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, and a special Itô formula for flows of probability measures, we derive the (dynamic programming) Bellman equation for mean-field stochastic control problem, and prove a verification theorem in our McKean-Vlasov framework. We give explicit solutions to the Bellman equation for the linear quadratic mean-field control problem, with applications to the mean-variance portfolio selection and a systemic risk model. We also consider a notion of lifted viscosity solutions for the Bellman equation, and show the viscosity property and uniqueness of the value function to the McKean-Vlasov control problem. Finally, we consider the case of McKean-Vlasov control problem with open-loop controls and discuss the associated dynamic programming equation that we compare with the case of closed-loop controls.

Introduction

The problem studied in this paper concerns the optimal control of mean-field stochastic differential equations (SDEs), also known as McKean-Vlasov equations. This topic is closely related to the mean-field game (MFG) problem as originally formulated by Lasry and Lions in [START_REF] Lasry | Mean-field games[END_REF] and simultaneously by Huang, Caines and Malhamé in [START_REF] Huang | Large population stochastic dynamic games: closedloop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF]. It aims at describing equilibrium states of large population of symmetric players (particles) with mutual interactions of mean-field type, and we refer to [START_REF] Carmona | Control of McKean-Vlasov dynamics versus mean field games[END_REF] for a discussion pointing out the subtle differences between the notions of Nash equilibrium in MFG and Pareto optimality in the optimal control of McKean-Vlasov dynamics.

While the analysis of McKean-Vlasov SDEs has a long history with the pioneering works by Kac [START_REF] Kac | Foundations of kinetic theory[END_REF] and H. McKean [START_REF] Mckean | Propagation of chaos for a class of nonlinear parabolic equations[END_REF], and later on with papers in the general framework of propagation of chaos, see e.g. [START_REF] Sznitman | Topics in propagation of chaos[END_REF], [START_REF] Jourdain | Nonlinear SDEs driven by Lévy processes and related PDEs[END_REF], the optimal control of McKean-Vlasov dynamics is a rather new problem, which attracts an increasing interest since the emergence of the MFG theory and its numerous applications in several areas outside physics, like economics and finance, biology, social interactions, networks. Actually, it has been first studied in [START_REF] Ahmed | Controlled McKean-Vlasov equation[END_REF] by functional analysis method with a value function expressed in terms of the Nisio semigroup of operators. More recently, several papers have adopted the stochastic maximum (also called Pontryagin) principle for characterizing solutions to the controlled McKean-Vlasov systems in terms of an adjoint backward stochastic differential equation (BSDE) coupled with a forward SDE: see [START_REF] Andersson | A maximum principle for SDEs of mean-field type[END_REF], [START_REF] Buckdahn | A general maximum principle for SDEs of mean-field type[END_REF], [START_REF] Yong | A linear-quadratic optimal control problem for mean-field stochastic differential equations[END_REF] with a state dynamics depending upon moments of the distribution, and [START_REF] Carmona | Forward-backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics[END_REF] for a deep investigation in a more general setting. Alternatively, and although the dynamics of mean-field SDEs is non-Markovian, it is tempting to use dynamic programming (DP) method (also called Bellman principle), which is known to be a powerful tool for standard Markovian stochastic control problem, see e.g. [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], [START_REF] Pham | Continuous-time stochastic control and applications with financial applications[END_REF], and does not require any convexity assumption usually imposed in Pontryagin principle. Indeed, meanfield type control problem was tackled by DP in [START_REF] Laurière | Dynamic programming for mean-field type control[END_REF] and [START_REF] Bensoussan | The Master equation in mean-field theory[END_REF] for specific McKean-Vlasov SDE and cost functional, typically depending only upon statistics like its mean value or with uncontrolled diffusion coefficient, and especially by assuming the existence at all times of a density for the marginal distribution of the state process. The key idea in both papers [START_REF] Laurière | Dynamic programming for mean-field type control[END_REF] and [START_REF] Bensoussan | The Master equation in mean-field theory[END_REF] is to reformulate the stochastic control problem with feedback strategy as a deterministic control problem involving the density of the marginal distribution, and then to derive a dynamic programming equation in the space of density functions.

Inspired by the works [START_REF] Bensoussan | The Master equation in mean-field theory[END_REF] and [START_REF] Laurière | Dynamic programming for mean-field type control[END_REF], the objective of this paper is to analyze in detail the dynamic programming method for the optimal control of mean-field SDEs where the drift, diffusion coefficients and running costs may depend both upon the joint distribution of the state and of the control. This additional dependence related to the mean-field interaction on control is natural in the context of McKean-Vlasov control problem, but has been few considered in the literature, see however [START_REF] Yong | A linear-quadratic optimal control problem for mean-field stochastic differential equations[END_REF] for a dependence only through the moments of the control. By using closed-loop (also called feedback) controls, we first convert the stochastic optimal control problem into a deterministic control problem where the marginal distribution is the sole controlled state variable, and we prove that dynamic programming holds in its general form. The next step for exploiting the DP is to differentiate functions defined on the space of probability measures. There are various notions of derivatives with respect to measures which have been developed in connection with the theory of optimal transport and using Wasserstein metric on the space of probability measures, see e.g. the monographs [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF], [START_REF] Villani | Optimal transport, old and new[END_REF]. For our purpose, we shall use the notion of differentiability introduced by P.L. Lions in his lectures at the Collège de France [START_REF] Lions | Cours au Collège de France: Théorie des jeux à champ moyens, audio conference[END_REF], see also the helpful redacted notes [START_REF] Cardaliaguet | Notes on mean field games[END_REF]. This notion of derivative is based on the lifting of functions defined on the space of square integrable probability measures into functions defined on the Hilbert space of square integrable random variables distributed according to the "lifted" probability measure. It has been used in [START_REF] Carmona | Forward-backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics[END_REF] for differentiating the Hamiltonian function appearing in stochastic Pontryagin principle for controlled McKean-Vlasov dynamics. As usual in continuous time control problem, we need a dynamic differential calculus for deriving the infinitesimal version of the DP, and shall rely on a special Itô's chain rule for flows of probability measures as recently developed in [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF] and [START_REF] Chassagneux | A probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF], and used in [START_REF] Carmona | The Master equation for large population equilibriums[END_REF] for deriving the so-called Master equation in MFG. We are then able to derive the dynamic programming Bellman equation for mean-field stochastic control problem. This infinite dimensional fully nonlinear partial differential equation (PDE) of second order in the Wassertein space of probability measures extends previous results in the literature [START_REF] Bensoussan | The Master equation in mean-field theory[END_REF], [START_REF] Carmona | The Master equation for large population equilibriums[END_REF], [START_REF] Laurière | Dynamic programming for mean-field type control[END_REF]: it reduces in particular to the Bellman equation in the space of density functions derived by Bensoussan, Frehse and Yam [START_REF] Bensoussan | On the interpretation of the Master equation[END_REF] when the marginal distribution admits a density, and on the other hand, we notice that it differs from the Master equation for McKean-Vlasov control problem obtained by Carmona and Delarue in [START_REF] Carmona | The Master equation for large population equilibriums[END_REF] where the value function is a function of both the state and its marginal distribution, and so with associated PDE in the state space comprising probability measures but also Euclidian vectors. Following the traditional approach for stochastic control problem, we prove a verification theorem for the Bellman equation of the McKean-Vlasov control problem, which reduces to the classical Bellman equation in the case of no mean-field interaction. We apply our verification theorem to the important class of linear quadratic (LQ) McKean-Vlasov control problems, addressed e.g. in [START_REF] Yong | A linear-quadratic optimal control problem for mean-field stochastic differential equations[END_REF] and [START_REF] Bensoussan | Linear-quadratic mean field games[END_REF] by maximum principle and adjoint equations, and that we solve by a different approach where it turns out that derivations in the space of probability measures are quite tractable and lead to explicit classical solutions for the Bellman equation. We illustrate these results with two examples arising from finance: the mean-variance portfolio selection and an inter-bank systemic risk model, and retrieve the results obtained in [START_REF] Li | Continuous-time mean-variance portfolio selection: a stochastic LQ framework[END_REF], [START_REF] Fisher | Continuous time mean-variance portfolio optimization through the mean-field approach[END_REF] and [START_REF] Carmona | Mean field games and systemic risk[END_REF] by different methods.

In general, there are no classical solutions to the Bellman equation, and we thus introduce a notion of viscosity solutions for the Bellman equation in the Wasserstein space of probability measures. There are several definitions of viscosity solutions for Hamilton Jacobi equations of first order in Wasserstein space and more generally in metric spaces, see e.g. [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF], [START_REF] Gangbo | Hamilton-Jacobi equations in the Wasserstein space[END_REF], [START_REF] Feng | A comparison principle for Hamilton-Jacobi equations related to controlled gradient flows in infinite dimensions[END_REF] or [START_REF] Gangbo | Metric viscosity solutions of Hamilton-Jacobi equations depending on local slopes[END_REF]. We adopt the approach in [START_REF] Lions | Cours au Collège de France: Théorie des jeux à champ moyens, audio conference[END_REF], and detailed in [START_REF] Cardaliaguet | Notes on mean field games[END_REF], which consists, after the lifting identification between measures and random variables, in working in the Hilbert space of square integrable random variables instead of working in the Wasserstein space of probability measures, in order to use the various tools developed for viscosity solutions in separable Hilbert spaces, in particular in our context, for second order Hamilton-Jacobi equations, see [START_REF] Lions | Viscosity solutions of fully nonlinear second-order equations and optimal control in infinite dimension. Part I: the case of bounded stochastic evolution[END_REF], [START_REF] Lions | Viscosity solutions of fully nonlinear second-order equations and optimal control in infinite dimension. Part III: Uniqueness of viscosity solutions for general second-order equations[END_REF], and the recent monograph [START_REF] Fabbri | Stochastic optimal control in infinite dimension: dynamic programming and HJB equations[END_REF]. We then prove the viscosity property of the value function and a comparison principle, hence uniqueness result, for our Bellman equation associated to the McKean-Vlasov control problem.

Finally, we consider the more general class of open-loop controls instead of (Lipschitz) closed-loop controls. We derive the corresponding dynamic programming equation, and compare with the Bellman equation arising from McKean-Vlasov control problem with feedback controls.

The rest of the paper is organized as follows. Section 2 describes the McKean-Vlasov control problem and fix the standing assumptions. In Section 3, we state the dynamic programming principle after the reformulation into a deterministic control problem, and derive the Bellman equation together with the proof of the verification theorem. We present in Section 4 the applications to the LQ framework where explicit solutions are provided with two examples arising from financial models. Section 5 deals with viscosity solutions for the Bellman equation, and the last section considers the case of open-loop controls.

