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Super-linear spreading in local and non-local cane toads equations

In this paper, we show super-linear propagation in a nonlocal reaction-diffusion-mutation equation modeling the invasion of cane toads in Australia that has attracted attention recently from the mathematical point of view. The population of toads is structured by a phenotypical trait that governs the spatial diffusion. In this paper, we are concerned with the case when the diffusivity can take unbounded values, and we prove that the population spreads as t 3/2 . We also get the sharp rate of spreading in a related local model.

Introduction

The invasion of cane toads in Australia has interesting features different from the standard spreading observed in most other species. The experimental data [START_REF] Phillips | Invasion and the evolution of speed in toads[END_REF][START_REF] Shine | An evolutionary process that assembles phenotypes through space rather than through time[END_REF] show that the invasion speed has steadily increased during the eighty years since the toads were introduced in Australia. In addition, the younger individuals at the edge of the invasion front have a significantly different morphology compared to other populations -their legs tend to be on average much longer than away from the front. This is just one example of a non-uniform space-trait distribution -see, for instance, a study on the expansion of bush crickets in Britain [START_REF] Thomas | Ecological and evolutionary processes at expanding range margins[END_REF]. Several works have addressed the front invasions in ecology, where the trait is related to the dispersal ability [START_REF] Arnold | Existence of nontrivial steady states for populations structured with respect to space and a continuous trait[END_REF][START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF]. It has been observed that selection of more mobile individuals can occur, even if they have no advantage in their reproductive rate, due to the spatial sorting [START_REF] Thomas | Changes in dispersal during species' range expansions[END_REF][START_REF] Kokko | From individual dispersal to species ranges: Perspectives for a changing world[END_REF][START_REF] Phillips | Invasion and the evolution of speed in toads[END_REF][START_REF] Ronce | How does it feel to be like a rolling stone? Ten questions about dispersal evolution[END_REF].

In this paper, we focus on the super-linear in time propagation in a model of the cane toads invasion proposed in [START_REF] Bénichou | Front acceleration by dynamic selection in fisher population waves[END_REF], based on the classical Fisher-KPP equation [START_REF] Fisher | The wave of advance of advantageous genes[END_REF][START_REF] Kolmogorov | Étude de l'équation de la chaleurde matière et son application à un problème biologique[END_REF]. The population density is structured by a spatial variable, x ∈ R, and a motility variable θ ∈ Θ def = [θ, ∞), with a fixed θ > 0. This population undergoes diffusion in the trait variable θ, with a constant diffusion coefficient α > 0, representing mutation, and in the spatial variable, with the diffusion coefficient θ, representing the effect of the trait on the spreading rates of the species. Thus, neglecting the competition and reproduction, the population model for the population density u(t, x, θ) would be u t = θu xx + αu θθ .

(1.1)

It is also natural to consider a non-local in trait competition (but still local in space), which leads to n t = θn xx + αn θθ + rn(S -ρ),

where ρ(t, x) = ˆ∞ θ n(t, x, θ)dθ (1.4) is the total population at the position x.

Both (1.2) and (1.3) are supplemented by the Neumann boundary condition at θ = θ: u θ (t, x, θ) = 0, t > 0, x ∈ R.

(1.5)

The non-dimensional versions of (1.2) and (1.3) are, respectively,

u t = θu xx + u θθ + u(1 -u), t > 0, x ∈ R, θ ∈ Θ, (1.6) 
and

n t = θn xx + n θθ + n(1 -ρ), ρ(t, x) = ˆ∞ θ n(t, x, θ)dθ, t > 0, x ∈ R, θ ∈ Θ. (1.7) 
In general, the speed of propagation in the Fisher-KPP type equations is determined by the linearization around zero, that is, with the terms u(1 -u) in (1.6) and n(1 -ρ) in (1.7) replaced by u and n, respectively. Since the linearizations of (1.6) and (1.7) are identical, we expect both models to have the same propagation speed.

Models involving non-local reaction terms have been the subject of intense study in recent years due to the complexity of the dynamics -see, for example, [START_REF] Alfaro | Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait[END_REF][START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF][START_REF] Faye | Modulated traveling fronts for a nonlocal Fisher-KPP equation: a dynamical systems approach[END_REF][START_REF] Hamel | On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds[END_REF][START_REF] Nadin | Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation[END_REF][START_REF] Nadin | Wave-like solutions for nonlocal reactiondiffusion equations: a toy model[END_REF] and references therein. The cane toads equation has similarly attracted recent interest, mostly when the motility set Θ is a finite interval. An Hamilton-Jacobi framework has been formally applied to the non-local model in [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF], and rigorously justified in [START_REF] Turanova | On a model of a population with variable motility[END_REF]. In these works, the authors obtain the speed of propagation and the expected repartition of traits at the edge of the front by solving a spectral problem in the trait variable. The existence of traveling waves has been proved in [START_REF] Bouin | Travelling waves for the cane toads equation with bounded traits[END_REF]. The precise asymptotics of the front location for the Cauchy problem, up to a constant shift has been obtained in [START_REF] Bouin | The Bramson delay in the cane toads equations[END_REF] by using a Harnack-type inequality that allows one to compare the solutions of the non-local equation to those of a local equation, whose dynamics are well-understood [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF].

As far as unbounded traits are concerned, a formal argument in [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF] using a Hamilton-Jacobi framework predicted front acceleration and spreading rate of O(t 3/2 ). In this paper, we give a rigorous proof of this spreading rate both in the local and non-local models. This is an addition to the growing list of "accelerating fronts" that have attracted some interest in recent years [START_REF] Bouin | Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts[END_REF][START_REF] Cabré | Propagation in Fisher-KPP type equations with fractional diffusion in periodic media[END_REF][START_REF] Cabré | The influence of fractional diffusion in Fisher-KPP equations[END_REF][START_REF] Coulon | Transition between linear and exponential propagation in Fisher-KPP type reaction-diffusion equations[END_REF][START_REF] Garnier | Accelerating solutions in integro-differential equations[END_REF][START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF][START_REF] Henderson | Propagation of solutions to the Fisher-KPP equation with slowly decaying initial data[END_REF][START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity[END_REF].

The local case

Our first result concerns the local equation (1.6).

Theorem 1.1 (Acceleration in the local cane toads model). Let u(t, x) be the solution of the local equation (1.6), with the boundary condition (1.5), and the initial condition u(0, x) = u 0 (x) ≥ 0. Assume that u 0 (x) is compactly supported, and fix any constant m ∈ (0, 1), then

lim t→∞ max{x ∈ R : ∃θ ∈ Θ, u(t, x, θ) = m} t 3/2 = 4 3 , (1.8) 
The limit is uniform in m ∈ [ε, 1 -ε], for any ε > 0 fixed.

The assumption that u 0 is compactly supported is made purely for convenience, one could allow more general rapidly decaying or front-like initial conditions. The proof of Theorem 1.1 is in two steps. First, we show that the Hamilton-Jacobi framework provides a super-solution to (1.6), and gives the upper bound of the limit in (1.8) -see Proposition 3.1. Second, we prove the lower bound to the limit in (1.8) by constructing a sub-solution to u. This is done in Proposition 4.2. The argument involves building a sub-solution to (1.8) on a traveling ball with the Dirichlet boundary conditions, whose path comes from the Hamilton-Jacobi framework discussed above. These subsolutions are arbitrarily small initially but become bounded uniformly away from zero on any compact subset of the traveling ball for large time. The analysis is complicated by the fact that the diffusivity is unbounded in the θ direction. It is crucial to match the upper bound that we use the optimal paths coming from the Hamilton-Jacobi framework.

