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Abstract This paper presents a detailed analysis of the scalability and par-
allelization of Local Search algorithms for constraint-based and SAT (Boolean
satisfiability) solvers. We propose a framework to estimate the parallel perfor-
mance of a given algorithm by analyzing the runtime behavior of its sequential
version. Indeed, by approximating the runtime distribution of the sequential
process with statistical methods, the runtime behavior of the parallel process
can be predicted by a model based on order statistics. We apply this ap-
proach to study the parallel performance of a Constraint-Based Local Search
solver (Adaptive Search), two SAT Local Search solvers (namely Sparrow and
CCASAT), and a propagation-based constraint solver (Gecode, with a random
labeling heuristic). We compare the performance predicted by our model to ac-
tual parallel implementations of those methods using up to 384 processes. We
show that the model is accurate and predicts performance close to the empir-
ical data. Moreover, as we study different types of problems, we observe that
the experimented solvers exhibit different behaviors and that their runtime
distributions can be approximated by two types of distributions: exponential
(shifted and non-shifted) and lognormal. Our results show that the proposed
framework estimates the runtime of the parallel algorithm with an average
discrepancy of 21% w.r.t. the empirical data across all the experiments with
the maximum allowed number of processors for each technique.
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1 Introduction

In the last years, parallel algorithms for solving hard combinatorial problems,
such as Constraint Satisfaction Problems (CSP), have been of increasing in-
terest in the scientific community. The combinatorial nature of the problem
makes it difficult to parallelize existing solvers, without costly communication
schemes. Several parallel schemes have been proposed for incomplete or com-
plete solvers, one of the most popular (as observed in the latest SAT competi-
tions www.satcompetition.org) being to run several competing instances of the
algorithm on different processes with different initial conditions or parameters,
and let the fastest process win over others. The resulting parallel algorithm
thus terminates with the minimal runtime among the launched processes. The
framework of independent multi-walk parallelism, seems to be a promising
way to deal with large-scale parallelism. Cooperative algorithms might per-
form well on shared-memory machines with a few tens of processors, but are
difficult to extend efficiently on distributed hardware. This leads to so-called
independent multi-walk algorithms in the CSP community [55] and portfolio
algorithms in the SAT community (satisfiability of Boolean formulae) [28].

However, although it is easy to obtain good Speed-up on a small-scale par-
allel machine (viz. with a few tens of processes), it is not easy to know how a
parallel variant of a given algorithm would perform on a massively parallel ma-
chine (viz. with thousands of processes). Parallel performance models are thus
particularly important for parallel constraint solvers, and any indication on
how a given algorithm (or, more precisely, a pair formed by the algorithm and
the problem instance) would scale on massively parallel hardware is valuable. If
it becomes possible to estimate the maximum number of processes until which
parallelization is efficient, then the actual parallel computing power needed to
solve a problem could be deduced. This piece of information might be quite
relevant, since supercomputers or systems such as Google Cloud and Amazon
EC2 can be rented by processor-hour with a limit on the maximum number
of processors to be used. In this context, modelling tools for the behavior of
parallel algorithms are expected to be very valuable in the future.

The goal of this paper is to study the parallel performance of randomized
constraint solving algorithms under the independent multi-walk scheme, and to
model the performance of the parallel execution from the runtime distribution
of sequential runs of a given algorithm. Randomized constraint solvers consid-
ered in this paper include Local Search algorithms for Constraint Satisfaction
Problems, Local Search techniques for SAT, and complete algorithms with
random components e.g., a propagation-based backtrack search with random
heuristics. An important application of this work relates to the increasing com-
putational power being available in cloud systems (e.g., Amazon Cloud EC2,
Google Cloud and Microsoft Azure), a good estimate on how the algorithm
scales might allow users to rent just the right number of cores. Most papers
on the performance of stochastic Local Search algorithms focus on the average
runtime in order to measure the performance of both sequential and parallel
executions. However, a more detailed analysis of the runtime behavior could
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be done by looking at the runtime of the algorithm (e.g., CPU-time or num-
ber of iterations) as a random variable and performing a statistical analysis
of its probability distribution. More precisely, we first approximate the em-
pirical sequential runtime distribution by a well-known statistical distribution
(e.g., exponential or lognormal) and then derive the runtime distribution of
the parallel version of the solver. Our model is related to order statistics, a
rather recent domain of statistics [23], which is the statistics of sorted random
draws. Our method encompasses any algorithm whose solving time is random
and makes it possible to formally determine the average parallel runtime of
such algorithms for any number of processors.

