N
N

N

HAL

open science

A Parallel-Oriented Language for Modeling
Constraint-Based Solvers

Alejandro Reyes Amaro, Eric Monfroy, Florian Richoux

» To cite this version:

Alejandro Reyes Amaro, Eric Monfroy, Florian Richoux. A Parallel-Oriented Language for Model-
ing Constraint-Based Solvers. Workshop on Multi/Many-core computing for parallel Metaheuristics

(McM’2015), 2015, Agadir, Morocco. hal-01248170

HAL Id: hal-01248170
https://hal.science/hal-01248170
Submitted on 24 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01248170
https://hal.archives-ouvertes.fr

A Parallel-Oriented Language for Modeling Constraint-Based

Solvers
Alejandro REYES AMARO Eric MONFROY
Florian RICHOUX

{alejandro.reyes, eric.monfroy, florian.richoux}@univ-nantes.fr
Université de Nantes, France

Abstract

This paper presents the Parallel-Oriented Solver Language (POSL, pronounced “puzzle”): a new frame-
work to build interconnected meta-heuristic based solvers working in parallel. The goal of this work is to
obtain a framework to easily build solvers and reduce the developing effort, by providing a mechanism
for reusing code from other solvers. The novelty of this approach lies in looking at solver as a set of
components with specific goals, written in a parallel-oriented language based on operators.

An interesting advantage of POSL is the possibility to share not only information, but also behaviors,
allowing solvers modifications. POSL allows solver’s components to be transferred and executed by other
solvers. It provides an additional layer to dynamically define the connectivity between the solvers.

The implementation of POSL remains a work in progress, therefore this paper will focus on POSL
concepts only.

1 Introduction

Combinatorial Optimization has important applications in several fields, including machine learning, arti-
ficial intelligence, and software engineering. In some cases, the main goal is only to find a solution, like for
Constraint Satisfaction Problems (CSP). A solution will be an assignment of variables satisfying the constraints
set. In other words: finding one feasible solution.

CSPs find a lot of application in the industry. For that reason, many techniques and methods are applied
to the resolution of these problems. Although many of these techniques, like meta-heuristics, have shown
themselves to be effective, sometimes problems we want to solve are too large, i.e. the search space is huge,
and in most cases intractable.

However, the development of computer architecture is leading us toward massively multifmany—core
computers. This evolution, closely related to the development of the super—computing, has opened a new
way to find solutions for these problems in a more feasible manner, reducing the search times. Adaptive
Search [3] is one of the most efficient algorithm showing very good performances scaling to hundreds or
even thousands of cores. It is an example of multi-walk local search method (i.e. algorithms that explore
the search space by using independent search processes). For this algorithm, an implementation of a
cooperative multi-walks strategy has been published in [9]. These works have shown the efficiency of
independent multi-walk, that is why we have oriented POSL towards this parallel scheme.

In the last years, a lot of efforts have been made in parallel constraint programming. In this field, the
inter-process communication, useful to share information between solvers, is one of the more critical issues.
In [8], an idea to include low-level reasoning components in the SAT problems resolution is proposed,
dynamically adjusting the size of shared clauses to reduce the possible blow up in communication. The
interaction between solvers is called solver cooperation and it is very popular in this field due to their good
results. In [11] is presented a paradigm that enables the user to properly separate strategies to follow
to combine solvers applications in order to find the desired result, from the way that the search space is

explored. Meta—S is a practical implementation of a theoretical framework proposed in [5], which allows to
tackle problems, through the cooperation of arbitrary domain-specific constraint solvers. POSL provides
a mechanism of creating solver—independent communication strategies, giving the possibility of easily
studying solving processes and results.

During the development of constraint programming field, much research focuses on fitting existing
algorithms , trying to improve some metrics such as convergence speed and solution quality. However, it is
required a deep study to find the right algorithm for the right problem. Hyperion [2] is a Java framework
for meta— and hyper-heuristics built with the principles of interoperability, generality by providing generic
templates for a variety of local search and evolutionary computation algorithms, and efficiency allowing
rapid prototyping, with the potential use of the same source code. POSL aims to offer these advantages,
but provides also a mechanism to define communication protocols between solvers.