The non-local case

Our second main result shows that the full non-local model (1.7) exhibits a similar front acceleration. There exists a positive constant c ε , depending only on ε, such that

8 3 3 √ 3 (1 -ε) ≤ lim sup t→∞ max {x ∈ R : ρ(t, x) ≥ c ε } t 3/2 . (1.9)
In addition, if m is any constant in (0, 1), then we have that

lim sup t→∞ max{x ∈ R : ρ(t, x) ≥ m} t 3/2 ≤ 4 3 . (1.10)
In contrast to the sharp bound provided by Theorem 1.1, Theorem 1.2 does not have matching lower and upper bounds. This is due to the lack of a comparison principle for (1.7). The proof of the lower bound involves arguing by contradiction in order to compare (1.7) to a solution of the local, linear equation defined on a moving ball with the Dirichlet boundary conditions. This causes the lim sup to appear in (1.9), as opposed to the more desirable lim inf. In addition, because the optimal Hamilton-Jacobi trajectories trajectories are initially almost purely in the θ direction, we can not use them to move the "Dirichlet ball", and are forced to use non-optimal trajectories, leading to the sub-optimal constant 8/(3 3 √ 3) in (1.9). We comment on this in Section 4.2. We believe that the sharp result would have the lower bound matching the upper bound (1.10). The proof of the upper bound is given by Proposition 3.1 below, as in the local case, while the proof of the lower bound and an explicit bound on c ε are given by Proposition 4.3. We also note that in general non-local Fisher-KPP type equations the stability of the steady state u ≡ 1 may fail [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF][START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF][START_REF] Gourley | Travelling front solutions of a nonlocal Fisher equation[END_REF]. Thus, it is not surprising that we are restricted to working with the level sets of certain heights c ε in (1.9) -this mirrors the propagation results in [START_REF] Hamel | On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds[END_REF].

We should mention the concurrent work by Berestycki, Mouhot, and Raoul [START_REF] Berestycki | Existence of self-accelerating fronts for a non-local reaction-diffusion equations[END_REF], who use a mix of probabilistic and analytic methods to prove the same sharp result in the local model (1.6). In addition, they prove the sharp asymptotics in a non-local model where ρ is replaced by a windowed non-local. Ecologically, the windowed term models a situation where individuals compete for resources only with individuals of a similar trait. The techniques of [START_REF] Berestycki | Existence of self-accelerating fronts for a non-local reaction-diffusion equations[END_REF] do not seem to apply to the full non-local model that we address here.

The rest of the paper is organized as follows. In Section 2 we recall some facts from [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF] on the Hamilton-Jacobi framework. Then we derive in Section 3 the upper bound common to Theorems 1.1 and 1.2 using an explicit super-solution that arises from the work in Section 2. The lower bound is then proved in Section 4. There, we first derive a general propagation result on the linearized equation by using the optimal paths from Section 2, re-scaling the equation appropriately, and using precise spectral estimates. We then use this result to obtain the lower bounds for the local and non-local models. Section 5 contains the proofs of some auxiliary results.
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The Hamilton-Jacobi solutions

In this section, we recall how a suitable scaling limit of the cane toads equation can formally give the acceleration rate [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF]. The analysis of this section will be used in the rest of the paper to construct "good" sub-and super-solutions to the local and local equations (1.6) and (1.7). We will focus on the linearized equation

u t = θu xx + u θθ + u. (2.1) Writing u(t, x) = e t v(t, x),
we reduce it to

v t = θv xx + v θθ . (2.2)
One obvious solution to this equation is

v(t, θ) = 1 √ 4πt e -θ 2 /(4t) ,
which also provides a spatially uniform super-solution to (2.1): v(t, θ) = e t-θ 2 /(4t) .

(2.3) However, the function v(t, θ) has no decay in x, and is not useful in the spatial regions where we expect the solution of the full cane toads equation to be small. In order to construct another super-solution to (2.2), with decay in space, we rescale (2.2) setting

v ε (t, x, θ) = v t ε , x ε 3/2 , θ ε .
The function u ε (t, x, θ) satisfies

ε∂ t u ε = ε 2 θ∂ 2 xx u ε + ε 2 ∂ 2 θθ u ε .
We perform the Hopf-Cole transformation

u ε = exp{-ϕ ε /ε}, so that ∂ t ϕ ε + θ|ϕ ε x | 2 + |ϕ ε θ | 2 = εθϕ ε xx + εϕ ε θθ , (2.4) 
and obtain, in the formal limit as ε → 0, the Hamilton-Jacobi equation

∂ t ψ + θ|ψ x | 2 + |ψ θ | 2 = 0. (2.5) 
We will use the solutions of this Hamilton-Jacobi equation to construct sub-and super-solutions to the original problem. The Hopf-Cole transformation is an effective tool in the analysis of front propagation for reaction-diffusion equations -see, for instance, [START_REF] Barles | Wavefront propagation for reaction-diffusion systems of PDE[END_REF][START_REF] Evans | A PDE approach to geometric optics for certain semilinear parabolic equations[END_REF][START_REF] Fleming | PDE-viscosity solution approach to some problems of large deviations[END_REF], including parabolic integrodifferential equations modeling populations structured by a phenotypical trait (see [START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF][START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]).

A "heat kernel" solution of the Hamilton-Jacobi equation

Let us consider the Hamilton-Jacobi equation (2.5) with the initial condition

ψ(t = 0, x, θ) = 0 if (x, θ) = (0, 0) +∞ if (x, θ) = (0, 0). (2.6)
The reason for this choice of the initial data is clear: for the standard heat equation, the Hamilton-Jacobi equation would be

ψ t + |ψ x | 2 = 0, (2.7) 
and the solution is simply

ψ(t, x) = x 2 4t , (2.8) 
leading to the standard heat kernel. The Hamiltonian for (2.5) is

H((x, θ), (p x , p θ )) = θ|p x | 2 + |p θ | 2 , (2.9) 
and the corresponding Lagrangian is

L((x, θ), (v x , v θ )) = v 2 x 4θ + v 2 θ 4 .
(2.10)

Using the Lax-Oleinik formula to solve (2.5), we get ψ(t, x, θ) = inf w∈C 1 ˆt 0 L(w(s), ẇ(s))ds w(0) = (x, θ), w(t) = (0, 0) .

(2.11)

The optimal trajectory given by the Hamiltonian flow is the solution of

dX(s) ds = 2P x (s)θ(s), dθ(s) ds = 2P θ (s), dP x (s) ds = 0, dP θ (s) ds = -P x (s) 2 . hence d ds 1 θ(s) dX(s) ds = 0, d 2 θ(s) ds 2 = - 1 2 1 θ(s) dX(s) ds 2 .
Thus, there is a constant C such that

Ẋ(s) = Cθ(s), θ(s) = - C 2 2 , X(0) = x, θ(0) = θ, X(t) = 0, θ(t) = 0. (2.12)
Plugging this into the expression for ψ gives

ψ(t, x, θ) = ˆt 0 L(w(s), ẇ(s))ds = ˆt 0 1 4 Ẋ(s) 2 θ(s) + θ(s) 2 ds = C 4 ˆt 0 Ẋ(s)ds + t θ(t) 2 4 - 1 2 ˆt 0 s θ(s) θ(s)ds = - Cx 4 + t θ(t) 2 4 + C 2 4 ˆt 0 s θ(s)ds = - Cx 4 + t θ(t) 2 4 - C 2 4 ˆt 0 θ(s)ds = - Cx 4 + t θ(t) 2 4 + Cx 4 = t θ(t) 2 4 . (2.13) 
We now compute θ(t). From (2.12), we find that

θ(s) = - C 2 4 s 2 + C 2 t 4 - θ t s + θ, (2.14) 
which implies that

θ(t) = - θ t - C 2 4 t = - 1 t θ + C 2 t 2 4 . (2.15) 
To obtain a closed form for ψ, we need to find C. We use (2.12) to obtain

-x = ˆt 0 Ẋ(s)ds = C ˆt 0 θ(s)ds = C - C 2 t 3 12 + C 2 t 4 - θ t t 2 2 + θt = (Ct) 3 24 + θ(Ct) 2 .
It follows that Z = Ct/2 is the unique real solution of the cubic equation

Z 3 + 3θZ + 3x = 0. (2.16)
Combining (2.13), (2.15), and (2.16), we obtain an explicit formula for ψ(t, x):

ψ(t, x, θ) = 1 4t θ + Z(x, θ) 2 2 , (2.17) 
the analog of (2.8) for our problem.

