made of 60% microencapsulated paraffin wax within a copolymer laminated on both sides 

with an aluminum sheet [13,14]. Its characteristics are summarized in the following Table 2: 

Table 2. Characteristics of PCM used [13] 

Parameter Value Unit 

Thermal properties 

Thermal conductivity: 𝜆𝑠/𝜆𝑙 0.22/0.18 W.m-1.K-1 

Heat capacity: 𝐶𝑝𝑠/𝐶𝑝𝑙 3134/2833 J.kg-1.K-1 

Latent Heat: 𝐿𝑚𝑒𝑙𝑡𝑖𝑛𝑔 71 kJ.kg-1 

Melting temperature 23.4 °C 

Descriptive properties 

Thickness 5.26 mm 

Width 1000 mm 

Length 1198 mm 

 
Values of the heat capacity in each phase and melting point have been determined by DSC 

(Differential Scanning Calorimetry) measurements. These parameters are exposed in details in refs 

[20,21]. 

4.4. Mathematical model for phase change material 

The solidification and melting process are the most studied in building applications. Usually, 

numerical modelling of these phenomena is either based on the first law of thermodynamics or 

second law of thermodynamics. For more details, the interested reader may refer to [22]. 

The thermal model for phase change is based on the apparent heat capacity method from 

enthalpy method. This method allows to obtain the general form of a heat conduction equation with 

a nonlinear specific heat, without need to know ahead of time the location of the phase interface. To 

simplify the mathematical model, some assumptions were made [13,14,23]. Through the solid (or 

liquid) fraction term, called fs, the final expression of transient heat conduction can be written in 1-D 

along the �⃗� direction as follows [13,23]: 

Capp(T)
∂T(x,t)

∂t
=λPCM(T)

∂2T(x,t)

∂x2
, (2)  
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With: 

{
 
 
 
 

 
 
 
 Capp(T)=ρ

s
cs+∆(ρc)fs+

dfs(T)

dT
(ρ

l
Lm+∆(ρc). (T(x,t)-Tm))

∆(ρc)=ρ
l
cl-ρs

cs                                                                            

λPCM(T)= (1-fs(T))λs+λlfs(T)                                                        

fs(T)=
1

2
-

1

2
tanh (γ

Tm-T(x,t)

4δT
)

dfs(T)

dT
=

γ

8∆T[cosh(γ
Tm-T(x,t)

4δT
)]

2                                               

 

The governing equation in terms of the heat apparent capacity can be solved using a standard 

heat transfer code, and a wide range of discretization approach can be used. As a result, 

one-dimensional finite difference method can be chosen [19]. To definitely be in accordance with the 

formalism of ISOLAB equation, the use of a backward Euler scheme is possible thanks to the solid 

(or liquid) fraction term. Generally, the expression of solid fraction is given by using an 

approximation of the Heaviside function. In PCM model, a specific parameter called γ appears in the 

final expression. The latter is usually equals to 1, for instance in [24]. In order to not underestimate or 

overestimate the latent heat value during the phase change process, a proposed method was given 

by [13]. With this aim, for a given phase change interval δT, and at T=Tm, the expression of the 

apparent heat capacity (𝐶𝑎𝑝𝑝) leads to the first determination of γ, according to the following process 

[13]:  

If  𝑻(𝒙, 𝒕) ≥ 𝑻𝒎 − 𝜹𝑻 𝒂𝒏𝒅 𝑻(𝒙, 𝒕) ≤ 𝑻𝒎 + 𝜹𝑻 𝒕𝒉𝒆𝒏 

|𝒎𝒂𝒙(𝜸) = (𝒎𝒂𝒙(𝑪𝑫𝑺𝑪) − (
𝒄𝒔 + 𝒄𝒍
𝟐

)) .
𝟖𝜹𝑻

𝑳𝒎
 

else 

|𝜸 must be determined 

end 

Where max(CDSC) is given by DSC, and δT is chosen very small. In the numerical simulation, 