For Local Search, we will consider algorithms in the framework of Las
Vegas algorithms [10], a class of algorithms related to Monte-Carlo algorithms
introduced a few decades ago, whose runtime may vary from one execution
to another, even on the same input. The classical parallelization scheme of
multi-walks for Local Search methods can easily be generalized to any Las
Vegas algorithm. We will study two different sets of algorithms and problems:
first, a Constraint-Based Local Search solver on CSP instances, and, secondly,
two SAT Local Search solvers on random and crafted instances. Interestingly,
this general framework encompasses other types of Las Vegas algorithms, and
we will also apply it to a propagation-based constraint solver with a random
labeling procedure on CSP instances.

We will confront the performance predicted by the statistical model with
actual speed-ups obtained for parallel implementations of the above-mentioned
algorithms and show that the prediction can be quite accurate, matching the
actual speed-up up to a large number of processors. More interestingly, we
can also model both the initial and the asymptotic behavior of the parallel
algorithm.

This paper extends [51] and [9] by giving a detailed presentation of the run-
time estimation model, based on order statistics, and by validating the model
on randomized propagation-based constraint solvers, extensive experimental
results for stochastic local search algorithms on well-known CSP instances
from CSPLib and SAT instances obtained from the international SAT com-
petition. Additionally, we provide a more detailed theoretical analysis of the
reference distributions used for predicting the parallel performance.

The paper is organized as follows. Section 2 presents the existing ap-
proaches in parallel constraint solving, and formulates the question we address
in the following. Section 3 details our probabilistic model for the class of paral-
lel algorithms we tackle in this article, based on Las Vegas algorithms. Several
such algorithms can be used in constraint solving. Each of the three last sec-
tions is dedicated to a specific family of Las Vegas algorithm: Constraint-Based
Local Search in Section 4, SAT Local Search in Section 5 and propagation-
based methods with randomization in Section 6. For each method, we apply the
model to compute the parallel speed-ups, run the parallel algorithm in practice
and compare and analyze the results. Section 7 presents a comparison of our
probabilistic method against a method that does not involve statistical tools.
A conclusion, in Section 8, ends the paper.



4 Charlotte Truchet et al.

2 Parallel Constraint Solving

This section presents existing approaches for parallel constraint solving. The
base methods are Constraint-Based Local Search, Local Search for SAT, and
complete solvers based on propagation techniques and backtrack search. We
then present the state of the art on estimating parallel speed-up for randomized
solvers.

2.1 Parallel Local Search

Parallel implementation of Local Search metaheuristics [30, 35] has been stud-
ied since the early 1990s, when parallel machines started to become widely
available [44, 55]. With the increasing availability of PC clusters in the early
2000s, this domain became active again [4, 21]. [42] recently proposed a scalable
parallel algorithm for backtracking algorithms based on load-balancing to dis-
tribute the work across multiple processes with low communication overhead.
Apart from domain-decomposition methods and population-based method (such
as genetic algorithms), [55] distinguishes between single-walk and multi-walk
methods for Local Search. Single-walk methods consist in using parallelism
inside a single search process, e.g., for parallelizing the exploration of the
neighborhood (see for instance [54] for such a method making use of GPUs for
the parallel phase). Multi-walk methods, i.e., parallel execution of multi-start
methods, consist in developing concurrent explorations of the search space,
either independently or cooperatively with some communication between con-
current processes. Sophisticated cooperative strategies for multi-walk methods
can be devised by using solution pools [22], but require shared-memory or
emulation of central memory in distributed clusters, thus impacting on per-
formance. A key point is that a multi-walk scheme is easier to implement on
parallel computers without shared memory and can lead, in theory at least,
to linear speed-ups [55]. However, this is only true under certain assumptions
and we will see that we need to develop a more realistic model in order to cope
with the performance actually observed in parallel executions.

