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Estimation from Moments Measurements
for Amyloid Degradation

Aurora Armiento ∗ Marie Doumic † Philippe Moireau ‡ H. Rezaei §

January 15, 2016

Abstract

Estimating reaction rates and size distributions of protein polymers is an impor-
tant step for understanding the mechanisms of protein misfolding and aggregation, a
key feature for amyloid diseases. This study aims at setting this framework problem
when the experimental measurements consist in the time-dynamics of a moment of
the population (i.e. for instance the total polymerised mass, as in Thioflavine T mea-
surements, or the second moment measured by Static Light Scattering). We propose
a general methodology, and we solve the problem theoretically and numerically in the
case of a depolymerising system. We then apply our method to experimental data of
degrading oligomers, and conclude that smaller aggregates of ovPrP protein should be
more stable than larger ones. This has an important biological implication, since it is
commonly admitted that small oligomers constitute the most cytotoxic species during
prion misfolding process.

Keywords: Amyloid, prion, protein stability, oligomer, transport equation, state es-
timation, inverse problem, data assimilation

Introduction

Protein aggregation is a key feature of a large range of diseases, called amyloid dis-
eases, among which we can quote Alzheimer’s, Parkinson’s, Huntington’s, transmissible
spongiform encephalopaties (or prion diseases - e.g. Creutzfeldt–Jakob’s, Kuru, bovine
spongiform encephalopathy/madcow), etc [20, 23].

This category of diseases takes its name from the protein fibrils, called amyloids, which
are formed during the disease and accumulate into the tissue. Their formation arise from
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misfolded versions of proteins present naturally in the body, each disease having its spe-
cific precursor protein (e.g. APP for Alzheimer’s, PrP for Prion, β2m for haemodialysis-
associated amyloidosis). While their accumulation in organs is characteristic for the dis-
ease, the reason for their association as well as their role in tissue damages are still unclear.
Moreover, their aggregation mechanisms - most probably specific for each protein involved
- are at the moment largely unknown.

The main reasons for so many open questions to remain, despite both the longstanding
interest raised in the biological, biophysical and biochemical communities, and the major
importance of amyloid diseases for public health, are twofold. First, the number of possible
chain-reactions involved is huge, possibly infinite - as the size of aggregates is. Hence model
design and discrimination is very complex, and conclusions made on a specific protein are
hardly translatable to another one. Second, the most common experimental devices can
measure averaged quantities on the polymerised proteins, such as the total polymerised
mass (Thioflavine T measurements [5]) or the average size of polymers (Static Light Scat-
tering (SLS) [27]). How such measurements may be used to estimate reaction rates (which
may also be an infinity) and size distribution of aggregates, and thus to select the major
mechanisms, is an emerging field of inverse problems with few theoretical progress [1] and
positive results on experimental data [29, 30].

To contribute to this new field, this article focus on one of the major concerns in
pathologies due to protein misassembly and aggregation: the determination of oligomer size
distribution. It has been reported that – while amyloid fibrils present low biological activity
– oligomers and small assemblies are the cytopathogenic elements [26, 13]. Depending on
the type of pathology and the protein involved, oligomers could either be involved into the
pathway of amyloid fibrils formation or be associated to an independent pathway, which
only leads to the formation of oligomers. Oligomer size characterisation can play a key role
in distinguishing between these pathways. Therefore, the investigation on size distribution
remains the first step to understand how oligomers are formed, their biological activity
and their biophysical characterisation to finally design therapeutic strategies.

This question - how to estimate size distributions - leads us to setting a framework
problem and studying it, both theoretically and numerically, in one of its simplest possible
version. We then apply our method to experimental data, using the time-dependent average
size of polymers (measured by SLS) to reconstruct the oligomer initial size distribution.
We compare our estimation to the experimental estimation obtained by chromatography
and discuss the implications of our results. Eventually, we discuss the new problems and
possibilities opened-up by these results, and how this methodology could easily be adapted
to other models and experiments.

Mathematical Setting

Since protein aggregates can reach extremely large average sizes, we adopt here a
continuous framework [22] and denote x ∈ (0,∞) the size of an aggregate, i.e. x represents
the (rescaled) quantity of monomers contained in a given polymer. We thus call u(x, t)
the concentration of polymers of size x at time t (see [2] for a discussion and theoretical
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justification of the use of a continuous size variable rather than a discrete one).
One of the techniques most widely used is the measurement of Thioflavin T (ThT)

fluorescence, [5], which provides measurements of the total polymerised mass, i.e a linear
transformation of the first moment of the concentration function

ztht(t) = c1

∫ ∞
0

xu(x, t)dx.

The Static Light Scattering (SLS) technique, [27], could give us an affine transformation
of the second moment

zsls(t) = c1

∫ ∞
0

x2u(x, t)dx+ c2,

where c1 ≥ 0, c2 ∈ R.
The framework problem we want to contribute stands: Under which assumptions (and
limitations) is it possible to estimate the reaction rates and/or the initial size distribution,
from a time measurement ztht(t) or zsls(t)?

As a first simplifying assumption, we model the primary reactions involved in the
evolution of polymers with the Lifshitz-Slyozov system, that is one of the most common
polymerising/depolymerising model. In this system, polymers (or clusters, in another
application context) can only grow by monomer addition, with a size-dependent reaction
rate a(x), and depolymerise by monomer loss, with a reaction rate b(x). This results in
the following system

∂

∂t
u(x, t) +

∂

∂x

((
a(x)v(t)− b(x)

)
u(x, t)

)
= 0, x ∈ [0, `], t ≥ 0,

u(`, t) = 0,

u(x, 0) = u0(x),

(1)

where ` ∈ (0,∞] is the upper bound of polymer sizes. We assume here ` <∞, in contrast
with the initial Lifshitz-Slyozov model [14]. The function v(t) is the concentration of
monomers in the cuvette and is directly related to polymer concentration from the following
mass conservation law

v(t) +

∫ `

0
xu(x, t)dx = v(0) +

∫ `

0
xu0(x)dx > 0 ∀ t ≥ 0. (2)

When applied to amyloid formation, this model may be seen as a qualitative model taking
into account what biologists call primary pathway and neglecting, as a first approach,
secondary pathways such as fragmentation or coalescence [8]. Note that there are many
other possible applications of this model, such as phase transition, which was the original
application for which it had been designed [14].

The problem now stands: Measuring zsls(t) or ztht(t), or more generally the time-
dependence of a n-th moment defined by

∫ `
0 x

nu(x, t)dx, with u(x, t) solution of Sys-
tem (1)(2), what may be possibly estimated among the unknown quantities, i.e. the
initial state u0(x) and the parameter functions a(x) and b(x)?
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This problem in its full generality is both nonlinear and highly ill-posed. Hence, we
proceed to further simplifications and study the state estimation of a model of pure de-
polarisation. Assuming to start with no monomers, i.e. v(0) = 0, we can neglect the
polymerisation term, at least during the beginning of the reaction – see Figure 12 for
measurements of such an experiment. The model then becomes

∂

∂t
u(x, t)− ∂

∂x

(
b(x)u(x, t)

)
= 0, x ∈ [0, `], t ≥ 0,

u(`, t) = 0,

u(x, 0) = u0(x).

(3)

The state estimation problem may be formulated as follows:

(IP) How to estimate u0 – the initial condition of System (3) – from the given a priori
knowledge of b(x) and measurement

∫ `
0 x

nu(x, t)dx?

In order to settle a general framework, easy to adapt to more complex problems in the
future, we introduce below the notations for the standard state-space formalism used for
dynamical systems.

State space formalism

We introduce the state space U = L2([0, `]) equipped with its natural norm and intro-
duce the state variable u standing for the function

u :

[0, τ ] −→ U

t 7−→ u(t) :
[0, `] −→ R

x 7−→ u(x, t).

Then we rewrite System (3) in the state-space form
du

dt
= Au,

u(0) = u0,
(4)

where A is the linear functional operator – called model operator –

A :
D(A) ⊂ L2([0, `]) −→ L2([0, `]),

f 7−→ ∂x(bf),

of domain
D(A) = {f ∈H1([0, `]) | f(`) = 0}.