In this paper we explain a methodology to use POSL for easily build many and different cooperating
solvers based on coupling four fundamental and independent components: operation modules, open channels,
the computation strategy and communication channels or subscriptions. Recently, the hybridization approach,
leads to very good results in constraint satisfaction [4]. For that reason, since the solver’s component can
be combined, POSL is designed to give the possibility to obtain sets of different solvers to be executed in
parallel.

POSL provides, through a simple operator-based language, a way to create a computation strategy, com-
bining already defined components (operation modules and open channels). A similar idea was proposed in [6]
without communication, where it is investigated an evolutionary approach that uses a simple composition
operator, to automatically discover new local search heuristics for SAT, visualizing them as combinations of
a set of building blocks. In the last phase of the coding process using POSL, solvers can be connected each
others, depending on the structure of their open channels, and this way, they can share not only information,
but also their behavior, giving the possibility of send/receive their operation modules. This approach gives to
the solvers the possibility to evolve during the execution.

The work that we present in this paper focuses on the concepts of POSL only. It is part of an ongoing
investigation that foresees a complete implementation.

2 Target problems

POSL is a framework to tackle Constraint Satisfaction Problems (CSP). A CSP is defined by a triple (X, D, C)
where X = {x1,x,...,x,} is a finite set of variables, D = {D;, D5, ..., D,}, is the set of associated domains to
each variable in X, and C = {c1, ¢y, ...,cm}, is a set of constraints. Each constraint is defined involving a set
of variables, and specifies the possible combinations of values for these variables. We denote by a CSP.

A configuration s € Dy x D; x --- x Dy, is a combinations of values for the variables of X. We say that s
is a solution of # if and only if s mets all the constraints ¢; € C.

3 POSL parallel solvers

POSL proposes a solver construction platform, following different stages:

1. The solver algorithm is modeled by decomposing it into small pieces/modules of computation. After
that, they are implemented as separated functions. We will give the name of operation module to these
pieces/modules (Figure [1a)).

2. Thenextstep is to decide what information is interesting to receive from other solvers. This information
is encapsulated into other objects called open channels, allowing data transmission among solvers

(Figure|Ta).

3. A generic strategy is coded through the Parallel-Oriented Solver Language based on operators it
provides, using the mentioned components in the stages [I|and 2} allowing not only the information

I o I I -+
?
[O] [O]

(a) Defining operation modules (b) Defining the computation
(blue blocks) and open chan- strategy
nels (red shapes)
Solver 1 Solver 2 Solver 1 Solver 2
(o] [©]
(c) Disconected solvers (d) Defining cooperation

through subscriptions

Figure 1: Building parallel solvers with POSL

exchange, but also to execute the components in parallel. In this stage, the information that is
interesting to share with other solvers, is sent using operators for that purpose. This will be the
solver’s backbone.

4. Solvers are defined by instantiating and connecting the strategy, operation modules and open channels,
and by connecting them each others (Figure [Ld).

In this section we will explain in details each step.

3.1 Operation module

An operation module is the most basic and abstract way to define a piece of computation. It receives an input,
executes an internal algorithm and gives an output. In this paper, we use this concept to describe and define
one of the basic components of a solver, and they will be joined through computation strategies.

An operation module will represent a piece of the algorithm that can be changed or modified during
the execution. They can be dynamically replaced by or combined with others operation modules, since the
operation modules can be also information to be shared between solvers working in parallel. This way the
solver can change/mutate its behavior during the execution, by combining its operation modules with operation
modules from other solvers. They are represented by blue blocks in the Figure 4]

Definition 1 An operation module Om is an mapping defined as follow:
Om:D—1T1 (1)
In (1), the nature D and 7 will depend on the type of operation module. They can be either a configuration,
or a set of configurations, or a set of values of some data type, etc.
3.2 Open channels

The open channels are the solver’s components in charge of the information reception in the communication
between solvers. They can interact with the operation modules, depending on the computation strategy. The
open channels will play the role of outlets, allowing solvers to be connected to them and receiving information.
They are represented by red shapes in the Figure 4

Definition 2 An open channel Ch is an mapping defined as follow:
Ch:D—-9D 2

An open channel is an open door to outside to receive information. Inside this component will not exist
any processing or data transformation. That is way in (2), the domain and the image are the same.