McKean-Vlasov control problem

Let us fix some probability space (Ω, F, P) on which is defined a n-dimensional Brownian motion B = (B t ) 0≤t≤T , and denote by F = (F t ) 0≤t≤T its natural filtration, augmented with an independent σ-algebra F 0 ⊂ F. For each random variable X, we denote by P X its probability law (also called distribution) under P (which is deterministic), and by δ X the Dirac measure on X. Given a normed space (E, |.|), we denote by P 2 (E) the set of probability measures µ on E, which are square integrable, i.e. µ 2 2 := E |x| 2 µ(dx) < ∞, and by L 2 (F 0 ; E) (= L 2 (Ω, F 0 , P; E)) the set of square integrable random variables on (Ω, F 0 , P). In the sequel, E will be either R d , the state space, or A, the control space, a subset of R m , or the product space R d × A. We shall assume without loss of generality (see Remark 2.1 below) that F 0 is rich enough to carry E-valued random variables with any arbitrary square integrable distribution, i.e. P 2 (E) = {P ξ , ξ ∈ L 2 (F 0 ; E)}. Remark 2.1 A possible construction of a probability space, which is rich enough to satisfy the above conditions is the following. We consider a Polish space Ω 0 , its Borel σ-algebra F 0 and let P 0 be an atomless probability measure on (Ω 0 , F 0 ). We consider another probability space (Ω 1 , F 1 , P 1 ) supporting a n-dimensional Brownian motion B and denote by

F B = (F B t ) its natural filtration. By defining Ω = Ω 0 × Ω 1 , F = F 0 ∨ F 1 , P = P 0 ⊗ P 1 , and F = (F t ) with F t = F B t ∨ F 0 , 0 ≤ t ≤ T ,
we then obtain that the filtered probability space (Ω, F, F, P) satisfies the required condition in the above framework.
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We also denote by W 2 the 2-Wasserstein distance defined on P 2 (E) by

W 2 (µ, µ ′ ) := inf E×E |x -y| 2 π(dx, dy) 1 2 : π ∈ P 2 (E × E) with marginals µ and µ ′ = inf E|ξ -ξ ′ | 2 1 2 : ξ, ξ ′ ∈ L 2 (F 0 ; E) with P ξ = µ, P ξ ′ = µ ′ .
We consider a controlled stochastic dynamics of McKean-Vlasov type for the process

X α = (X α t ) 0≤t≤T valued in R d : dX α t = b(t, X α t , α t , P (X α t ,α t ) )dt + σ(t, X α t , α t , P (X α t ,α t ) )dB t , X α 0 = X 0 , (2.1) 
where X 0 ∈ L 2 (F 0 , R d ), and the control process α = (α t ) 0≤t≤T is progressively measurable with values in a subset A of R m , assumed for simplicity to contain the zero element. The coefficients b and σ are deterministic measurable functions from [0, T ]×R d ×A×P 2 (R d ×A) into R d and R d×n respectively. Notice here that the drift and diffusion coefficients b, σ of the controlled state process do not depend only on the marginal distribution of the state process X t at time t but more generally on the joint distribution of the state/control (X t , α t ) at time t, which represents an additional mean-field feature with respect to classical McKean-Vlasov equations. We make the following assumption:

(H1) There exists some constant

C b,σ > 0 s.t. for all t ∈ [0, T ], x, x ′ ∈ R d , a, a ′ ∈ A, λ, λ ′ ∈ P 2 (R d × A), |b(t, x, a, λ) -b(t, x ′ , a ′ , λ ′ )| + |σ(t, x, a, λ) -σ(t, x ′ , a ′ , λ ′ )| ≤ C b,σ |x -x ′ | + |a -a ′ | + W 2 (λ, λ ′ ) ,
and

T 0 |b(t, 0, 0, δ (0,0) )| 2 + |σ(t, 0, 0, δ (0,0) )| 2 dt < ∞.
Condition (H1) ensures that for any control process α, which is square integrable, i.e. E[ T 0 |α t | 2 dt] < ∞, there exists a unique solution X α to (2.1), and moreover this solution satisfies (see e.g. [START_REF] Sznitman | Topics in propagation of chaos[END_REF] or [START_REF] Jourdain | Nonlinear SDEs driven by Lévy processes and related PDEs[END_REF]):

E sup 0≤t≤T |X α t | 2 ≤ C 1 + E|X 0 | 2 + E T 0 |α t | 2 dt < ∞. (2.2)
In the sequel of the paper, we stress the dependence of X α on α if needed, but most often, we shall omit this dependence and simply write X = X α when there is no ambiguity.

The cost functional associated to the McKean-Vlasov equation (2.1) is

J(α) := E T 0 f (t, X t , α t , P (X t ,α t ) )dt + g(X T , P X T ) (2.3)
for a square integrable control process α. The running cost function f is a deterministic real-valued function on [0, T ] × R d × A × P 2 (R d × A) and the terminal gain function g is a deterministic real-valued function on R d × P 2 (R d ). We shall assume the following quadratic condition on f , g:

(H2) There exists some constant C f,g > 0 s.t. for all t ∈ [0, T ],

x ∈ R d , a ∈ A, µ ∈ P 2 (R d ), λ ∈ P 2 (R d × A), |f (t, x, a, λ)| + |g(x, µ)| ≤ C f,g 1 + |x| 2 + |a| 2 + µ 2 2 + λ 2 2 .
Under Condition (H2), and from (2.2), we see that J(α) is well-defined and finite for any square integrable control process α. The stochastic control problem of interest in this paper is to minimize the cost functional:

V 0 := inf α∈A J(α), (2.4) 
over a set of admissible controls A to be precised later.

Notations: We denote by x.y the scalar product of two Euclidian vectors x and y, and by M ⊺ the transpose of a matrix or vector M . For any µ ∈ P 2 (E), F Euclidian space, we denote by L 2 µ (F ) the set of measurable functions ϕ : E → F which are square integrable with respect to µ, and we set

< ϕ, µ > := E ϕ(x)µ(dx).
We also denote by L ∞ µ (F ) the set of measurable functions ϕ : E → F which are bounded µ a.e., and ϕ ∞ denotes the essential supremum of ϕ ∈ L ∞ µ (F ).

3 Dynamic programming and Bellman equation

Dynamic programming principle

In this paragraph, we make the standing assumptions (H1)-(H2), and our purpose is to show that dynamic programming principle holds for problem (2.4), which we would like to combine with some Markov property of the controlled state process. However, notice that the McKean-Vlasov type dependence on the dynamics of the state process rules out the standard Markov property of the controlled process (X t ) t . Actually, this Markov property can be restored by considering its probability law (P X t ) t . To be more precise and for the sake of definiteness, we shall restrict ourselves to controls α = (α t ) 0≤t≤T given in closed loop (or feedback) form:

α t = α(t, X t , P X t ), 0 ≤ t ≤ T, (3.1) 
for some deterministic measurable function α(t, x, µ) defined on [0, T ] × R d × P 2 (R d ). We shall discuss in the last section how one deal more generally with open-loop controls. We denote by Lip([0, T ] × R d × P 2 (R d ); A) the set of deterministic measurable functions α on [0, T ] × R d × P 2 (R d ), valued in A, which are Lipschitz in (x, µ), and satisfy a linear growth condition on (x, µ), uniformly on t ∈ [0, T ], i.e. there exists some positive constant

C α s.t. for all t ∈ [0, T ], x, x ′ ∈ R d , µ, µ ′ ∈ P 2 (R d ), |α(t, x, µ) -α(t, x ′ , µ ′ )| ≤ C α |x -x ′ | + W 2 (µ, µ ′ ) , T 0 |α(t, 0, δ 0 )| 2 dt < ∞.
Notice that for any α ∈ Lip([0, T ] × R d × P 2 (R d ); A), and under the Lipschitz condition in (H1), there exists a unique solution to the SDE: dX t = b(t, X t , α(t, X t , P X t ), P (X t , α(t,X t ,P X t )) )dt + σ(t, X t , α(t, X t , P X t ), P (X t , α(t,X t ,P X t )) )dB t ,

starting from some square integrable random variable, and this solution satisfies the square integrability condition (2.2). The set A of so-called admissible controls α is then defined as the set of control processes α of feedback form (3. 

Idα : R d → R d × A x → (x, α(x)).
We observe that the joint distribution P (X t ,α t ) associated to a feedback control α ∈ A is equal to the image by Idα(t, ., P X t ) of the marginal distribution P X t of the controlled state process X, i.e. P (X t ,α t ) = Idα(t, ., P X t ) ⋆ P X t , where ⋆ denotes the standard pushforward of measures: for any α ∈ L(R d ; A), and µ ∈ P 2 (R d ):

(Idα ⋆ µ)(B) = µ Idα -1 (B) , ∀B ∈ B(R d × A).
We consider the dynamic version of (3.2) starting at time t ∈ [0, T ] from ξ ∈ L 2 (F t ; R d ), which is then written as:

X t,ξ s = ξ + s t b(r, X t,ξ r , α(r, X t,ξ r , P X t,ξ r
), Idα(r, ., P X t,ξ r

) ⋆ P X t,ξ r )dr (3.3) 
+ s t σ(r, X t,ξ r , α(r, X t,ξ r , P X t,ξ r
), Idα(r, ., P X t,ξ r

) ⋆ P X t,ξ r
)dB r , t ≤ s ≤ T.

Existence and uniqueness of a solution to (3.3) implies the flow property:

X t,ξ s = X θ,X t,ξ θ s , ∀ 0 ≤ t ≤ θ ≤ s ≤ T, ξ ∈ L 2 (F t ; R d ). (3.4) 
Moreover, as pointed out in Remark 3.1 in [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF] (see also the remark following (2.3) in [START_REF] Chassagneux | A probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF]), the solution to (3.3) is also unique in law from which it follows that the law of X t,ξ depends on ξ only through its law P ξ . Therefore, we can define

P t,µ s := P X t,ξ s , for 0 ≤ t ≤ s ≤ T, µ = P ξ ∈ P 2 (R d ), (3.5) 
As a consequence of the flow property (3.4), and recalling that

P 2 (R d ) = {P ξ , ξ ∈ L 2 (F 0 ; R d )},
it is clear that we also get the flow property for the marginal distribution process:

P t,µ s = P θ,P t,µ θ s , ∀ 0 ≤ t ≤ θ ≤ s ≤ T, µ ∈ P 2 (R d ). (3.6)
Recall that the process X t,ξ , hence also the law process P t,µ depends on the feedback control α ∈ A, and if needed, we shall stress the dependence on α by writing P t,µ,α . We next show that the initial stochastic control problem can be reduced to a deterministic control problem. Indeed, by definition of the marginal distribution P X t , recalling that P (X t ,α t ) = Idα(t, ., P X t ) ⋆ P X t , and Fubini's theorem, we see that the cost functional can be written for any admissible control α ∈ A as:

J(α) = T 0 f (t, P X t , α(t, ., P X t ))dt + ĝ(P X T ),
where the function f is defined on

[0, T ] × P 2 (R d ) × L(R d ; A) and ĝ is defined on P 2 (R d ) by f (t, µ, α) := < f (t, ., α(.), Idα ⋆ µ), µ >, ĝ(µ) := < g(., µ), µ > . (3.7)
We have thus transformed the initial control problem (2.4) into a deterministic control problem involving the infinite dimensional controlled marginal distribution process valued in P 2 (R d ). In view of the flow property (3.6), it is then natural to define the value function

v(t, µ) := inf α∈A T t f (s, P t,µ s , α(s, ., P t,µ s ))ds + ĝ(P t,µ T ) , t ∈ [0, T ], µ ∈ P 2 (R d ), (3.8)
so that the initial control problem in (2.4) is given by: V 0 = v(0, P X 0 ). It is clear that v(t, µ) < ∞, and we shall assume that

v(t, µ) > -∞, ∀ t ∈ [0, T ], µ ∈ P 2 (R d ). (3.9) 
Remark 3.1 The finiteness condition (3.9) can be checked a priori directly from the assumptions on the model. For example, when f , g, hence f , ĝ, are lower-bounded functions, condition (3.9) clearly holds. Another example is the case when f (t, x, a, λ), and g(x, µ) are lower bounded by a quadratic function in x, µ, and λ (uniformly in (t, a)) so that

f (t, µ, α) + ĝ(x, µ) ≥ -C 1 + µ 2 , ∀µ ∈ P 2 (R d ), α ∈ L(R d ; A),
and we are able to derive moment estimates on the controlled process X, uniformly in α:

P t,µ s 2 2 = E[|X t,ξ s | 2 ] ≤ C(1 + µ 2 2
), (for µ = P ξ ) which arises typically from (2.2) when A is bounded. Then, it is clear that (3.9) holds true. Otherwise, this finiteness condition can be checked a posteriori from a verification theorem, see Theorem 3.1.
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The dynamic programming principle (DPP) for the deterministic control problem (3.8) takes the following formulation:

Theorem 3.1 (Dynamic Programming Principle) Under (3.9), we have for all 0 ≤ t ≤ θ ≤ T , µ ∈ P 2 (R d ): v(t, µ) = inf α∈A θ t f (s, P t,µ
s , α(s, ., P t,µ s ))ds + v(θ, P t,µ θ ) .