δT=0.01°C. In the first approach, γ is evaluated as follows: 

γ=
Lm

Cps ∙ (Tm-δT)
 (3)  

4.5. Main results 

The thermal model will be validated only if the validation criteria are reached. These criteria are 

given by [13,18]: 

1. To reach 10% validation error between numerical solutions and experimental data from actual 

building; 

2. To reach acceptable absolute errors between some numerical solutions and measurements: 

 ± 2°C for temperatures on each side of each suspended ceiling 

 ± 1°C for indoor air temperature of real building 

To definitely validate the numerical thermal model, different steps are required. These steps are 

illustrated in Figure 4: 
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Figure 4: Methodology used for the empirical validation 

The two first steps have already been presented in details in [13]. The results showed that the 

numerical thermal model was able to predict the dynamic thermal behavior of PCM. Nevertheless, 

the validity criteria were not respected. According to the validation methodology, it was necessary 

to highlight the origins of errors. A parametric sensitivity analysis, according to a method derived 

from the FAST method (Fast Fourier Amplitude Transform) has been performed and made it 

possible to put in evidence the parameters with most influence on model outputs [25–27]. Following 

the sensitivity analysis, the main cause of any difference between the model and experimental data 

can be explained, but also we can focus on the search of the set of unknown parameters of the model 

in a restricted range. The following important results were showed [13]: 

 The thermal behavior of the complex roof is governed by convective heat transfers, both in the 

air layer and the faces of the suspended ceiling.  

 The absorptivity coefficient of corrugated iron was not the same as new sample. 

 The specific parameter γ can be considered as a non-dimensional velocity of phase change 

because the phase change is assumed to occur slowly. This parameter can also be used to 

overcome numerical instabilities in the zone near the interface between the two phases of the 

PCM. Indeed, during the phase change, a mushy zone between the two phases is created. From 

a numerical point of view, sharp discontinuities at the phase interface are observed, implying 

some numerical instabilities very difficult to overtake. Moreover, it influences the derivative 

gradient of the solid fraction. However, its physical interpretation is still in investigation.  

The parameters linked to the convective exchange coefficients are depicted in Figure 5 and all 

parameters are given by the Table 3. However, the unknown parameters have to be determined. For 

this, optimization sequences were performed. 
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Figure 5. Most influential convective exchange coefficients  

Table 3. Most influential parameters on model outputs at the end of sensitivity analysis step. 

Frequency Parameters 

103 (hci,floor) Indoor convective exchange coefficient of the floor (zone 1) 

107 (hci,pl) Indoor convective exchange coefficient of the plasterboard 

108 (hci,PCM) Outdoor convective exchange coefficient of the PCM panel 

154 γ coefficient 

199 (hci,CI) Indoor convective exchange coefficient of the corrugated iron 

200 (hce,CI) Outdoor convective exchange coefficient of the corrugated iron 

218 (𝛼CI) Solar absorptivity coefficient of the corrugated iron 

5. Empirical validation of PCM model 

5.1. PCM model optimization using GenOpt® 

The optimization sequence consists in reaching the best set of parameters by maximizing or 

minimizing a chosen cost function, subject to a set of constraints (or a defined domain), until 

optimization criteria are reached. Indeed, many simulations are run and when a stopping criterion is 

reached, like the required error on the studied output for instance, the optimization is stopped. 

To optimize the thermal model of PCM implemented in ISOLAB by using GenOpt®, a 

methodology for the coupling of the building simulation code with the optimization program is 

required. The study has already been presented and the interested reader may see [18] for details.  

Among methods of fixing sets of parameters implemented in GenOpt®, the GPS (Generalized 

Pattern Search) Hooke-Jeeves MultiStart Algorithm was used. Indeed, it allows to look over some 

parameters and to avoid that the result values are obtained from a local minimum value. In addition, 

this algorithm is compatible with all building thermal insulation code and gives reliable results. 