Super-solutions with the diffusion

The function ψ(t, x) was obtained neglecting the right side in (2.4). It turns out, that, when the diffusion is taken into account, it still leads to a super-solution to the linearized cane toads equation

u t -θu xx -u θθ -u ≥ 0, (2.18) of the form ū(t, x, θ) = exp{t -ψ(t, x, θ)}, (2.19) 
or, more explicitly showing the difference with (2.3):

ū(t, x, θ) = exp t - 1 4t (θ + Z 2 (x, θ)) 2 . (2.20)
This function satisfies

ūt -θū xx -ūθθ -ū = ū -ψ t + θψ xx -θ|ψ x | 2 + ψ θθ -|ψ θ | 2 = ū θψ xx + ψ θθ . (2.21) Observe that 4t θψ xx + ψ θθ = 4θ((θ + Z 2 )ZZ x ) x + 2((θ + Z 2 )(1 + 2ZZ θ )) θ = 4(θ + Z 2 )(θ(ZZ x ) x + (ZZ θ ) θ ) + 8θ(ZZ x ) 2 + 2(1 + 2ZZ θ ) 2 ≥ 4(θ + Z 2 )Z (θZ xx + Z θθ ) . (2.22) 
We claim that, somewhat miraculously,

θZ xx + Z θθ = 0. (2.23) 
Indeed, we have

Z θ = - Z Z 2 + θ , Z x = - 1 Z 2 + θ , (2.24) 
so that

Z θθ = - Z θ (Z 2 + θ) -Z(2ZZ θ + 1) (Z 2 + θ) 2 = Z(Z 2 + θ) + θ -Z 2 Z (Z 2 + θ) 3 = 2Zθ (Z 2 + θ) 3 ,
and

Z xx = - 2Z (Z 2 + θ) 3 .
Thus, (2.23) holds and, as a consequence, (2.18) follows.

A level set of the super-solution and the optimal trajectories

The level set {ū(t, x, θ) = 1} is given by

θ + Z(x, θ) 2 = 2t.
(2.25)

Multiplying this equation by Z, and using (2.16), we get

3θZ + 3x = -(2t -θ) Z, (2.26) 
or

Z(x, θ) = - 3x 2(θ + t) . (2.27)
Inserting this back into (2.25), gives the equation for the level set {ū(t, x, θ) = 1}:

x 2 = 4 9 (2t -θ) (θ + t) 2 .
(2.28)

In order to compute the rightmost point of this level set at a given time t > 0, we differentiate (2.28) in θ. The critical points are determined by

0 = 2x ∂x ∂θ = 4 9 -(θ + t) 2 + 2(2t -θ)(θ + t) = 4 3 (t + θ)(t -θ),
and the maximum

x edge (t) = 4 3 t 3/2 (2.29) is attained at θ edge (t) = t.
With the maximal end-points in hand, we now compute the Lagrangian trajectories X(s), θ(s) which travel to the far edge (x edge (t), θ edge (t)). Using the general form (2.14) with the choice C = 2Z/t for θ(s), we obtain

θ(s) = -Z(x edge (t), θ edge (t)) 2 s t 2 + (Z(x edge (t), θ edge (t)) 2 -θ edge ) s t + θ edge (t).
Then using the expressions x edge (t) = 4t 3/2 /3 and θ edge (t) = t along with the expression (2.27) for Z, we obtain

θ(s) = - 9x edge (t) 2 16t 2 s t 2 + 9x edge (t) 2 16t 2 -t s t + t = t 1 - s t 2 .
(2.30)

We similarly deduce the trajectory for X(s). Indeed, we have from (2.12) and the definition of Z that X(s) = x edge (t) + 2Z t ˆs 0 θ(r)dr.

Using expression (2.29) for x edge (t) and (2.30), we get

X(s) = 4 3 t 3/2 - 1 t 3x edge θ edge + t ˆs 0 t 1 - r t 2 dr = 4 3 t 3/2 -2t 1/2 s - s 3 3t 2 = 4 3 t 3/2 1 - 3s 2t 1 - s 2 3t 2 .
To obtain the forward trajectories, we reverse time, that is, change variables from s → t -s, and with a slight abuse of notation, write

X(s) = 3 2 - s 2t s t 2 4 3 t 3/2 , and θ(s) = s 2 - s t . ( 2 

.31)

The minimum of ψ(t, x, θ)

In the sequel, we also need the minimum θ * (t, x) of ψ(t, x, θ) in θ ∈ Θ, for t and x fixed. We differentiate expression (2.17) for ψ(t, x, θ) with respect to θ:

ψ θ = 1 2t θ + Z 2 (1 + 2ZZ θ ) . (2.32)
Hence, the critical points satisfy

ZZ θ = - 1 2 . (2.33)
Using expression (2.24) for Z θ leads to (note that Z has the opposite sign of x)

Z = -θ * (x)sgn(x).
We insert this value into (2.16), and find

θ * (x) = 3 4 |x| 2/3 , (2.34) 
and

ψ(t, x, θ * (x)) = 1 t 3 4 |x| 4/3 . (2.35) 
Note that the internal minimum exists only if |x| is sufficiently large:

|x| > r c def = 4 3 θ 3/2 , (2.36) 
so that θ * (x) ≥ θ, otherwise the minimum of ψ(t, x, θ) is attained at θ = θ.

An upper bound

In this section, we construct an explicit super-solution for the local and nonlocal versions of the cane toads equation. This provides an upper bound on the spreading rate.

A super-solution

Ideally, we would take as a super-solution the function

u(t, x, θ) = ū(t + a, x, θ),
with ū as in (2. [START_REF] Coulon | Transition between linear and exponential propagation in Fisher-KPP type reaction-diffusion equations[END_REF]) with some suitably chosen a > 0. There is an obstacle: a super-solution, in addition to (2.18), should satisfy the boundary condition The level set {ū(t, x, θ) = 1} in the phase space (x, θ) for different values of time and the optimal trajectory, see also [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF]. We also plot the trajectories that lead to the edge of the front for various values of time. These latter trajectories are crucial for the paper.

u θ (t, x, θ) ≤ 0. ( 3 
The function ψ(t, x, θ) has a single minimum, either at

θ = θ, if |x| < r c , or at θ = θ * (x) if |x| > r c
, where we recall r c from (2.36). Hence, (3.2) can not hold for |x| > r c , and we need to modify u(t, x, θ) to turn it into a true super-solution.

To this end, we recall the other family of super-solutions, v(t, θ) given by (2.3):

v(t, θ) = e t-θ 2 /(4t) , (3.3) 
that do satisfy the boundary condition (3.1). As, on the other hand, v(t, θ) has no decay in x, we will only use it for x < 0. Let us define the set

Ω = {(x, θ) : x ≥ r c , and θ ≤ θ ≤ θ * (x)} . (3.4) 
We define our super-solution first on {x ≤ 0} and on {x ≥ 0} ∩ Ω c , but we extend it to all of R × Ω below. First, we define

ũ(t, x, θ) = C(a)v(t + a, θ), x ≤ 0, C(a)ū(t + a, x, θ), x ≥ 0, (x, θ) ∈ Ω c , (3.5) 
with the constant C(a) to be chosen later. Note that we have

v(t + a, θ) ≥ ū(t + a, x, θ), (3.6) 
with the equality holding only at x = 0, where we recall that Z(t, x = 0, θ) = 0. Hence, the function ũ It is a super-solution in the sense that

(t, x, θ) is C 1 in Ω c . C(a) exp t + a -θ 2 4(t+a) C(a) exp t + a -(θ+Z(x,θ) 2 ) 2
ũt -θũ xx -ũθθ -ũ ≥ 0 in Ω c , (3.7) 
ūθ (t, x, θ) ≤ 0 for all x ≤ r c .

In order to extend ũ into Ω as a C 1 -supersolution we simply set

ũ(t, x, θ) = C(a)ū(t, x, θ * (x)), for (x, θ) ∈ Ω, (3.8) 
or, more explicitly

ũ(t, x, θ) = C(a) exp t + a - 1 t + a 3x 4 4/3
, for (x, θ) ∈ Ω.

