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STRONG WELL POSEDNESS OF MCKEAN-VLASOV STOCHASTIC
DIFFERENTIAL EQUATIONS WITH HOLDER DRIFT

P.E. CHAUDRU DE RAYNAL

ABSTRACT. Here, we prove strong well-posedness for stochastic systems of McKean-Vlasov type with
Hélder drift, even in the measure argument, and uniformly non-degenerate Lipschitz diffusion matrix.
The Holder regularity of the drift with respect to the law argument being for the Wasserstein distance.

Our proof is based on Zvonkin’s transformation (1974) and so on the regularization properties of
the associated PDE, which is stated on the space [0,T] x R? x P2(R?), where T' > 0, d denotes the
dimension equation and Ps (Rd) is the space of probability measures on R? with finite second order
moment. Especially, a smoothing effect in the measure direction is exhibited. Our approach is based
on a parametrix expansion of the transition density of the McKean-Vlasov process.

1 Introduction

Let Mg(R) be the set of d x d matrices with real coefficients and Py (R?) be the space of probability
measures v on R? such that [ #*dv(z) < 4o00. For any random variable Z, let us denote by [Z] its
law.

For a positive number T', for given measurable functions B, X : [0,T] x R? x Py(R?%) — R? x My(R)
and for (B, t > 0) a standard d-dimensional Brownian motion defined on a filtered probability space
(Q, F,P,(Fi)i>0), we consider, for t < s in [0,7]? and p in Py(R?), the non-linear (in a McKean-Vlasov
sense) system

Xt X, 4 / Blr, X, [X5])dr + / S(r, X5 [XP)AB,, Xy ~ g (11)
t t

This sort of equation arises as the limit of system of interacting players. This happens as follows.
Suppose that we are given a large number of players with symmetric dynamic and whose positions
depend on the positions of the other players in a mean field way. Then, when the number of players
tends to infinity, there is a propagation of chaos phenomenon so that the limit dynamic of each player
does not depend on the positions of the others anymore, but only on their statistical distributions.
This obviously comes from the law of large numbers. The resulting system is then of the form of (1.5)
and is called non-linear, since the dynamic of the player depends on its own law. We refer to the notes
of Sznitman’s lecture at Saint-Flour [Szn91] for an overview on the topic.

As done in [Szn91], the proof of strong existence and uniqueness (which means that the solutions are
adapted to the filtration generated by the Brownian motion and are almost surely indistinguishable)
for this equation relies on classical fixed point argument and so, on the Lipschitz property of the
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2 P.E. CHAUDRU DE RAYNAL

coefficients of the equation, the Lispchitz regularity being understood with respect to (w.r.t.) the
Wasserstein metric in the case of the measure argument.

In this work, we aim at proving the strong well-posedness of such a system when the drift B is a
measurable and only a bounded and Hélder continuous in both the space and measure arguments and
when the diffusion matrix ¥ is non-degenerate and Lipschitz in the space and measure arguments.
The Holder assumption w.r.t. the measure argument has to be understood as follows : there exists a
positive ag such that the drift function B is supposed to be bounded and measurable and «;-Holder
w.r.t. the measure argument in the following sense:

V(t,z) € RT x RV, € Po(RY) : |B(t,z,v) — B(t,z,1)| < ,inf  E|Z - Z', (1.2)
~U, INM

which can be seen as an aj-Holder regularity w.r.t. the Wasserstein distance.

Our proof is based on the regularization by noise phenomenon (see [Flall] for a survey).This effect
comes from the random perturbation of the equation, allowing stochastic differential system to be
well-posed, in a strong or a weak sense, under a larger set of assumptions than ordinary differential
system. It thus deeply relies on the noise propagation through the system which is the reason why we
suppose the matrix %3* to be uniformly non-degenerate.

To the best of our knowledge, this result is new and then consists, on the one hand, to show that this
phenomenon still holds in the McKean-Vlasov setting (which seems quite reasonable) and, on the other
hand, even occurs in the measure space. This last result is quite unexpectable at first sight, since the
noise does not act in that direction. In order to recover the regularization by noise phenomenon w.r.t.
the measure argument without adding noise in the measure space, we have to require some structural
assumptions on the dependence of the drift and diffusion coefficients w.r.t. the measure argument: the
dependence upon the measure is supposed to be of polynomial type. Here, this assumption translates
into the following condition: there exists two functions b, : [0,7] x R? x R — R? x My(R), and two
functions ¢; : R? — R, 4 in {1,2} such that

V(t,z,v) € [0,T] x R x Py(RY), B(t,z,v) = b(t,z, (¢1,v)) and B(t,z,v) = o(t,z, (w9, v)), (1.3)

where, for any measurable function ¢ we wrote [ ¢@dv with its dual notation: (p,v). Hence, the
assumption (1.2) on the drift translates as follow: the function b is assumed to be bounded and
measurable, Holder continuous w.r.t. the second argument and Lipschitz w.r.t. the third argument
but the map 1 is supposed to be only Hélder-continuous for some «q > 0.

Remark 1. Our results also hold for others polynomial dependence. As an example, instead of (1.3)
we could have suppose that

V(t,z,v) € [0,T] x REx Py(RY), B(t,z,v) = (b(t,z,-),v) and X(t,z,v) = (o(t,z,-),v). (1.4)

In that case, the function b has to be measurable and bounded and Holder continuous w.r.t. the first
and second space variable and the non-degeneracy assumption on the diffusion matriz has to be under-
stood for the matriz [(o(t,x,-), V)] [{o(t, x,-),v)]* uniformly in (t,z) in RT x R? and v in the space of
probability measures on R?.

Assuming the structural assumption (1.3), we can then rewrite our McKean-Vlasov system (1.1) as
follow:

Xt = X, + / b(r, X1, (ipr, [XE#]))dr + / o(r, X5 (oo, [X#))AB,, Xy~ (L5)
t t
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To prove the strong well-posedness outside the Lipschitz framework, we adapt the Zvonkin transfor-
mation [Zvo74] to our non-linear case. This approach relies on smoothing properties of a well-chosen
PDE associated to the system (1.5). Here, the non-linearity (in a Mckean-Vlasov sense) leads to a par-
ticular class of PDE that can be seen as the “linear”! version of the so called Master Equation coming
from Mean Field Games theory introduced independently by Lasry and Lions [LLO6b, LL06a, LLO7]
and by Huang, Caines and Malhameé [HMCO06]. This PDE has been recently studied from a proba-
bilistic point of view in the independent works of Buckdahn, Li, Peng and Rainer in [BLPR14| and of
Crisan, Chassagneux and Delarue in [CCD14|. Its main particularity comes from the fact that it is
stated on the space [0, T] x R? x Po(R?) so that it involves derivatives in the measure direction.

The smoothing properties of the associated PDE is then the crucial part of the proof. We investigate
it under a larger set of assumptions: we let the diffusion matrix be only a Hoélder-continuous function
of the space and measure argument. The investigations are done by using a Feynman-Kack repre-
sentation of the solution of the PDE and then a parametrix expansion (see [MS67]) of the transition
density of the solution of (1.5). This brings us to investigate for all ¢ < s in [0,T]? the regularity
of Po(RY) 5 pu — (¢,[XE*]) € R for some Holder continuous function ¢ : R? — R and where X is
a solution of (1.5). Especially, as it has been announced above, a smoothing effect w.r.t. measure
argument (i.e. on the initial data “u”) is exhibited.

Finally, let us emphasize that the parametrix approach relies on perturbation approach. This ex-
plains why, in comparison with the results obtained in the linear case (see [Zvo74, Ver80|), the function
1 appearing in the drift coefficients of (1.5) is assumed to be Holder continuous and not only a bounded
function.

Organization of this paper.

Our paper is organized as follows: we present below our main assumptions and result. Then, we give
in Section 2 the mathematical background and our strategy of proof. Especially, we state in this section
the PDE associated to (1.5). Since the PDE is stated on the Cartesian space [0, T] x R? x Py(R%), we
give some notions on differentiation of functions along a measure. Then, we establish the smoothing
properties of the PDE associated to (1.5), which is a key result in the proof of our main Theorem.