2.2 Parallel Local Search for SAT

Like for CSP, it is now currently admitted that an easy and effective manner to
parallelize Local Search solvers consists in executing in parallel multiple copies
of the solver with or without cooperation. We remark that nearly all parallel
solvers in the parallel SAT competitions are based on the multi-walk frame-
work1. The non-cooperative approach has been used in the past to solve SAT
and MaxSAT instances. gNovelty+ [47] executes multiple copies of gNovelty
without cooperation until a solution is obtained or a given timeout is reached;

1 The SAT community usually refer to the multi-walk framework as portfolio algorithms.
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and [45] executes multiple copies of GRASP until an assignment which sat-
isfies a given number of clauses is obtained. Strategies to exploit cooperation
between parallel SAT Local Search solvers have been studied in [8] in the con-
text of multi-core architectures with shared memory and in [6] in massively
parallel systems with distributed memory.

2.3 Parallel Complete Solvers

Early experiments on the parallelization of propagation-based complete solvers
date back to the beginning of Constraint Logic Programming, cf. [52], and
used the search parallelism of the host logic language [36]. Most of the pro-
posed implementations have been based on some kind of OR-parallelism, split-
ting the search space between different processors and relying on the shared-
memory multicore architecture as the different processors work on shared
data-structures representing a global environment in which the subcompu-
tations take place. However only very few implementations of efficient con-
straint solvers on such machines have ever been reported, for instance [46]
or [18] for a shared-memory architecture with 8 CPU processors. The Comet
system [53] has been parallelized for small clusters of PCs, both for its Local
Search solver [39] and its propagation-based constraint solver [40]. More recent
experiments have been done up to 12 processors [41].

Search-space splitting techniques such as domain decomposition have also
been implemented in the domain of Constraint Programming, but initial ex-
periments [13] show that the speed-up goes to flatten after a few tens of pro-
cessors, thus away from linear speed-up. A recent approach based on a smaller
granularity domain decomposition [48] shows better performance. The results
for all-solution search on classical CSPLib benchmarks are quite encouraging
and show an average speed-up of 14 to 20 up with 40 processors w.r.t. the
base sequential solver.

In the domain of combinatorial optimization, the most popular complete
method that has been parallelized at a large scale is the classical branch and
bound method [26], because it does not require much information to be com-
municated between parallel processes: basically only the current upper (or
lower) bound of the solution. It has thus been a method of choice for exper-
imenting the solving of optimization problems using grid computing, see for
instance [1] and also [17], which use several hundreds of nodes of the Grid’5000
platform. Good speed-ups are achieved up to a few hundreds of processors but
interestingly, their conclusion is that runtimes tend to stabilize afterward. A
simple solving method for project scheduling problems has also been imple-
mented on an IBM Bluegene/P supercomputer [57] up to 1,024 processors,
but with mixed results since they reach linear speed-ups until 512 processors
only, and then no improvements beyond this limit.
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2.4 How to Estimate Parallel Speed-Up ?

The multi-walk parallel scheme is rather simple, yet it provides an interesting
test-case to study how Las Vegas algorithms can scale-up in parallel. Indeed,
runtime will vary among the processes launched in parallel and the overall
runtime will be equal to the minimal runtime (i.e., “long” runs are killed by
“shorter” ones). The question is thus to quantify the relative notion of short
and long runs and their probability distribution. This might give us a key
to quantify the expected parallel speed-up. This can be deduced from the
sequential behavior of the algorithm, and more precisely from the proportion
of long and short runs in the sequential runtime distribution.

In the following, we propose a probabilistic model to quantify the expected
speed-up of multi-walk Las Vegas algorithms. This makes it possible to give a
general formula for the speed-up, depending on the sequential behavior of the
algorithm. Our model is related to order statistics, which is the statistics of
sorted random draws, a rather new domain of statistics [23]. Indeed, explicit
formulas have been given for several well-known distributions. Relying on an
approximation of the sequential distribution, we compute the average speed-
up for the multi-walk extension. Experiments show that the prediction is quite
sharp and opens the way for defining more accurate models and applying them
to larger classes of algorithms.

Previous works [55] studied the case of a particular distribution for the se-
quential algorithm: the exponential distribution. This case is ideal and it yields
a linear speed-up. Our model enables us to approximate Las Vegas algorithms
by other types of distribution, such as a shifted exponential distribution or a
lognormal distribution. In the last two cases the speed-up is no longer linear,
but admits a finite limit when the number of processors goes toward infinity.
We will see that these distributions fit experimental data for some problems.