3.3 Computation strategy

The computation strateqy is the solver’s backbone. It joins the operation modules and the open channels
coherently. It is independent from the operation modules and open channels used in the solver. It means they
can be changed or modified during the execution, without altering the general algorithm, but still respecting
the main structure.

Definition 3 We call module to (and it is denoted by the letter M):
1. An operation module or
2. An open channel or

3. [My OP M,]: The composition of two modules My and M, to be executed sequentially, one after the other,
and returning an output depending on the nature of the operator OP; or

4. [Myi OP M;]: The composition of two modules My and M, to be executed and returning an output depending
on the nature of the operator OP. These two modules will be executed in parallel if and only if OP supports par-
allelism, (i.e. some modules will be executed sequentially although they were grouped this way); or sequentially
otherwise.

We denote the space of the modules by M. We will call compound modules to the composition of modules described in

Bland4d

Following we will define some operators included in POSL framework. In order to group modules, like
in Definition 3|(3) and B|{4), we will use |.| as generic grouper.
The following operator allows us to execute two modules sequentially one after the other.

Definition 4 Suppose two different modules: i) My : D1 — I and ii) My : Dy — 1. Then, we can obtain a
compound module through the following parametric operator:

— (MLMZ) Z.Z)l —>[2

The operation | My — M| can be performed if and only if 1 < D,.
The operation | My — M| returns a compound module as result of the sequential execution of My followed by
M.

The following operator is useful to execute modules sequentially creating bifurcations, subject to some
boolean condition:

Definition 5 Suppose three different modules: i) My : D1 — 11,ii) My : Dy — I and iii) Mz : D3 — 13. Then,
we can obtain a compound module through the following parametric operator:

':) (erMZ/M3) : {011} X @1 e IO

The operation ’Ml — {My, Mg}’ can be performed if and only if: 11 < Dy " Dzand I, v I3 < 1,.
<.>

The operation ‘Ml —— { Mo, M3}

<cond>

followed by M, if < cond > is true or by Mz otherwise.

returns a compound module as result of the sequential execution of My

We can execute modules sequentially creating also cycles, by defining compound modules with another
conditional operator:

Definition 6 Suppose a module My : D1 — 1. Then, we can obtain a cyclic compound module through the
following parametric operator:
Q (M]) . {0,1} X Z)l —>Il

The operation O (< cond >) { My} can be performed if and only if I < D.
The operation O (< cond >) { M1} returns a compound module as result of the sequential execution of My while
< cond > remains true.

In Figure 2| we present a simple example of how combining modules using POSL operators introduced
above. Algorithm [I]shows the corresponding code.

M2
Algorithm 1: POSL code for Figure
M Ma [O < stop_cond > {
-~ <cond> M3
[Ml — {Mz;M3}] M,
<cond>
1]
<stop_cond>
Figure 2

So far, we have assumed that we can only execute two modules, by using the output of the first one as
input of the second one; but sometimes some modules need some other information as input coming from
module(s) executed not right before them. In that case, it is necessary to give additional inputs:

Definition 7 Suppose two different modules: i) My : D1 — I and ii) My : D, — I,. Then, we can obtain a
compound module through the following parametric operator:

() (M, Mo) = Dy — I1 x I

The operation ‘ M1®M2‘ can be performed if and only if: D, € Dy N D,.

The operation ‘ M1®M2‘ returns a compound module as result of the execution of My and My, and its image
will be the cartesian product of its operand’s images.

Figure [3|shows a scenario where it is necessary to use this operator.