The used cost function is calculated by using a mathematical model tool based on the modified 

standard deviation: 
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s= √
1

n
∑(xi-x̅)2

n

i=1

 (4)  

If several model outputs are used to optimize the model, the global cost function is the sum of 

the absolute values of costs functions for each output. The optimization sequence is stopped, if and 

only if, same minimum values of the cost functions were reached for 10 different optimization 

sequences. In our approach, several optimization sequences (1500 optimization sequences were 

reached approximately) and statistics studies were performed.  

5.2. Results of the optimization. 

Results from the optimization sequence are summarized in Table 4. 

Table 4. Parameters before and after optimization sequences 

Parameters Before optimization After optimization 

hci,floor 3.50 5.00 

hci,w 1.00 1.00 

hci,PCM 1.00 1.50 

γ (when 𝑇 ≠ 𝑇𝑚) 0.04 0.01 

hci,CI 3.50 1.75 

hce,CI 25 5.7V+11.4 [15] 

αCI 0.85 0.76 

 
Each value of an optimized parameter is found in agreement with the physical phenomena. 

Indeed, convective exchange coefficients are very small and correspond to the non-ventilated upper 

air layer as the building was kept closed during the experimental sequence. To apply the process for 

determining γ parameter, this coefficient has been evaluated to 0.01 when 𝑇 ≠ 𝑇𝑚. The value of 

absorptivity coefficient (αCI) is equal to the value that was determined by [28]. This value, lower than 

initially expected, can be justified by the  fact that the cell was erected and covered a few years ago, 

time tending to decrease absorptivity or dark color roof. Indeed, over time, the performances of 

buildings will be not be the same than when the building was new [15].  

5.3. Comparison between optimized thermal model of PCM with measurements 

On the whole period, the dynamic behaviour of the components of the complex roof and the 

indoor air temperature are well predicted. Through the different curves (see Figure 6), we can ensure 

that the given melting temperature for this application was correctly chosen because the 

temperatures on both sides of PCM allow the storage and the release of energy during phase change 

process. 

The surface temperature of suspended ceiling is predicted at ± 1.3°C (see Figure 7). The used 

conditions show that PCM model is able to properly predict the behavior of the PCM panel. The 

comparison between numerical simulations and experimental data shows a good agreement. The 

indoor air temperature of LGI test cell is predicted with an accuracy of ± 0.5°C (see Figure 8). The 

criteria for the validation of the thermal model are respected. 

According to Table 5, the mean errors between numerical solutions and experimental 

measurements do not exceed 5%. 
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Figure 6. Comparison of model results with experimental measurements for all components of the 

complex roof and for inside air temperature (zone 1) 

 

Figure 7. Errors between numerical solutions and experimental data for suspended ceiling 

temperatures. 
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Figure 8. Errors between numerical solutions and experimental data for inside air temperature 

Table 5. Standard deviations, maximum differences and errors after optimization sequences. 

Localization 

Standard 

deviation 𝝈 

[°C] 

Maximum 

difference 

[°C] 

Maximum 

error 

[%] 

Mean 

error 

[%] 

Inside air temperature (zone 1) 0.2 -0.5 -6.2 2.1 

Suspended ceiling inside surface 

temperature (plasterboard) 
0.4 -1.1 -8.9 2.9 

Interface PCM/plasterboard temperature 0.4 -1.3 8.8 3.1 

Suspending ceiling outside surface 

temperature (PCM) 
0.5 -1.7 -9.8 2.3 

Air-gap temperature (zone 2) 1.0 -2.6 -9.4 3.1 

Corrugated iron temperature 1.3 3.5 9.4 3.2 

 
The most important errors result from the prediction of air-gap temperature and the prediction 

of the metal sheet temperature in zone 2. For the air-gap, the model must be improved and models 

from literature based on CFD (Computational Fluid Dynamics) models showed that the results are 

inconclusive due to the influence of boundary conditions. So, an empirical correlation from 

experimentation will have to be determined. Nevertheless, the values of convective exchange 

coefficients (hce,CI and hci,PCM) determined by the optimization sequences correspond with the 

empirical correlation developed by Alamdari and Hammond [29] (it has been verified later that the 

obtained results fit the correlation). The proposal of these authors is a combination of two 

correlations for taking into account both natural convection in laminar regime and turbulent regime: 

h= [(1.51
|∆T|

1
4

H
)