(3.9)

We need to verify that the extended function is C 1 and that it satisfies (3.7). Before we verify this, we point out that in order to apply the maximum principle, we only require that ũ is C 1 and is C 2 except on a smooth 1D set. As such, we need not worry that ũ is likely not C 2 on ∂Ω. The boundary condition in (3.7) is automatic since ũ does not depend on the variable θ in Ω. As θ * (x) is the minimum of ψ(t, x, θ) in θ, we have ũθ = 0 on both sides of the curve

Γ = ∂Ω = {(x, θ * (x)), x ≥ r c }.
It is easy to see that the x-derivatives of ũ match across Γ for the same reason, and the extended function is C 1 . We now compute in Ω:

ũt -θũ xx -ũθθ -ũ = ũ 1 (t + a) 2 3x 4 4/3 + 1 - θ (t + a) 2 3x 4 2/3 + θ t + a 3 2x 2/3 -1 ≥ ũ (t + a) 2 3x 4 2/3 3x 4 2/3 -θ = ũ (t + a) 2 3x 4 2/3 (θ * (x) -θ) ≥ 0,
as θ ≤ θ * (x) in Ω. Thus, the function ũ(t, x, θ) is a super-solution in the sense of (3.7) in the whole domain (x, θ) ∈ R × Θ: ũt -θũ xx -ũθθ -ũ ≥ 0 for all x ∈ R and θ ∈ Θ, (3.10) ũθ (t, x, θ) ≥ 0 for all x ∈ R.

An upper bound

We now use the above super-solution to give an upper bound for the speed of propagation for the local and non-local cane toads equations.

Proposition 3.1. Let u 0 ∈ L ∞ (R × Θ) be a non-zero, non-negative function such that u 0 ≤ 1 [-∞,xr]×[θ,θu]
for some x r ∈ R, θ u > θ. Fix any m > 0. Let u be a solution of either the local cane toads equation (1.6) or the non-local cane toads equation (1.7). Then the following upper bounds hold

lim t→∞ max{x ∈ R : ∃θ ∈ Θ, u(t, x, θ) ≥ m} t 3/2 ≤ 4 3 , and 
lim t→∞ max{x ∈ R : ρ(t, x, θ) ≥ m} t 3/2 ≤ 4 3 .
Proof. Whether u solves (1.6) or (1.7), it satisfies

u t -θu xx -u θθ -u ≤ 0, (t, x, θ) ∈ R + × R × Θ, u θ (t, x, 0) = 0, u(t = 0, x, θ) = u 0 (x, θ).
As a consequence, u is a sub-solution of the linearized cane toads equation. On the other hand, the function ũ(t, x, θ) defined by (3.5) and (3.9) is a super-solution, in the sense that (3.10) holds.

Let us choose a constant C(a) large enough so that, for all (x, θ) ∈ R × Θ, ũ(0, x, θ) ≥ u 0 (x, θ).

We deduce from the parabolic comparison principle that

u(t, x, θ) ≤ ũ(t, x, θ), (3.11) 
for all t ≥ 0, x ∈ R, and θ ∈ Θ.

We now use the explicit expression for ũ to obtain an upper bound on the location of the level sets of u. To this end, fix any m ∈ (0, 1). As θ * (x) is the minimum of the function ψ(t, x, θ), the rightmost point xm (t) of the level set {ũ(t, x, θ) = m} is where it intersects the curve θ = θ * (x):

xm (t) = 4 3 (t + a) 3/2 1 - 1 t + a log m C(a) 3/4 .
(3.12)

Using (3.11) and passing to the limit t → +∞, we obtain from (3.12):

lim t→∞ max{x ∈ R : ∃ θ ∈ Θ, u(t, x, θ) ≥ m} t 3 2 ≤ 4 3 .
This gives us an upper bound on the level sets of u, but we also need an upper bound on ρ. As follows from (3.11), it suffices to bound

ρ(t, x) = ˆ∞ θ ũ(t, x, θ)dθ.
Let us use m = m/10(t + a) in (3.12), so that

ũ(t, x m,t , θ) ≤ m 10(t + a)
, for all θ ≥ θ,

where we define x m,t = xm/10(t+a) (t). We recall that

θ * (x m,t ) = 3x m,t 4 2/3 . (3.13) 
Note that, for t large enough we have We now consider the integral from 5θ * (x m,t ) to ∞. We write, using (3.6) and (3.14):

ˆ∞ 5θ * (xm,t) ũ(t, x m,t , θ)dθ ≤ C(a) ˆ∞ 5θ * (xm,t) exp t + a - θ 2 4(t + a) dθ ≤ C ′ (a) t + a θ * (x m,t ) exp t + a - 25θ 2 * (x m,t ) 4(t + a) ≤ C ′ (a)e -(t+a)/10 .
If t is sufficiently large, depending only on a and m, the last two estimates give us

lim sup t→∞ ˆ∞ θ u(t, x m,t , θ)dθ ≤ m.
Since u is monotonic in the spatial variable x, we have, for any x ≥ 0 lim sup

t→∞ ρ(t, x + x m,t ) ≤ lim sup t→∞ ˆ∞ θ u(t, x + x m,t , θ)dθ ≤ lim sup t→∞ ˆ∞ θ u(t, x m,t , θ)dθ ≤ m.
Noticing that x m,t /t 3/2 tends to 4/3 as t → +∞ finishes the proof.

The lower bound

In this section, we obtain a lower bound on the propagation in the local and non-local cane toads equations. As we have mentioned, the idea is to construct sub-solutions of the linearized problem with the Dirichlet boundary condition on a moving boundary of a domain E(t), and then use them to deduce a lower bound on the solution of the nonlinear problem. The goal is to have E(t) move as fast as possible while ensuring that the solution of the linearized problem is O(1) -it neither grows too much, nor decays. This strategy is inspired by the proof of the Freidlin-Gärtner formula for the standard KPP equation by J.-M. Roquejoffre [START_REF] Roquejoffre | Lecture notes in a Toulouse school on KPP and probability[END_REF]; however, in contrast, the coefficients that arise in our formulation are non-periodic and so new estimates are required.

To this end, given some constants x c , θ c , and r, we define the ellipse

E xc,θc,R : = (x, θ) ∈ R × [θ, ∞] : (x -x c ) 2 θ c + (θ -θ c ) 2 ≤ R 2 . (4.1)
Given a large time T , we will move such an ellipse along some trajectories X T (t) and Θ T (t) on the time interval [0, T ], starting at a point (X T (0), Θ T (0)). We will denote Θ T (0) = H ≥ θ. Note that the equation is translationally invariant in x, so the starting point X T (0) is not important. The trajectories will satisfy certain conditions: first, they move "up and to the right":

ẊT (t) ≥ 0, θT (t) ≥ 0, for all 0 ≤ t ≤ T . (4.2)
Next, for all 0 ≤ t ≤ T , with some fixed ε > 0 we assume that either

L(X T (t), θ T (t), ẊT (t), θT (t)) ≤ 1 -2ε or Ẋ(t) = 0 = Θ(t). (4.3) 
Here, L(x, θ, v x , v θ ) is the Lagrangian given by (2.10):

L(x, θ, v x , v θ ) = v 2 x 4θ + v 2 θ 4 . (4.4) 
Finally, we assume that lim T,H→∞

ΘT (t) + ẌT (t) Θ T (t) = 0, uniformly in t ∈ [0, T ]. (4.5) 
We now state our main lemma, which we use in both the local and non-local settings.

Lemma 4.1. Consider any trajectories X T (t) and Θ T (t) on [0, T ] which satisfy the above assumptions, and fix ε > 0, δ > 0, and γ > 0 sufficiently small. There exist constants R ε , T ε,δ,γ , and H ε,γ such that for all R ≥ R ε , T ≥ T ε,δ,γ , and H ≥ H ε,γ , there is a function v which solves

               v t -θv xx -v θθ ≤ (1 -ε)v, (t, x, θ) ∈ R + × E X T (t),Θ T (t),R , v(t, x, θ) ≤ 1, (t, x, θ) ∈ [0, T ] × E X T (t),Θ T (t),R , v(t, x, θ) = 0, (t, x, θ) ∈ [0, T ] × ∂E X T (t),Θ T (t),R , v(0, x, θ) < δ, (x, θ) ∈ E X T (0),Θ T (0),R , (4.6) 
and such that v(T, •, •) L ∞ ≥ 1 -γ, and v(T, x, θ) ≥ C R for all (x, θ) ∈ E X T (T ),Θ T (T ),R/2 , with a constant C R > 0 that depends only on R. The constant R ε depends only on ǫ, the constant H ε,γ depends only on ε and γ, and T ε,δ,γ depends only on ε, δ, γ, and the rate of the limit in (4.5).