Assuming b′ ∈ L∞([0, `]), we easily prove that there exists λ such that the operator A−λId
is dissipative, hence A is the generator of a strongly continuous semigroup Tt – see for
instance [3] for an introduction to such concepts.

4



We formalise our measurement procedure by introducing the observation space Z = R

and a so-called observation operator associated in our case to the n-th momentum of a
given state variable

C :

∣∣∣∣ U −→ Z,
u 7−→

∫ `
0 x

nu(x)dx,
(5)

which is a time-invariant linear bounded operator with ‖C‖ ≤ `n+ 1
2 . In the following

sections ,we will use the notation Cn when we need to stress the dependence on the order
of the moment.

Note that the observation operator is defined independently of the model A. However
– by taking into account the model dynamics – we easily write the relation between ob-
servations and the initial condition of polymer concentration. To do so, we introduce the
operator Ψτ ∈ L(U ,L2([0, τ ],Z))

Ψτ :

∣∣∣∣ U −→ L2([0, τ ]),
u0 7−→ CTτu0,

since in our case L2([0, τ ],Z) = L2([0, τ ]).
Let us now denote by z(t) the observations at our disposal. We can say that the

observations are related to a target solution ŭ of System (3) up to some measurement
errors – i.e. observation noise – χ. Formally, we have

z = Cŭ+ χ.

Using the various operators introduced, we formulate our inverse problem in two equiv-
alent forms. In the more classical inverse-problem formulation, our objective appears as
Inverting Ψτ to reconstruct ŭ0 from the given measurement z generated through time
t ∈ [0, τ ].

In a more data assimilation form we aim at

Estimating ŭ0 from given measurements z generated through time t ∈ [0, τ ], knowing the
model dynamics A and the model of observation operator C.

In Section 1, we consider the specific case where the depolymerisation rate b(x) is
constant: we show that the problem is equivalent to the estimation of the (n + 1)-th
derivative of the measurement, so that we can use (for instance) a kernel regularisation
method for which we recall the standard convergence results. This gives us some light on
what we could expect for convergence in more general cases. In Section 2, we turn to the
variational formulation, recall its intrinsic links with the previous regularisation method,
and extend it to non constant b(x).We then illustrate our results by numerical simulations
in Section 3. We apply our method, together with a statistical study for the measurement
noise, to analyse the experimental data in Section 4. All this exploratory study leads us
to sketch perspectives for future work and open problems.
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1 First Approach: kernel regularisation

In this section we assume to have a constant depolymerisation rate b(x) = b > 0. We
know that in this case, the solution of System (3) is given by u(x, t) = u0(x + bt). We
have, by a simple change of variable, that

∀t > 0, Cnu(t) =

`∫
0

xnu(x, t)dx =

`∫
bt

(x′ − bt)nu0(x′)dx′,

and therefore

Ψn
τ :

L2([0, `]) −→ L2([0, τ ]),

u0 7−→
(
t→

`∫
bt

(x− bt)nu0(x)dx

)
,

(6)

where n can be avoided when not necessary. We easily see that

RanΨn
τ =

{
u ∈Hn+1([0, τ ]), u0(τ) = · · · = u

(n)
0 (τ) = 0

}
.

Deriving recursively Ψτu0, we obtain

dn+1

dtn+1
(Ψτu0) = (−b)n+1n!u0(bt) for n ≥ 0,

so that we have the following explicit formula for u0

u0(x) =
1

n!(−b)n+1

dn+1

dtn+1
(Ψτu0)

(x
b

)
, for n > 0. (7)

In the previously seen formalism, we model an additive noise as follows: we call ε the upper
bound for the noise level measured in a Sobolev space W−s,p([0, τ ])-norm, and we assume

‖χ‖W−s,p([0,τ ]) ≤ ε. (8)

The choice for the parameters s and p depends on the kind of noise (s = 0 for a deterministic
noise, s = 1

2 and p = 2 for a deterministic equivalent of a gaussian white noise [17]). The
ill-posedness of the problem comes from the fact that the noisy measurement z is in general
not differentiable, so that we cannot use directly Equality (7) to solve our problem. This is
a classical linear ill-posed problem of order δIP = n+ 1 in the scale W k,p, see [12]. Before
applying Formula (7), we need to regularise our measurement z. A classical regularisation
method consists in convolving the measurement with a mollifier sequence, method called
kernel density estimation for the statistical problem of estimating the density from an i.i.d.
sample [28]. Thanks to classical results, we know that the regularity of the convolution
depends on the regularity of both the measurement and the kernel. Let us take a kernel
function ρ ∈ C∞c (R), such that∫

R

ρ(x)dx = 1,

∫
R

xkρ(x)dx = 0, for 1 ≤ k ≤ m. (9)
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We define the family of mollifiers ρα by

ρα =
1

α
ρ
(x
α

)
, (10)

depending on the parameter α > 0. Our estimation of the initial condition is carried out
by the function

ûε,α0 =
dn+1

dxn+1
ρα ∗

(
1

n!(−b)n+1
z
(x
b

))
where the convolution operator ∗ is defined by f ∗ g(x) =

∫
R
g(x′)f(x − x′)dx′. The

accuracy of our approximation shall depend on the noise level ε, on the regularity of
the kernel family, on the parameter α and on the order of the derivative, that is n + 1.
Classically, we obtain an optimal upper bound for the accuracy of the estimation as stated
in the following proposition.

Proposition 1
Let 1 ≤ p < ∞, n ∈ N, 0 ≤ s < 1 and let ŭ0 ∈ Wm+1,p([0, `]) with m defined as in
Equation (9). Let Ψτ ŭ0 ∈Wm+n+2,p([0, τ ]) defined in Equation (6). Let z ∈W−s,p([0, τ ])
a measurement of the n-th momentum Ψτ ŭ0 such that τ ≥ `

b and

‖z −Ψτ ŭ0‖W−s,p([0,τ ]) ≤ ε.

Let us define

ŭ0(x) =
1

n!(−b)n+1

dn+1

dtn+1
Ψτ ŭ0

(x
b

)
, (11)

Let ρ defined by Equation (9) and ρα by Equation (10), with α ∈ (0, 1). We define

ûε,α0 =
dn+1

dxn+1
ρα ∗

(
1

n!(−b)n+1
z
(x
b

))
(12)

as an approximation of ŭ0. Then the following estimation is of optimal order in the sense
of [12]

‖ûε,α0 − ŭ0‖Lp([0,`]) ≤ Θ
( ε

αn+s+1
+ αm+1

)
= Fε(α), (13)

where the constant Θ depends on ‖Ψτ ŭ0‖Wm+n+2,p([0,τ ]), ‖xm+1ρ‖L1(R), ‖ρ(n)‖L1(R),
‖ρ(n+1)‖L1(R).

For the sake of completeness, the proof of this proposition is recalled in Appendix 6.
This gives us an a priori method to choose the parameter α: Aiming at the smallest
approximation error – we select the α that minimises Fε(α). The a priori optimal choice
for α is the minimiser of the convex function Fε(α)

αopt = O
(
ε

1
n+m+2+s

)
. (14)
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By this choice, we obtain an estimation û
ε,αopt
0 such that

‖ûε,αopt
0 − ŭ0‖Lp([0,`]) = O

(
ε

m+1
n+m+2+s

)
. (15)

In the case of a variable depolymerisation rate b(x), computations are not so easy
and in general we do not have such an explicit relation between measurements and initial
condition. This is part of the reasons why we now turn to data assimilation approaches.

2 Second Approach: a data assimilation variational approach

In this section, we propose to base our inverse problem solving strategy on the so-
called 4d-Var approach as named by [15]. The principle consists in minimising – hence
the variational designation – with respect to the initial condition a least-square criterion
J combining the discrepancy between the actual data and the simulation, with additional
regularisation terms accounting for the confidence in the model.

The advantage of this method lies in its very general formalism that leads to high
flexibility in the choice of the model operator or the observation operator.