Next, we investigate the smoothing properties of the PDE. Such an investigation is done under
regularized framework. It is based on a parametrix expansion of the transition density of (1.5) and
is presented as follows. In Section 4 we give estimates on the transition density of (1.5) and on the
mapping v : Po(RY) 3 pu — (¢, [X5"]) € R for some Holder continuous function ¢ : R4 — R. This
permits to estimate the solution of the PDE. Then, estimates on v are proven in Section 5 and esti-
mates on the transition density of (1.5) are proven in Section 6. As said before, this last follows from
a parametrix representation of the transition density of (1.5) and its estimation. Auxiliary results are
given in Appendixes A and B.

1; e. without non-linear source term
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Notations, assumptions and main result

Notations. For any function f : E x F x G — R"™, we denote by d; (resp. 0 and 93) the differ-
entiation w.r.t. the first (resp. second and third) variable. When we add a subscript in the operator
0., it stands for the variable on which the differentiation operator acts. We recall that the law of a

Wy

random variable X is denoted by [X]. The superscript “«” stands for the transpose, the canonical
Euclidean inner product on R? is denoted by “-”. We denote by My(R) the set of d x d matrices with
real coefficients and the trace of a matrix M in M (R) is denoted by Tr(M) = Z;l:l M;;. We let

C,C" ¢, d,C,C", ... be some positive constants depending only on known parameters in (HE) given
below, that may change from line to line and from an equation to another and we add a subscript T'
in the constant if it depends also on the length of the interval.

Assumptions (HE). We say that assumptions (HE) hold if the following assumptions are satisfied:

(HE1) regularity of the drift: there exists a positive constant Cj, such that ||b||oc < Cp. More-
over the mapping b is supposed to be Holder continuous in space, uniformly in time and w.r.t.
the law argument, for some Holder exponent n > 0. For all (¢,z) in [0,7] X R?, the map-
ping b(t,z,-) : R 5 w — b(t,z,w) is differentiable and ||05b||c < C}. Finally, the mapping
01 :R? > 2 1(z) is supposed to be ap-Hélder for some 0 < o < 1.

(HE2) regularity of the diffusion matrix: there exists a positive constant C, such that for
all ¢ in [0, 77,

Ve, ' € RY w,w' € R, |o(t,z,w) —o(t, 2, w')| < C, (Jo — 2’| + [w —w']).

Moreover for all (¢, z) in [0, T] x R?, the mapping o(t,z,-) : R 3 w — o(t, z,w) is differentiable,
[|030||00 < C! and there exists a positive constant C such that for all ¢ in [0,7] and w in R,

Va, 2’ € RY, |030(t, x,w) — Bs0(t, 2, w)| < C¥|a — 2/ | e,
Finally, the mapping ¢o : R? 3 2+ y(z) is supposed to be Lipschitz.
(HE3) uniform ellipticity of oco*: the function oo™ satisfies the uniform ellipticity hypothesis:
JA> 1, VCeRY, AP < [oo*(t, x,w)C] - ¢ < A|C]?,
for all (t,z,w) € [0,7] x R? x R.

Remark 2. We emphasize that under (HE) the drift function b is not Lipschitz w.r.t. the law argument
since the function @y is only Hélder continuous.

Main result. We can now state our main result:

Theorem 1.1. Under assumptions (HE), the system (1.5) admits a unique strong solution.
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2 Mathematical background and strategy of proof

2.1 The Zvonkin transformation

For usual differential equations, it could be a very hard task to show the well posedness outside the
Lipschitz framework, at least in the classical sense (see [DL89] for some work in that direction). Never-
theless, when the differential system is perturbed by noise there is a phenomenon, called regularization
by noise, that allows to recover the well posedness. When the SDE is linear (in a Mckean-Vlasov
sense), this has been studied first by Zvonkin [Zvo74] and then generalized by several authors e.g.
[Ver80, KRO5, Zhall] and [Flall] for a survey. All these results rely on smoothing properties of an
associated PDE and so on smoothing properties of elliptic and linear partial second order differential
operator. Let us briefly explain how.

The strategy to recover the Lipschitz property consists in exhibiting a Zvonkin-like transformation
of the equation. Let us forget for the moment the dependence of the solution of (1.5) w.r.t. its own
law in order to illustrate the main argument. If we denote by A the generator of (1.5), the idea is to
obtain a priori estimates on the solution of the PDE

du+ Au=b, on [0,7) x RY, up = Oga, (2.1)
when b and o are smooth functions, but depending only on regularity of b, o assumed in (HE).

This allows to consider a sequence (u™),>¢ of classical solutions of the PDE (2.1) along a sequence of
mollified coefficients ((00™)y,, by )n>0. Then, by applying It6’s formula on X; —u"(t, X}) we can remove
the drift of the equation and recover an SDE whose coefficients have Lipschitz constants uniformly on
the regularization procedure, so that, when letting the regularization procedure tend to infinity, the
estimates pass through the limit.

When these constants can be chosen as small as 7" is small (which follows from the boundary con-
dition in (2.1)), we then recover existence and uniqueness on small time intervals. If in addition the
constants do not degenerate with the time, we can iterate the procedure and then recover existence
and uniqueness on R™.

The smoothing properties of the PDE (2.1), are, in fact, the crucial points. It is well known that
such smoothing properties are related to the noise propagation in the associated SDE through all the
directions of the space. Hence, two issues arise from the non linear framework studied here: how the
operator A looks like in our Mckean-Vlasov case, and how to regularize in the measure direction since
the noise does not act in that direction.

2.2 PDE on space of probability measure

Roughly speaking, we have to find a PDE that reflects the Markov structure of the underlying
process. Here, the Markov property has to be understood on the space [0,T] x R? x Py(R%), so that
it seems natural to consider a PDE on this space. This sort of PDE has been recently studied in-
dependently by Buckdahn, Li, Peng and Rainer in [BLPR14| and Crisan, Chassagneux and Delarue
in [CCD14], it is called the Master Equation and it appears naturally when considering Mean-Field
Games. What follows is essentially inspired by the second work [CCD14], from which we adopted some
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of the notations.

Before giving this PDE, stated on the space [0,7] x R? x Py(R%), let us give some notions of
differentiation of functions along a probability measure. The one used here has been introduced by
Lions during its lecture at the Collége de France and can be found in Cardaliaguet’s note [Carl0].
The strategy of Lions consists in lifting the function V : P3(R?) > v + V(v) € R to a function
V:Ly(Q,F,P) > Z— V(Z) € R, Z being a random variable of law v. We can then take advantage
of the Hilbert structure of the Ly space and define, in the Frechet sense, the mapping DV. Thanks to
Riezs’ representation Theorem, we can identify DV(Z) as DV (v)(Z). Thus, we call the derivative of
V w.r.t. the law, and we denote by 9,V (), the mapping in Ly(R?, v; R%):

V() :RYS 2 9,V (v)(z) € R
Let us emphasize that, in our case, the law interaction appears as the action of the law on some

function ¢; : V(v) = [¢i(xz)dv(z). Using the lifting argument described above we get that for any
random variable X and H in Lo (2):

V(X + eH]) = E[p(X + eH)] = E[p(X)] + €E[¢/(X) - H] + o(e),

so that
Ay (i, v) : R 3 2z ol(2) e R

Finally, let us just notice that this definition justifies the choice of the space Po(R?) for the initial data
n (1.5).

We can now state the PDE of interest:

(at + A)u(tv x, /L) = b(t7 xz, <901nu>)7 on [07 T] X Rd X PQ(Rd) (2 2)
U(T,x,/,t) = ORd7 -
where, when setting a := oc* the operator A is given by: for any smooth enough function 3 :

R+ x R? x Py(RY) — RY

At ) = T [alt, 2, Gu 2D 020w, )] +Blt, 2, (o1, )0t 7, )

4 [ bt (om0t ()duz) + 5 [ T lalt, 2 (o )00, (8,710 (2)] ).