POSL offers the possibility to give variability to the solvers. Depending on the operator, one or both
operand module will be executed, but only the output of one of them will be returned by the compound
module. We present these operators in two definitions, grouping those which execute only one module
operand (Definition and those which execute both (Definition EI)

Definition 8 Suppose two different modules: My, My : D — I and a probability p. Then, we can obtain compound
modules through the following parametric operators:

My with probability p

1. @(P, My, My): Dy — I, Where: ‘M1®M2‘ executes { My with probability (1 — p)

My if My is not null

My otherwise

2. @(Ml,Mz) D, —» I, Where: ’M1®Mz‘ executes {

In the following Definition, the concepts of cooperative parallelism and competitive parallelism are implicitly
included. We say that cooperative parallelism exists when two or more processes are running separately,
they are independent, and the general result will be some combination of the results of all the involved
processes (e.g. Definitions PlTland PJ2). On the other hand, competitive parallelism arise when the general
result is the solution of the first process terminates (e.g. Definition P|B).

Definition 9 Suppose two different modules: My, My : D — I. Suppose also that o1 and o, are the outputs of My
and My respectively, and that there exist some order criteria between them. Then, we can obtain a compound module
through the following parametric operators:

1. @ My, M) : Dy, — I, Where: ’Ml@/\/(z‘ returns max {01, 05}

2. @ My, My) : D, > I, Where: ‘Ml@Mz‘ returns min {01, 00}

3. @(Ml,Mz) 2D, — I, Where: ‘M1®Mz) returns { o if My ends first

0o otherwise

M2 " Ms Algorithm 2: POSL code for Figure
M1 Ms M — [[M4@M5] @ [MZ — M3]]
Ma Ms — M
Figure 3

The operators presented in Definitions[§|and] are very useful in terms of sharing not only information
between solvers, but also behaviors. If one of the operands is an open channel it can receive an external
solver’s operation module, providing the opportunity to instantiate it in the current solver. The operator will
either instantiate that module if it is not null, and execute it; or it will execute the other operand module
otherwise.

Some others operators can be useful dealing with sets, especially for population-based solvers:

Definition 10 Suppose two different modules: My, My : D — 2%, Where 27 is to denote sets of some data type.
Suppose also that the sets V1 and V, are the outputs of the execution of My and M,. Then we can obtain a compound
module through the following parametric operators:

1. @(Ml,Mz) D, = I, Where: ‘Ml@Mz‘ returns Vi u Vs
2. @(M1,M2) Dy, — I, Where: ’Ml@Mz‘ returns Vi n V,

3. @(Ml,Mz) D, — I, Where: ’M1®Mz‘ returns V1\V>

Now, we define the operators that allow us to send information to outside, i.e. others solvers. We can
send two types of information: i) we can execute the operation module and send its output, or ii) we can
send the operation module itself. . This utility is very useful in terms of sharing behaviors between solvers.

Definition 11 Given an operation module M : D — I, we can define the following parametric operators:
1 ()°M): D — T Where: (M)° executes M and sends its output to outside
2.()"M): D — 1 Where: (M)™ executes M and also sends the operation module itself to outside

In this stage, and using these operators, we can create the algorithm responsible for managing the
components to find the solution for a given problem. These algorithms are fixed, but generic w.r.t. their
components (operation modules and open channels). It means that we can build different solvers using the
same strategy, but instantiating it with different components, as long as they have the right structure (i.e.,
input/output signature).

To define a computation strategy we will use the following environment:

St := cStrategy
oModule: < list of operation modules types > ;
oChannel: < list of open channels types > ;

{
}

< ...computation strategy... >

[S B N

Before coding the computation strategy, it is necessary to declare which types of operation modules and open
channelswillbe used. Theyareplacedin< list of operation modules types >and< list of open channels types >
respectively. Inside the brackets, the field
< ...computation strategy... > corresponds to the Parallel-Oriented Solver Language based on op-
erators combining the modules. A clear example is provided in Algorithm

3.4 Solver definition

With operation modules, open channels and computation strategy already defined, we can create the solvers by
instantiating the mentioned components. POSL provides an environment to do that:

solver_k := solver

1
2
3 cStrategy: < strategy > ;

4 oModule: < list of operation modules instances > ;
5 oChannel: < list of open channels instances > ;

6

3.5 Communication definition

Once we have defined the strategy to our solver, the next step is to declare the communication channels,
i.e. connecting the solvers each others. Up to here, the solvers are disconnected, but they have everything
to establish the communication (Figure[Id). In this last stage, POSL provides to the user a platform to easily
define the cooperation meta—strategy to be followed by the set of solvers declared before.