Typically, we decompose ŭ0 as the sum of a known a priori u◦, and an unknown
variation ξ̆ representing the uncertain part of our initial concentration

ŭ0 = u◦ + ξ̆. (16)

As ξ̆ is unknown, the trajectory {ŭ(t), t ∈ [0, τ ]} cannot be obtained directly. However,
we can parametrise the dynamics (4) with respect to any guess ξ of ξ̆. We denote by
{u|ξ(t), t ∈ [0, τ ]} the resulting state trajectory knowing the guess ξ{

u̇|ξ = Au|ξ
u|ξ(0) = u◦ + ξ.

(17)

We then write the criterion to minimise

Jτ (ξ) =
1

2
〈ξ, P−1

0 ξ〉2U +
1

2

τ∫
0

γ|z − C(u|ξ)|2dt. (18)

The isomorphism on U , namely P0, and the scalar γ are weights on the natural norm on U
and Z, respectively. These weights are defined in accordance with the level of confidence
into our a priori on the initial condition and the measurement – typically based on an a
priori evaluation of the noise χ. Note that contrarily to the kernel regularisation method,
if the space for the noise is less regular than L2, this method cannot be used directly: prior
regularisation on the measurement is needed. On the contrary, this method provides a
unique minimiser for general rates b(x) as soon as the direct problem is well-posed.

Our objective is to minimise Jτ under the constraint of the model dynamics (17). We
thus introduce the so-called adjoint variable q|ξ,τ as the Lagrange multiplier associated
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with the dynamical constraint (17). The adjoint variable is then solution – see for instance
[7] – of the dynamics{

q̇|ξ,τ +A∗q|ξ,τ = −γC∗
(
z − Cu|ξ

)
, t ∈ [0, τ ]

q|ξ,τ (τ) = 0,
(19)

where A∗ is the adjoint of the model operator defined by

A∗ : D(A∗) ⊂ L2([0, `]) −→ L2([0, `])
f 7−→ −b(x)∂xf

with domain
D(A∗) = {f ∈H1([0, `]) | f(0) = 0}

and C∗ is the adjoint of the observation operator C defined by (5), hence

C∗ : R −→ L2([0, `])
r 7−→ fr : x 7→ xnr.

Therefore, the adjoint system reads in strong formulation

∂

∂t
q|ξ,τ (x, t)− b(x)∂xq|ξ,τ (x, t)

= −γxn
(
z −

∫ `

0
x′nū(x′, t)dx′

)
, x ∈ [0, `], t ∈ [0, τ ]

q|ξ,τ (0, t) = 0,

q|ξ,τ (x, τ) = 0.

(20)

Using the adjoint variable, a standard computation allows to characterise ξ̄|τ = arg minξ Jτ
as

ξ̄|τ = P0q̄|τ (0),

where q̄|τ is the adjoint variable associated to the ū|τ = u|ξ̄|τ , hence leading to a famous
both-end problem formulation [7]

˙̄u|τ = Aū|τ , t ∈ [0, τ ]

˙̄q|τ +A∗q̄|τ = −γC∗
(
z − Cū|τ

)
, t ∈ [0, τ ]

ū|τ (0) = u◦ + P0q̄|τ (0),

q̄|τ (τ) = 0.

(21)

2.1 Equivalence with the kernel regularisation method

According to a classical interpretation, we can read the second term of the criterion as
the ordinary least-square data fitting term, while the first term is often considered as a
regularisation term by choosing

P0 =
1

β
Id,
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with β small enough so that

β‖ξ̄τ‖2 � γ

∫ τ

0
‖χ‖2 dt.

Minimising the criterion Jτ is then equivalent to minimise for α2 = β
γ

min
ξ

{
α2‖ξ‖2L2([0,`]) + ‖z(t)−Ψτ (ξ)‖2L2([0,τ ])

}
,

where clearly appears the classical Tikhonov regularisation.
Moreover, we can consider different criteria by changing the state space U or considering

different P0. For instance, when choosing

P0 =
1

β
Id, U = Hs([0, `]),

the variational method is equivalent to the generalized Tikhonov method where we min-
imise

min
ξ

{
α‖ξ‖2Hs([0,`]) + ‖z(t)−Ψτ (ξ)‖2L2([0,τ ])

}
.

Note that s > −n+1
2 is necessary for this minimisation to be a regularising method - see

for instance the analysis of Tikhonov’s regularisation in Hilbert scales in [6], and below the
comments on the observability condition.

To give some insight into the links between the two regularisation methods, let us take
the case of classical Tikhonov regularisation, b constant, u◦ = 0 with τ ≥ `

b .

We recall that Ψτ (ξ)(t) =
∫ `
bt(y − bt)nξ(y)dy. The operator Ψτ is injective, compact,

and with dense image when taken from L2([0, `]) to L2([0, τ ]) with τ = `/b. Its adjoint
operator is

Ψ∗τ (v)(x) =

y
b∫

0

(y − bt)nv(t)dt.

This provides us with the following result.

Proposition 2
For any z ∈ L2([0, τ ]), there exists a unique minimiser ξ̄ for J(ξ) defined by

J(ξ) =
α2

2
‖ξ‖2L2([0,`]) +

1

2

τ∫
0

|z(t)−Ψτ (ξ)|2dt,

and ξ̄ ∈Hn+1([0, `]). If moreover ξ̆ ∈Hn+1([0, `]) with ξ̆(0) = · · · = ξ̆(n)(0) = 0, we have
the following estimate

‖ξ̆ − ξ̄‖L2([0,`]) ≤
1

α
‖z −Ψτ (ξ̆)‖L2([0,τ ]) + α‖ξ̆‖Hn+1([0,`]).

We recognise here the case s = 0 and n = m of Proposition 1, by denoting α = α̃n+1.
For the sake of completeness, we sketch out the proof in Appendix 6.
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2.2 Observability Condition

In data assimilation, the well-posedness or ill-posedness of the inverse problems is char-
acterised by a so-called observability condition translating that there is enough information
in the data to reconstruct the initial condition. Typically, this condition is of the form
There exists a time τ0 and a constant Θ > 0 such that, for all u ∈ C

(
[0, τ ],U) solution of

System (4), we have

∀τ > τ0,

τ∫
0

|Cu(t)|2dt > Θ‖u0‖2U . (22)

Following our previous computation, we remark that when U = L2([0, `]) equipped with
its natural norm Inequality (22) cannot be satisfied. Let us see this in the b-constant case.

τ∫
0

|Cu|2dt =

τ∫
0

 `∫
0

xnu(x, t)dx

2

dt =

τ∫
0

 `∫
bt

xnu0(x+ bt)dx

2

dt

If n = 0, we call F (bt) =
∫̀
bt

u0(x+ bt)dx. The observability condition then reads

τ∫
0

F (s)2ds ≥ Θ

`∫
0

F
′
(s)2ds.

Counter examples proving that this cannot be uniformly the case for any F are well-known,
take for instance any mollifier sequence ρα = 1

αρ( xα), where ρ ∈ C∞c
(
(0,min{`, τ})

)
.

However, it would have been possible to have the observability condition if we would
have chosen different metrics. For example, let us consider the case of very regular obser-
vations in Hn+1([0, τ ],Z) with the seminorm

|f |Hn+1([0,τ ]) =

τ∫
0

∣∣∣∣dn+1f

dtn+1

∣∣∣∣2 dt
and state space U = L2([0, `]). Thanks to Equation (7), we can easily find a constant Θ
that satisfies, ∀ τ > τ0 = `

b , the observability condition

τ∫
0

∣∣∣∣dn+1Ψτu0(t)

dtn+1

∣∣∣∣2 dt ≥ Θ‖u0‖L2([0,`]),

associated to the criterion

J(ξ) =
γξ
2
‖ξ‖2L2([0,`]) +

γz
2
‖z(t)−Ψτu0(t)‖2Hn+1([0,τ ]).

11



Alternatively, we can satisfy the observability condition in the case of less regular initial
condition in U = H−(n+1)([0, `]) and observations in L2([0, τ ]). The criterion thus reads

J(ξ) =
γξ
2
‖ξ‖2

H−(n+1)([0,`])
+
γz
2
‖z(t)−Ψτu0(t)‖2L2([0,τ ]).