When the coefficients are smooth, it follows from [CCD14| that such a PDE admits a classical solution
u. We refer to the aforementioned paper for more explanations on the meaning of classical solution
and especially on the question about the regularity of J,u as an element of Lo(RY, s RY) wor.t. the
variable z and u.

2.3 Smoothing properties of the PDE

It thus remains to show the smoothing properties of the PDE. This is done under the following
assumptions.
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Assumptions (HE). We say that assumptions (HE) hold if Assumptions (HE) are satisfied with
assumption (HE2) replaced by

(HE2) regularity of the diffusion matrix: there exists a positive constant C, such that for
all ¢ in [0, 77, for all w in R

Ve, ' € R |o(t,z,w) — o(t, 2, w)| < Cyla — 2/,

for some 0 < 7, < 1. Moreover for all (¢,z) in [0,T] x R?, the mapping o(t,z,-) : R > w
o(t,z,w) is differentiable, ||030]|oc < C and there exists a positive constant C? such that for
all tin [0,7] and w in R,

Ve, 2’ € RY, |930(t, z,w) — O30(t, 2, w)| < CV|z — a'|e,

for some 0 < 7/, < 1. Finally, the mapping @2 : R? > 2 + @s(z) € R is supposed to be
ao-Holder continuous, 0 < asg < 1.

This means that we let the diffusion coefficient a be only a Holder-continuous function w.r.t. the
space and law variable. We emphasize that (HE) implies (HE).

In order to apply the Zvonkin’s transformation, we do not need to solve the whole system of PDE.
We can indeed regularize it and then exhibit a Lipschitz bound on the regularized solution and its
space derivative depending only on known parameters in (HE).

In our context, it is possible to mollify the coefficients b, ¢ and the functions ;, ¢ = 1,2, to obtain
a sequence of smooth coefficients (by,, a,),>1 (say bounded and infinitely differentiable with bounded
derivatives of all order), and functions (¢}, 5 ),>1 (infinitely differentiable with bounded derivatives
of all order greater than 1) that converges uniformly to b,a and ¢;, i = 1,2. If we denote by A" the
regularized version of the operator 4 and u” the solution of the regularized version of (2.2), we have
the following result:

Theorem 2.1. For each n, the regularized system of PDEs (2.2) (i.e. with A™ and b, instead of A
and b) admits a unique classical solution u", in the sense defined in [CCD14|. Moreover, there exists a
positive Ta.1, a positive constant Co1 and a positive number 621 depending only on known parameters
in (HE), such that, for all (t,x,p) in [0,T] x R? x Py(R?) and all n in N* the mapping u” satisfies:

D" (b, 1) ()] + 19, (O™ (8,2, 1)(2))] + 0™ (b2, )] + 207 (1, )| < Con T,
for all z in R® and for T less than Ta.

The smoothness of the solution in space is not new. This phenomenon is well-known and follows from
the ellipticity assumption assumed on a. What is more unexpected is that there are bounds obtained
uniformly on the regularization procedure on the measure derivatives. Indeed, the coefficients of the
PDE are not differentiable w.r.t. the argument p and it is clear that any differentiation of u™ w.r.t. p
should involves the differentiation of the source term b w.r.t. this argument. So, by the chain rule, the
bound should contain an estimate on the derivative of Po(RY) 3 v+ (%, v/), which is given by (1),
so that this estimate should depend on the regularization procedure.

Nevertheless, it appears that for all t < s in [0, T]? the derivative of the mapping u ~ (i, [Xé’” 1)
can be estimated in terms of known parameters in (HE) (in fact, combining an additional estimate on
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0.0,u together with Arzela-Ascoli Theorem, we are able to show that the estimate on d,u holds for
the mild solution of (2.2)).

We hence have a smoothing property in the measure space without any action of the Laplacian
in that direction. This follows from the fact that the function ¢; is integrated against the law of the

process so that there still is a Gaussian convolution of the initial data “u” at any time s > ¢. Therefore,
we recover the spatial smoothing.

To the best of our knowledge, this result is new, especially since we do not add any noise on the space
of measures. This last aspect has been studied in [CDL14| where Mean Field Games with common noise
are investigated. Roughly speaking, the Authors showed that common noise on the original system of
interacting players translates into McKean-Vlasov system with random law (the family of probability
measure of the underlying stochastic process having now a stochastic dynamic) which allows them to
recover existence and uniqueness of Nash equilibrium.

Also, in the same spirit as us, David R. Bafios studies in [Bnl5| the Malliavin differentiability of
processes having the same dynamic as (1.5) with Lipschitz coefficients. Although he does not consider
explicitly a regularization phenomenon in the measure direction (the functions ¢; are continuously dif-
ferentiables with bounded Lipschitz derivatives), he shows that the space regularization phenomenon

still holds so that the mapping z — (¢, [X;’éxb €R, ¢in Lg([Xﬁ’é””]) is weakly differentiable for any
s > t thanks to a stochastic perturbation approach of Bismut type.

Finally, let us emphasize that Remark 1 also applies for Theorem 2.1. It seems that the main
structural assumption that allows to recover the spatial smoothing property in the measure direction
comes from the particular “polynomial ” dependence of the coefficients w.r.t. the measure.

3 Proof of the main result

We prove our main result by using a Picard’s iteration. Let m be a positive integer, set (X/)? = X,
for all ¢ in [0, 7] and define (X}*)™*! as the solution of:
¢

(Xf)™ = Xo +/ b(r, (X2)™, {1, [(Xﬁ)m]>)d7"+/ a(r, (XP)™, (e, [(XZ)"]))dB,,  Xo ~ p.
0 0

In order to remove the singular drift, we now have to use an It6’s Formula that matches our framework,
i.e. stated on [0,T] x R? x Py(R?). This formula, involving chain rule for functions defined on Py (R?),
can be found in Section 3 of [CCD14]. By applying it to

(X — (g, (X)L (X)),
we obtain that
(X[ = Xo —u"(0, Xo, p) — (¢, (X[ (X)) (3.1)
+/0 (s, (XE)™, (02, [(XE)™]) [1 = Baua” (s, (XL, [(XE)™H])] dBs + Ry (n),
where
i'(n) = /0 bn (s, (XE)™, (T, [(XE)™])) = b(s, (XE)™, (1, [(XE)™])

H(A" = Au (s, (XL (X)) ds.
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Hence,

(XF)™ = (XP)™] <t (X)L ()™ — et (e ()™ X))

o) {”“’(Xf) ez [(X)™)) [1 = Bau” (s, (X2)™ 41, [(x2y™ 1))
0

—o (s, (XE)™ 7 {02, [(XE)™)) [1 = Do (s, (XE)™, [(XE)™])] }st

R ()| + IR (n)).

Let us now emphasize that when T' < 75,1, Theorem 2.1 implies that for all (¢,x) in [0,T] X R?, all
Z, 7' in Ly(Q):

hu" (¢, @, [2]) — Ohu” (1,2, [2')

/1 E[0305u™(t, z,[(1 — \)Z + M\Z'))(Z — Z')]dA
0

< O T'E[|Z — 7).

for [ =0, 1, so that for any T less than 751, there exists a positive §, depending on known parameters
in (HE), such that:

<

Esup |(X{)™ ! — (X{)"? < CT’Esup|(X[)"* — (X)"?
t<T t<T

+c/ Esup [(X)™ — (XP)™2ds + 2E[RE ()] + 2[R (n) 2,
r<s

Since for any m, E[R%(n)|? tends uniformly to 0 as n tend to infinity, we can let n tend to infinity in

the right hand side of the equation above and we get that

¢

(1= CTOBsup (X" = (X" < Cr [ Bsup|xs)” - (Xf)™ P,
t<T 0 r<s

Finally, we can find a positive 7 depending on known parameters in (HE) such that for any 7T less

than 7

T
Esup|(X[)" " — (X)" < CT/ Esup|(XF)™ — (X¢)" " 2ds.
t<T 0 r<s

By induction, we deduce that for any 7' less than 7

Cm—l—le Cm—l-le

Esup |(X{)™ ™ — (x{)"? < ~T——Esup|(X{)' - (X")°? < O'~——.
t<T m! t<T m!