(3.10)

Proof. In the context of deterministic control problem, the proof of the DPP is elementary and does not require any measurable selection arguments. For sake of completeness, we provide it. Denote by J(t, µ, α) the cost functional:

J(t, µ, α) := T t f (s, P t,µ,α s , α(s, ., P t,µ,α s ))ds + ĝ(P t,µ,α T ), 0 ≤ t ≤ T, µ ∈ P 2 (R d ), α ∈ A,
so that v(t, µ) = inf α∈A J(t, µ, α), and by w(t, µ) the r.h.s. of (3.10) (here we stress the dependence of the controlled marginal distribution process P t,µ,α on α). Then,

w(t, µ) = inf α∈A θ t f (s, P t,µ,α f (s, P t,µ s , γ(s, ., P t,µ s )) + ĝ(P t,µ T ) ,
by the flow property (3.6) (here we have omitted in the second and third line the dependence of P s in γ). This proves the required equality:

w(t, µ) = v(t, µ). 2 
Remark 3.2 Problem (2.4) includes the case where the cost functional in (2.3) is a nonlinear function of the expected value of the state process, i.e. the running cost functions and the terminal gain function are in the form:

f (t, X t , α t , P (X t ,α t ) ) = f (t, X t , E[X t ], α t ), t ∈ [0, T ], g(X T , P X T ) = ḡ(X T , E[X T ]
), which arises for example in mean-variance problem (see Section 4). It is claimed in [START_REF] Björk | On time inconsistent stochastic control in continuous time[END_REF] and [START_REF] Yong | A linear-quadratic optimal control problem for mean-field stochastic differential equations[END_REF] that Bellman optimality principle does not hold, and therefore the problem is time-inconsistent. This is correct when one takes into account only the state process X (that is its realization), since it is not Markovian, but as shown in this section, dynamic programming principle holds true whenever we consider the marginal distribution as state variable. This gives more information and the price to paid is the infinite-dimensional feature of the marginal distribution state variable. 2

Bellman equation

The purpose of this paragraph is to derive from the dynamic programming principle (3.10), a partial differential equation (PDE) for the value function v(t, µ), called Bellman equation. We shall rely on the notion of derivative with respect to a probability measure, as introduced by P.L. Lions in his course at Collège de France, and detailed in the lecture notes [START_REF] Cardaliaguet | Notes on mean field games[END_REF]. This notion is based on the lifting of functions u :

P 2 (R d ) → R into functions U defined on L 2 (F 0 ; R d ) by U (X) = u(P X ). We say that u is differentiable (resp. C 1 ) on P 2 (R d ) if the lift U is Fréchet differentiable (resp. Fréchet differentiable with continuous derivatives) on L 2 (F 0 ; R d ). In this case, the Fréchet derivative [DU ](X), viewed as an element DU (X) of L 2 (F 0 ; R d ) by Riesz' theorem: [DU ](X)(Y ) = E[DU (X).Y ], can be represented as DU (X) = ∂ µ u(P X )(X), (3.11) 
for some function ∂ µ u(P X ) : R d → R d , which is called derivative of u at µ = P X . Moreover,

∂ µ u(µ) ∈ L 2 µ (R d ) for µ ∈ P 2 (R d ) = {P X , X ∈ L 2 (F 0 ; R d )}.
Following [START_REF] Chassagneux | A probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF], we say that u is partially C 2 if it is C 1 , and one can find, for any µ ∈ P 2 (R d ), a continuous version of the mapping

x ∈ R d → ∂ µ u(µ)(x), such that the mapping (µ, x) ∈ P 2 (R d ) × R d → ∂ µ u(µ)(x)
is continuous at any point (µ, x) such that x ∈ Supp(µ), and if for any µ ∈ P 2 (R d ), the mapping x ∈ R d → ∂ µ u(µ)(x) is differentiable, its derivative being jointly continuous at any point (µ, x) such that x ∈ Supp(µ). The gradient is then denoted by

∂ x ∂ µ u(µ)(x) ∈ S d , the set of symmetric matrices in R d×d . We say that u ∈ C 2 b (P 2 (R d )) if it is partially C 2 , ∂ x ∂ µ u(µ) ∈ L ∞ µ (S d
), and for any compact set K of P 2 (R d ), we have

sup µ∈K R d ∂ µ u(µ)(x)| 2 µ(dx) + ∂ x ∂ µ u(µ) ∞ < ∞.
As shown in [START_REF] Chassagneux | A probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF], if the lifted function U is twice continuously Fréchet differentiable on

L 2 (F 0 ; R d ) with Lipschitz Fréchet derivative, then u lies in C 2 b (P 2 (R d ))
. In this case, the second Fréchet derivative D 2 U (X) is identified indifferently by Riesz' theorem as a bilinear form on L 2 (F 0 ; R d ) or as a symmetric operator (hence bounded) on

L 2 (F 0 ; R d ), denoted by D 2 U (X) ∈ S(L 2 (F 0 ; R d ))
, and we have the relation (see Appendix A.2 in [START_REF] Carmona | The Master equation for large population equilibriums[END_REF]):

E D 2 U (X)(Y N ).Y N = E tr ∂ x ∂ µ u(P X )(X)Y Y ⊺ , (3.12) 
for any

X ∈ L 2 (F 0 ; R d ), Y ∈ L 2 (F 0 ; R d×q )
, and where N ∈ L 2 (F 0 ; R q ) is independent of (X, Y ) with zero mean and unit variance. We shall need a chain rule (or Itô's formula) for functions defined on P 2 (R d ), proved independently in [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF] and [START_REF] Chassagneux | A probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF], see also the Appendix in [START_REF] Carmona | The Master equation for large population equilibriums[END_REF], and that we recall here. Let us consider an R d -valued Itô process

dX t = b t dt + σ t dB t , X 0 ∈ L 2 (F 0 ; R d ),
where (b t ) and (σ t ) are progressively measurable processes with respect to the filtration generated by the n-dimensional Brownian motion B, valued respectively in R d and R d×n , and satisfying the integrability condition:

E T 0 |b t | 2 + |σ t | 2 dt < ∞. (3.13) Let u ∈ C 2 b (P 2 (R d )). Then, for all t ∈ [0, T ], u(P X t ) = u(P X 0 ) + t 0 E ∂ µ u(P Xs )(X s ).b s + 1 2 tr ∂ x ∂ µ u(P Xs )(X s )σ s σ ⊺ s ds.(3.14)
We have now the ingredients for deriving the Bellman equation associated to the DPP (3.10), and it turns out that it takes the following form:

   ∂ t v + inf α∈L(R d ;A) f (t, µ, α) + < L α t v(t, µ), µ > = 0, on [0, T ) × P 2 (R d ), v(T, .) = ĝ, on P 2 (R d ) (3.15) where for α ∈ L(R d ; A), ϕ ∈ C 2 b (P 2 (R d )) and (t, µ) ∈ [0, T ] × P 2 (R d ), L α t ϕ(µ) ∈ L 2 µ (R) is the function: R d → R defined by L α t ϕ(µ)(x) := ∂ µ ϕ(µ)(x).b(t, x, α(x), Idα ⋆ µ) + 1 2 tr ∂ x ∂ µ ϕ(µ)(x)σσ ⊺ (t, x, α(x), Idα ⋆ µ) . (3.16)
In the spirit of classical verification theorem for stochastic control of diffusion processes, we prove the following result in our McKean-Vlasov control framework, which is a consequence of Itô's formula for functions defined on the Wasserstein space.

Proposition 3.1 (Verification theorem) Let w : [0, T ] × P 2 (R d ) → R be a function in C 1,2 b ([0, T ] × P 2 (R d )), i.e. w is continuous on [0, T ] × P 2 (R d ), w(t, .) ∈ C 2 b (P 2 (R d ))
, for all t ∈ [0, T ], and w(., µ) ∈ C 1 ([0, T )). Suppose that w is solution to (3.15), and there exists for all (t, µ)

∈ [0, T ) × P 2 (R d ) an element α * (t, ., µ) ∈ L(R d ; A) attaining the infimum in (3.15) s.t. the mapping (t, x, µ) → α * (t, x, µ) ∈ Lip([0, T ] × R d × P 2 (R d ); A).
Then, w = v, and the feedback control α * ∈ A defined by

α * t = α * (t, X t , P X t ), 0 ≤ t < T, is an optimal control, i.e. V 0 = J(α * ). Proof. Fix (t, µ = P ξ ) ∈ [0, T ) × P 2 (R d )
, and consider some arbitrary feedback control α ∈ A associated to X t,ξ the solution to the controlled SDE (3.3). Under condition (H1), we have the standard estimate

E sup t≤s≤T |X t,ξ s | 2 ≤ C 1 + E|ξ| 2 < ∞, which implies that E T t b(s, X t,ξ s , α(s, X t,ξ s , P X t,ξ s
), Idα(s, .,

P X t,ξ s ) ⋆ P X t,ξ s ) 2 + σ(s, X t,ξ s , α(s, X t,ξ s , P X t,ξ s
), Idα(s, .,

P X t,ξ s ) ⋆ P X t,ξ s ) 2 ds < ∞.
One can then apply the Itô's formula (3.14) to w(s, P X t,ξ s ) = w(s, P t,µ s ) (with the definition (3.5)) between s = t and s = T , and obtain 

w(T, P t,µ T ) = w(t, µ) + T t ∂w ∂t (s, P t,µ s ) + E ∂ µ w(s, P t,µ s )(X t,ξ s ).b(s, X t,ξ s , α(s, X t,ξ s , P t,µ s ), Idα(s, ., P t,µ s ) ⋆ P t,µ s ) + 1 2 tr ∂ x ∂ µ w(s, P t,µ s )(X t,ξ s )σ s σ ⊺ s (s, X t,ξ s , α(s, X t,
v(t, µ) = w(t, µ) = J(t, µ, α * ). 2 
We shall apply the verification theorem in the next section, where we can derive explicit (smooth) solutions to the Bellman equation (3.15) in some class of examples, but first discuss below the case when there are no mean-field interaction, and the structure of the optimal control (when it exists).