We apply Lemma 4.1 as follows. First, we use it to build a sub-solution along a sufficiently large ellipse moving along a suitably chosen trajectory (X T (t), Θ T (t)). In this step, we choose δ such that we may fit εv underneath the solution u so that u always stays above εv. Hence, u is at least of the size ǫC R near the point (X T (T ), Θ T (T )), after time T . Then we re-apply the lemma, with the trivial trajectory that remains fixed at the point (X T (T ), Θ T (T )) for all time, to build a sub-solution to u on the ellipse E X T (T ),Θ T (T ),R/2 that grows from εC R to any prescribed height m ∈ (0, 1) in O(1) time, depending on ǫ and m. It follows that u is at least of height m near (X T (T ), Θ(T )) after time T + O(1).

The proof of Lemma 4.1 involves estimates of the solution to a spectral problem posed on the moving domain E X T (t),Θ T (t),R after a suitable change of variables and a rescaling. We prove this lemma in Section 5 below.

The lower bound in the local equation

Here, we show that Lemma 4.1 allows us to propagate a constant amount of mass along trajectories that we choose carefully. Our main result in this section is the following. Proposition 4.2. Suppose that u satisfies the local cane toads equation (1.5) with any initial data u 0 > 0. Then, for any m ∈ (0, 1), we have

4 3 ≤ lim inf T →∞ max {x : ∃θ ∈ Θ, u(T, x, θ) ≥ m} T 3/2 .
The assumption that u 0 is positive is not restrictive since any solution with a non-zero, nonnegative initial condition becomes positive for all t > 0 as a consequence of the maximum principle.

In particular, as the initial condition u 0 in Theorem 1.1 is compactly supported, non-negative, and non-zero, we may apply Proposition 4.2 to ũ, the solution to the cane toads equation with the initial condition ũ0 (x, θ) = u(t = 1, x, θ). Take any function v given by Lemma 4.1. Since v ≤ 1, then ǫv ≤ ǫ and, hence, satisfies

(ǫv) t -θ(ǫv) xx -(ǫv) θθ -(ǫv)(1 -(ǫv)) ≤ -ǫ(ǫv) + (ǫv) 2 ≤ 0.
In particular, if we choose δ and our trajectories well, we will have that u(t, x, θ) ≥ εv(t, x, θ) for all 0 ≤ t ≤ T and (x, θ) ∈ E X T (t),Θ T (t),R . (

Here, u(t, x) is the solution to (1.5). In particular, we have

∀(x, θ) ∈ E X T (T ),Θ T (T ),R/2 , u(T, x, θ) ≥ εC R , (4.8) 
after a sufficiently long time T . However, we do not have control on the constant C R . To remedy this, we again apply Lemma 4.1, getting a sub-solution v ′ for u, in order to show that we can quickly grow the solution from this small constant to O(1). As such, we make the choices R ′ = R/2, and δ ′ = ǫC R , ǫ ′ = m.

Proof of Proposition 4.2

Let us now present the details of the argument. We fix ε > 0 and any m ∈ (0, 1), and let u be the solution to (1.5) with the initial condition u 0 . Given T , R, and H to be determined later, we will use the trajectories which are a slightly slowed down version of the optimal Hamilton-Jacobi trajectories (2.31):

X T (t) = (1 -2ε) 3/4 2t 2 T 1/2 - 2t 3 3T 3/2 , (4.9) Θ T (t) = (1 -2ε) 1/2 2t - t 2 T + H.
It is straightforward to verify to that X T and Θ T satisfy the assumptions above Lemma 4.1: for all 0 ≤ t ≤ T , we have ẊT (t) ≥ 0, ΘT ≥ 0 and

L(X T (t), Θ T (t), ẊT (t), ΘT (t)) ≤ 1 -2ε while ẌT (t) = 4(1 -2ε) 3/4 T 1/2 1 - t T , ΘT (t) = - 2(1 -2ε) 1/2 T ,
so that (4.3) and (4.5) hold as well.

We set γ = ǫ and δ def = inf

E X T (0),Θ T (0),R u 0 (x, θ).
Note that δ depends on R and H but not on T . Applying Lemma 4.1, we may find R ε , T ε,δ and H ε such that if R ≥ R ε , T ≥ T ε,δ and H ≥ H ε , then there exists a function v which satisfies (4.6).

Hence, as we have discussed, the function εv is a sub-solution to u on E X T (t),Θ T (t),R for all t ∈ [0, T ], and (4.7)-(4.8) hold. In particular, we have that

u(T, x, θ) ≥ ǫv(T, x, θ) ≥ ǫC R for all (x, θ) ∈ E X T (T ),Θ T (T ),R/2 .
Next, we use Lemma 4.1 a second time, with the new choices

R ′ = R/2, δ ′ = ǫC R m , ǫ ′ = 1 + m 2 and γ ′ = 1 -m 1 + m , to find H m , R m and T m,δ ′ such that if R/2 = R ′ ≥ R m and H ≥ H m then we may find a solution w to (4.6) on [0, T m,δ ′ ] × E X T (T ),Θ T (T ),R ′ .
We shift in time and scale to define

w(t, x, θ) def = ǫ ′ w(t -T, x, θ).
By our previous work and our choice of δ ′ , it follows that w(T, x, θ) ≤ u(T, x, θ). In addition, the partial differential equation for w, (4.6), with our choice of m, guarantees that w is a sub-solution to u on [T,

T + T m,δ ′ ] × E X T (T ),Θ T (T ),R ′ . This implies that u(T + T m,δ ′ , •, •) L ∞ (E X T (T ),Θ T (T ),R ′ ) ≥ w(T + T m,δ ′ , •, •) L ∞ (E X T (T ),Θ T (T ),R ′ ) = ǫ ′ w(T m,δ ′ , •, •) L ∞ (E X T (T ),Θ T (T ),R ′ ) ≥ 1 + m 2 (1 -γ) = 1 + m 2 1 - 1 -m 1 + m ≥ m. (4.10)
The first inequality is a consequence of the fact that w is a sub-solution of u, the first equality is a consequence of the definition of w, and the final equalities is a consequence of Lemma 4.1 and the choices of ǫ ′ and γ.

The above, (4.10), implies that u achieves a value at least as large as m for some

x ≥ X T (T ) -Θ T (T )R ′ at time T + T m,δ ′ . As a consequence, we have

4 3 (1-2ε) 3/4 T T + T m,δ ′ 3/2 - √ T + H (T + T m,δ ′ ) 3/2 R ′ ≤ max{x : ∃θ ∈ Θ, u(T + T m,δ , x, θ) = m} (T + T m,δ ′ ) 3/2 . (4.11)
Here, we used the definition of X T (T ) and Θ T (T ), and the upper bound

Θ T (T ) ≤ T + H + R.
Since (4.11) holds for all T sufficiently large, and since H, R, and T m,δ are fixed, we may take the limit as T tends to infinity to obtain

4 3 (1 -2ε) 3/4 ≤ lim inf T →∞ max{x : ∃θ ∈ Θ, u(T, x, θ) ≥ m} T 3/2 .
Since ε is arbitrary, this finishes the proof of Proposition 4.2. ✷

The lower bound in the non-local equation

In this section we prove the following proposition. and assume that ρ 0 ∈ L ∞ (R). Then, for any ε > 0 and γ ∈ (0, 1) we have

c 1 def = 8 3 3 √ 3 (1 -2ε) 3/4 ≤ lim sup T →∞ max {x : ρ(T, x) ≥ γε} T 3/2 . (4.12)
Our strategy here is similar to the local case, though this time we argue by contradiction. Suppose that the result does not hold. Then there exists ε > 0, a time t ε > 0 and γ ∈ (0, 1) such that, for all t ≥ t ε , sup

x≥c 1 t 3/2 ρ(t, x) < γε. (4.13)
Our goal is to construct a sub-solution v to n which will satisfy