So that (X}')™ converges almost surely to a solution X}* of (1.5). We deduce the uniqueness part from
the previous computations. We hence have existence and uniqueness of a solution on [0,7]. We can
then iterate the construction and obtain the result for all 7" in R™.
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Remark 3. For whom are aware with Zvonkin Transformation and regularization by noise phenom-
enon, asking the drift function b to be only a measurable and bounded function of the space variable
(instead of the Holder continuity assumed here) should be the right assumption. In that case, it seems
that our strategy still apply. The main idea consists in showing that the usual ingredients used in that
case still hold in the McKean-Viasov setting. To do so, one may think about the law argument as a
time parameter in (4.4). Hence, one has to check that both the Krylov inequality and L, estimate for
the PDE solution still hold and then apply the Veretennikov arguments [Ver80].

4 Estimation on the solution of the PDE: proof of Theorem 2.1

Notations. From now, we let C,C’,¢,¢,C,C’,... be some positive constants depending only on
known parameters in (HE).

Let us first reduce the problem. We emphasize that any component of the d-dimensional solution of
the system of PDEs (2.2) above can be described by the solution of:

{ (O + Au(t,x, pn) = 5(t,:17, (p1,1)), on [0,T] x R? x Pg(Rd)

u(T,z,pn) =0, (1)

where b : RT x RY x R — R plays the role of one of the components of b. Hence, we only have to
prove the estimates in Theorem 2.1 for the function u defined above. Next, we have that Theorem 2.1
is stated under regularized framework. For the sake of clarity, we forget the superscript n that follows
from the regularization procedure in the following and we suppose that the following assumptions hold.

Assumptions (HER). We say that assumptions (HER) hold if assumptions (HE) hold true and
b, 0,1, po are infinitely differentiable functions with bounded derivatives of all order, greater than 1
for the functions 1 and s.

We know from [CCD14] that under (HER) this PDE admits a unique classical solution. Let us now
give a suitable representation of this solution.

Under assumptions (HER) it follows from the Sznitman’s note [Szn91| that equation (1.5) admits a
unique strong solution. For any (¢, u) in [0, T] x P2(R?) and z in R?, its flow is the solution on [t, T of

Xtk = g 4 / b(r, X559, (o1, [X1H]))dr + / o (r, X552, [X5H]) ) B, (4.2)
t t

Given the family of marginals [X*#] := ([X*]);<s<r of the solution of (1.5), we can consider the
stochastic system (4.2) as a linear system parametrized by the time dependent parameter [X“#]. We
can then define for all (s',3/) in [0, 7] x R? the process X* ¥ IX"*] as the solution of (4.2) on [¢/, T] with
starting point ' at time s’ and whose coefficients depend on [X*#] and we denote by LY* its generator.

It is then clear, thanks to the well posedness of (4.2) under (HER), that XX = Xte#  Finally,

from classical theory of linear SDEs, the flow XX admits a transition density p which is also
parametrized by [X%#].
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Since from the arguments of [CCD14] we have that, for all (¢, z, i) € [0, T] x R? x P (R), the solution
of the PDE (4.1) writes:

T ~
u(t, 1) = E / B(s, X1 (o, [X14))ds, (4.3)
t

we deduce from the previous discussion that
T ~
att) = [ ol (XX 5, )y, (1.4

In order to keep the notations clear, we only mention the dependence of p w.r.t. the initial data
(t, 1) of (1.5) in the following and we forget its first argument when the starting time of (1.5) and (4.2)
are the same. Hence, for all (s',3) and (s,y) in [t,T] x R%: p(t, ;8,5 s, y) := p([XH]; 8", y; s, y) and
p(st,y'ss,y) =t sty s,y).

When differentiating the function u in the measure direction, we have to differentiate the integrand
in the expression (4.4) in that direction. Thus, we have to estimate a quantity of the form

8ﬂ<(107 [X?“D’ s € (th]'

Then, in the following, for any a-Hélder function ¢, o € (0, 1], we denote by v the mapping:
vt <s,p,0) €0, x Pa(RY) = vs(t, 1, 0) = (&, [X]), (4.5)
and we prove in Section 5 the following Proposition.

Proposition 4.1. Suppose that assumptions (HER) hold, let ¢ be some a-Hélder function from RY to
R, let t in [0,T] and let us denote by p the law of the solution of (1.5) at time t. There exist a positive
number Ty1 and a positive constant Cy 1, depending only on known parameters in (HE), such that for
all z in RY and s in (t,T):

10,05 (t, 1, ) (2)] < C(s — 1) T1H/2, (4.6)
for all T less than Ty1.

Moreover, we have from (4.4) that the derivative of u or du along the measure involves the derivative
of the transition density p or d,p along the measure. We then have to obtain suitable control of these
quantities. Here, these controls are summarized by the following Proposition whose proof is postponed
to Section 6.

Proposition 4.2. Suppose that assumptions (HER) hold, let t in [0, T] and let us denote by u the law
of the solution of (1.5) at time t. Then, for all x in R?, for all (s,y) in (t,T] x R? and all z in R%:
p(p;t,x;8,y) < pe(t, z;8,y) where p. is the Gaussian like kernel defined by:

c — z|?
be(t, x;s,y) = (s _0dr exp <—C|é}8 — t|) > ; (4.7)

where ¢ depends on known parameters in (HE) only. Moreover, there exist two positive constants Cy o
and C} 5, depending only on known parameters in (HE), such that for all x in Re, for all (s,y) in
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(t,T] x R? and all z in R?

2 .
Oup(pit, w3 5,9)(2) < Caz Y (s =020 o (it 5)(2)e(ts 25 5,9), (4.8)
=1
2 oz
0uup(pist, w55,y)(2) < Cha Y (s =) P70, 1y (nit, 5)(2)Pe(t, 75 5,y), (4.9)
i=1

where we used the abusive notation

Buv (st 5)(2) = i {(r =) [0uvr(t, 1, 1) (2)]}-

We have now all the ingredients to complete the proof. Thanks to estimates (4.6) on 9,v and (4.8)
on d,p we deduce that we can invert the differentiation and integration operators when differentiating
the right hand side of (4.4) w.r.t. the measure. Hence, the derivative of u in the measure direction
writes, at any point z of R%:

T
Ouult,z, p)(z) = /t Rdasl;(s,y,m,[Xﬁ’“]>)5u<901,[X?”D(Z)p(u;t,w;s,y)dyds

T
+ /t /]Rd b(s,y, (o1, [(XEMNOup(ps t, w3 5, y) (2)dyds, (4.10)

and satisfies, thanks to estimates (4.8) and (4.6)

Bty 2, 1)(2)|
T ~

<c / / 1958 1o (5 — ) 2p(us , 2 5, y)dlyds
t R4
T ~ 2 .

[ Wbl 3o = 0 (i)l )y,
t i=1

Therefore we can deduce from (4.6) the there exist a positive constant C’ and a positive number 4,
depending only on known parameters in (HE), such that:

Dt m)(2) < C'T.
Now, we have:

T
Opu(t, x, p1) =/ /db(s,y, (p1, [X0M)))0up (5 t, 5 5, y)dyds. (4.11)
t R

Hence, we can differentiate the mapping 0,u along the measure and by using the same arguments
as above, with estimate (4.9) on 0,,0,p instead of (4.8), we obtain that

‘8M(8Iu(t7 z, /L))(Z)’ S CUT&/?

for some positive constant C” and positive number §’, depending only on known parameters in (HE).
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Finally, the estimates on d,u and 0?u can be obtained by classical arguments, when viewing the
argument p as a parameter. See e.g. |[Fri64]. This concludes the proof of Theorem 2.1.