The communication is established by following the next rules guideline:

1. Each time a solver sends any kind of information by using the operator (.)° or (.)”, it creates a
communication jack

2. Each time a solver places an open channel into its definition, it creates a communication outlet

3. Solvers can be connected each others by creating subscriptions, connecting communication jacks with
communication outlet (see Figure 4).

With the operator (-) we can have access to the operation modules sending information and to the open
channel’s names in a solver. For example: Solver; - My provides access to the operation module M; in Solver;
if and only if it is affected by the operator (.)? (or (.)™), and Solver, - Ch, provides access to the open channel
Ch; in Solver,. Tacking this into account, we can define the subscriptions.

Definition 12 Suppose two different solvers: Solvery and Solver,. Then, we can connect them through the following
operation:
Solvery - My ~» Solver, - Chy

The connection can be defined if and only if:
1. Solver; has an operation module called My encapsulated into an operator (.)° or (.)".

2. Solver, has an open channel called Chy receiving the same type of information sent by M.

4 An POSL solver

In this section we explain the structure of a solver created by POSL through an example. We choose one
of the more classic solution methods for combinatorial problems: local search meta-heuristics algorithms.
These algorithms have a common structure: they start by initializing some data structures (e.g. a tabu
list for Tabu Search [7]], a temperature for Simulated Annealing [10], etc.). Then, an initial configuration s is
generated (either randomly or by using an heuristic). After that, a new configuration s* is selected from
the neighborhood V (s) . If s* is a solution for the problem £, then the process stops, and s* is returned.
If not, the data structured are updated, and s* is accepted or not for the next iteration, depending on some
criterion (e.g. penalizing features of local optimums, like in Guided Local Search [1]]).

Restarts are classic mechanisms to avoid becoming trapped in local minimum. They are trigged by
reaching no improvements or a timeout.

The operation modules composing local search meta—heuristics are described bellow:

Operation Module — 1 : | Generating a configuration s

Operation Module — 2 : | Defining the neighborhood V (S)

| |
| |
‘ Operation Module — 3 : ‘ Selecting s* € V (s)
| |

Operation Module — 4 : | Evaluating an acceptance criteria for s*

We can combine modules to create more complex ones. For example, if we want a operation module gen-
erating a random configuration but able to give sometimes a fixed configuration (one passed by parameter)
following a given probability, our operation module[I|would be the combination of this two modules through
the operator (@).

Let’s make this solver a little bit more complex: suppose that we have a neighborhood function which is
exploitation-oriented, but sometimes we will ask other solvers to send their neighborhood operation modules
to be executed in the current solver, as a mechanism to scape from local minimum. This behavior is modeled
by the following open channel:

‘ Open Channel — 1 : ‘ Asking for V (s) operation module.

Let’s suppose also that we would like to always broadcast our current solution. It is possible by applying
the operator (.)° to the operation module[4}

Figure [presents the example above. The Solver-1's open channel is represented by a red shapes.
The Solver-1 has an open channel asking for additional neighborhood function, so it means that it can be
connected with Solver—2, because Solver—2 has applied the operator (.)° to send (somehow/at some point) its
neighborhood function operation module. In the solver definition layer it is created a subscription (represented
by a green block) to define the communication channel. As we can see in the diagram, there isnobody attending
to the operation module sending the best configuration. In that case, there are no links outside the channel,
and no information will be sent.

AlgorithmB|shows POSL code for the computation strategy of the solver described above (Solver1), using
predefined operators. POSL provides information regarding the execution process, such as number of
ITeErATIONS, solver execution TimE, Best found solution, among others.

Solver 2 Solver 1

Figure 4: Diagram of a solver cooperation strategy

Algorithm 3: Local search meta—heuristic general Algorithm 4: Local search meta—
strategy heuristic solver definition
St < strategy Y < solver
oModule : M%, M2, Mo, Mo, My ; {
oChannel : Ch; ; stra;::gy:
{
[O (IterATIONS % 10000 != 0) { OMOduli:
a b, mql nmy, My, M3, My
[Ml@Ml] oChannel :
[O (IteraTIONS % 1000 !=0) { chy
[Cm(OMs | — Ms — M) }
1
i1
}

Algorithm [4 shows the solver definition. We place here the computation strategy, followed by instances
of the modules (operation modules and open channels). The instances have to respect the type of the modules
declared in the computation strategy.