Therefore, the inequality of the observability condition becomes
τ∫

0

|Ψτu0(t)|2 ≥ Θ‖u0‖2H−(n+1)([0,`])
.

According to Equation (7), we can rewrite this inequality as
τ∫

0

|Ψτu0(t)|2 ≥ Θ

n!(−b)n+1

∥∥∥ dn+1

dtn+1
(Ψτu0)

∥∥∥2

H−(n+1)([0,τ ])
.

It is easy to prove that∥∥∥ dn+1

dtn+1
Ψτu0

∥∥∥
H−(n+1)([0,τ ])

≤ ‖Ψτu0‖L2([0,τ ]),

and we can satisfy the observability condition with Θ = n!(−b)n+1 and τ0 = `
b .

In these two cases (the space [0, τ ]→ Z equipped with a very regular norm, or on the
contrary the very weak assumption on the regularity of the initial state U), the observability
condition shows that the problem is well-posed for τ ≥ `

b and so there is no need for either a
regularisation or an a priori information. However they cannot be used for real applications
since we do not observe z(t) in such a regular space, and we want to reconstruct regular
initial states.

3 Numerical Analysis

3.1 Model discretisation

In this section we describe the numerical implementation and the comparison between
the two approaches.

We set the space domain to [0, `] = [0, 200]mer. We define the notation mer for
monomer which is the fundamental unit aggregating into oligomers. We set the time do-
main to [0, τ ] = [0, 100]min and the transport velocity to b = 2min−1.
We present two cases associated to two initial concentration conditions: the gaussian func-

tion u0g = e
1
2
−(x−100)2

202 µM and the characteristic function u0ch = I[70,130]µM . For the sake
of simplicity, in the following of this section we omit the units.
We consider a uniform space grid 0 = x0 < . . . < xNx = `, with a constant space step δx.
By evaluating the continuous initial conditions on this grid, we obtain the vector

ŭ0 = (ŭ0,j)0≤j≤Nx = ŭ0(xj).
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We fix a time discretisation t0 < . . . < tNt of the time domain [0, τ ] with a constant time
step δt. We call ukj the approximation of u(xj , tk). The cluster concentrations, at time tk,
are approximated by the vector uk = (ukj )j . To compute these quantities, we refer to the
discrete model {

uk+1 = Ak+1|kuk, for k ∈ N
u0 = u0.

(23)

The expression of the discrete model operator Ak+1|k depends on the numerical scheme
which is adopted to discretise the transport equation of System (3). For the upwind scheme
it is

Ak+1|k = 1Nx + δt bD, (24)

where the discrete differential operator D is such that

(Duk)j =
ukj+1 − ukj

δx
if b > 0 (Duk)j =

ukj − ukj−1

δx
if b < 0.

We can also use a numerical scheme with higher approximation order such as a Lax-
Wendroff scheme. The discrete model operator associated to this scheme is

Ak+1|k = 1Nx +
bδt

δx
Dc
x +

b2δt2

2δx2
Dxx,

where

(Dc
xu

k)j =
ukj+1 − ukj−1

2δx
and (Dxxu

k)j =
ukj+1 − 2ukj + ukj−1

2δx2
.

We choose space and time steps satisfying the Courant–Friedrichs–Levy (CFL) condition∣∣ bδt
δx

∣∣ ≤ 1 that ensures the stability of the schemes [16].

3.2 Synthetic data generation

To test our inversion strategies, we generate synthetic observations. In this respect we
fix uniform grids on [0, τ ] and [0, `] with discretisation steps much smaller than the ones
considered solving the inverse problem. Specifically, we take the time step δt = 10−3 and
space step δx = 2 · 10−3. We use the discrete model (23) with ŭ0 as initial condition to
compute the sequence (ŭk)1≤k≤Nobs . Consequently, we compute the observations thanks
to the discrete observation operator

C
(n)
k = δx

(
xn0
2 xn1 . . . xnNx−1

xnNx
2

)
obtained by using the trapezoidal rule to approximate the space integral appearing in the
continuous definition. We remark that – since the continuous observation operator C is
time independent – Ck does not depend on k.

We consider synthetic observations of the form

zk = Ckŭk + χk, k = 0, . . . , Nobs, (25)

13



where χk = εωk and the values ωk are randomly generated according to the standard
gaussian distribution. As we can see in [18], this construction produces a white gaussian
noise on the observations such that heuristically

‖z − Cŭ‖
H−

1
2 ([0,τ ])

≤ ε.

Consequently, we can take the ε as the noise level in H−
1
2 ([0, τ ]).
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Figure 1: Three moments of the state function u having dynamics (23) where

u0g = e
1
2
−(x−100)2

202 and b = 2.
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Figure 2: Three moments of the state function u having dynamics (23) where u0ch = I[70,130]

and b = 2.

In Figures 1 - 2, we present the synthetic observations associated to the gaussian
function u0g and the characteristic function u0ch, respectively. In both cases we have
computed the first three moments of the state function u. Moreover, we consider noised
observations. The noise corresponds to errors of 0.05% and 0.5%. The corresponding
values of the noise level ε have been reported in figure legends.

3.3 Numerical Simulations: kernel regularisation method

In this section we present some examples of numerical initial condition estimation by
the kernel regularisation method. We recall that the estimation is given by the function ûε,α0

14



defined in Equation (12). The parametrised kernel family ρα is defined by ρα(x) = 1
αρ( xα).

The kernel ρ is chosen as the gaussian kernel, ρ = 1
0.3
√

2π
e
− x2

2(0.3)2 . According to these
choices, the coefficient m – defined in Equation (9) – is equal to 1. We compute the
(n+ 1)-th derivative of the convolution between z and the regularisation kernel ρα as the
convolution between z and the (n + 1)-th derivative of ρα. The derivative can be either
analytically computed or approximated by finite differences. In the examples of this section
we have considered the analytic expression of kernel derivatives.

To compute the discrete convolution we need two vectors. One vector is the set of
measurements z. The other vector is obtained by evaluating the derivative of the kernel
function, d

n+1ρα
dxn+1 , on a discrete grid. First of all we approximate the kernel ρ by ρ̃ = ρI[−2,2],

where I[−2,2] is the characteristic function for the domain [−2, 2]. We remark that when we
numerically compute the integral of ρ̃ we obtain 1, which is the same value as the integral of
ρ over R. Hence, approximating ρ by ρ̃ we make an error smaller than machine-precision.
Consequently, we consider the support of ρα and its derivatives to be included in [−2α, 2α].
We evaluate dn+1ρα

dxn+1 over the grid −2α = x1 < . . . < xr = 2α with the same discretisation
step, δt, as the measurement time grid.

The discrete convolution of two vectors x, y of lengths m and h, respectively, is the
vector w such that wk =

∑
j xjyk−j+1, for k = 1, . . .m+h+ 1. For every component k the

index sum j varies between max(1, k+1−h) and min(k,m). This algorithm is equivalent to
extend with zeros the vectors for indices j outside the range [max(1, k+ 1−h),min(k,m)].

We remark that zero-padding the kernel derivative vector is equivalent to evaluating
the function dn+1ρα

dxn+1 outside the domain [−2α, 2α]. Moreover, extending with zeros the
measurements for times bigger than the observation time is coherent with the biological
interpretation: a depolymerising system in which all polymers have been reduced into
monomers cannot change its state.

On the other side, adding zeros for negative times would lead to a bad reconstruction
of the initial condition on the left border. Our idea is to extend the observation data
for negative times in [−τα, 0]. The positive value τα is such that the component wk –
corresponding to the left border value of the estimation ûε,α0 – is computed as a complete
sum. To this purpose, we fix τα bigger than the length of the kernel domain, specifically 4α.
To consider negative times, we extend the definition of the initial condition for negative
sizes by u0(x) = 0 if x < 0. The n-th moment for negative times reads

Cnu(t) =

∫ `

bt
(x− bt)nu0(x)dx =

∫ `

0
(x− bt)nu0(x)dx.