5 Differentiation and estimation of v: proof of Proposition 4.1

With the notations defined in the previous section, we have that for all s in (¢, T},

vs(t,p, @) = /Rd o(y) Adp(u;t,x;s,y)du(w)dy
/Rd o(y) P(t, p, 15 5,y)dy,

where the function P is the function

P:(t<s,\v,y) €0,T]* x Pa(RY) x Po(RY) x RY = P(t, (A, v);s,y) = / p(\st, a5 s,y)dv().
Rd

With this notation and by using the fact that p is a density we have:

Ouunltnd) = 0, [ 0P s a)dy

— [& . ¢(y)P(t,)\,,u;s,y)dy] + [&/}Rd qzb(y)P(t,u,V;s,y)dy}

)\:N v=u

_ [aA ¢<y>P<t,A,u;s,y>dy] + / (6(y) — SO P, 1,5 9]yl
R4 R4

A=p

whatever € in R%. Since by Fubini’s Theorem we have

\ [ oW Pt A s, y)dy = GA/ / (At x5 s, y)dp(r)dy
R4 Rd JRY
+n /[R L 6@t as s, y)ap(z)ay
:aA// (Xt 55, y)dpa(z)dy
20, [ oto) / p(Xit, 2 5, y)dydu(a)
- aA/Rd/Rd YNt 73 5, ) du(x)dy,
and since by definition
O P(t, p,v;8,9)() = 0up(pit,+5,9),

we deduce that for all £ in R?, the derivative Oyv taking at any point z in R? writes
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Ounltnd)) = [ [ (0(0) = 0le)plistais. ) (@)duta)dy

+ [ (6) = o€ Bplpst, 5,3 (5.1)

So that for any given z in R?, by choosing & = z we get

Ot d)) = [ (0) = o)l ) ey

+ [ (600) = )0up st 555,

Thanks to the estimates on the transition density p and its derivatives in the measure direction from
Proposition 4.2, Fubini’s Theorem, regularity assumed on ¢ and by using the Gaussian decay of p. 2
we obtain the following bound:

Bt . 0) ()] < C{Z< 0T yalist ) [ [ = el s o)y

i=1

+ /d ly — 2|%(s — )"/ %pe(t, z; S,y)dy}
R

2
< ¢ { S (s - )G (it s)(2) + (s - t)<—1+a>/2}, (5.2)

which holds true for any a-Hoélder function ¢. Then, by choosing ¢ = ¢1 (and so @ = ay), by
multiplying both sides by (s — t)(l_o‘l)/ 2 we deduce from a circular argument that there exists a
positive time 7’ depending only on known parameters in (HE), such that for all T less than 7"

—on /22 .
(s — )12 |90 (t, 1) (2)] < C//{(s—t) 2/23“11(_1_“12)/2(#,t,s)(z) +1}. (5.3)

By plugging this estimate in (5.2) and by iterating this argument (choosing ¢ = ¢y so that o = ay,
then multiplying both sides by t1=22/2) and using a circular argument) we obtain that there exists a
positive time 7", depending only on known parameters in (HE), such that for all T less than 7"

(s = )12 9,0t p, ) (2)] < C". (5.4)

Again, by plugging this estimate in (5.3) and then using the resulting estimate together with (5.4) in
(5.2), we finally deduce that there exists a positive time 7, depending only on known parameters in

(HE), such that for all T" less than 7
(s =) =2 19,us(t, 1, 9)(2)| < C”,

which concludes the proof.

2i.e. the inequality: Vn >0, Vg >0, 3C > 0s.t. Yo > 0, g%~ < C.
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6 Estimation of the transition density p

This section is dedicated to the proof of Proposition 4.2 and so, to the study of the transition
density p of the flow (4.2). Under (HER) it is clear that for all initial data (¢, ) in [0, 7] x Po(R?),
equation (1.5) admits a unique solution X®#. Thus, we can suppose that the family of probability
measures [X"H] acts as a time dependent parameter in (4.2), so that the unique solution of (4.2) has a
classical transition density p parametrized by the family of probability measures [X*#]. Once the law
dependence is fixed, we can now use a classical parametrix expansion of McKean-Singer type [MS67]
for linear processes in order to represent the transition density p.

The parametrix expansion of Mckean and Singer is based on the following observation: in small
time, the transition density of a (smooth enough) process should be closed enough to the transition
density of the associated frozen process (i.e. whose coefficients are constants and fixed at the (final)
value of the process). Hence, the transition density of interest can be expanded in terms of the frozen
transition density. Since the frozen transition density usually enjoys well known properties, e.g. it has
an explicit form or can be estimated by explicit (and nice) functions, this expansion allows to estimate
the original transition density. As a consequence, this method requires a good knowledge of the frozen
transition density and on the associated frozen process.

Thus, this section is organized as follows: we first introduce in subsection 6.1 the frozen process
and its associated transition density and give its explicit expression. Then, we give the estimates on
the frozen transition density and its derivative. In subsection 6.2 we show how the transition density
of (4.2) can be expanded in terms of the transition density of the frozen process. Hence, we obtain
an explicit expression of the transition density p of (4.2) which can be estimated. These estimations
are done in subsection 6.3 and lead to proof of Proposition 4.2. Finally, we suppose throughout this
section that T' < 1.

6.1 The frozen system
Let (t, ) in [0, T] x Po(R%), for any point ¢ in R, we define the frozen flow as the solution of:

‘X’V—s/vylvgv[Xt’u} — y/ _|_/
S

S S

b(r. €, (o1, [XE]))dr + / o(r.€, (g2, [XPM])dB,, (6.1)

/ S/

for all (s',4') in [t,T] x R%. Under (HER), it is clear that this flow exists and is unique, moreover, it
has a transition density p defined for all (s,y) in [t,T] x R? by:
2)

(a5, ,(t, )] Py -y m$, (t, 1))

1 - 1
7 g o — 3 1/2 4
p (t7u7s Y 78,2/) - (27T)d/2 [det[as/7s(tvﬂ)]] €Xp ( 2

(6.2)

where we adopted the same convention of notations for p as for p and where
() = [ 60 (o, X)) (63)
o) = [ alr€ foa X)) (6.4)

The frozen transition density (6.2) admits Gaussian type bounds, namely, we prove in Appendix A the
following result.
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Proposition 6.1. Suppose that hypothethis (HER) holds. Let t in [0, T] and let p denotes the law of
the process (1.5) at time t. Then:

e there erists a positive constant Cg.1, depending only on known parameters in (HE), such that
Vs <s' € [0,T], Vy,y' € RY, VEE€ R, §°(t,155",y's5,9) < Coape(s'sy's5,), (6.5)

where p. is the Gaussian like kernel defined by (4.7);
e there exist two positive constants Cg1 and C§ 1, depending on known parameters in (HE) only, such
that for all s in (t,T), for all € in R? and all x,y in R%:

\a“p (3 t, 258, 9)( < C’Glz (al_l 129 v v( )/z(u;t,s/)(z)ﬁc(t,x;S,y), (6.6)

0, Do (s t, 38, 9)( | < Cﬁlz ) /2190 U( 12t s)(2)Pe(t s, y),  (6.7)

for all z in R%;
o for all s < s in (t,T)?, for all i,y in R%:

|0u5°(t, 135,58, 9)(2)] < CZ ) TV2B, 00, 1) it ) (2)Be(s' 45 5,9),

10,0y 5 (8, 18" 45 5,9) (2)] < 1/22 YT 2G 0 (st ) (2)Pe(sy'55,1),
2

(0,025 (L, 158,93 5,9)(2)] < C"(s = )73 (5" = O @TV2B00, o (it ) (2)Pels 05 5,1),
i=1

for all z in R?.

Finally, we have that the generator of the frozen flow (6.1) is given by

L= b(s' €, o1, X5y + 5 ﬂ a(s', €, (92, [X51))02 | . (6.8)

Above, the subscript (s’,y’) means that the coefficients of the operator are evaluated at time s’ and
that the differentiation operator acts on the space variable y/'.