6

+ (1.33|∆T|
1
3)

6

]

1
6

 (5)  

Where ∆T is the averaged difference temperature between the surface of the wall and the 

indoor air of the room. H corresponds to the height of the wall.  

With the predicted air temperature in zone 2, the errors between the curves can also be 

explained by the prediction of the corrugated iron surface temperature. Indeed, the latter has a direct 

effect on the temperature of each component of the complex roof. To reduce these errors, the 

radiative model should be improved and the radiosity method should be used [15]. 
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To conclude this step, the thermal model was fully-coupled with ISOLAB code and the results 

of PCM model are very encouraging. Indeed, for different type of walls with PCM or not, the model 

is able to predict temperatures in actual conditions. However, to definitely validate the PCM model 

implemented in the building simulation code ISOLAB, it is necessary to compare the numerical 

solutions with another experimental data sequence as presented in the next part. 

5.4. The corroboration step 

The corroboration step consists in using another experimental period in order to verify if all 

parameters determined can be generalized and are not specific for a given period. Moreover, it also 

allows evaluating the efficiency of the proposed model. For this step of corroboration, the 

meteorological data used are from October 2 to 5, 2012. This period was characterized by [19]: 

 an average maximal global radiation of 900 W.m-2 

 an average wind speed of 3.50 m.s-1 

 an average outdoor temperature of 26°C 

 an average rate humidity of 65% 

The results from the corroboration step are summarized in Table 6. In this part, the validation 

criteria are also respected. For instance, comparison between numerical simulations and 

measurements for the predicted indoor air temperature is depicted in Figure 9. For more details, the 

interested reader may refer to [19]. 

  

Figure 9. Comparison and errors between model results with experimental measurements for inside 

air temperature (zone 1) during the corroboration step. 

Table 6. Standard deviations, maximum differences and errors for the corroboration period. 

Localization 

Standard 

deviation 𝝈 

[°C] 

Maximum 

difference 

[°C] 

Maximum 

error 

[%] 

Mean 

error 

[%] 

Inside air temperature (zone 1) 0.2 0.6 5.6 2.1 

Suspended ceiling inside surface 

temperature (plasterboard) 
0.5 1.5 9.2 3.4 

Interface PCM/plasterboard 

temperature 
0.5 1.7 8.9 3.6 

Suspending ceiling outside surface 

temperature (PCM) 
0.5 1.7 9.9 2.8 

Air-gap temperature (zone 2) 1.3 3.4 8.9 3.2 

Corrugated iron temperature 1.6 4.7 9.8 3.3 

 
Table 5 and Table 6 show that maximum differences between predictions and measurements 

are a little more important than the results of the first experimental sequence. A possible explanation 
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is a high setting of parameters for specific environmental conditions. Nevertheless, despite these 

differences the model can be considered as validated because the validation criteria have been 

reached again. Furthermore, the maximal standard deviation is approximately of 1.6°C and all mean 

errors are below 5%. 

6. Conclusions and further works 

In this paper, a generic thermal model of PCM in building, validated with reliable experimental 

data, was presented. An actual building equipped with PCM in the complex roof was set up and 

each component's surfaces in contact with the indoor air temperature were measured. A detailed 

investigation was carried out to evaluate the efficiency of the thermal behavior of the model, with 

important steps included in experimental validation. 

A mathematical model based on the apparent heat capacity has been presented. Moreover, an 

approach of nodal description of the complex wall and a finite difference method in 

one-dimensional were used.  