Algorithm 5: Inter—solvers communication definition
Zz-MfV'V\')Zq Chl

Supposing that there exist another solver I, with an operation module called M sharing its neighborhood
function, we can connect it with the solver ¥; as the Algorithm [5|shows.

5 Conclusions

In this paper we have presented POSL, a framework for building cooperating solvers. It provides an effective
way to build solvers ables to exchange any kind of information, even other solver’s behavior, sharing their
operation modules. Using POSL, many different solvers can be created and ran in parallel, using only one
generic strategy, but instantiating different operation modules and open channels for each other.

It is possible to implement different communication strategies, since POSL provides a layer to define
communication channels connecting solvers dynamically using subscriptions.

At this point, the implementation of POSL remains in progress, in which our principal task is creating a
design as general as possible, allowing to add new features in the near future. Our goal is obtaining a rich
library of operation modules and open channels to be used by the user, based on a deep study of the classical
meta-heuristics algorithms for solving combinatorial problems, in order to cover them as much as possible.
In such a way, building new algorithms by using POSL will be easier.

At the same time we pretend to develop new operators, depending on the new needs and requirements.
It is necessary, for example, to improve the solver definition language, allowing the process to build sets
of many new solvers to be faster and easier. Furthermore, we are aiming to expand the communication
definition language, in order to create versatile and more complex communication strategies, useful to study
the solvers behavior.

As a medium term future work, it would be interesting also to include learning techniques, allowing the
solver to change automatically, depending for instance on the results of their neighbor solvers.

References

[1] Tlhem Boussaid, Julien Lepagnot, and Patrick Siarry. A survey on optimization metaheuristics. Infor-
mation Sciences, 237:82-117, July 2013.

[2] Alexander E.I. Brownlee, Jerry Swan, Ender Ozcan, and Andrew]J. Parkes. Hyperion 2. A toolkit for
{meta- , hyper-} heuristic research. Technical report, 2014.

[3] Daniel Diaz, Florian Richoux, Philippe Codognet, Yves Caniou, and Salvador Abreu. Constraint-Based
Local Search for the Costas Array Problem. In Learning and Intelligent Optimization, pages 378-383.
Springer Berlin Heidelberg, 2012.

[4] Talbi El-Ghazali. Combining metaheuristics with mathematical programming, constraint program-
ming and machine learning. 4or, July 2013.

[5] Stephan Frank, Petra Hofstedt, and Pierre R. Mai. Meta-S: A Strategy-Oriented Meta-Solver Frame-
work. In FLAIRS Conference, 2003.

[6] Alex S Fukunaga. Automated discovery of local search heuristics for satisfiability testing. Evolutionary
computation, 16(1):31-61, January 2008.

[7] Michel Gendreau and Jean-Yves Potvin. Tabu Search. In Handbook of Metaheuristics, pages 41-59.
Springer US, 2010.

[8] Youssef Hamadi, Said Jaddour, and Lakhdar Sais. Control-Based Clause Sharing in Parallel SAT
Solving. In Autonomous Search, pages 245-267. Springer Berlin Heidelberg, 2012.

[9] Danny Munera, Daniel Diaz, Salvador Abreu, and Philippe Codognet. A Parametric Framework for
Cooperative Parallel Local Search. In 14th European Conference, EvoCOP, pages 13-24, Granada, 2014.

[10] Alexander G. Nikolaev and Sheldon H. Jacobson. Simulated Annealing. In Handbook of Metaheuristics,
pages 1-39. Springer US, 2010.

[11] Brice Pajot and Eric Monfroy. Separating Search and Strategy in Solver Cooperations. In Perspectives of
System Informatics, pages 401-414. Springer Berlin Heidelberg, 2003.

10

	Introduction
	Target problems
	POSL parallel solvers
	Operation module
	Open channels
	Computation strategy
	Solver definition
	Communication definition

	An POSL solver
	Conclusions