6.2 The parametrix expansion

We now give the parametrix representation of the transition density p of (4.2). Proof of such a result
is classical, we nevertheless wrote it since it allows to understand the crucial estimates, which will be
useful in the sequel.

Proposition 6.2. There exists a smoothing kernel H : [0,T] x P2(R?) x [0,T] x R? x [0,T] x R? — R
given by

’
s7y

H(t,p; 8,y 8,y) = <f:y’t’“ - U’“) Bt sy s, y), (6.9)
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where we recall that LY is the generator of (4.2), such that the transition density p of the flow X
defined by (4.2) writes:

p(t s’y s,y) = Yt s s,y 5,y) +Z/ / H%(t, s r,us s,9)pY (¢, 158", y/s row)dudr,  (6.10)
where H®* is recursively defined by:
S
HEM Yt 38y 5,y) =/ / HEM, psryus s,y) H (s 8'y's ) dudr, (6.11)
s’ JRd
and H*® = Id.

Proof. Let (s,y) belong to [0, T] x R, the transition density $¥(t, u; -, -; 5, y) satisfies the Fokker-Planck
equation:
{ Oup¥ (t, 115 8,1/ s 5,y) + LU (8, s 8,y 5,9) =0, (s,9/) € [0,5) x RY,
PY(t w5 s,y'ss,y) = oy(y ),
which can be rewritten as

{ Dy (ts 138", Y5 5,y) + LGBV (t 8y 5 5,y) = (L9 = LV0) 0 ¥ (t s 8,5 8,9), - (5,9) € [0,8) x R

py(t,u,s,y,s,y) :5y( )

Note that p(t, u;-,; s,y) is a fundamental solution of this PDE. Therefore p¥(t, u; -, ; s,y) writes, for
all (s',y') € [0,s] x R%:

S
Pt s’y s, y) = p(t, s s y) + / (L= LY 5 (8 s s, y)p(t s 8T o5 w)dudre
s’ JR
Hence, by iterating N times this procedure, we obtain that

p(t s s'yss,y) = Pt ws s,y +Z/ JHEN i s s, )P "t 8,y w)dudr

+/ / HENTUt, pyr,uy s, y)p(t, s s, y'sr,u)dudr. (6.12)
s’ JR4

In order to obtain the parametrix expansion of p, depending only on known quantities (i.e. on the
smoothing kernel H defined by (6.9) and on the transition density of the frozen process p) the idea
consists in letting N tend to infinity. To this aim, we need a “good” estimate on the approximation
error. These controls are the estimate (6.5) in Proposition 6.1 and the following Lemma.

Lemma 6.3. Under assumption (HER) the following assertion holds: there exists a positive constant
CP3 given by:
k—1
02.3 = Cg.s H B(Yar/2,7a/2), (6.13)
r=1
where Cg.3 is a positive constant depending only on known parameters in (HE), B denotes the béta-
function and with the convention H(l) =1, such that for all 8' < s in [t,T)? and v,y in R%:

[H®¥(t, 138",y 8,y)] < CE3(s — 8V 27 1p (s, ¢ 5, y).
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On the one hand, the first term in the right hand side of (6.12) is controlled by a convolution of
two Gaussian functions which is still Gaussian and it is clear from the asymptotic properties of the
beta-function (that are recalled in Appendix B) that the series converges. On the other hand, the
N*" convolution of the kernel H tends uniformly to 0 as N tends to infinity (recall that T is small)
and since p is a density, we deduce that the second term in the right hand side of (6.12) tends to 0.
Therefore, the density p writes:

p(pt,x;s,y) = pY(ust,z;s,y) (6.14)
+Z/ / HE*(t, 8’y 5, 9)pY (it 238,y )dy/ds’.
k>1
U

Proof of Lemma 6.3. By using classical parametrix arguments (see Chapter 1 of [Fri64|) and by the
definition (6.9) of H, we deduce that there exist two positive constants C, , and ¢ depending only on
known parameters in (HE) such that for all s’ < s € [t,T]? and 3,y € R%:

H (13 5',335,9)| < Cogls = )27 el 4/ 5,). (6.15)
Suppose now as an induction hypothesis that for all s’ < s € [t,T)? and 3/ € R%:

|H*(t, 1158,y 5,y)| < O3 (s — 8K/ 2715 (s, 4/ s s, ), (6.16)

where CP3 is defined by (6.13). Recall that for all integer k, H ®k+1 g recursively defined by

S
HO Nt 18,458, y) =/ HE*(t, pyryus s,y)H (¢t w38,y ry w)dudr. (6.17)
s’ JRA

Hence, by plugging (6.15) and (6.16) in (6.17) and using the Gaussian convolution we obtain that:

S
[HEH (s 8,y55,9)] < 02'306_3/ (5 =)t e — o) 27 drpe(s o5 5, y),

S/

and by the change of variable r = (s — s')r’ + s’ we have:
1
|H®k+1(t’ 1 S/, y/; s, y)| < 06.3023(5 . s/)(k+1)“{a/2—1 / (1 _ T,/)’yak/2—1(T/)ya/2—1d,r,/ﬁc(s/’ y/; s, y)
0

= Cp3083(s — &) T2 8(y, K /2,7, /2)Pe (5, 5 5, 9)
= Cf3 (s — &) FTD/2715 (6 o 5,).

6.3 Differentiation and estimation of the density p along the measure

We are now ready to prove Proposition 4.2. We have that

p(ust,@;s,y) = pY(pst, @38,y +Z/ H(t, 8y 5,9)pY (st 238,y )dy/ds’
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so that the derivative of p w.r.t. u writes, at any point z in R%:

Oup(uit, s s,y)(z) = Oup?(pst, x5 s,y)(2) (6.18)

+00 s
+0u [ Y HE(t, 138", y'ss,9)pY (s t, 28, y)dy'ds” | (2).
=17t R4

Then, in order to invert the integration and differentiation operators in the right hand side of the
above equation, we have to show that for all z in RY,

(s, 9) = OHE w8y 5,9) ()Y (w3t 738, 9)
FHOR (158,45 5,9) 0,0 (s t, 238, 9) (2), (6.19)

is suitably bounded. More precisely, we have to obtain a Gaussian control on the derivative of the kth
iteration of the smoothing kernel 0, H ®F and on Oup so that the parametrix expansion still holds, in
the same spirit of the proof of Proposition 6.2. These controls are given by the estimates on the frozen
transition density in Proposition 6.1 and the following Lemma.

Lemma 6.4. Let t in [0,T] and let p be the law of the process (1.5) at time t. For all positive integer

k, there exists a positive constant C%4, depending only on known parameter in (HE) and recursively
defined by:

66'4 = (06—316’ + 066—4 )5((1{7 - 1)7&/27/70,/2)7
for k> 2 and C’G 4= C and where 5, = v, A v, such that

aMH®k(t7 ,u'v 3,7 yla 87 y)(Z)

2
< CRpA(s = s)Me/2 12 6=V, U(a 12kt s)(2)pe(s, s s, m),
=1
for all s' < se (t, T2, y, v in R and z in RZ.
From Lemma 6.4 and estimate (6.5) in Proposition 6.1 we have that for all k:
OLHE (b, 38",y 5,9) (2)Y (st 3, y))
< CPtCoa(s — &)/ IZ DOTI2G00 st ) (@belt w55, o )pe(s's o5 5,9),
and from estimate (6.6) of Proposition 6.1 and Lemma 6.3 we have that for all &
H(t, 5835, 9)0u0" (it 238,y ) (2)

< Cp3Csa(s — /)Ml IZ BHOV2G00 (it ) (@)pe(t 28,4 )pels o 5,y).