We notice that the n-th moment is a polynomial of degree n in t. Assuming there is a
size xmin > 0 such that the support of u0 is included in [xmin, `], we obtain that, for every

t ≤ xmin
b , Cnu(t) =

∫̀
xmin

(x − bt)nu0(x)dx. To conclude, we assume xmin = 10 in our

numerical examples. We fit the observations relative to times in the range [0, 5] with an
n degree polynomial. We present in Figure 3 an example of extension of observation data
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for the first three moments in the case of gaussian initial condition u0g. We discretise the
arbitrarily chosen negative domain [−10, 0] with a time step δt. We evaluate the polynomial
fit on this grid and we use these data to extend our observations.
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Figure 3: From the left to the right the 0th, 1st and 2nd moment relative to the initial
condition u0g and depolymerisation rate b = 2. In red the moments for positive times, in
black the moments for negative times in [−10, 0], in green the polynomial function fitting
the red curve in [0, 5] and used to extend the data on [−10, 0].

We compute the discrete convolution between the extended observation and the kernel
derivative vector. We multiply the resulting vector by δt – to approximate the continuous
integral of the convolution – and by 1

(−b)n+1n!
in accordance with Equation (12).

We present in Figure 4 and Figure 6 the estimation of the initial conditions u0g and
u0ch, respectively. We remark that the quality of the estimation decreases when the order
of the moment and the noise level increase.

3.4 Numerical Simulations: the data assimilation method

We now turn to the variational approach detailed in Section 2. In order to discretise and
simulate the two-end problem (21), we rely on a discretised version of the optimal criterion
(18) to be minimised under the constraint of the discretised model (23). The resulting time-
discretised optimal system can then be proved to converge to time-continuous solution of
(21) [7]. Therefore, we decompose the initial condition by defining ξ̆ ∈ RNx such that
ŭ0 = u◦ + ξ̆ and seek an estimate of ξ̆ given by

ξ̄ = arg min
ξ

JNt(ξ) = arg min
ξ

(
1

2
‖ξ‖2

P−1
0

+
1

2

Nt∑
k=0

‖zk − Ckuk‖2Mk

)
. (26)

The matrix Mk is the discrete approximation of the operator γIdZ and it depends on
the quadrature rule chosen to approximate the integral in time. We fix Mk = δtγINt .

Furthermore – if we assume that the initial a priori approximates the unknown initial

condition with the same error on every cluster size – we can take P0 =
1

δxβ
INx .
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Figure 4: Comparison between the exact gaussian initial condition u0g (purple line) and
the approximations ûε,α0 (green line) provided by the kernel regularisation method. Each
estimation is associated with the measurements in Figure 5.
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Figure 5: Synthetic observation in the case of gaussian initial condition u0g (purple line)
and relative fit given by the observations generated from the data assimilation estimator.
From the top to the bottom by rows, we see the 0th-moment, 1st-moment, 2nd-moment.
From the left to the right by columns the noise corresponds to a 0%, 0.05%, 0.5% error.
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Figure 6: Comparison between the exact initial condition u0ch (purple line) and the ap-
proximations ûε,α0 (green line) provided by the data assimilation method. Each estimation
is associated with the measurements in Figure 7.
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Figure 7: Synthetic data in the case of u0ch as initial condition (purple line) and relative
fit given by the observations generated from the data assimilation estimator. From the top
to the bottom by rows, we see the 0th-moment, 1st-moment, 2nd-moment. From the left
to the right by columns the noise corresponds to a 0%, 0.05%, 0.5% error.
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These two matrices are classically defined as P0 = Cov(ŭ0− u◦) and Mk = Cov(χk)
−1.

As well explained in [25] – if W (t) is the time-independent covariance of the continuous
white gaussian process χ(t) – the covariance of measurement noise in discrete time is
Wk = W (tk)

δt . Since Mk = W−1
k , we find the relation Mk = δtM(t) = δtγIdZ .

Consequently, we define γ as γ = (σ2)−1, where σ2 is the variance of the white gaussian
process χ(t). The parameter β is analogously defined as β−1 = ‖ξ̆‖2L2([0,`]). In practice, we
can numerically estimate the parameter γ – by analysing the noise on the data – while the
value of the parameter β reflects the confidence that we have on the a priori information
on the initial condition.

To minimise the criterion we use a gradient-descent based optimisation method that –
starting from the initial guess ξ = 0 – iteratively attempts to estimate the minimum from
the criterion gradient evaluated on the current guess

∇JNt(ξ) = P−1
0 ξ − (q0

|ξ),

where q0
|ξ is the time-discrete adjoint variable at time 0 solution of the time-discrete system{

qk|ξ = Ak+1|kq
k+1
|ξ − CᵀkMk(zk − Ckuk|ξ), 0 ≤ k ≤ Nt

qNt+1
|ξ = 0.

(27)

Note that the time-discrete adjoint variable is the Lagrange multiplier associated with
the dynamical constraint (23) in the minimisation of (26). Besides, it is also a time-
discretisation of the time-continuous adjoint variable (19).

As numerical synthetic test cases, we present in Figure 8 the estimation of a gaussian
initial condition by the variational data assimilation method. Respectively in Figure 10,
we estimate a characteristic function. As previously done with the kernel method, the
nine estimation curves correspond to the nine observation curves presented in Figure 1 or
Figure 2.

4 Application on experimental data

Having presented, theoretically investigated and numerically tested our mathematical
approach, we are now ready to apply our method to experimental data.

4.1 Presentation of the experimental protocol and noise analysis

The data to analyse consist in observations on ovine prion protein oligomers (PrP
oligomers), in depolymerising conditions. PrP oligomers are a kind of amyloid deposit
generated by the concatenation of monomers forming chains of a few tens of proteins. These
structures are relatively small compared to protein polymers, that could be composed by
up to thousands of proteins [24].

We refer to Appendix 7 for details on the protocol used to form and make measurements
on oligomer systems. We present in Figure 12 an example of Static Light Scattering
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Figure 8: Comparison between the exact gaussian initial condition u0g (purple line) and the
approximations ûα0 (blue line) provided by the data assimilation method. Each estimation
is associated with the measurements in Figure 9.
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Figure 9: Synthetic observation in the case of gaussian initial condition u0g (purple line)
and relative fit given by the observations generated from the data assimilation estimator.
From the top to the bottom by rows, we see the 0th-moment, 1st-moment, 2nd-moment.
From the left to the right by columns the noise corresponds to a 0%, 0.05%, 0.5% error.
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Figure 10: Comparison between the exact initial condition u0ch (purple line) and the
approximations ûα0 (blue line) provided by the data assimilation method. Each estimation
is associated with the measurements in Figure 11.
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Figure 11: Synthetic data in the case of u0ch as initial condition (purple line) and relative
fit given by the observations generated from the data assimilation estimator. From the top
to the bottom by rows, we see the 0th-moment, 1st-moment, 2nd-moment. From the left
to the right by columns the noise corresponds to a 0%, 0.05%, 0.5% error.
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Figure 12: Depolymerisation kinetics of ovPrP oligomers monitored by static light scat-
tering.

measurements on a depolymerising system of PrP oligomers. We recall that the SLS
measurement is a linear transformation of the second moment zSLS(t) = c1Cu(t)+c2, with
unknown parameters c1, c2. We assume to observe the experiment until all the oligomers
are depolymerised into monomers. We fix the parameter c2 such that the mean of the
measurements at end of the observation domain is zero. We thus consider the shifted data
zSLS − c2 as measurements. Solving the inverse problem with this observation data, we
estimate the function c1u0. In the following, we assume that c1 = 1.

In order to analyse the measurement noise, we assume it to be a white gaussian additive
noise and test this hypothesis. Since we assume that the initial size distribution is a
regular function, we expect the corresponding second moment to be a regular function
with a smooth graph. For this reason, we start by filtering the data. We use a cubic
Savitzky-Golay filter. For more details about this filter see [19].