Remark 3.3 (No mean-field interaction)

We consider the classical case of stochastic control where there is no mean-field interaction in the dynamics of the state process, i.e. b(t, x, a) and σ(t, x, a) do not depend on λ, as well as in the cost functions f (t, x, a) and g(x). In this special case, let us show how the verification Theorem 3.1 is reduced to the classical verification result for smooth functions on [0, T ] × R d , see e.g. [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF] or [START_REF] Pham | Continuous-time stochastic control and applications with financial applications[END_REF].

Suppose that there exists a function u in C 1,2 ([0, T ] × R d ) solution to the standard HJB equation

∂ t u + inf a∈A f (t, x, a) + L a t u(t, x) = 0, on [0, T ) × R d , u(T, .) = g on R d . (3.18)
where L a t is the second-order differential operator

L a t u(t, x) = ∂ x u(t, x).b(t, x, a) + 1 2 tr ∂ 2 xx u(t, x)σσ ⊺ (t, x, a) ,
and that for all (t, x) 

∈ [0, T ) × R d ,
w(t, µ) = < u(t, .), µ > = R d u(t, x)µ(dx).
The lifted function of w is thus equal to W(t, X) = E[u(t, X)] with Fréchet derivative (with respect to X ∈ L 2 (F 0 , P)): 

[DW](t, X)(Y ) = E[∂ x u(t,
∂ t w(t, µ) = < ∂ t u(t, .), µ >, ∂ µ w(t, µ) = ∂ x u(t, .), ∂ x ∂ µ v(t, µ) = ∂ 2 xx u(t, .).
Recalling the definition (3.16) of L α t w(t, µ), we then get for any fixed (t, µ) ∈ [0, T )×P 2 (R d ): 

∂ t w(t, µ) + inf α∈L(R d ;A) f (t, µ, α) + < L α t w(t, µ), µ > = inf α∈L(R d ;A) R d ∂ t u(t, x) + f (t, x, α(x)) + L α(x) t u(t, x) µ(dx) = R d inf a∈A ∂ t u(t, x) + f (t, x, a) + L a t u(t, x) µ(dx). ( 3 
R d inf a∈A ∂ t u(t, x) + f (t, x, a) + L a t u(t, x) µ(dx) = R d ∂ t u(t, x) + f (t, x, â(t, x)) + L â(t,x) t u(t, x) µ(dx) ≥ inf α∈L(R d ;A) R d ∂ t u(t, x) + f (t, x, α(x)) + L α(x) t u(t, x) µ(dx),
which thus shows the equality (3.19). Since u is solution to (3.18), this proves that w is solution to the Bellman equation (3.15), α * (t, x) = â(t, x) is an optimal feedback control, and therefore, the value function is equal to v(t, µ) = < u(t, .), µ >. 2

Remark 3.4 (Form of the optimal control) Consider the case where the coefficients of the McKean-Vlasov SDE and of the running costs do not depend upon the law of the control, hence in the form: b(t, X t , α t , P X t ), σ(t, X t , α t , P X t ), f (t, X t , α t , P X t ), and denote by 

H(t, x, a, µ, q, M ) = f (t, x, a, µ) + q.b(t, x, a, µ) + 1 2 tr M σσ ⊺ (t, x, a, µ) for (t, x, a, µ, q, M ) ∈ [0, T ] × R d × A × P 2 (R d ) × R d × S d ,
∂ t w(t, µ) + inf α∈L(R d ;A) R d H t, x, α(x), µ, ∂ µ w(µ)(x), ∂ x ∂ µ w(µ)(x) µ(dx) = 0,(3.20) for (t, µ) ∈ [0, T ) × P 2 (R d ).
Under suitable convexity conditions on the function a ∈ A → H(t, x, a, µ, q, M ), there exists a minimizer, say â(t, x, µ, q, M ), to inf a∈A H(t, x, a, µ, q, M ).

Then, an optimal control α * in the statement of the verification theorem 3.1, obtained from the minimization of the (infinite dimensional) Hamiltonian in (3.20), is written merely as α * (t, x, µ) = â(t, x, µ, ∂ µ w(µ)(x), ∂ x ∂ µ w(µ)(x)), which extends the form discuss in Remark 3.3, and says that it depends locally upon the derivatives of the value function. In the more general case when the coefficients depend upon the law of the control, we shall see how one can derive the form of the optimal control for the linear-quadratic problem. 

for (t, x, µ, a, λ) ∈ [0, T ] × R d × P 2 (R d ) × R m × P 2 (R m ),
f (t, x, µ, a, λ) = x ⊺ Q 2 (t)x + μ⊺ Q2 (t)μ + a ⊺ R 2 (t)a + λ⊺ R2 (t) λ + 2x ⊺ M 2 (t)a + 2μ ⊺ M2 (t) λ + q 1 (t).x + q1 (t).μ + r 1 (t).a + r1 (t). λ, g(x, µ) = x ⊺ P 2 x + μ⊺ P2 μ + p 1 .x + p1 .μ, (4.2) 
where Q 2 , Q2 are deterministic continuous functions, P 2 , P2 are constants valued in R d×d , R 2 , R2 are deterministic continuous functions valued in R m×m , M 2 , M2 are deterministic continuous functions valued in R d×m , q 1 , q1 are deterministic continuous functions, p 1 , p1 are constants valued in R d , and r 1 , r1 are deterministic continuous functions valued in R m . Since f and g are real-valued, we may assume w.l.o.g. that all the matrices Q 2 , Q2 , R 2 , R2 , P 2 , P2 are symmetric. We denote by S d + the set of nonnegative symmetric matrices in S d , and by S d >+ the subset of symmetric positive definite matrices. This linear quadratic (LQ) framework is similar to the one in [START_REF] Yong | A linear-quadratic optimal control problem for mean-field stochastic differential equations[END_REF], and extends the one considered in [START_REF] Bensoussan | Linear-quadratic mean field games[END_REF] where there is no dependence on the law of the control, and the diffusion coefficient is deterministic.

The functions f and ĝ defined in (3.7) are then given by We look for a value function solution to the Bellman equation (3.15) in the form

             f (t, µ, α) = Var(µ)(Q 2 (t)) + μ⊺ (Q 2 (t) + Q2 (t))μ + Var(α ⋆ µ)(R 2 (t)) + α ⋆ µ ⊺ (R 2 (t) + R2 (t))α ⋆ µ + 2μ ⊺ (M 2 (t) + M2 (t))α ⋆ µ + 2 R d (x -μ) ⊺ M 2 (t)α(x)µ(dx) + q 1 (t) + q1 (t) .μ + r 1 (t) + r1 (t) .α ⋆ µ ĝ(µ) = Var(µ)(P 2 ) + μ⊺ (P 2 + P2 )μ + (p 1 + p1 ).μ, (4.
w(t, µ) = Var(µ)(Λ(t)) + μ⊺ Γ(t)μ + γ(t).μ + χ(t), (4.4) 
for some functions Λ, Γ ∈ C 1 ([0, T ]; S d ), γ ∈ C 1 ([0, T ]; R d ), and χ ∈ C 1 ([0, T ]; R). The lifted function of w in (4.4) is given by

W(t, X) = E[X ⊺ Λ(t)X] + E[X] ⊺ (Γ(t) -Λ(t))E[X] + γ(t).E[X] + χ(t), for X ∈ L 2 (F 0 ; R d ). By computing for all Y ∈ L 2 (F 0 ; R d ) the difference W(t, X + Y ) -W(t, X) = E 2X ⊺ Λ(t) + 2E[X] ⊺ (Γ(t) -Λ(t)) + γ(t) .Y + o( Y L 2 ), we see that W is Fréchet differentiable (w.r.t. X) with [DW](t, X)(Y ) = E 2X ⊺ Λ(t) + 2E[X] ⊺ (Γ(t) -Λ(t)) + γ(t) .Y . This shows that w lies in C 1,2 b ([0, T ] × P 2 (R d )) with ∂ t w(t, µ) = Var(µ)(Λ ′ (t)) + μ⊺ Γ ′ (t)μ + γ ′ (t)μ + χ ′ (t), ∂ µ w(t, µ)(x) = 2x ⊺ Λ(t) + 2μ ⊺ (Γ(t) -Λ(t)) + γ(t), ∂ x ∂ µ w(t, µ)(x) = 2Λ(t).
Together with the quadratic expression (4.3) of f , ĝ, we then see that w satisfies the Bellman equation (3.15) iff

Var(µ)(Λ(T )) + μ⊺ Γ(T )μ + γ(T ).μ + χ(T ) = Var(µ)(P 2 ) + μ⊺ (P 2 + P2 )μ + (p 1 + p1 ).μ, (4.5) 
holds for all µ ∈ P 2 (R d ), and

Var(µ) Λ ′ (t) + Q 2 (t) + D(t) ⊺ Λ(t)D(t) + Λ(t)B(t) + B(t) ⊺ Λ(t) + inf α∈L(R d ,A) G µ t (α) + μ⊺ Γ ′ (t) + Q 2 (t) + Q2 (t) + (D(t) + D(t)) ⊺ Λ(t)(D(t) + D(t)) + Γ(t)(B(t) + B(t)) + (B(t) + B(t)) ⊺ Γ(t) μ + q 1 (t) + q1 (t) + γ(t)(B(t) + B(t)) + 2σ ⊺ 0 Λ(t)(D(t) + D(t)) + 2b 0 (t) ⊺ Γ(t) μ + χ ′ (t) + γ(t).b 0 (t) + σ 0 (t) ⊺ Λ(t)b 0 (t) = 0, (4.6) 
holds for all t ∈ [0, T ), µ ∈ P 2 (R d ), where the function

G µ t : L 2 µ (A) ⊃ L(R d ; A) → R is defined by G µ t (α) = Var(α ⋆ µ)(U t ) + α ⋆ µ ⊺ V t α ⋆ µ + 2 R d (x -μ) ⊺ S t α(x)µ(dx) + 2μ ⊺ Z t α ⋆ µ + Y t .α ⋆ µ, (4.7) 
and we set

U t = U (t, Λ(t)), V t = V (t, Λ(t)), S t = S(t, Λ(t)), Z t = Z(t, Λ(t), Γ(t)), Y t = Y (t, Γ(t), γ(t)) with              U (t, Λ(t)) = F (t) ⊺ Λ(t)F (t) + R 2 (t), V (t, Λ(t)) = (F (t) + F (t)) ⊺ Λ(t)(F (t) + F (t)) + R 2 (t) + R2 (t), S(t, Λ(t)) = D(t) ⊺ Λ(t)F (t) + Λ(t)C(t) + M 2 (t), Z(t, Λ(t), Γ(t)) = (D(t) + D(t)) ⊺ Λ(t)(F (t) + F (t)) + Γ(t)(C(t) + C(t)) + M 2 (t) + M2 (t) Y (t, Γ(t), γ(t)) = C(t) + C(t) ⊺ γ(t) + r 1 (t) + r1 (t) + 2 F (t) + F (t) ⊺ Λ(t)σ 0 (t). (4.8) 
We now search for the infimum of the function G µ t . After some straightforward calculation, we derive the Gateaux derivative of G µ t at α in the direction β ∈ L 2 µ (A), which is given by:

DG µ t (α, β) := lim ε→0 G µ t (α + εβ) -G µ t (α) ε = R d ġµ t (x, α).β(x)µ(dx) with ġµ t (x, α) = 2U t α + 2(V t -U t )α ⋆ µ + 2S ⊺ t (x -μ) + 2Z ⊺ t μ + Y t .
Suppose that the symmetric matrices U t and V t in (4.8) are positive, hence invertible (this will be discussed later on). Then, the function G µ t is convex and coercive on the Hilbert space L 2 µ (A), and attains its infimum at some α = α * (t, ., µ) s.t. DG µ t (α; .) vanishes, i.e. ġµ t (x, α * (t, ., µ)) = 0 for all x ∈ R d , which gives:

α * (t, x, µ) = -U -1 t S ⊺ t (x -μ) -V -1 t Z ⊺ t μ - 1 2 V -1 t Y t . (4.9)
It is clear that α * (t, ., µ) lies in L(R d ; A), and so after some straightforward caculation:

inf α∈L(R d ,A) G µ t (α) = G µ t (α * (t, ., µ)) = -Var(µ) S t U -1 t S ⊺ t -μ⊺ Z t V -1 t Z ⊺ t μ -Y ⊺ t V -1 t Z ⊺ t μ - 1 4 Y ⊺ t V -1 t Y t .
Plugging the above expression in (4.6), we observe that the relation (4.5)-(4.6), hence the Bellman equation, is satisfied by identifying the terms in Var(µ)(.), μ⊺ (.)μ, μ, which leads to the system of ordinary differential equations (ODEs) for (Λ, Γ, γ, χ):

     Λ ′ (t) + Q 2 (t) + D(t) ⊺ Λ(t)D(t) + Λ(t)B(t) + B(t) ⊺ Λ(t) -S(t, Λ(t))U (t, Λ(t)) -1 S(t, Λ(t)) ⊺ = 0, Λ(T ) = P 2 , (4.10) 
     Γ ′ (t) + Q 2 (t) + Q2 (t) + (D(t) + D(t)) ⊺ Λ(t)(D(t) + D(t)) + Γ(t)(B(t) + B(t)) + (B(t) + B(t)) ⊺ Γ(t) -Z(t, Λ(t), Γ(t))V (t, Λ(t)) -1 Z(t, Λ(t), Γ(t)) ⊺ = 0, Γ(T ) = P 2 + P2 , (4.11)      γ ′ (t) + B(t) + B(t)) ⊺ γ(t) -Z(t, Λ(t), Γ(t))V (t, Λ(t)) -1 Y (t, Γ(t), γ(t)) + q 1 (t) + q1 (t) + 2 D(t) + D(t) ⊺ Λ(t)σ 0 (t) + 2Γ(t)b 0 (t) = 0, γ(T ) = p 1 + p1 (4.12)      χ ′ (t) -1 4 Y (t, Γ(t), γ(t)) ⊺ V (t, Λ(t)) -1 Y (t, Γ(t), γ(t)) + γ(t).b 0 (t) + σ 0 (t) ⊺ Λ(t)σ 0 (t) = 0, χ(T ) = 0. (4.13)
Therefore, the resolution of the Bellman equation in the LQ framework is reduced to the resolution of the Riccati equations (4.10) and (4.11) for Λ and Γ, and then given (Λ, Γ), to the resolution of the linear ODEs (4.12) and (4.13) for γ and χ. Suppose that there exists a solution (Λ, Γ)

∈ C 1 ([0, T ]; S d ) × C 1 ([0, T ]; S d ) to (4.10)-(4.11) s.t. (U t , V t ) in (4.8) lies in S m >+ × S m
>+ for all t ∈ [0, T ] (see Remark 4.1). Then, the above calculations are justified a posteriori, and by noting also that the mapping (t, x, µ) → α * (t, x, µ) ∈ Lip([0, T ] × R d × P 2 (R d ); A), we deduce by the verification theorem that the value function v is equal to w in (4.4) with (Λ, Γ, γ, χ) solution to (4.10)-(4.11)-(4.12)-(4.13). Moreover, the optimal control is given in feedback form from (4.9) by

α * t = α * (t, X * t , P X * t ) = -U -1 t S ⊺ t (X * t -E[X * t ]) -V -1 t Z ⊺ t E[X * t ] - 1 2 V -1 t Y t , (4.14)
where X * is the state process controlled by α * .

Remark 4.1 In the case where M 2 = M2 = 0 (i.e. no crossing term between the state and the control in the quadratic cost function f ), it is shown in Proposition 3.1 and 3.2 in [START_REF] Yong | A linear-quadratic optimal control problem for mean-field stochastic differential equations[END_REF] that under the condition

P 2 ≥ 0, P 2 + P2 ≥ 0, Q 2 (t) ≥ 0, Q 2 (t) + Q2 (t) ≥ 0, R 2 (t) ≥ δI m , R 2 (t) + R2 (t) ≥ δI m (4.15)
for some δ > 0, the Riccati equations (4.10)-(4.11) admit unique solutions (Λ, Γ)

∈ C 1 ([0, T ]; S d + ) × C 1 ([0, T ]; S d + )
, and then U t , V t in (4.8) are symmetric positive definite matrices, i.e. lie in S m >+ for all t ∈ [0, T ]. In this case, we retrieve the expressions (4.14) of the optimal control in feedback form obtained in [START_REF] Yong | A linear-quadratic optimal control problem for mean-field stochastic differential equations[END_REF].

We shall see in the next two paragraphs, some other examples arising from finance with explicit solutions where condition (4.15) is not satisfied. 2

Mean-variance portfolio selection

The mean-variance problem consists in minimizing a cost functional of the form:

J(α) = η 2 Var(X T ) -E[X T ] = E η 2 X T 2 -X T - η 2 E[X T ] 2
for some η > 0, with a dynamics for the wealth process X = (X α ) controlled by the amount α t valued in A = R invested in one risky stock at time t:

dX t = r(t)X t dt + α t ρ(t)dt + ϑ(t)dB t ), X 0 = x 0 ∈ R,
where r is the interest rate, ρ and ϑ > 0 are the excess rate of return (w.r.t. the interest rate) and volatility of the stock price, and these deterministic functions are assumed to be continuous. This model fits into the LQ framework (4.1)-(4.2) of the McKean-Vlasov problem, with a linear controlled dynamics that does not have mean-field interaction:

b 0 = 0, B(t) = r(t), B = 0, C(t) = ρ(t), C = 0, σ 0 = D = D = 0, F (t) = ϑ(t), F = 0, Q 2 = Q2 = M 2 = M2 = R 2 = R2 = 0, q 1 = q1 = r 1 = r1 = 0, P 2 = η 2 , P2 = - η 2 
, p 1 = 0, p1 = -1.

The Riccati system (4.10)-(4.11)-(4.12)-(4.13) for (Λ(t), Γ(t), γ(t), χ(t)) is written in this case as

             Λ ′ (t) -( ρ 2 (t) ϑ 2 (t) -2r(t))Λ(t) = 0, Λ(T ) = η 2 , Γ ′ (t) -ρ 2 (t)Γ 2 (t) ϑ 2 (t)Λ(t) + 2r(t)Γ(t) = 0, Γ(T ) = 0, γ ′ (t) + r(t)γ(t) -γ(t) ρ 2 (t)Γ(t) ϑ 2 (t)Λ(t) = 0, γ(T ) = -1, χ ′ (t) -ρ 2 (t)γ 2 (t) 4ϑ 2 (t)Λ(t) = 0, χ(T ) = 0, (4.16)
whose explicit solution is given by

           Λ(t) = η 2 exp T t 2r(s) -ρ 2 (s) ϑ 2 (s) ds , Γ(t) = 0, γ(t) = -exp T t r(s)ds χ(t) = -1 2η exp T t ρ 2 (s) ϑ 2 (s) ds -1 .
(4.17)

Although the condition (4.15) is not satisfied, we see that (U t , V t ) in (4.8), which are here explicitly given by U t = V t = ϑ(t) 2 Λ(t), are positive, and this validates our calculations for the verification theorem. Notice also that the functions (Z t , Y t ) in (4.8) are explicitly given by Z t = 0, Y t = ρ(t)γ(t). Therefore, the optimal control is given in feedback form from (4.14) by

α * t = α * (t, X * t , P X * t ) = - ρ(t) ϑ 2 (t) (X * t -E[X * t ]) + ρ(t) ηϑ 2 (t) exp T t ρ 2 (s) ϑ 2 (s) -r(s) ds , (4.18) 
where X * is the optimal wealth process with portfolio strategy α * , hence with mean process governed by

dE[X * t ] = r(t)E[X * t ]dt + ρ 2 (t) ηϑ 2 (t) exp T t ρ 2 (s) ϑ 2 (s) -r(s) ds dt,
and explicitly given by

E[X * t ] = x 0 e t 0 r(s)ds + 1 η exp T t ρ 2 (s) ϑ 2 (s) -r(s) ds exp t 0 ρ 2 (s) ϑ 2 (s) ds -1 .
Plugging into (4.18), we get the optimal control for the mean-variance portfolio problem

α * t = ρ(t) ϑ 2 (t) x 0 e t 0 r(s)ds + 1 η exp T 0 ρ 2 (s) ϑ 2 (s) ds - T t r(s)ds -X * t ,
and retrieve the closed-form expression of the optimal control found in [START_REF] Li | Continuous-time mean-variance portfolio selection: a stochastic LQ framework[END_REF], [START_REF] Andersson | A maximum principle for SDEs of mean-field type[END_REF] or [START_REF] Fisher | Continuous time mean-variance portfolio optimization through the mean-field approach[END_REF] by different approaches.

Inter-bank systemic risk model

We consider a model of inter-bank borrowing and lending studied in [START_REF] Carmona | Mean field games and systemic risk[END_REF] where the logmonetary reserve of each bank in the asymptotics when the number of banks tend to infinity, is governed by the McKean-Vlasov equation:

dX t = κ(E[X t ] -X t ) + α t ]dt + σdB t , X 0 = x 0 ∈ R. (4.19)
Here, κ ≥ 0 is the rate of mean-reversion in the interaction from borrowing and lending between the banks, and σ > 0 is the volatility coefficient of the bank reserve, assumed to be constant. Moreover, all banks can control their rate of borrowing/lending to a central bank with the same policy α in order to minimize a cost functional of the form

J(α) = E T 0 1 2 α 2 t -qα t (E[X t ] -X t ) + η 2 (E[X t ] -X t ) 2 dt + c 2 (E[X T ] -X T ) 2 ,
where q > 0 is a positive parameter for the incentive to borrowing (α t > 0) or lending (α t < 0), and η > 0, c > 0 are positive parameters for penalizing departure from the average. This model fits 

b 0 = 0, B = -κ, B = κ, C = 1, C = 0, σ 0 = σ, D = D = F = F = 0, Q 2 = η 2 , Q2 = - η 2 , R 2 = 1 2 , R2 = 0, M 2 = q 2 , M2 = - q 2 , q 1 = q1 = r 1 = r1 = 0, P 2 = c 2 , P2 = - c 2 , p 1 = p1 = 0.
The Riccati system (4.10)-(4.11)-(4.12)-(4.13) for (Λ(t), Γ(t), γ(t), χ(t)) is written in this case as

         Λ ′ (t) -2(κ + q)Λ(t) -2Λ 2 (t) -1 2 (q 2 -η) = 0, Λ(T ) = c 2 , Γ ′ (t) -2Γ 2 (t) = 0, Γ(T ) = 0, γ ′ (t) -2γ(t)Γ(t) = 0, γ(T ) = 0, χ ′ (t) + σ 2 Λ(t) -1 2 γ 2 (t) = 0, χ(T ) = 0, (4.20) 
whose explicit solution is given by Γ = γ = 0, and

χ(t) = σ 2 T t Λ(s)ds, Λ(t) = 1 2 (q -η 2 ) e (δ + -δ -)(T -t) -1 -c δ + e (δ + -δ -)(T -t) -δ - δ -e (δ + -δ -)(T -t) -δ + -ce (δ + -δ -)(T -t) -1 ,
where we set

δ ± = -(κ + q) ± (κ + q) 2 + (η -q 2 ).
Moreover, the functions (U t , V t , Z t , Y t ) in (4.8) are explicitly given by:

U t = V t = 1 2 (hence > 0), S t = Λ(t) + q 2 , Z t = Γ(t) = 0, Y t = γ(t) = 0.
Therefore, the optimal control is given in feedback form from (4.14) by

α * t = α * (t, X * t , P X * t ) = -(2Λ(t) + q)(X * t -E[X * t ]), (4.21) 
where X * is the optimal log-monetary reserve controlled by the rate of borrowing/lending α * . We then retrieve the expression found in [START_REF] Carmona | Mean field games and systemic risk[END_REF] by sending the number of banks N to infinity in their formula for the optimal control. Actually, from (4.19), we have dE[ (4.21). We conclude that the optimal rate of borrowing/lending is equal to

X * t ] = E[α * t ]dt, while E[α * t ] = 0 from
α * t = -(2Λ(t) + q)(X * t -x 0 ), 0 ≤ t ≤ T.