The literature provides other probabilistic models for parallel Las Vegas
algorithms. For parallelization schemes based on restart strategies, Luby et
al. [38] proposed an optimal universal strategy, which achieves the best speed-
ups amongst the restart-based universal strategies. Although our work, which
is not based on restarts, does not fit within this framework, it is related to
it since it uses similar probabilistic ideas. In our case, a probabilistic model
is used to model the efficiency of a parallel scheme, without modifying the
algorithm. In their case, probabilistic tools are used to find an optimal restart
scheme for a base algorithm. With the same idea of restart-based paralleliza-
tion of Las Vegas algorithms, [50] goes a step further and provides a more
detailed model. It clarifies in particular the cases of super-linear speed-ups,
which are due, in this framework, to inefficient (or not well-tuned) sequential
algorithms. Interestingly, this article also experiments with log-normally dis-
tributed sequential algorithms, which confirms our hypothesis that not only
exponential distributions have to be investigated (as assumed by [3, 2]).
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3 Probabilistic Model

Randomized algorithms are stochastic processes. Their behavior (output, run-
ning time...) is non-deterministic and varies according to a probability distri-
bution, which may or may not be known. For instance, Local Search algorithms
include several random components: choice of an initial configuration, choice
of a move among several candidates, plateau mechanism, random restart, etc.
A complete algorithm may also have a stochastic behavior when they include
random components, such as random heuristics, restarts with randomization,
etc.

In the following, we first define the class of algorithms that our model
encompasses. We then present our probabilistic model, considering the com-
putation time of an algorithm (whatever it is) as a random variable, and using
elements of probability theory to study its multi-walk parallel version.

3.1 Parallel Las Vegas Algorithms

The notion of Las Vegas algorithm encompasses a wide range of combinatorial
solvers. We borrow the following definition from [32], Chapter 4.

Definition 1 (Las Vegas Algorithm) An algorithm A for a problem class
Π is a (generalized) Las Vegas algorithm if and only if it has the following
properties:

1. If for a given problem instance π ∈ Π, algorithm A terminates returning a
solution s, s is guaranteed to be a correct solution of π.

2. For any given instance π ∈ Π, the runtime of A applied to π is a random
variable.

This definition includes algorithms which are not guaranteed to return a
solution. However in practice, we will only consider terminating Las Vegas
algorithms, such as Local Search algorithms which always terminate if run for
an unbounded time.

Let us now formally define a parallel multi-walk Las Vegas algorithm.

Definition 2 (Multi-walk Las Vegas Algorithm) An algorithm A’ for a
problem class Π is a (parallel) multi-walk Las Vegas algorithm if and only if
it has the following properties:

1. It consists of n instances of a sequential Las Vegas algorithm A for Π, say
A1, ..., An.

2. If, for a given problem instance π ∈ Π, there exists at least one i ∈ [1, n]
such that Ai terminates, then let Am,m ∈ [1, n], be the instance of A
terminating with the minimal runtime and let s be the solution returned
by Am. Then algorithm A’ terminates in the same time as Am and returns
solution s.

3. If, for a given problem instance π ∈ Π, all Ai, i ∈ [1, n], do not terminate
then A’ does not terminate.
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3.2 Min Distribution

Consider the problem of solving a given problem instance using a Las vegas
algorithm, say, tabu search on the Magic-Square 10×10. Depending on the
result of some random components inside the algorithm, it may find a solution
after 0 iterations, 10 iterations, or 106 iterations. The number of iterations of
the algorithm is thus a discrete random variable, let us call it Y , with values in
N. Y can be studied through its cumulative distribution, which is by definition
the function FY s.t. FY (x) = P[Y ≤ x], that is, the function which, for a x
in the scope of the random variables, gives the probability that a random
draw is smaller than x. Another possible tool to model a random variable is
its distribution, which is by definition the derivative of FY : fY = F ′Y . Notice
that the computation time is not necessarily the CPU-time; it can also be the
number of iterations performed during the execution of the algorithm.

It is often more convenient to consider distributions with values in R be-
cause it makes calculations easier. For the same reason, although fY is defined
in N, we will use its natural extension to R. This step is merely technical, and
the probability distribution in N can be retrieved from the distribution in R.