The difference between the empirical data and the fit gives us an estimation of the
noise contribution, see Figure 13a. We run a χ2 numerical test to test the null hypothesis
of residual points following a gaussian distribution. The test accepts the null hypothesis
at the 5% significance level. We then estimate the mean and the standard deviation of the
gaussian distribution generating the residual. We estimate the mean at 0 and the standard
deviation σ = 501. The purple dotted line in Figure 13b shows the estimated gaussian
density function: this leads us to accept our noise model and keep this value of σ as a
reasonable estimation of the noise level.

The experimental protocol also includes the separation of oligomers by size, using the
Size Exclusion Chromatography (SEC) device. Thanks to this technique we can measure
the initial oligomer distribution. We point out that it would not have been possible to
make these measurements on fibrils, due to the large size of the aggregates and the limits
of the device. We can see in Figure 14 the measurement of the initial oligomer distribution
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Figure 13: Analysis of the noise on SLS data. We present (left) the residuals obtained as
the difference between the SLS data and the cubic Savitzky-Golay filter of the data. In the
right figure we present two estimations of the density function associated to the residual
data.
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Figure 14: Size-exclusion chromatogram of purified ovPrP oligomers.
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associated to the data in Figure 12. We notice that the biggest oligomer size taken into
account is 200mer, with an almost zero relative concentration, while the smallest detectable
size is 20mer. In this set of data, the most present oligomers have sizes between 30mer and
100mer. We also remark that this distribution has only one peak centred around the size
50mer. Evaluating the noise level on the SEC device is a complex subject, going beyond
the scope of this study.

In the following we set up the inverse problem of estimating the initial size distribution
by using the SLS measurements only. We then discuss the results obtained when we also
take into account the SEC measurement.

4.2 Initial state estimation without a priori

Oligomer dynamics can be modelled by System (1), [9]. We remark that in this model
there are two unknowns: the depolymerisation rate b and the initial condition u0. The
approaches that we have presented in this paper are designed to estimate only the initial
condition. We thus start our analysis with the simple model of constant backward transport

∂

∂t
u(x, t)− b ∂

∂x
u(x, t) = 0,

u(L, t) = 0,

u(x, 0) = u0(x).

(28)

Our strategy is to fix an arbitrary value for b and then perform the initial condition
estimation. The resulting estimation depends explicitly on b, as we have seen in Equa-
tion (7). For example, consider two models associated to the rates b1 6= b2. Equation (7),
in the case of a noiseless second moment observation, reads

u0|bi (x) =
1

2(−bi)3

d3

dt3
z

(
x

bi

)
,

for i = 1, 2. We use the notation u0|bi to indicate the solution of the inverse problem when
we consider the transport velocity bi in the model (28). Eventually, we can notice that

u0|b1 (x) =

(
b2
b1

)3

u0|b2

(
b2
b1
x

)
. (29)

This relation leads us to the conclusion that, when we fix a depolymerisation rate, we
obtain a function that differs from the exact one in a linear change of variables and a scaling
factor. To illustrate this relation, we show in Figure 15a an example of distributions which
produce the same second moment observation, see Figure 15b, evolving with different rates.

We thus fix the depolymerisation rate to the arbitrary value b = 2min−1. We consider
the experimental time domain [0, τ ] = [0, 110]min. Biological considerations lead us to the
definition of the size domain [0, `] = [0, 200]mer.

To apply the data assimilation method we need to define the least square criterion.
We choose the isomorphism P0 of the form P0 = 1

β Id. Consequently, we only need to fix
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Figure 15: Several choices of initial condition and depolymerisation rate can lead to the
same second moment observation.

a value for the regularisation parameters β and γ. As explained before, these parameters
are linked by an inversely proportional relation to the confidence on the a priori on the
initial condition and the noise level on measurements, respectively.

Since for the moment we do not consider additional information on the initial condition,
our a priori is the zero constant function. In particular, we do not know whether this a
priori is far or not from the target initial condition. Therefore, we assume to have low
confidence on the a priori or equivalently we allow the estimations to be far from the a
priori. This assumption corresponds to the choice of a small value for β. In the following
we fix β = 10−2.

We consider γ ' 1
σ2 , where σ is the standard deviation of noise distribution. Conse-

quently, we take γ = 10−6.
We show in Figure 16 the results of data assimilation estimation. We see in Figure 16b

that we obtain a good fit of the experimental data. In Figure 16a we have the initial state
estimation. We recall that this estimation is associated to the arbitrary choice of b and the
real initial distribution can be a transformation of this function, according to Formula (29).
Nevertheless, we can infer interesting features such as the presence of one main peak and
the fact that the peak starts from small sizes.

4.3 Estimation with a priori

In this section we take into account the SEC measurement of Figure 14 to discuss the
result of our initial state estimation of Figure 16a.

A first possibility is to admit that the chromatography technique cannot trustfully
measure the variation of the distribution but it can nevertheless find the position of the

29



0 40 80 120 160 200
0

5

10

15

Size (mer)

C
on

ce
n
tr
at
io
n
(µ
M

)
DAM estimation
a priori

(a)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4
·105

Time (min)

L
ig
h
t
In
te
n
si
ty

empirical observations
DAM observations

(b)

Figure 16: Left: Initial condition estimation by variational approach when we choose
b = 2min−1, β = 10−2, γ = 10−6. Right: comparison between the SLS measurements and
the observations generated by the observation operator on the state estimation.
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Figure 17: Comparison between the initial condition estimation – associated to the rate
b = 6.5min−1 – and the experimental SEC data rescaled to have the same maximum as
the estimation.
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peak. Hence, we transform the estimation according to Formula (29) to move the peak
to the same value as in the chromatography measurements. Since experimental data have
been normalised to have integral equal to one, we can define a coefficient to make the
two curves have the same maximum. In this way, we could use the SEC to identify the
depolymerisation rate – that in this case corresponds to b = 6.5min−1. Consequently, we
consider the blue curve in Figure 17 as the estimation of the initial condition. However,
according to the SEC specification and methodology the difference between the two distri-
butions - the experimental one and the estimated one, see Figure 17 - seems too important
to correspond to a noise on the measurement.

0 40 80 120 160 200

0

20

40

60

80

100

120

140

Size (mer)

C
on

ce
n
tr
at
io
n
(µ
M

)

experimental data
DAM estimation

Figure 18: Initial condition estimation associated to the rate b = 1min−1. The peak
corresponds to sizes less than 20mer.

A second possible interpretation is to think that the peak of the estimator does not
correspond to the peak we can see in SEC measurements and it may concern sizes up to
20mer, instead. We recall that the SEC device cannot detect aggregates composed by less
than 20 monomers. For instance, if we take b = 1min−1 we would have an initial condition
that can illustrate this case.

We present in Figure 18 such an initial condition. We can notice that the maximum of
oligomer concentrations for sizes bigger than 20mer is much smaller than the value of the
peak. This would imply that the concentration of oligomers measured by SEC is negligible
compared to a high concentration of (hidden) small oligomers: this is barely plausible.

On the contrary, let us assume that we trust completely the SEC data and that those
data represent the overall distribution, i.e., we extend the data by zero in the region
[0, 20]mer. Having fixed the initial condition, our problem can thus be seen as a parameter
identification problem. This problem can be presented as
Estimating the depolymerisation rate b, appearing in the definition of the model dynamics
A, from given measurements z generated through time t ∈ [0, τ ], knowing the initial
condition ŭ0 and the model of observation operator C.
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Figure 19: Influence of the depolymerisation rate on the measurement. Left: the initial
condition (black line), given by the SEC data, and several constant functions b. Right:
experimental SLS data (black line) and the second moment observations associated to the
b of the same colour on the left figure.

To have a rough approximation of b, we run the direct model for several choices of b
and then, for each of these choices, we compare the second moment generated with the
operator C to the SLS data z. We can see in Figure 19 the result of this analysis when
we choose b as a constant function with values varying between 1min−1 and 7min−1. We
came to the conclusion that, if we assume the initial condition in Figure 19a, the solution
of the parameter identification problem is not a constant function.