ˆ∞ θ v(t, x, θ)dθ ≥ ε > γε,
for some x ≥ c 1 t 3/2 . This will push ρ(t, x) to be greater than ε as well, yielding a contradiction to (4.13). Note that if (4.13) holds, then any solution to

v t -θv xx -v θθ ≤ v(1 -γε), (4.14) 
defined for t ≥ t ε and which is supported on

x ≥ c 1 t 3/2 satisfies n(t, x, θ) ≥ v(t, x, θ) for all t ≥ t ε , (t, x, θ) ∈ supp v, (4.15) 
provided that this inequality holds at t = t ε . This is because (4.13) implies

n t -θn xx -n θθ = n(1 -ρ) ≥ n(1 -γε), (4.16) 
for all t ≥ t ε and x ≥ c 1 t 3/2 . Note that the nature of the argument by contradiction requires us now to have the "Dirichlet ball" completely to the right of x = c 1 t 3/2 . On the other hand, the "nearly optimal" Hamilton-Jacobi trajectories (4.9) that we have used in the local case, initially move mostly in the θ-direction when T is large, and violate this condition. This forces us to choose sub-optimal trajectories for the center of the "Dirichlet ball", leading to the non-sharp constant c 1 in (4.12). We assume now (4.13) and define the trajectories

X T (t) = c γ (t + t ε ) 3/2 , Θ T (t) = (1 -2γε) 1/2 2 √ 3 (t + t ε ) + H, (4.17) 
with c γ = 8

3 3 √ 3 (1 -2γε) 3/4 . As c γ > c 1 , we have X T (t) > c 1 (t + t ε ) 3/2 for all t > 0.
The constant H will be determined below. We note that X T and Θ T satisfy the assumptions preceding Lemma 4.1. Indeed, both the non-negativity of ẊT and ΘT in (4.2) and the limit in (4.5) are obvious from (4.17). Hence, we only need to check the condition on the Lagrangian in (4.3).

To this end, we compute

Ẋ2 T 4Θ T + Θ2 T 4 = 4(1 -2γε)(t + t ε ) 6(t + t ε ) + 3 √ 3 √ 1-2γǫ H + (1 -2γε) 3 < (1 -2γε).
We now build a sub-solution on E X T (t),Θ T (t),R for suitably chosen H, R, and T which grows and forces ρ to be larger than γε, giving us a contradiction. The aforementioned condition on the support, i.e. that (x, θ) ∈ supp(v) only if x ≥ c 1 t 3/2 , is equivalent to

X T (t -t ε ) -R Θ T (t -t ε ) ≥ c 1 t 3/2 , (4.18) 
for all t ∈ [t ε , t ε + T ]. In other words, the left-most point of a ball centered at X T (t -t ε ) of the radius R Θ T (t -t ε ) must be to the right of c 1 t 3/2 . Since c γ > c 1 , we can clearly arrange for this to be satisfied by increasing, if necessary, t ε in a way depending only on R and H. Fix M > 0 to be determined later. Let us define

δ def = 1 M inf E X T (0),Θ T (0),R n(t ε , x, θ).
Note that δ depends on R and M but not on T . Applying Lemma 4.1 with ǫ and δ defined above and γ = 1/2, we may find H ε and R ε , depending only on ε, and T ε,δ , that depends only on ε, δ, such that, if H ≥ H ε , R ≥ R ε , and T ≥ T ε,δ , we may find v which satisfies (4.6). Define ṽ(t, x, θ) = M v(t -t ǫ , x, θ).

By virtue of the discussion above and by (4.6), we see that ṽ is a sub-solution of u on [t ǫ , t ǫ + T ǫ,δ ] × E X T (t),Θ T (t),R . In particular, we have that inf

E X T (T ),Θ T (T ),R/2 u(t ǫ + T, •, •) ≥ inf E X T (T ),Θ T (T ),R/2 ṽ(t ǫ + T, •, •) = M 2 inf E X T (T ),Θ T (T ),R/2 v(t ǫ + T, •, •) ≥ M 2 C R . (4.19) 
We emphasize here that C R depends only on R and not on M . At the expense of possibly increasing T ǫ,δ , we can now specify M = 2ε RC R . Using now (4.19), we obtain

ˆ∞ θ u(t ε + T, X T (T ), θ)dθ > ˆΘT (T )+R/2 Θ T (T )-R/2 u(t ε + T, X T (T ), θ)dθ ≥ ˆΘT (T )+R/2 Θ T (T )-R/2 M C R dθ = M C R R = 2ε.
Hence we have ρ(t ε + T, X T (T )) > ε. As we have

X T (T ) > c 1 (t ε + T ) 3/2 ,
this contradicts (4.13), finishing the proof. ✷

Proofs of the auxiliary lemmas

In this section we prove the auxiliary results needed in the construction of the sub-solutions. Some of them are quite standard, we present the proofs for the convenience of the reader.

Existence of a sub-solution along trajectories -the proof of Lemma 4.1

In this subsection we prove Lemma 4.1 by suitably re-scaling the equation and then using careful spectral estimates. Recall that our goal is to show that there exist constants R ε , T ε,δ,γ , and H ε,γ such that for all R ≥ R ε , T ≥ T ε,δ,γ , and H ≥ H ε,γ , there is a function v which satisfies

               v t -θv xx -v θθ ≤ (1 -ε)v, for all t > 0, and (x, θ) ∈ E X T (t),Θ T (t),R , v(t, x, θ) = 0, for all 0 ≤ t ≤ T and (x, θ) ∈ ∂E X T (t),Θ T (t),R , v(0, x, θ) < δ, for all (x, θ) ∈ E X T (0),Θ T (0),R , v(t, x, θ) ≤ 1, for all 0 ≤ t ≤ T and (x, θ) ∈ E X T (t),Θ T (t),R , (5.1) 
and such that v(T, •, •) L ∞ ≥ 1 -γ, and v(T, x, θ) ≥ C R for all (x, θ) ∈ E X T (T ),Θ T (T ),R/2 , with a constant C R > 0 that depends only on R and δ > 0. To construct the desired sub-solution, we first go into the moving frame, and rescale the spatial variable:

v(t, x, θ) = ṽ t, x -X T √ Θ T , θ -Θ T , y = x -X T √ Θ T
, and η = θ -Θ T .

(5.2)

Then (5.1) yields ṽt - y 2 ΘT Θ T + ẊT √ Θ T ṽy -ΘT ṽη ≤ 1 + η Θ T ṽyy + ṽηη + (1 -ε)ṽ, (5.3) 
with the boundary conditions ṽ(t, y, η) = 0, for all (y, η) ∈ ∂B R .

Here, B R def = B R (0, 0) is a ball of radius R centered at (y, η) = (0, 0). As in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF][START_REF] Hamel | The logarithmic delay of KPP fronts in a periodic medium[END_REF], the next step is to remove an exponential, setting,

w(t, y, η) = e Ẋ 2 √ Θ T y+ ΘT 2 η ṽ(t, y, η).
Note that if T and H are sufficiently large, there is a constant M R , depending only on R, such that 1 M R w(t, y, η) ≤ ṽ(t, y, η) ≤ M R w(t, y, η) (5.4) holds for all t, y, and η, because of the uniform bound (4.3) on the Lagrangian. Changing variables in (5.3), we see that w must satisfy the inequality

w t - y ΘT 2Θ T - ẊT √ Θ T η Θ T def = A w y ≤ 1 + η Θ T def = 1+D
w yy + w ηη

+ w 1 -ε - Ẋ2 T 4Θ T - Θ2 T 4 + ẌT 2 √ Θ T - ẊT ΘT 4Θ 3 2 T y + Ẋ2 T 4Θ 2 T + ΘT 2 η def = G .
Note that by choosing T and H large enough and using (4.3) and (4.5), we may ensure that

ẌT 2 √ Θ T - ẊT ΘT 4Θ 3 2 T y + Ẋ2 T 4Θ 2 T + ΘT 2 η ≤ min ǫ 4 , 1 -ε 2 .
Hence, using (4.3), we have that w T,H (T, y, η).