Thanks to parametric sensitivity analysis, the most influential factors on model outputs such as, 

all convective exchange coefficients, γ parameter and the absorptivity coefficient of corrugated iron, 

were determined by a generic optimization tool. Then, a new comparison between the optimized 

thermal model and experimental data was performed. With the corroboration step, the results 

showed that the validity criteria were respected. Finally, the validation process of model has been 

reached and the thermal model of PCM has been validated. 

Despite the empirical validity of PCM's model, further works are necessary to improve the 

prediction of air-gap temperature and the radiative model used in order to have obtain better 

agreement between numerical solutions and measurements. Moreover, a mathematical formulation 

of γ parameter should be presented. Other experimental studies should be led to confirm the use of 

these materials in tropical climates as Reunion Island. Future works will also focus on the comfort 

study from the dedicated test cell. 

Acknowledgments 

The authors wish to thank Fonds Social Européen and La Région Réunion for their support and their fundings 

of the first author’s thesis. In addition, this research received fundings from the Ministère de l’Outre-Mer. 

 

Author Contributions 

Stéphane GUICHARD designed the experiments and developed PCM model for the experimental and 

numerical studies. Frédéric MIRANVILLE, Dimitri BIGOT and Harry BOYER helped for the coupling model of 

PCM with ISOLAB code and performed the validation stages of this one. Bruno MALET-DAMOUR and Teddy 

LIBELLE helped to monitor the data from the experimentation in order to ensure they were reliable for the 

empirical validation of the PCM model. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy and 

buildings 2008, 40, 394–398. 

2. Zhou, D.; Zhao, C.-Y.; Tian, Y. Review on thermal energy storage with phase change materials (PCMs) in 

building applications. Applied energy 2012, 92, 593–605. 



Energies 2015, 8, page–page Draft article submitted and accepted to Energies 

16 

3. Zalba, B.; Marı́n, J. M.; Cabeza, L. F.; Mehling, H. Review on thermal energy storage with phase change: 

materials, heat transfer analysis and applications. Applied thermal engineering 2003, 23, 251–283. 

4. Farid, M. M.; Khudhair, A. M.; Razack, S. A. K.; Al-Hallaj, S. A review on phase change energy storage: 

materials and applications. Energy conversion and management 2004, 45, 1597–1615. 

5. Cabeza, L. F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A. I. Materials used as PCM in thermal 

energy storage in buildings: A review. Renewable and Sustainable Energy Reviews 2011, 15, 1675–1695. 

6. Seong, Y.-B.; Lim, J.-H. Energy Saving Potentials of Phase Change Materials Applied to Lightweight 

Building Envelopes. Energies 2013, 6, 5219–5230. 

7. Hasan, A.; McCormack, S. J.; Huang, M. J.; Norton, B. Energy and cost saving of a photovoltaic-phase 

change materials (PV-PCM) system through temperature regulation and performance enhancement of 

photovoltaics. Energies 2014, 7, 1318–1331. 

8. Medina, M. A.; King, J. B.; Zhang, M. On the heat transfer rate reduction of structural insulated panels (SIPs) 

outfitted with phase change materials (PCMs). Energy 2008, 33, 667–678. 

9. Sarı, A.; Karaipekli, A. Thermal conductivity and latent heat thermal energy storage characteristics of 

paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering 2007, 27, 1271–

1277. 

10. Khudhair, A. M.; Farid, M. M. A review on energy conservation in building applications with thermal 

storage by latent heat using phase change materials. Energy conversion and management 2004, 45, 263–275. 

11. Lo Brano, V.; Ciulla, G.; Piacentino, A.; Cardona, F. On the efficacy of PCM to shave peak temperature of 

crystalline photovoltaic panels: an FDM model and field validation. Energies 2013, 6, 6188–6210. 

12. Miranville, F.; Boyer, H.; Lauret, P.; Lucas, F. A combined approach for determining the thermal 

performance of radiant barriers under field conditions. Solar Energy 2008, 82, 399–410. 