Viscosity solutions

In general, there are no smooth solutions to the HJB equation, and in the spirit of HJB equation for standard stochastic control, we shall introduce in this section a notion of viscosity solutions for the Bellman equation (3.15) in the Wasserstein space of probability measures P 2 (R d ). We adopt the approach in [START_REF] Lions | Cours au Collège de France: Théorie des jeux à champ moyens, audio conference[END_REF], and detailed in [START_REF] Cardaliaguet | Notes on mean field games[END_REF], which consists, after the lifting identification between measures and random variables, in working in the Hilbert space L 2 (F 0 ; R d ) instead of working in the Wasserstein space P 2 (R d ), in order to use the various tools developed for viscosity solutions in Hilbert spaces, in particular in our context, for second order Hamilton-Jacobi equations.

Let us rewrite the the Bellman equation (3.15) in the "Hamiltonian" form:

   - ∂v ∂t + H(t, µ, ∂ µ v(t, µ), ∂ x ∂ µ v(t, µ)) = 0 on [0, T ) × P 2 (R d ), v(T, .) = ĝ on P 2 (R d ) (5.1)
where H is the function defined by

H(t, µ, p, Γ) = -inf α∈L(R d ;A)
< f (t, ., µ, α(.), Idα ⋆ µ) + p(.).b(t, ., µ, α(.), Idα ⋆ µ)

+ 1 2 tr Γ(.)σσ ⊺ (t, ., µ, α(.), Idα ⋆ µ) , µ > , (5.2) for (t 
, µ) ∈ [0, T ] × P 2 (R d ), (p, Γ) ∈ L 2 µ (R d ) × L ∞ µ (S d
). We then consider the "lifted" Bellman equation in [0, T ] × L 2 (F 0 ; R d ):

   - ∂V ∂t + H(t, ξ, DV (t, ξ), D 2 V (t, ξ)) = 0 on [0, T ) × L 2 (F 0 ; R d ), V (T, ξ) = Ĝ(ξ) := E[g(ξ, P ξ )], ξ ∈ L 2 (F 0 ; R d ), (5.3) where 
H : [0, T ] × L 2 (F 0 ; R d ) × L 2 (F 0 ; R d ) × S(L 2 (F 0 ; R d )) → R is defined by H(t, ξ, P, Q) = -inf α∈L(R d ;A) E f (t, ξ, P ξ , α(ξ), Idα ⋆ P ξ ) + P.b(t, ξ, P ξ , Idα ⋆ P ξ ) (5.4) + 1 2 Q σ(t, ξ, P ξ , α(ξ), Idα ⋆ P ξ )N . σ(t, ξ, P ξ , α(ξ), Idα ⋆ P ξ )N , with N ∈ L 2 (F 0 , R n ) of
zero mean, unit variance, and independent of ξ. Observe that when v and V are smooth functions respectively in [0,

T ] × P 2 (R d ) and [0, T ] × L 2 (F 0 ; R d ),
linked by the lifting relation V (t, ξ) = v(t, P ξ ), then from (3.11)-(3.12), v is solution to the Bellman equation (5.1) iff V is solution to the Bellman equation (5.3). Let us mention that the lifted Bellman equation was also derived in [START_REF] Bensoussan | The Master equation in mean-field theory[END_REF] in the case where σ = σ(x) is not controlled and does not depend on the distribution of the state process, and there is no dependence on the marginal distribution of the control process on the coefficients b and f .

It is then natural to define viscosity solutions for the Bellman equation (5.1) (hence (3.15)) from viscosity solutions to (5.3). As usual, we say that a function u (resp.

U ) is locally bounded in [0, T ] × P 2 (R d ) (resp. on [0, T ] × L 2 (F 0 ; R d )) if it is bounded on bounded subsets of [0, T ] × P 2 (R d ) (resp. of [0, T ] × L 2 (F 0 ; R d ))
, and we denote by u * (resp. U * ) its upper semicontinuous envelope, and by u * (resp. U * ) its lower semicontinuous envelope. Similarly as in [START_REF] Gangbo | Hamilton-Jacobi equations in the Wasserstein space[END_REF], we define the set C 2 ℓ ([0, T ] × L 2 (F 0 ; R d )) of test functions for the lifted Bellman equation, as the set of real-valued continuous functions Φ on [0, T ] × L 2 (F 0 ; R d ) which are continuously differentiable in t ∈ [0, T ), twice continuously Fréchet differentiable on L 2 (F 0 ; R d ), and which are liftings of functions on [0, T ] × P 2 (R d ), i.e. Φ(t, ξ) = ϕ(t, P ξ ), for some ϕ ∈ C 

U : [0, T ] × L 2 (F 0 ; R d ) → R defined by U (t, ξ) = u(t, P ξ ), (t, ξ) ∈ [0, T ] × L 2 (F 0 ; R d ),
is a viscosity (sub, super) solution to the lifted Bellman equation (5.3), that is: (i) U (T, .) ≤ Ĝ, and for any test function

Φ ∈ C 2 ℓ ([0, T ] × L 2 (F 0 ; R d )) such that U * -Φ has a maximum at (t 0 , ξ 0 ) ∈ [0, T ) × L 2 (F 0 ; R d ), one has - ∂Φ ∂t (t 0 , ξ 0 ) + H(t 0 , ξ 0 , DΦ(t 0 , ξ 0 ), D 2 Φ(t 0 , ξ 0 )) ≤ 0.
(ii) U * (T, .) ≥ Ĝ, and for any test function

Φ ∈ C 2 ℓ ([0, T ] × L 2 (F 0 ; R d )) such that U * -Φ has a minimum at (t 0 , ξ 0 ) ∈ [0, T ) × L 2 (F 0 ; R d ), one has - ∂Φ ∂t (t 0 , ξ 0 ) + H(t 0 , ξ 0 , DΦ(t 0 , ξ 0 ), D 2 Φ(t 0 , ξ 0 )) ≥ 0.
The main goal of this section is to prove the viscosity characterization of the value function v in (3.8) to the Bellman equation (3.15), hence equivalently the viscosity characterization of the lifted value function V : [0, T ] × L 2 (F 0 ; R d ) defined by

V (t, ξ) = v(t, P ξ ), ξ ∈ L 2 (F 0 ; R d ),
to the lifted Bellman equation (5.3). We shall strenghten condition (H1) by assuming in addition that b, σ are uniformly continuous in t, and bounded in (a, λ):

(H1') There exists some constant C b,σ > 0 s.t. for all t, t ′ ∈ [0, T ], x, x ′ ∈ R d , a, a ′ ∈ A, λ, λ ′ ∈ P 2 (R d × A), |b(t, x, a, λ) -b(t ′ , x ′ , a ′ , λ ′ )| + |σ(t, x, a, λ) -σ(t ′ , x ′ , a ′ , λ ′ )| ≤ C b,σ m b,σ (|t -t ′ |) + |x -x ′ | + |a -a ′ | + W 2 (λ, λ ′ ) ,
for some modulus m b,σ (i.e. m b,σ (τ ) → 0 when τ goes to zero) and |b(t, 0, a, δ 0,0) )| + |σ(t, 0, a, δ (0,0) )| ≤ C b,σ .

We also strenghten condition (H2) by making additional (uniform) continuity assumptions on the running and terminal cost functions, and boundedness conditions in (a, λ):

(H2') (i) g is continuous on R d × P 2 (R d ) and there exists some constant C g > 0 s.t. for all x ∈ R d , µ ∈ P 2 (R d ), |g(x, µ)| ≤ C g 1 + |x| 2 + µ 2 2 .
(ii) There exists some constant

C f > 0 s.t. for all t ∈ [0, T ], x ∈ R d , a ∈ A, λ ∈ P 2 (R d × A), |f (t, x, a, λ)| ≤ C f 1 + |x| 2 + λ 2 2
, and some modulus m f (i.e. m f (τ ) → 0 when τ goes to zero) s.t. for all t, t ′ ∈ [0

, T ], x, x ′ ∈ R d , a ∈ A, λ, λ ′ ∈ P 2 (R d × A), |f (t, x, a, λ) -f (t ′ , x ′ , a, λ ′ )| ≤ m f |t -t ′ | + |x -x ′ | + W 2 (λ, λ ′ ) .
The boundedness condition in (H1')-(H2') of b, σ, f w.r.t. (a, λ) ∈ A × P 2 (R d × A) is typically satisfied when A is bounded. Under (H1'), we get by standard arguments

sup α∈A E sup t≤s≤T |X t,ξ s | 2 < ∞, for any t ∈ [0, T ], ξ ∈ L 2 (F t ; R d )
, which shows under the quadratic growth condition of g and f in (H2') (uniformly in a) that v and V also satisfy a quadratic growth condition: there exists some positive constant C s.t.

|v(t, µ)| ≤ C 1 + µ 2 2 , (t, µ) ∈ [0, T ] × P 2 (R d ), |V (t, ξ)| ≤ C 1 + E|ξ| 2 , (t, ξ) ∈ [0, T ] × L 2 (F 0 ; R d ), (5.5) 
and are thus in particular locally bounded.