G ≥ 1 -ε - Ẋ2 T 4Θ T - Θ2 T 4 -min ǫ 4 , 1 -ε 2 ≥ min 1 -ǫ 2 , 3ε 4 
In view of (5.4) and by undoing the change of variables, this implies

c R ≤ min (y,η)∈B R/2 w T,H (T, y, η) ≤ M R min (x,θ)∈E X T (T ),Θ T (T ),R/2 v(T, x, θ),
which finishes the proof of the lower bound on ṽ. The fact that ṽ ∞ ≥ 1 -γ follows by noting the following: ϕ T,H /N converges to the Dirichlet eigenfunction with L ∞ norm 1, which takes a maximum of 1 at (y, η) = (0, 0). Choosing T and H large enough, we have that ϕ T,H (T, 0, 0)/N ≥ 1 -γ. Using the definition of w T,H finishes the proof. ✷

5.2

The spectral problem -the proofs of Lemma 5.1 and Lemma 5.2

The proof of Lemma 5.1.

To simplify the notation, we show continuity at λ I,0,Ω and ϕ I,0,Ω , but the same argument works for all matrices a and vector fields b. Fix any sequence a n and b n which tend to I and 0, respectively. Let ϕ n and λ n be the principal eigenfunction and eigenvalue of the operator L n := L an,bn,Ω , with the normalization ϕ n L 2 (Ω) = 1.

First, we show that λ n is bounded. Suppose by contradiction that (up to a subsequence that we omit) λ n tends to infinity, and write

1 λ n L n ϕ n = ϕ n .
Multiplying by a test function η ∈ C ∞ 0 (Ω), integrating over Ω and passing to the limit n → +∞ we see that ϕ n converges weakly to zero as n → +∞. and the right side is bounded in L 2 uniformly in n, then elliptic regularity implies that φn is bounded uniformly in H 2 . Let φ∞ be the strong H 1 limit of φn , taking a subsequence if necessary. Multiplying the equation for φn by φn and integrating, we see that

ˆΩ ∇ φn • a n ∇ φn dx + ˆΩ φb n • ∇ φn dx = 1.
Taking the limit as n tends to infinity yields

∇ϕ n L 2 (Ω) = 1.
On the other hand, since ϕ n L 2 (Ω) = 1 and λ n tends to infinity, it is clear that φ∞ = 0. This is a contradiction.

Since λ n is bounded uniformly, then ϕ n is bounded uniformly in H 2 . Hence, we may, taking a subsequence if necessary, find a strong H 1+s limit of ϕ n , ϕ ∞ , and a limit of λ n , λ ∞ . Since a n and b n converge in L ∞ , then we see that ϕ ∞ must satisfy

-∆ϕ ∞ = λ ∞ ϕ ∞ .
The maximum principle and the fact that ϕ n > 0 imply that ϕ ∞ > 0. Hence ϕ ∞ must be the principal eigenfunction of -∆ and λ ∞ must be the principal eigenvalue.

We have shown that every sequence ϕ n and λ n has a subsequence which must converge to the ϕ I,0,Ω and λ I,0,Ω , respectively. This implies that ϕ a,b,Ω and λ a,b,Ω are continuous at a = I and b = 0, finishing the proof. ✷ The proof of Lemma 5.2.

First we show that ∂ t ϕ T,H is well-defined. To do this, we need only show that λ T,H (t) is Lipschitz continuous in t. Indeed, with this shown, if λ T,H (t) is in W 1,∞ as a function of t, we may take a derivative in t of the equation for ϕ T,H , allowing us to write down an equation for ∂ t ϕ T,H , showing that ∂ t ϕ T,H is well-defined.

Before we begin, we recall that we may characterize λ T,H as

λ T,H (t) = sup 0<ψ∈C 2 0 (B R ) inf (y,η)∈B R L T,H (t)ψ(y, η) ψ(y, η) = inf 0<ψ∈C 2 0 (B R ) sup (y,η)∈B R L * T,H (t)ψ(y, η) ψ(y, η) .
Using this, we now estimate λ T,H (t + h) -λ T,H (t) from below -the upper bound may be found similarly. For any h small enough and p h to be determined, we have that, as long as ϕ T,H +hp h > 0,

λ T,H (t + h) ≥ inf (y,η) L T,H (t + h)ϕ T,H (t) + hL T,H (t + h)p h ϕ T,H (t) + hp h = inf (y,η) λ T,H (t)ϕ T,H (t) ϕ T,H (t) + hp h + (L T,H (t + h) -L T,H (t))ϕ T,H (t) + hL T,H (t + h)p h ϕ T,H (t) + hp h . (5.9) 
This suggests that we define p h as the unique solution of

L T,H (t + h)p h = - L T,H (t + h) -L T,H (t) h ϕ T,H (t), in B R p h | ∂B R = 0.
(5.10)

With the following lemma, we may choose h small enough that ψ + hp h > 0, and ψ + hp h is admissible in the formula above (5.9).

Lemma 5.3. For h sufficiently small, p h /ϕ T,H (t) ∞ ≤ C. Further, p h /ϕ T,H ∞ → 0 as T, H → ∞ uniformly in t and h.

Returning to (5.9) and using our choice of p h , we obtain the inequality:

λ T,H (t + h) ≥ λ T,H (t) inf x 1 1 + h p h ϕ T,H (t) ≥ λ T,H (t) 1 -C p h ϕ T,H (t) L ∞ h ,
with a universal constant C. Since λ T,H (t) is bounded independently of t, T , and H by a constant which we may denote by M , we arrive at

λ T,H (t + h) -λ T,H (t) ≥ -λ T,H (t)C p h ϕ T,H (t) L ∞ h ≥ -CM p h ϕ T,H (t) L ∞ h.
Hence, λ We now suppose that p h (y n , η n )/ϕ T,H (t n , y n , η n ) as n tends to infinity for some sequences h n → 0, T n , H n , and (t n , y n , η n ). Since p h and ϕ T,H (t) are bounded in C 2,α , we may define p 0 (y, η) = lim n→∞ p hn (y, η), and ϕ(t, y, η) = lim n→∞ ϕ Tn,Hn (t + t n , y, η).

In addition, using that B R is compact, we let y n → y ∞ and η n → η ∞ . Since ϕ T,H (t) L 2 (B R ) = 1, then by compactness, ϕ L ∞ (B R ) = 1. Since p h is bounded in C 2,α , we must have that either ϕ(y ∞ , η ∞ ) = 0 or that (y ∞ , η ∞ ) ∈ ∂B R and the normal derivative of ϕ is zero. The first violates the maximum principle and the second violates the Hopf maximum principle. This is a contradiction and thus p h /ϕ T,H is bounded uniformly above.

To see that p h /ϕ T,H tends uniformly to zero. We may argue exactly as we did to show that ∂ t ϕ T,H /ϕ T,H tends to zero, using the fact that p h tends to zero in C 1 . This concludes the proof.
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 12 Acceleration in the non-local cane toads model). Let n(t, x) be the solution of the non-local cane toads equation (1.7), with the Neumann boundary condition (1.5), and the initial condition n(0, x) = n 0 (x) ≥ 0. Assume that n 0 (x) is compactly supported, and fix any ε > 0.
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 2 Figure2.1: The level set {ū(t, x, θ) = 1} in the phase space (x, θ) for different values of time and the optimal trajectory, see also[START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF]. We also plot the trajectories that lead to the edge of the front for various values of time. These latter trajectories are crucial for the paper.
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 31 Figure 3.1: Definition of the super-solution in the three domains {x < 0}, Ω and Ω c ∩ {x ≥ 0}. The red line gives the curve (x, θ * (x)).

  a) ≤ θ * (x m,t ) , x m,t , θ)dθ ≤ 5θ * (x) m 10(t + a) ≤ 5m6.
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 43 Suppose that n is a solution of the non-local cane toads equation (1.7) with a positive initial condition n 0 ∈ L ∞ (R × Θ). Define ρ 0 (x) def = ˆ∞ θ n 0 (x, θ)dθ,

  . Aw y ≤ (1 + D)w yy + w ηη + Gw.Then, (5.7) and (5.8) and our choice of r imply that∂ t w T,H -L T,H w T,H = ∂ t w T,H + λ T,H w T,Hand w T,H is a sub-solution to (4.6). In addition, by construction, we know that w T,H (0, y, η) ≤ δ for all (y, η) ∈ B R , and w T,H (t, y, η) ≤ 1 for all t ∈ [0, T ] and (y, η) ∈ B R .Finally, due to the uniform convergence of ϕ T,H to the principal Dirichlet eigenfunction of B R , if T and H are sufficiently large, there exists c R such that