We can hence invert the differentiation and integration operators in the second term in the right
hand side of (6.18) and using property of Gaussian convolution we get that there exists a positive
constant C, depending on known parameters in (HE) only, such that
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Oup(pit, 3 8,y)(2)

< C(s —t)lb/2 <06.1 - Z {(02306,1 + C%1Cs 1) B(kYa/2, (a; +1)/2) (s — t)k%/z}>
k>1

2 .
Xﬁc(t LS, y) Z mzai_l)/g(ﬂ; t7 S)(Z),
i=1

so that estimate (4.8) of Proposition 4.2 follows from the estimates on the parametrix constants 62'4
and on the beta-function given in Appendix B.

For the second assertion it is well seen from usual parametrix technique that
S
Ozp(p3t, 235, y) = 0up? (15 t, 25 8,y) + Z/ / HE(t, 138" 45 5,9)0upY (ust, x5 8,y )dy'ds’,
R4

so that the derivative of 0,p w.r.t.  writes, at any point z in R%:

0u(Oup) (s t,z38,9)(2) = 0u(0:0Y) (15 t, 235, y)(2)

400 g
o (Z/t /]Rd HEMt, 138"y 5,9)(0aD") (1 t,w;S’,y/)dy’d8/> (2).
k=1

We can use the same arguments as above with estimates (6.7) instead of (6.6) in Proposition 6.1 and
we obtain that

0u0xp(pst, 58, )(2)

< O(s — )/ (Oé.1 + 3 {(CF3Ch + CFCon) B2, 0+ 1)/2)(s >’W2})
k>1

[\

X Pe( al—l )/2 (13t,8)(2),

from which we deduce estimate (4.9) of Proposition 4.2.

A Proofs of Lemmas 6.4 and 6.1

In order to avoid heavy notations, the proofs are done in the real case (d = 1). We also recall that
T <1

Proof of Lemma 6.4. Recall that by definition
H(t7 3 3/7 y/7 S, y) = (b(8/7 Y, Vs (t7 Ky (101)) - b(8/7 y/7 V! (t7 K, (101))) 8wﬁ(lu’ﬂ 8/7 y/ﬂ S, y)
1
+§ [(G(S,, Y, Vgt (t7 , QOQ)) - CL(S, y,7 US’(tu 12 (102)))821)(”7 S y S y)]

so that, for any z in R%:
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OuH (t, s 8",y 5,9)(2)
= (b(s',y, v (t, 1, 01)) — b(s', ¥ s v (¢, 11, 01)))0u0up (113 8" Y5 5, ) (2)
+(93b(s", y, ver (t, 11, 01)) — O3b(s, ', vgr (¢, 11, 1)) O (¢, 11, 01) (2) 0 (s 8, ' 5, 9)
1 )
5 (als', g, ve (8 1, 02)) = als, o/ v (8 ©2))) 0,025 (15 8, Y5 5, y) (=)
1
5(8361(8 Y, vs(t, 1, 02)) — 3za(s',y' s vgr (t, 1, 02)))Ouvs (t, 1y 02) (2)025(11; 8", 45 8, ).

Hence

|0, H(t, 1158,y 5,9)(2)]

2
< C{HbHoo 2( t)(al V28,0 U( )/g(ﬂvt S )( )(s — 3/)_1/2
bl (s — V2T (st ) ()5 — )2
2 .
Hlallsaly =y Y (" =) 2000, ) (st s)(2)(s — )7
=1

1950l g [y — /[ (8" = 2B (st ) )(s—s'>-1}pc<s',y';s,y>,

where 7, = v, A 7. Therefore, by using the Gaussian decay of p:

|0, H (t, 1158, 95 5,9) (2)]

2 2 ,
< C{HbHoo S - @Y Tt ) () (s — )
i=1 i=1
Ry e— _
H103blloo (5" = )V 2,00, ) (it s')(2)(s = )72
2
Hlalls, 065 = 9O et () (s — )2

i=1

H1Bsally (' = )2V 2,00 (st s')(2)(s — 8) “%/2} (5,95 5,1)-

So, there exists a positive constant C' depending on known parameters in (HE) such that:
!0 H(t, 8,95 5,9)(2))|

(al V28,0 U( )/Q(Mvt s')(2)(s — )«/a/z 1pc(8 Y s,y).

||Mm

21

(A1)
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Assume now as an induction hypothesis that for all (s',y) in (¢;s) x R%:

OuH®  (t, 11,8,y 5,9)( ‘ < C64Z t)(«=1/25 % v( 12 (s s §)(2)(s — )2 (' s s, y),
where
Cit = (CR4C + CCRA)B((k = 1)7a/2:7a/2)-
We then have
OuH (b, 158,45 5,9)(2) (A2)
= //8 /]Rd GMH®k(t,,u;r,u;s,y)(z)H(t,u; s’ 'y w)dudr

S
+/ HE%(t ps v, us s, y)0, H (15 ',y m,u) (2)dudr.
s’ JRA

We can bound the first term in the right hand side by using the induction hypothesis above, the
estimation (6.17) on H and the property of the Gaussian convolution:

LHEE @ w8, y) (2)H (8, w387,y ryu)dudr

s 2
< 06,302'4 // Z(s' — O‘l ) v( )/2(,u7t r)(2)(s — 7‘)]‘”‘1/2_1(7" — 8’)7“/2_1d7‘ﬁc(8',y'; $,Y)

< CosCi 42 DOTV2B00 (it 8 ) (2hel(s Y 5 5,y) / (5 — r)FIe/ 21 — yTa/ 21y,

=1

By the change of variable r = (s — s’)r’ + ', one can show that

/ (s — r)F1e/27 0 (r — Yo/ 27 dp < (s — o) KEDT/2713(7, /2,7, /2),

!

so that

| 0t s, ) () H s w)duds (A3)
s’ JRA

2 ) B
< CosCPt S vl 1y o (it ) ()Pl s 5,9)(s — ) EFVT 27 B(k5, /2,7,./2).

i=1
Now, we bound the second term in the right hand side of (A.2). We have from Lemma 6.3:
[, s s, | < CE(s = P92 ),

where
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k—1
Cp? = Cg H B(r¥a/2,7a/2)-
=1

So that, thanks to estimate (A.1):

/ HO®(t, sy us 8,9) 0 H (8 ;8" o'y v, u) (2) dudr
s/ ]Rd

(A4)

< Z BT (st )z 0630/ PYe/21( _ fye/2-1y.

Hence, by plugging (A.3) and (A.4) in (A.2) we get:

‘%Hm“(t, 18,45 s, y)(z)‘

< (5 — o) K+ 12 TG a1, 8)(2) (CFIC + CCEYB(ka/2.7/2).

and the induction is true since:

CPd = (CF3C + CCEN B(kAa/2,Va)2)-

Proof of Lemma 6.1. We begin with the following Claim.

Claim A.1. The following estimates hold:

o [0S (1, 1)(2)] < <s—t> (/2|03 | D0y o312 5)(2),

o =2
° |8uat78 (t, 1)( ‘ ( 2+1) /2"83CLHOO nl— ag)/g(ﬂat 5)(2),

and for all 8" € (¢,T]:

- 75!
o |8um€, (t,w)(2)] < (s —s')(s — 1)(@1=1/2|95b] | 50 ;/U(1 anyy2 (3t s)(2),
o [0S, (1 1) (2)] < (5 — )5 — V2 Dl b Tty o o151 5)(2)

We also recall the classical estimate coming from the uniform ellipticity of a: there exists A > 0
such that, for all positive ~:

1

AT <A V(s — ). (A.5)
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The derivative of p evaluated at any point z in R is then given by:
0up* (t, 138,95 5,9) (2)
10k () (1(0ual (6 m)(2) (y =y —mb () DS (8 m)(2)
“\ "5 v T3 T e
[ s’ s( 'u’)] [as/,s(tnu)] [as’,s( ’M)]

X<y Y —m (¢ ))) 1 1 o <_1
oS ()] ) ) VR [ ] P\ 2

Now, by using the Gaussian decay of p, and estimates of Claim A.1, we obtain that, when s’ = ¢:

3

[ ()] Py —y —mb (1)

)

|0,0°(t, 1138, 5,9) (2)|
- C< “H1osallec $UD iy a5 9)(2) (s — )2

relt,s

+A71[05b] |0 sup a“v(l oy 2 (it 8) (2 )(s_t)(a1—1)/2>

relt,s]

1 1 1 _ 2
o [af (t M)]1/2 exp <—c§ [ais(t,,u)} 12 (y - y' — mis(t,,u)) ) ,
t,s\"»

for some positive constant C' and ¢, with ¢ strictly less than 1. We now compute the space derivatives:
for all s’ < s in [t, 7]

0o (t, 13 8,15 5, 9)
-y -mi6w) 1 1
= SEE Xp | 765

[ (] VR o ()]

which gives

10205 (t, 1138,y 8,9)| < C(s — t)71/?