This conclusion follows from the fact that – whenever we consider two rates b1 < b2, –
we have (y − b1t)n − (y − b2t)n > 0 and consequently

z2 = Cu2 =

∫ `

b2t
(y − b2t)nu0(y)dy ≤

∫ `

b1t
(y − b1t)nu0(y)dy = Cu1 = z1. (30)

Specifically, all the curves start from the same value and then they do not cross anymore.
Anyway we can see in Figure 19b that experimental data intersect all the synthetic obser-
vations. We deduce that it is not possible to define a constant parameter b ∈ [1, 7]min−1,
solution of the parameter identification problem. A sensitivity analysis could also be car-
ried out to gain more insights, see [4, 1]. Furthermore, Inequality (30) implies that any
value b ∈ (0, 1)∪(7,∞)min−1 would lead to an observation far from the experimental data.

We have so concluded that, if we take the curve in Figure 19a as the initial oligomer
distribution, we need to consider a size-dependent depolymerisation rate. We discuss a
simple case in which we distinguish two depolymerisation rates, one for small aggregates
and one for big aggregates. In this case b is a piecewise function that takes only two values.
The discontinuity point for b has been arbitrarily chosen around 25mer.
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Figure 20: On the left we have the initial condition (black line), given by the SEC data,
and several piecewise constant functions b(x). On the right we present the experimental
SLS data (black line) and the second moment observations associated to the b of the same
colour.

We show in Figure 20 the results of the analysis performed by running the direct model
with this hypothesis. After testing several possibilities, we conclude that to fit the data we
need a low depolymerisation rate for small aggregates and a high depolymerisation rate for
big aggregates. In particular, we can see in Figure 20 that if we consider b(x) = b1Ix<25 +
6.6Ix>25 and b1 varying between 0.25min−1 and 0.55min−1 we can well approximate the
experimental measurements.

We are aware that this way of proceeding does not solve the parameter identification
problem. Nevertheless, it is useful to get some clues on what could be the right solution.
To rigorously solve this problem, we could define an initial condition estimation problem
associated to the parameter identification problem and then apply the variational approach
on this new problem. To define this associated problem, we consider an augmented state
ua composed by the state function u and the parameters ua = (u; b). The dynamics of this
new variable is given by

u̇a =

(
u̇

ḃ

)
=

(
A(u, b)

0

)
and the initial condition of the system is ua(0) = (u(0); b(0)). We can use the SEC data
to fix an a priori on the initial condition so that only the parameters remain unknown.
Keeping the same notation as before, we call our target ξ̆a = (0; b). We remark that this
new model presents the additional difficulty of the nonlinearity. A common strategy to
overcome this difficulty is to approximate this model replacing the model operator by its
tangent.
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4.4 Discussion

Departing from our general methodology, we were able to estimate the shape of the
initial size distribution of ovPrP oligomers under the assumption of a constant depolymeri-
sation rate. We then compared it to the experimental distribution obtained with the SEC
device (Figure 17), and the discrepancy between these two distributions led us to revisit
our previous assumptions.

To explain this discrepancy, two hypotheses could be evocated. The first one is a very
important underestimation of the amount of small oligomers assemblies by SEC techniques
(Figure 18). The second possibility is a higher depolymerisation rate for large PrP assem-
blies compared to smaller one (Figure 20). According to SEC specification and method-
ology the first hypothesis can be excluded. Therefore, lower stability of large assemblies
appears as the best possible explanation.

The fact that large assemblies present lower stability than small oligomers could have
an important biological implication. Indeed it is commonly admitted that small oligomers
constitute the most cytotoxic species during prion misfolding process [26]. Therefore the
low stability of large assemblies could make an accumulation of lower molecular weight
assemblies and contribute to increase the toxicity level.

5 Conclusion

In this paper, we have defined the inverse problem of estimating the initial condition
of a dynamical system – whose evolution is described by a transport equation – given the
measurements of the second moment over time. We have described two possible approaches
to solve this problem. The first belongs to the family of kernel regularisation methods, and
allowed us to define a good strategy that exploits all the features of the model and deals
precisely with the regularity of the functions. We have introduced this strategy in a case
of constant transport velocity both to provide the method guidelines and to give an insight
into the properties of the model and the relations between the state function, its moments
and the transport velocity. However, since it has been designed for this very specific case,
this method lacks of flexibility.

The second approach belongs to the family of data assimilation methods. The inverse
problem is written in terms of operators and we obtain a general formalism that can be
applied directly on a variety of models. We have seen how this approach is equivalent to
the first approach in the case of constant transport velocity and we refer to this second
approach to address the more general case of variable velocity and a priori information
on the data. We have also briefly explained in the previous section how we can use the
same strategy to solve a problem of parameter identification, see also [21]. With no more
effort we can treat the case of multiple measurements. It would be enough to define an
observation operator that – applied on the state function – returns the concatenation of
the measurements. This perspective is particularly interesting since we have seen above
an example of how by SEC and by SLS it is possible to get several measurements on the
same system and the more observations we have the better we can estimate the solution
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of the inverse problem.
The two methods have been numerically tested and compared on synthetic data. The

results of these numerical estimations are in agreement with theoretical estimates. We
remark that the estimations we get can take negative values. This is an expected behaviour
because we look for an estimation in Lp-norm and we do not enforce positivity constraints.
A possible improvement for the variational approach would be to either do a constrained
optimisation or parametrise the state function to guarantee its positivity at all times.

In the last section we have presented and discussed our inverse problem methodology
applied to experimental data of ovPrP oligomers, and this study exemplified the flexibility
of the data assimilation framework. We were led to the conclusion that most probably the
smaller polymers are more stable than the larger ones. To support this conclusion, further
experiments have to be carried out. The simultaneous measurement of the first moment,
i.e. of the total polymerised mass (by ThT), and of the second moment (by SLS) should
be much more informative, and would lead to interesting extensions of our approach. This
is a direction for future work.

Acknowledgments

The research of M. Doumic and part of the research of A. Armiento are supported by
the ERC Starting Grant SKIPPERAD (number 306321).

Appendices

6 Mathematical proofs

In order to prove Proposition 1 we first recall a classical lemma on convolution products.

Lemma 3
Let n ∈ N, p ≥ 1, α ∈ (0, 1), the function ρ ∈ C∞c (R) and the coefficient m satisfying
Assumptions (9). We define the function ρα(x) = 1

αρ( xα).

i) If the function f is in W 1,p(R+), we have

‖f − ρα ∗ f‖Lp(R+) ≤ c1α‖f‖W 1,p(R+), (31)

where c1 = ‖xρ‖L1(R)

ii) Let n ≤ m, if the function f is in W n+1,p(R+), we have

‖f − ρα ∗ f‖Lp(R+) ≤ c2α
n+1‖f‖Wn+1,p(R+), (32)

where c2 = 1
n!‖xn+1ρ(x)‖L1(R).
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iii) Furthermore, we have

‖ρα ∗ f (n)‖Lp(R+) = ‖ρ(n)
α ∗ f‖Lp(R+) ≤ c3α

−n‖f‖Lp(R+), (33)

where c3 = ‖(ρ(n))α‖L1(R).

iv) Given s ∈ [0, 1), if the function f is in W−s,p(R+) and ρ, ρ′ ∈ L1(R), we have

‖ρα ∗ f‖Lp(R+) ≤ c4α
−s‖f‖W−s,p(R+), (34)

where c4 depends on ‖ρ‖L1(R), ‖ρ
′‖L1(R).

v) Given s ∈ [0, 1), if the function f is in W−s,p(R+) and ρ(n), ρ(n+1) ∈ L1(R+), we
have

‖ρα ∗ f (n)‖Lp(R+) ≤ c5α
−(n+s)‖f‖W−s,p(R+). (35)

where c5 depends on ‖ρ(n)‖L1(R), ‖ρ(n+1)‖L1(R).

Let us now state and prove Proposition 1.

Proposition 4 (Proposition 1)
Let 1 ≤ p < ∞, n ∈ N, 0 ≤ s < 1 and the function Ψτu0 defined in Equation (6). Let
Ψτ ŭ0 ∈ Wm+n+2,p([0, τ ]), with m defined as in Equation (9). Let z ∈ W−s,p([0, τ ]) a
measurement of the n-th momentum Ψτ ŭ0 such that τ ≥ `

b and

‖z −Ψτ ŭ0‖W−s,p([0,τ ]) ≤ ε.