We first state a flow continuity property of the marginal distribution of the controlled state process. Indeed, from standard estimates on the state process under (H1'), one easily checks (see also Lemma 3.1 in [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF]) that there exists some positive constant C, such that for all α ∈ A, t, t ′ ∈ [0, T , t ≤ s ≤ T, t ′ ≤ s ′ ≤ T , µ = P ξ , µ ′ = P ξ ′ ∈ P 2 (R d ):

E X t,ξ s -X t ′ ,ξ ′ s ′ 2 ≤ C 1 + E|ξ| 2 + E|ξ ′ | 2 |t -t ′ | + |s -s ′ | + E|ξ -ξ ′ | 2 ,
and so from the definition of the 2-Wasserstein distance

W 2 (P t,µ s , P t ′ ,µ ′ s ′ ) ≤ C 1 + µ 2 + µ ′ 2 |t -t ′ | 1 2 + |s -s ′ | 1 2 + W 2 (µ, µ ′ ) . (5.6)
The next result states the viscosity property of the value function to the Bellman equation as a consequence of the dynamic programming principle (3.10). Proof. We first show the continuity of t → v(t, .) and V (t, .) at t = T . For any (t, µ = P ξ ) ∈ [0, T ) × P 2 (R d ), α ∈ A, we have from (5.6)

W 2 (P t,µ T , µ) ≤ E|X t,ξ T -ξ| 2 1 2 ≤ C(1 + µ 2 )|T -t| 1 2 , (5.7) 
for some positive constant C (independent of t, µ, α). This means that P t,µ T converges to µ in P 2 (R d ) when t ր T , uniformly in α ∈ A. Now, from the definition of v in (3.8), we have

|v(t, µ) -ĝ(µ)| ≤ sup α∈A T t f (s, P t,µ
s , α(s, ., P t,µ s )) ds + ĝ(P t,µ T ) -ĝ(µ)

≤ C(1 + µ 2 2 )|T -t| + sup α∈A ĝ(P t,µ T ) -ĝ(µ) , (5.8) 
from the growth condition on f in (H2'). By the continuity assumption on g together with the growth condition on g in (H2'), which allows to use dominated convergence theorem, we deduce from (5.7) that ĝ(P t,µ T ) converges to ĝ(µ) when t ր T , uniformly in α ∈ A. This proves by (5.8) that v(t, µ) converges to ĝ(µ) when t ր T , i.e. v * (T, µ) = v * (T, µ) = ĝ(µ) = v(T, µ), and equivalently that V (T, ξ) converges to Ĝ(ξ) when t ր T , i.e. V * (T, ξ) = V * (T, µ) = Ĝ(ξ) = V (T, ξ),

Let us now prove the viscosity subsolution property of V on [0, T ) × L 2 (F 0 ; R d ). Fix (t 0 , ξ 0 ) ∈ [0, T ) × L 2 (F 0 ; R d ), and consider some test function Φ ∈ C 2 ℓ ([0, T ] × L 2 (F 0 ; R d )) such that V * -Φ has a maximum at (t 0 , ξ 0 ), and w.l.o.g. V * (t 0 , ξ 0 ) = Φ(t 0 , ξ 0 ), so that V * ≤ Φ. By definition of V * (t 0 , ξ 0 ), there exists a sequence (

t n , ξ n ) n in [0, T ) × L 2 (F 0 ; R d ) s.t. (t n , ξ n ) -→ (t 0 , ξ 0 ), V (t n , ξ n ) -→ V * (t 0 , ξ 0 ),
as n goes to infinity. By continuity of Φ, we have 

γ n := (V -Φ)(t n , ξ n ) -→ (V * -Φ)(t 0 , ξ 0 ) = 0,
> ds Recall that W 2 (µ n , µ 0 ) ≤ E|ξ n -ξ 0 | 2 1 2
, where µ 0 = P ξ 0 , which shows that µ n → µ 0 in P 2 (R d ) as n goes to infinity. By the continuity of b, σ, f, ϕ on their respective domains, the flow continuity property (5.6), we then obtain by sending n to infinity in the above inequality:

0 ≤ f (t 0 , µ 0 , α) + ∂ϕ ∂t (t 0 , µ 0 )+ < L α t 0 ϕ(t 0 , µ 0 ), µ 0 >, Since α is arbitrary in L(R d ; A), this shows - ∂ϕ ∂t (t 0 , µ 0 ) + H(t 0 , µ 0 , ∂ µ ϕ(t 0 , µ 0 ), ∂ x ∂ µ ϕ(t 0 , µ 0 )) ≤ 0,
and thus at the lifted level:

-∂Φ ∂t (t 0 , ξ 0 ) + H(t 0 , ξ 0 , DΦ(t 0 , ξ 0 ), D 2 Φ(t 0 , ξ 0 )) ≤ 0, which is the required viscosity subsolution property. We proceed finally with the viscosity supersolution property. Fix (t 0 , ξ 0 ) ∈ [0, T ) × L 2 (F 0 ; R d ), and consider some test function Φ ∈ C 2 ℓ ([0, T ] × L 2 (F 0 ; R d )) such that V * -Φ has a minimum at (t 0 , ξ 0 ), and w.l.o.g. V * (t 0 , ξ 0 ) = Φ(t 0 , ξ 0 ), so that V * ≥ Φ. Again, by definition of V * (t 0 , ξ 0 ), there exists a sequence (t n , ξ n ) n in [0, T ) × L 2 (F; R d ) s.t. (t n , ξ n ) -→ (t 0 , ξ 0 ), and V (t n , ξ n ) -→ V * (t 0 , ξ 0 ) as n goes to infinity. We set γ n := (V -Φ)(t n , ξ n ), which converges to zero, and we consider a strictly positive sequence (h n ) converging to zero and s.t. γ n /h n also converges to zero. Consider the inverse-lifted function of Φ, namely ϕ ∈ C By sending n to infinity together with the continuity assumption in (H1')-(H2') of b, σ, f, ϕ, uniformly in a ∈ A, and the flow continuity property (5.6), we get

). Since v(t, µ) = V (t, ξ) ≥ V * (t, ξ) ≥ Φ(t, ξ) = ϕ(t, µ) for all (t, µ = P ξ ) ∈ [0, T ] × P 2 (R d ), this implies γ n h n + h n ≥ 1 
- ∂ϕ ∂t (t 0 , µ 0 ) + H(t 0 , µ 0 , ∂ µ ϕ(t 0 , µ 0 ), ∂ x ∂ µ ϕ(t 0 , µ 0 )) ≥ 0,
which gives the required viscosity supersolution property of V * , and ends the proof. 2

We finally turn to comparison principle (hence uniqueness result) for the Bellman equation (3.15) (or (5.1)), hence equivalently for the lifted Bellman equation (5.3), which shall follow from comparison results for second order Hamilton-Jacobi equations in separable Hilbert space stated in [START_REF] Lions | Viscosity solutions of fully nonlinear second-order equations and optimal control in infinite dimension. Part III: Uniqueness of viscosity solutions for general second-order equations[END_REF], see also [START_REF] Fabbri | Stochastic optimal control in infinite dimension: dynamic programming and HJB equations[END_REF]. We shall assume that the σ-algebra F 0 is countably generated upto null sets, which ensures that the Hilbert space L 2 (F 0 ; R d ) is separable, see [START_REF] Doob | Measure Theory[END_REF], p. 92. This is satisfied for example when F 0 is the Borel σ-algebra of a canonical space Ω 0 of continuous functions on R + , in which case, F 0 = ∨ s≥0 F B 0 s , where (F B 0 s ) is the canonical filtration on Ω 0 , and it is then known that F 0 is countably generated, see for instance Exercise 4.21 in Chapter 1 of [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]. Proposition 5.2 Let u and w be two functions defined on [0, T ] × P 2 (R d ) satisfying a quadratic growth condition such that u (resp. w) is an upper (resp. lower) semicontinuous viscosity subsolution (resp. supersolution) to (3.15). Then u ≤ w. Consequently, the value function v is the unique viscosity solution to the Bellman equation (3.15) satisfying a quadratic growth condition (5.5).

Proof. In view of our definition 5.1 of viscosity solution, we have to show a comparison principle for viscosity solutions to the lifted Bellman equation (5.3). We use the comparison principle proved in Theorem 3.50 in [START_REF] Fabbri | Stochastic optimal control in infinite dimension: dynamic programming and HJB equations[END_REF] and only need to check that the hypotheses of this theorem are satisfied in our context for the lifted Hamiltonian H defined in (5.4). Notice that the lifted Bellman equation (5.3) is a bounded equation in the terminology of [START_REF] Fabbri | Stochastic optimal control in infinite dimension: dynamic programming and HJB equations[END_REF] (see their section 3.3.1) meaning that there is no linear dissipative operator on L 2 (F 0 ; R d ) in the equation. Therefore, the notion of B-continuity reduces to the standard notion of continuity in L 2 (F 0 ; R d ) since one can take for B the identity operator. Their Hypothesis 3.44 follows from the uniform continuity of b, σ, and f in (H1')-(H2'). Hypothesis 3.45 is immediately satisfied since there is no discount factor in our equation, i.e. H does not depend on V but only on its derivatives. The monotonicity condition in Q ∈ S(L 2 (F 0 ; R d )) of H in Hypothesis 3.46 is clearly satisfied. Hypothesis 3.47 holds directly when dealing with bounded equations. Hypothesis 3.48 is obtained from the Lipschitz condition of b, σ in (H1'), and the uniform continuity condition on f in (H2'), while Hypothesis 3.49 follows from the quadratic growth condition of σ in (H1'). One can then apply Theorem 3.50 in [START_REF] Fabbri | Stochastic optimal control in infinite dimension: dynamic programming and HJB equations[END_REF] and conclude that comparison principle holds for the Bellman equation (5.3), hence for the Bellman equation (3.15). 2

The case of open-loop controls

In this section, we discuss how one can consider more generally open-loop controls instead of (Lipschitz) closed-loop controls as imposed in the previous sections. We shall restrict our framework to usual controlled McKean-Vlasov SDE with coefficients that do not depend on the law of the control but only on the law of the state process, hence in the form dX s = b(s, X s , α s , P Xs )ds + σ(s, X s , α s , P Xs )dB s , (6. 

for some positive constant C. We denote by A o the set of F-progressive processes α valued in A, assumed for simplicity here to be a compact space of R m , and consider the McKean-Vlasov control problem with open-loop controls when there is no running cost:

V 0 := inf α∈Ao E g(X T , P X T ) .

Under (6.2), and given t ∈ [0, T ], ξ ∈ L 2 (F t ; R d ), α ∈ A o , there exists a unique (pathwise and in law) solution X t,ξ s = X t,ξ,α s , t ≤ s ≤ T , solution to (6.1) starting from ξ at time t, satisfying

E sup t≤s≤T |X t,ξ s | 2 ≤ C 1 + E|ξ| 2 ),
for some positive constant C independent of α ∈ A o . As in (3.5), one can then define the flow P t,µ s = P t,µ,α s , t ≤ s ≤ T , µ ∈ P 2 (R d ), α ∈ A o , of the law of X t,ξ s , for µ = P ξ , and it satisfies the flow property (3.6). We then define the value function in the Wasserstein space for all 0 ≤ t ≤ θ ≤ T , µ = P ξ ∈ P 2 (R d ). It would be possible to consider a nonzero running cost function f , but in this case, one could not reformulate the value function v o as a deterministic control problem as in (6.3), and instead one has to consider the pair (X t , P X t ) as state variable in order to state a dynamic programming principle. This will be investigated in detail in [START_REF] Bayraktar | Randomized dynamic programming principle and Feynman-Kac representation for optimal control of McKean-Vlasov dynamics[END_REF]. From Itô's formula (3.14), the infinitesimal version of the above DPP leads to the dynamic programming Bellman equation: 

-∂ t v

  the Hamiltonian function related to the Bellman equation (3.15) rewritten as:

  Here B, B, D, D are deterministic continuous functions valued in R d×d , and C, C, F , F are deterministic continuous functions valued in R d×m , and b 0 , σ 0 are deterministic continuous function valued in R d . The quadratic cost functions are given by

3 )