13. Guichard, S.; Miranville, F.; Bigot, D.; Boyer, H. A thermal model for phase change materials in a building 

roof for a tropical and humid climate: Model description and elements of validation. Energy and Buildings 

2014, 70, 71–80. 

14. Guichard, S.; Miranville, F.; Bigot, D.; Malet-Damour, B.; Boyer, H. Experimental investigation on a 

complex roof incorporating phase-change material. Energy and Buildings 2015, 108, 36–43. 

15. Miranville, F. Contribution à l’étude des parois complexes en physique du bâtiment modélisation, 

expérimentation et validation expérimentale de complexes de toitures incluant des produits minces 

réfléchissants en climat tropical humide, 2002. 

16. Boyer, H.; Chabriat, J. P.; Grondin-Perez, B.; Tourrand, C.; Brau, J. Thermal building simulation and 

computer generation of nodal models. Building and environment 1996, 31, 207–214. 

17. Wetter, M. GenOpt-A generic optimization program. In Seventh International IBPSA Conference, Rio de 

Janeiro; 2001; pp. 601–608. 

18. Bigot, D.; Miranville, F.; Boyer, H.; Bojic, M.; Guichard, S.; Jean, A. Model optimization and validation 

with experimental data using the case study of a building equipped with photovoltaic panel on roof: Coupling of 

the building thermal simulation code ISOLAB with the generic optimization program GenOpt. Energy and 

Buildings 2013, 58, 333–347. 

19. Guichard, S. Contribution à l’étude des parois complexes intégrant des matériaux à changements de phase : 

Modélisation, Expérimentation et évaluation de la performance thermique globale, Université de La Réunion, 

2013. 

20. Kuznik, F.; Virgone, J. Experimental investigation of wallboard containing phase change material: Data for 

validation of numerical modeling. Energy and Buildings 2009, 41, 561–570. 



Energies 2015, 8, page–page Draft article submitted and accepted to Energies 

17 

21. David, D.; Kuznik, F.; Roux, J.-J. Numerical study of the influence of the convective heat transfer on the 

dynamical behaviour of a phase change material wall. Applied Thermal Engineering 2011, 31, 3117–3124. 

22. Dutil, Y.; Rousse, D. R.; Salah, N. B.; Lassue, S.; Zalewski, L. A review on phase-change materials: 

mathematical modeling and simulations. Renewable and sustainable Energy reviews 2011, 15, 112–130. 

23. Guichard, S.; Miranville, F.; Boyer, H.; La Réunion, F. A Mathematical Model of Phase Change Materials 

(PCM) used in Buildings. In Proceedings of the Third IASTED African Conference; 2010; Vol. 684, p. 223. 

24. Dauvergne, J. L. Réduction et inversion de problèmes de diffusion thermique avec changement de phase, 

Ph. D. Thesis: University of Bordeaux I, 2008. 

25. Mara, T. A.; Boyer, H.; Garde, F. Parametric sensitivity analysis of a test cell thermal model using spectral 

analysis. Journal of solar energy engineering 2002, 124, 237–242. 

26. Mara, T. A.; Garde, F.; Boyer, H.; Mamode, M. Empirical validation of the thermal model of a passive solar 

cell test. Energy and Buildings 2001, 33, 589–599. 

27. Lauret, A. J. P.; Mara, T. A.; Boyer, H.; Adelard, L.; Garde, F. A validation methodology aid for improving 

a thermal building model: case of diffuse radiation accounting in a tropical climate. Energy and Buildings 2001, 

33, 711–718. 

28. Bigot, D. Contribution à l’étude du couplage énergétique enveloppe/système dans le cas de parois 

complexes photovoltaïques (pc-pv), La Réunion, 2011. 

29. Alamdari, F.; Hammond, G. P. Improved data correlations for buoyancy-driven convection in rooms. 

Building services engineering research and technology 1983, 4, 106–112. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons by 

Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 