The following relation holds true

ŭ0(x) =
1

n!(−b)n+1

dn+1

dtn+1
Ψτ ŭ0

(x
b

)
. (36)

Let ρ defined by Equation (9) and ρα by Equation (10), with α ∈ (0, 1). We consider

ûε,α0 =
dn+1

dxn+1
ρα ∗

(
1

n!(−b)n+1
z
(x
b

))
(37)

as approximation of ŭ0. Then the following estimation is of optimal order in the sense
of [12]

‖ûε,α0 − ŭ0‖Lp([0,`]) ≤ Θ
( ε

αn+s+1
+ αm+1

)
= Fε(α), (38)

where the constant Θ depends on ‖Ψτ ŭ0‖Wm+n+2,p([0,τ ]), ‖xm+1ρ‖L1(R), ‖ρ(n)‖L1(R), ‖ρ(n+1)‖L1(R).

Proof. We start by defining the function

ûα0 = ρα ∗ u0.
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By the triangle inequality for Lp-norm we have

‖ûε,α0 − u0‖Lp([0,`]) ≤ ‖ûα0 − u0‖Lp([0,`]) + ‖ûε,α0 − ûα0 ‖Lp([0,`]).

Let us consider the two terms on the right-hand separately.
The first term is ‖ûα0 − u0‖Lp([0,`]) = ‖ρα ∗ u0 − u0‖Lp([0,`]). By using Inequality (32),

we obtain
‖ûα0 − u0‖Lp([0,`]) ≤ γ1α

(m+1)‖u0‖Wm+1,p([0,`]),

with γ1 = 1
m!‖x(m+1)ρ‖L1(R). While the second term is

‖ûε,α0 − ûα0 ‖Lp([0,`]) = ‖ρα ∗ ûε0 − ρα ∗ u0‖Lp([0,`])

= ‖ρα ∗ (ûε0 − u0)‖Lp([0,`])

=
1

n!(−b)n+1

∥∥∥ρα ∗ dn+1

dtn+1
(z −Ψτ ŭ0)

∥∥∥
Lp([0,`])

.

By recalling Inequality(35) , with f = z −Ψτ ŭ0, we have

‖ûε,α0 − ûα0 ‖Lp([0,`]) ≤
1

n!(−b)n+1
γ2α

−(n+1+s)‖z −Ψτ ŭ0‖W−s,p([0,`]).

In conclusion, we obtain

‖ûε,α0 − u0‖Lp([0,`]) ≤ γ1α
(m+1)‖u0‖Wm+1,p([0,`]) +

1

n!(−b)n+1
γ2α

−(n+1+s)‖z −Ψτ ŭ0‖W−s,p([0,τ ])

≤ γ1
1

n!(−b)n+1
α(m+1)‖Ψτ ŭ0‖Wn+m+2,p([0,τ ])

+
1

n!(−b)n+1
γ2α

−(n+1+s)‖z −Ψτ ŭ0‖W−s,p([0,τ ])

≤ Θ
(
αm+1 +

ε

αn+1+s

)
,

where Θ = 1
n!(−b)n+1 max{γ1‖Ψτ ŭ0‖Wm+n+2,p([0,τ ]) , γ2}. �

We now turn to Proposition 2.

Proposition 5 (Proposition 2)
For any z ∈ L2([0, τ ]), there exists a unique minimiser ξ̄ for J(ξ) defined by

J(ξ) =
α2

2
‖ξ‖2L2([0,`]) +

1

2

τ∫
0

|z(t)−Ψτ (ξ)|2dt,

and ξ̄ ∈Hn+1([0, `]). If moreover ξ̆ ∈Hn+1([0, `]) with ξ̆(0) = · · · = ξ̆(n)(0) = 0, we have
the following estimate

‖ξ̆ − ξ̄‖L2([0,`]) ≤
1

α
‖z −Ψτ (ξ̆)‖L2([0,τ ]) + α‖ξ̆‖Hn+1(0,`).
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Proof. This result is based on general inequalities for Tikhonov method, that we recall
below.

Lemma 6 (Estimates for Tikhonov Regularization)
Let K : U → Y a compact injective operator between two Hilbert spaces U and Y, with
norms ‖ · ‖U and ‖ · ‖Y , K∗ : Y → U its adjoint (relatively to these norms) and K† its
Moore-Penrose pseudo-inverse. Let yε ∈ Y. Let uε,α ∈ U the unique solution of

(K∗K + α2)uε,α = K∗yε. (39)

Then uε,α is also the unique minimiser of the following functional

JK(u) :=
1

2
‖Ku− yε‖2Y +

α2

2
‖u‖2U .

Moreover, if uε,α ∈ Ran(K∗) and we have

‖Kuε,α‖Y ≤ ‖yε‖Y , ‖xε,α‖U ≤
1

α
‖yε‖Y .

If moreover y ∈ Ran(K), denoting Ku = y and uα the solution to (39) with yε = y, we
have uα ∈ Ran(K∗K) and

‖uα‖U ≤ ‖x‖U ,
If moreover u ∈ Ran(K∗), we have

‖uα − u‖U ≤ α‖K∗†u‖Y ,
if moreover x ∈ Ran(K∗K), we have

‖uα − u‖U ≤ α2‖(K∗K)†u‖U .
We now apply this result to U = L2([0, `]), Y = L2([0, τ ]) and K = Ψτ . We take u = ξ̆

and yε to be the measurement function t ∈ [0, τ ]→ z(t), and y = Ψτ ξ̆.

RanΨn
τ =

{
u ∈Hn+1([0, τ ]), u(τ) = · · · = u(n)(τ) = 0

}
,

and
RanΨ∗nτ =

{
u ∈Hn+1([0, `]), u(0) = · · · = u(n)(0) = 0

}
.

Lemma 6 gives us that uε,α = ξ̄ is the unique minimizer for J. We decompose as is well-
known

‖ξ̆ − ξ̄‖L2([0,`]) ≤ ‖ξ̆ − uα‖L2([0,`]) + ‖uα − uα,ε‖L2([0,`]).

In Proposition 2, the assumptions on ξ̆ mean that ξ̆ ∈ Ran(K∗), hence

‖uα − ξ̆‖U ≤ α‖K∗†ξ̆‖Y ≤ α‖ξ̆‖Hn+1([0,`]).

Concerning the term ‖ξ̆ − uα‖L2([0,`]), we apply the second inequality of Lemma 6 to
Equation (39) with yε replaced by yε − y, for which uε,α − uα is a solution, and find

‖ξ̆ − uα‖L2([0,`]) ≤
1

α
‖yε − y‖Y =

1

α
‖z −Ψτ (ξ̆)‖L2([0,τ ]).

This ends the proof. �
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7 Oligomer formation protocol

The protocol to form and make measurements on oligomer systems – previously de-
scribed in [10] – consists in inducing a partial unfolding of full-length ovine PrP protein by
thermal treatment. This partial unfolding leads to generation of three distinct oligomers
that can be purified by size exclusion chromatography, for further investigation we refer
to [11]. The conversion of PrP into the oligomeric form is performed in 20mM sodium
citrate buffer (pH 3.40). The PrP – at a final concentration of 50µM – is incubated in
a Perkin Elmer GenAmp2400 thermocycler at 65◦C for two hours. Homogeneous frac-
tions of oligomers are then collected after separation by size exclusion chromatography
(SEC), as first described in [10]. The SEC is performed at 20◦C using a TSK 4000SW
(7mm∗600mm) gel-filtration column (Interchim, Montluçon, France) with 20mM sodium
citrate (pH 3.35). Protein elution is monitored by UV absorption at 280nm. The size
distribution of oligomer assemblies has been determined by the SEC device coupled with
the static light scattering device. Depolymerisation kinetics are performed with an in-lab
device using 407nm laser beams in a 2mm-path-length quartz cuvette. Kinetic experi-
ments are performed according to a standardise methodology, as reported in [11]: 72◦C
in 20mM sodium citrate buffer (pH 3.40). The oligomer concentration has been fixed at
3µM .
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