Next

so that
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2o (t, 138, y's 5,y)

1 1
<COA+ANGs-8)'——— _exp|-=
21 [af, (¢, )] /* 2

i

1

[ ()] Py —y —mb

Concerning the cross derivatives, we have, at any point z of R:
0u0up* (t, 155", y'5 5,9) (2)

mé

s/ s(t )( ))

:{‘@[

n
ag (t, )]

1

S

V2 [d, (¢

Thus we have: when s’ = ¢,

3 (0uay (8, 1)(2)) (y — o — miy (8, 1)
2

)
[ o)

S(tw)

W () (y = —mi (X)) 9uml, [ (t,1)(2)

10,,0:0° (t, 5 1,95 5,9) (2)]

a1 — 6% 1
< <<(S _ t)( 1=1)/2 (s —1) 1)||83b||w8“v(1_al)/2(u;t, s)(2)

+<(S . t)a2/2—1 + 2(8 )(az 1) /2>H(93aHooa U(l O!g)/2<lu7t S)( ))

CA?

e
[at,s

and when s’ > t,

([xtn)))?

1
ex —C—
S

10,,0:0° (t, 1158, 95 5,9)(2))

< <((3/ — ) @=D/2 4 (¢ — )l 1/2)!\331)\100 u’”(1 o) 2Bty 8)(2)

[

a§ (X)) TP (y — o — m (X))

[a St

Py —y —mb ()

ﬁ)

o — (e} a2
+<(S/_t)( 2 1)/2+2(3’_ )( 2—1) /2)"83aHOO lﬂ)(ag 1)/2(u,t 8)( ))

><C(s—

[a

We conclude with:

3

s'.s

S/)—(1/2)
(t, )]

1
ex —C—
P75

[

aﬁgs(t, )] /2 (y—vo — mﬁf,s(t, 1))

*2>'

[, (6]

)

)

&)

25
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002p° (t, 138,55, y)(2)
- {(23um§/,s([Xt’“])( Dy —y —mS (X)) 2(y—y —mS (1) Oy (8, 1)(2)

(a5, ,(t, )] [0t )]

+aua§,,s<t,u><z>> oy )’ 1  Oua (8 ) (2)
[a (1)) [af (] aS ] )\ 2 ]

1

X — exp <——
1/2

2 [aﬁl,s(t,u)] / 2

Which gives, for all s’ > t,

0,025 (s, 33 5,) (2)

< <||agb||oo<s—s'>-1/2< — @Gt s)(2)

Hl0salloe (5 = )7 (5 = ) 72) (5 = V2000 (st 8)(z >>

Proof of Claim A.1. From chain rule we have, for all £ in R and for all s’ < s € [¢,T]:
o, (tme) = (0, [ bt o [Xt“>]>>dr>< )
= [ aublr o (XD 1 o) ()
for all z in R and where we recall that v is defined by (4.5). So,

|0, m (t,w)(2)] < |93blloe sup {(r—1) YA=0/219 0, (8, 1, 1) ( |}/ ty(r=D/2qy,

relt,s]

1 1 T ¢ —1/2 / 3
. / t, - - / t,
V] o (ol ==k
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Hence, for all z in R

|8Mm§,7s(t,u)(z)| < ||93b]|oo Sl[lp]{ (r—t)— /2]8 vp(t, 1) (2)]} (s ylerth)/2,
relt,s

when s’ =t and

|0,m% (£ )(2)] < [183bllo sup {(r — )37/ 21,0, (t, 1y 1) (2)] } (8" — 8)(s" — )71/,
’ relt,s]

when s’ > t. Next we have,

0ualy (t, p)(2) = <8M /lsa(T,f,(cpz,[XfJ“)D)dr)(z)
B / Bza(r, &, (pa, [XPM)))Bvr (t, 1, 2)(2)dr,

for all z in R. Therefore

|0ua (1)) < lI9sallee sup {(7"—t)(l_”)plawr(t,u,902)(Z)|}/t (r — )= D2dr,

relt,s]
So
u ()] S bl s (= D0 2 ) () o O
relt,s
when s’ = ¢ and
10,05 (1) (2)| < 1185allee sup {(r — )70/ 21,0, (t, 1y 02) (2)] } (8" — 8) (8" — t)(@27 /2,

’ relt,s]

when s’ > t. O

B Asymptotic properties of the parametrix constants

Claim B.1. There exists a strictly finite and strictly positive integer K (v,) such that for all k > K(v,):

4k

where O(K (7)) = 4750 (K () TLE0 ™ B(la/2.70/2).
Proof. Let K(v,) be equal to [2/7,], so that for all k > K (v,)

kv./2—12>0,
and recall that

1
B(vak/2,74/2) = / (1-— s)k7“/237“/2_1ds.
0

For all positive e strictly less than 1, we have, for all £ > K(v,):
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1 1
/0 (1 — s)rak/271g%/271qg = /0 (1 — s)a/271grak/2=14, (B.1)
1—e 1
= / (1— 3)’7a/2—13’7ak/2—1d3 + / (1— S)va/2—1svak/2—1du
0 1—e

1 1—e 1

< =5 / §rak/2=1qg 4 / (1—s)7/2"1ds
€ la 0 1
1 2 2

S — ’Ya/2'

el=7a/2 k’Ya ’Yae

—€

<
So that, by letting e = 1/k we have

1
ak/2-1 —1)2 ot
/0 (1—3) sTHAds < N ENP

which gives the desired result. O

Claim B.2. There exists a strictly finite and strictly positive integer K := K (~,,7,) such that for all
k> K:

~ ~ ~ - k k+1
City = (CEC + CCEY3(070/2.70/2) < Clrunl) (1= ) el

SRR FE (kL2

for some positive real k > 4Cq.3 and some positive constant CN'(%,%’I).

Proof. Let K(7,) be equal to [2/7,], so that for all k > K (7,)

kq./2 —1 > 0.
Then, let k > K := K(7,) V K(7,). We know from the proof of Claim B.1 that:
4
~ v < —
B(Vak/2,74/2) < ’7@/{7‘1/2 .
Hence, from definition of C’g?’ we have that:
- o ~ 4
6.4 6.4
Ok-‘rl é C(K(’ya))fyg(k'):m/z Ck C:}’ak:}/a/z’
so that .
o, o R et o
(v 1per = OO SR D T e 5 G 17
Let us define
o4 C(K(7q))CKF 4C
Ay =t My, = Y Dyyr = —.
F R T AR 2T T S (R 1))

Hence, we have that
Ap1 < Miyq + Ag Dy
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Since k is such that k > 4Cg 3 we obtain:

4Cs3  C(K(1a))CK"' _ K"CO(K(7a))

A (e L e e T N I (CR DI,
Therefore, by induction
k+1 4C,
Appn < (k=)Mo + [ _.7-6'?2,
. Ya e
i=K+1
which implies that
Cr1 C(K (74))CrF (40)++!
Tk (k- K . _ K),
G 1o = 5 g oy )
where C(K) = (4C)~K~5KK!. Then,
B B P (4C)k+1
Cry1 < (k— K)C(K(’Ya))CW + C(K)W'
U
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