 3 for any (t, µ) ∈ [0, T ) × P 2 (R d ), α ∈ L(R d ; A) (here with A = R m ), where we set for any Λ in S d (resp. in S m ), and µ ∈ P 2 (R d ) (resp. P 2 (R m )): μ2 (Λ) :=x ⊺ Λxµ(dx), Var(µ)(Λ) := μ2 (Λ) -μ⊺ Λμ.

  into the LQ McKean-Vlasov framework (4.1)-(4.2) with d = m = 1 and
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 1251 ([0, T ] × P 2 (R d )), called inverse-lifted function of Φ. We say that a locally bounded function u : [0, T ]×P 2 (R d ) → R is a viscosity (sub, super) solution to (5.1) if the lifted function

Proposition 5 . 1

 51 The value function v is a viscosity solution to the Bellman equation (3.15).

1 )

 1 where b, σ are measurable functions from[0, T ] × R d × A × P 2 (R d ) into R d , respectively R d×n , satisfying a Lipschitz condition: for all t ∈ [0, T ], x, x ′ ∈ R d , a ∈ A, µ, µ ′ ∈ P 2 (R d ), |b(t, x, a, µ) -b(t, x ′ , a, µ ′ )| + |σ(t, x, a, µ) -σ(t, x ′ , a, µ ′ )| ≤ C |x -x ′ | + W 2 (µ, µ ′ ) ,

  v o (t, µ) := inf α∈Ao ĝ(P t,µ T ), t ∈ [0, T ], µ ∈ P 2 (R d ),(6.3)so that V 0 = v o (0, P X 0 ).Since the set of open-loop controls is larger than the set of feedback controls, it is clear that v o is smaller than v the value function to the McKean-Vlasov control problem with feedback controls considered in the previous sections. By similar arguments as in Theorem 3.1, one can show the DPP for the value function with open-loop controls, namely: v o (t, µ) = inf α∈Ao v o (θ, P t,µ θ ),

  1) with α ∈ Lip([0, T ] × R d × P 2 (R d ); A). We shall often identify α ∈ A with α in Lip([0, T ] × R d × P 2 (R d ); A) via (3.1), and we see that any α in A is square-integrable: E[ For any α ∈ L(R d ; A), the set of Lipschitz functions from R d into A, we denote by Idα the function

	T 0 |α t | 2 dt] < ∞, by (2.2) and Gronwall's lemma.
	Let us now check the flow property of the marginal distribution process P X t = P X α t	for
	any admissible control α in A.	

  In the final step, let us apply the same Itô's argument (3.17) with the feedback control α * ∈ A associated with the fonction α * ∈ Lip([0, T ] × R d × P 2 (R d ); A).

				Since α attains the
	infimum in (3.15), we thus get			
	ĝ(P t,µ T ) = w(t, µ) -	t	T	f (s, P t,µ s , α * (s, ., P t,µ s ))ds,
	which shows that w(t, µ) = J(t, µ, α			
				ξ s , P t,µ s ), Idα(s, ., P t,µ s ) ⋆ P t,µ s ) ds
	= w(t, µ) +			

T t ∂w ∂t (s, P t,µ s ) + < L α(s,.,P t,µ s ) s w(s, P t,µ s ), P t,µ s > ds,

(3.17) 

where we used in the second equality the fact that P t,µ s is the distribution of X t,ξ s for s ∈ [t, T ]. Since x → α(s, ., P t,µ s ) ∈ L(R d ; A) for s ∈ [t, T ], we deduce from the Bellman equation satisfied by w and (3.17) that ĝ(P t,µ T ) ≥ w(t, µ) -T t f (s, P t,µ s , α(s, ., P t,µ s ))ds. Since α is arbitrary in A, this shows that w(t, µ) ≤ v(t, µ). * ) (≥ v(t, µ)), and therefore gives the required result:

  there exists â(t, x) attaining the argmin in(3.18), s.t. the map x → â(t, x) is Lipschitz on R d .Let us then consider the function defined on [0, T ] × P 2 (R d ) by

  .[START_REF] Feng | A comparison principle for Hamilton-Jacobi equations related to controlled gradient flows in infinite dimensions[END_REF] Indeed, the inequality ≥ in (3.[START_REF] Feng | A comparison principle for Hamilton-Jacobi equations related to controlled gradient flows in infinite dimensions[END_REF]) is clear since α(x) lies in A for all x ∈ R d , and α ∈ L(R d ; A). Conversely, by taking â(t, x) which attains the infimum in(3.18), and since the map x ∈ R d → â(t, x) is Lipschitz, we then have

  2 4 Application: linear-quadratic McKean-Vlasov control problem

	We consider a multivariate linear McKean-Vlasov controlled dynamics with coefficients
	given by	b(t, x, µ, a, λ) = b 0 (t) + B(t)x + B(t)μ + C(t)a + C(t) λ, σ(t, x, µ, a, λ) = σ 0 (t) + D(t)x + D(t)μ + F (t)a + F (t) λ,	(4.1)

  and let (h n ) be a strictly positive sequence s.t. h n → 0 and γ n /h n → 0. Consider the inverse-lifted function of Φ, namely ϕ :[0, T ] × P 2 (R d ) → R defined by ϕ(t, µ) = Φ(t, ξ) for t ∈ [0, T ] and µ = P ξ ∈ P 2 (R d ), and recall that ϕ ∈ C 1,2 b ([0, T ] × P 2 (R d )). Let α be an arbitrary element in L(R d ; A), and consider the time-independent feedback control α ∈ A associated with α. From the DPP (3.10) applied to v(t n , µ n ), with µ n = P ξn , we have v(t n , µ n ) ≤

							tn+hn tn	f (s, P tn,µn s	, α)ds + v(t n + h n , P tn,µn tn+hn ).
	Since v(t, µ) = V (t, ξ) ≤ V * (t, ξ) ≤ Φ(t, ξ) = ϕ(t, µ) for all (t, µ = P ξ ) ∈ [0, T ] × P 2 (R d ),
	this implies								
		γ n h n	≤	1 h n	tn+hn tn	f (s, P tn,µn s	, α)ds +	ϕ(t n + h n , P tn,µn tn+hn ) -ϕ(t n , µ n ) h n	.
	Applying Itô's formula (3.14) (similarly as in the verification theorem 3.1) to ϕ(s, P tn,µn s	)
	between t n and t n + h n , we get			
	γ n h n	≤	1 h n	tn+hn tn	f (s, P tn,µn s	, α) +	∂ϕ ∂t	(s, P tn,µn s	)+ < L α s ϕ(s, P tn,µn s	), P tn,µn s

  1,2 b ([0, T ] × P 2 (R d )) defined by ϕ(t, µ) = Φ(t, ξ) for t ∈ [0, T ] and µ = P ξ ∈ P 2 (R d ).From the DPP (3.10), for each n, and denoting by µ n = P ξn ∈ P 2 (R d ), there exists α n ∈ A associated to a feedback control αn ∈ Lip([0, T ] × R d × P 2 (R d ); A) s.t.

	v(t n , µ n ) + h 2 n ≥	tn tn+hn	f (s, P tn,µn

s

, αn )ds + v(t n + h n , P tn,µn tn+hn

  o (t, µ) + H o t, µ, ∂ µ v o (t, µ), ∂ x ∂ µ v o (t, µ) = 0, on [0, T ) × P 2 (R d ), v o (T, .) = ĝ, on P 2 (R d ) (6.4)where H o is the function defined byH o (t, µ, p, Γ) := -inf α∈Ao E p(ξ).b(t, ξ, α t , µ) + 1 2 tr Γ(ξ)σσ ⊺ (t, ξ, α t , µ) , for (t, µ) ∈ [0, T ] × P 2 (R d ), (p, Γ) ∈ L 2 µ (R d ) × L ∞ µ (S d), and with P ξ = µ. Similarly as in Propositions 3.1 and 5.2, one can show a verification theorem for v o and prove that v o is the unique viscosity solution to(6.4).For any α ∈ L(R d ; A), it is clear that the control α defined by α s = α(ξ), t ≤ s ≤ T , lies in A o , so thatH o (t, µ, p, Γ) ≥ -infthe Hamiltonian in (5.2) for the McKean-Vlasov control problem with feedback control. This inequality H o ≥ H combined with comparison principle for the Bellman equation (6.4) is consistent with the inequality v ≥ v o . If we could prove that H o is equal to H (which is not trivial in general), then this would show that v o is equal to v, i.e. the value functions to the McKean-Vlasov control problems with open-loop and feedback controls coincide. Actually, we notice that the minimization over the infinite dimensional space A o in the Hamiltonian H o can be reduced into a minimization over the finite dimensional space A, namely: Indeed, it is clear that H o ≤ Ho . Conversely, by continuity of the coefficients b, σ w.r.t. the argument a lying the compact space A, and invoking a measurable selection theorem, one can find for any (t, µ, p, Γ)∈ [0, T ] × P 2 (R d ) × L 2 µ (R d ) × L ∞ µ (S d ), some measurable function x ∈ R d → â(t, x, µ, p(x), Γ(x)) = α(x) s.t. for all x ∈ R d , = ĝ, on P 2 (R d ), such that for all (t, µ) ∈ [0, T )×P 2 (R d ), the element x → â(t, x, µ, ∂ µ w(t, µ)(x), ∂ x ∂ µ w(t, µ)(x)) achieving theinfimum in the definition of Ho t, µ, ∂ µ w(t, µ), ∂ x ∂ µ w(t, µ) , is Lipschitz, i.e. lies in L(R d ; A), then (recall also Remark 3.2) Ho t, µ, ∂ µ w(t, µ), ∂ x ∂ µ w(t, µ) = H t, µ, ∂ µ w(t, µ), ∂ x ∂ µ w(t, µ) , which shows with (6.5) that w solves both the Bellman equations (6.4) and (5.1). By comparison principle, we conclude that w = v = v o , which means in this case that the value functions to the McKean-Vlasov control problems with open-loop and feedback controls coincide. Such condition was satisfied for example in the case of the mean-variance portfolio selection problem studied in paragraph 4.1.

	H o (t, µ, p, Γ) = Ho (t, µ, p, Γ)		(6.5)
	:= -< inf a∈A	p(.).b(t, ., a, µ) +	1 2	tr Γ(.)σσ ⊺ (t, ., a, µ) , µ > .
	inf a∈A	p(x).b(t, x, a, µ) +	1 2	tr Γ(x)σσ

α∈L(R

d ;A) E p(ξ).b(t, ξ, α(ξ), µ) + 1 2 tr Γ(ξ)σσ ⊺ (t, ξ, α(ξ), µ) = H(t, µ, p, Γ), with H ⊺ (t, x, a, µ) = p(x).b(t, x, α(x), µ) + 1 2 tr Γ(x)σσ ⊺ (t, x, α(x), µ) .

By integrating w.r.t. µ = P ξ , we then get Ho (t, µ, p, Γ) = -E p(ξ).b(t, ξ, α(ξ), µ) + 1 2 tr Γ(ξ)σσ ⊺ (t, ξ, α(ξ), µ)

≤ H o (t, µ, p, Γ),

which shows the equality (6.5). Suppose now that there exists some smooth solution w on [0, T ] × P 2 (R d ) to the equation:

-∂ t w(t, µ) + Ho t, µ, ∂ µ w(t, µ), ∂ x ∂ µ w(t, µ) = 0, on [0, T ) × P 2 (R d ), w(T, .)
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