	The two cases in the minimum correspond to the two cases in (4.3). Hence, if we construct w which satisfies w t -Aw y ≤ (1 + D)w yy + w ηη + min 1 -ǫ 2 , 3ε 4 w. (5.5) then w also satisfies r < 1 4 min 1 -ǫ 2 , ε 4 . ≤ ∂ t ϕ T,H ϕ T,H w T,H + rw T,H + λ T,H w T,H ≤ 3 4 min 1 -ǫ 2 , ε 4 w T,H , w t -Fix T large enough, depending on ε and δ, such that c R ≤ min (y,η)∈B R/2 ϕ T,H (y, η) N = min (y,η)∈B R/2

  T,H (t) is Lipschitz and its Lipschitz bound is linear in p h /ϕ T,H (t) L ∞ . Since we may easily obtain a similar upper bound, we obtain|∂ t λ T,H (t)| ≤ CM p h ϕ T,H (t) L ∞ .Using Lemma 5.3 and the above bound implies that ∂ t λ T,H (t) tends to zero in L ∞ ([0, T ]) as T and H tend to infinity. We now show that ∂ t ϕ T,H tends uniformly to zero in L 2 . We argue by contradiction; assume that ∂ t ϕ T,H 2 is bounded from below, passing to a subsequence if necessary. Let us define The explicit forms of A and D and the fact that ∂ t λ T,H shows that, if ∂ t ϕ T,H L 2 is bounded uniformly below, then the right hand side of this equality tends uniformly to zero in L 2 as T and H tend to infinity. In addition, calling λ B R the principal Dirichlet eigenvalue of -∆ on B R , we have that λ T,H converges to λ B R by Lemma 5.1.By elliptic regularity, see e.g.[START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] Theorem 8.13], ψ T,H is uniformly bounded in H 2 since it has L 2 norm 1. Up to taking a subsequence if necessary, we see that ψ T,H converges to some function ψ with ψ L 2 = 1 that, owing to (5.11), solves-∆ψ -λ B R ψ = 0.(5.12)Let ϕ B R be the L 2 -normalized Dirichlet eigenfunction corresponding to λ B R . By Lemma 5.1, it follows that ϕ T,H converges to ϕ B R . Since λ B R is a principal eigenvalue, itis simple, see e.g. [20, Chapter VIII]. Hence, ψ = aϕ B R . Note that |a| = 1 since ψ L 2 = 1. On the other hand, we have that The last equality holds since ϕ T,H L 2 = 1 for all t. This contradicts the fact that |a| = 1. Hence, it must be that ∂ t ϕ T,H L 2 tends to zero uniformly as T and H tend to infinity. Knowing that ∂ t ϕ T,H and ∂ t λ T,H tend to zero, we may now conclude. First, we note that L T,H (∂ t ϕ T,H ) -λ T,H (∂ t ϕ T,H ) = (∂ t λ T,H )ϕ T,H + (∂ t A)∂ y ϕ T,H + (∂ t D)∂ yy ϕ T,H . Since the right side tends to zero in H 2 and since ∂ t ϕ T,H tends to zero in L 2 , it follows that ∂ t ϕ T,H tends to zero in H 4 , see e.g. [28, Theorem 8.13]. Using Morrey's inequality [28, Theorem 7.22], we may strengthen this to show that ∂ t ϕ T,H converges to zero in C 1 (B R ) uniformly in t. On the other hand, by Lemma 5.1 ϕ T,H converges in H 4 to ϕ B R . Again, using Morrey's inequality, we have that ϕ T,H converge to ϕ B R in C 1 (B R ) uniformly in t. It follows from this C 1 convergence that when T and H are sufficiently large, ϕ T,H is uniformly positive for any compact subset of B R and ∂ n ϕ T,H is uniformly negative, where n is the outward unit normal of ∂B R since ϕ B R has these properties. On the other hand ∂ t ϕ T,H converges uniformly to zero on B R and ∂ n (∂ t ϕ T,H ) converges uniformly to zero on ∂B R . This yields lim T,H→∞ ∂ t ϕ T,H ϕ T,H L ∞ = 0, which finishes the proof. ✷ In order to conclude, we must now prove Lemma 5.3. We do that here. Proof of Lemma 5.3. Since ϕ T,H (t) L 2 (B R ) = 1 and since the coefficients of L T,H are bounded in C 2 , then estimates as in, e.g. [28, Theorem 8.10 and Theorem 8.13], imply that ϕ T,H (t) H 4 (B R ) ≤ C R , for a constant independent of T and H. As the coefficients in L T,H (t) are have two bounded derivatives in y and η, we may apply these same estimates to obtain that p h H 4 (B R ) ≤ C p h L 2 (B where, due to the fact that ∂ t D and ∂ t A tend to zero as T and H tend to infinity, ǫ T,H is a constant which tends to zero as T and H tend to infinity. Of course, using the definitions of p h and L T,H and integrating L T,H (t + h)p h by parts yields-ˆph A∇p h dydη + (1 -D ∞ ) ˆ|∇p h | 2 dydη ≤ ˆph L T,H (t)p h dydη ≤ L T,H (t + h) -L T,H (t) h ϕ T,H(t)Using that A tends to zero as T and H tend to infinity and thatp h L 2 ≤ C R ∇p h L 2 , we obtain ∇p h L 2 ≤ C R ǫ T,H .Here ǫ T,H is as above. By the Poincaré inequality and our H 4 bound of p h , we obtainp h H 4 ≤ C R ǫ T,H .Hence, p h is bounded in H 4 uniformly in h. By Morrey's inequality, see e.g.[START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] Theorem 7.22], p h and ϕ T,H (t) are bounded in C 2,α for some α > 0. Moreover, we see that the p h tends to zero in C 2,α as T and H tend to infinity.

				ψ T,H				
							L 2	p h L 2 .
	a =	ˆBR	ψϕ B R dydη = lim T,H→∞ ˆBR	∂ t ϕ T,H ∂ t ϕ T,H L 2	ϕ T,H dydη = lim T,H→∞	1 2 ∂ t ϕ T,H L 2	∂ t ϕ T,H	2 = 0.

def = ∂ t ϕ T,H ∂ t ϕ T,H L 2 .

Taking the t derivative of the equation for ϕ T,H yields the equation

L T,H ψ T,H -λ T,H ψ T,H = (∂ t λ T,H )ϕ T,H + (∂ t A)∂ y ϕ T,H + (∂ t D)∂ yy ϕ T,H ∂ t ϕ T,H L 2 . (5.11) R ) + L T,H (t + h) -L T,H (t) h ϕ T,H (t) H 2 (B R ) ≤ C ( p h L 2 + ǫ T,H C R ) ,

Returning to the original variables, v would satisfy the desired differential inequality. With this in mind, we seek to construct w satisfying (5.5) which has the desired bounds.

We define w using the principal Dirichlet eigenfunction of the operator

To this end, for each t ∈ [0, T ], define ϕ T,H (t, x, θ) and λ T,H (t) to be the principal Dirichlet eigenfunction and eigenvalue of L T,H (t) (depending on t as a parameter) in the ball B R , with the normalization ϕ T,H L 2 (B R ) = 1.

We state two lemmas regarding these quantities which will allow us to finish the proof. First, we need to understand the behavior of λ T,H for T and H large. We recall the following result. The proof of Lemma 5.1 will be presented in section 5.2 below. Lemma 5.1 implies that, as T and H tend to infinity, λ T,H (t) becomes bounded above and below by a constant multiple of R -2 since the principal eigenvalue of -∆ on B R equals c 1 /R 2 for some positive constant c 1 . This convergence is uniform in t. Hence, choosing first R sufficiently large, we may choose H and T , depending only on ε, R, the convergence rate of the limit in (4.5), such that

, for all t.

(5.7)

We will also need the behavior of the time derivative of ϕ T,H .

Lemma 5.2. Using the notation above, ∂ t ϕ T,H is a smooth function in y and η, and lim T,H→∞

Lemma 5.2 implies that for fixed R, we may choose T and H, depending only on ε and the convergence rate of the limit in (4.5), such that ϕ T,H (t) ∞ .