The expectation of the computation is then defined by the standard for-
mula for real-valued distributions: E [Y ] =

∫∞
0
tfY (t)dt. This formula is the

extension to R of the classical expectation formula in the case of integer dis-
tributions (

∑∞
0 tfY (t)).

Assume that the base algorithm is concurrently run in parallel on n pro-
cessors. In other words, over each processor the running process is a copy of
the algorithm with different initial random seed. The first process that finds
a solution then kills all others and the algorithm terminates. The i-th process
corresponds to a draw of a random variable Xi, following distribution fY . The
variables Xi are thus independently and identically distributed (i.i.d.). The
computation time of the whole parallel process is also a random variable, let’s
call it Z(n), with a distribution fZ(n) that depends on both n and fY . Since
all the Xi are i.i.d., the cumulative distribution FZ(n) can be computed as
follows:

FZ(n) = P[Z(n) ≤ x] by definition

= P[∃i ∈ {1...n}, Xi ≤ x] because of the multiwalk rule

= 1− P[∀i ∈ {1...n}, Xi > x] probability formula for the negation

= 1−
∏n
i=1 P[Xi > x] because the random variables are i.i.d.

= 1− (1−FY (x))
n

by definition

which leads to:

fZ(n) = (1− (1−FY )
n
)′

= nfY (1−FY )n−1



Parallel Randomized Algorithms 9

Thus, knowing the distribution for the base algorithm Y , one can calculate
the distribution for Z(n). In the general case, the formula shows that the
parallel algorithm favors short runs, by killing the slower processes. Thus,
we can expect that the distribution of Z(n) moves toward the origin, and is
more peaked. As an example, Fig. 1 shows this phenomenon when the base
algorithm admits a Gaussian distribution.

10 20 30 40 50 runtime

0.05

0.10

0.15

0.20

0.25
probability

Fig. 1 Distribution of Z(n), in the case where Y admits a Gaussian distribution (cut on R−

and renormalized). The blue curve is Y . The distributions of Z(n) are in pink for n = 10,
in yellow for n = 100 and in green for n = 1000.

3.3 Expectation and Speed-up

The model described above gives the probability distribution of a parallelized
version of any randomized algorithm. We can now calculate the expectation
for the parallel process with the following relation:

E
[
Z(n)

]
=

∫ ∞
0

tfZ(n)(t) dt

= n

∫ ∞
0

tfY (t)(1−FY (t))n−1 dt

Unfortunately, this does not lead to a general formula for E
[
Z(n)

]
. In the

following, we will study it for different specific distributions.
To measure the gain obtained by parallelizing the algorithm on n proces-

sors, we will study the speed-up Gn defined as:

Gn = E [Y ] /E
[
Z(n)

]
Again, no general formula can be computed and the expression of the

speed-up depends on the distribution of Y .
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However, it is worth noting that our computation of the speed-up is related
to order statistics, see [23] for a detailed presentation. Order statistics are the
statistics of sorted random draws. For instance, the first order statistics of a
distribution is its minimal value, and the kth order statistic is its kth-smallest
value. For predicting the speed-up of a multi-walk Las Vegas algorithm on
n processors, we are indeed interested in computing the expectation of the
distribution of the minimum among n draws. As the above formula suggests,
this may lead to heavy calculations, but recent studies such as [43] give explicit
formulas for this quantity for several classical probability distributions. Except
in the case of the exponential distribution, detailed below, the formulas given
for the minimum order statistics are rather complicated. In some cases, a
symbolic computation may not even succeed in a reasonable amount of time.
When this happens, we will perform a first step of symbolic computation,
then another step of numeric integration to obtain the numerical value for the
speed-up.

3.4 Case of an Exponential Distribution

Assume that Y has a shifted exponential distribution, as it has been suggested
by [3, 2].

fY (t) =

{
0 if t ≤ x0
λe−λ(t−x0) if t > x0

FY (t) =

{
0 if t ≤ x0
1− e−λ(t−x0) if t > x0

E [Y ] = x0 + 1/λ

Then the formula of Section 3.2 can be symbolically computed by hand:

fZ(n)(t) =

{
0 if t ≤ x0
nλe−nλ(t−x0) if t > x0

FZ(n)(t) =

{
0 if t ≤ x0
1− e−nλ(t−x0) if t > x0

The intuitive observation of Section 3.2 is easily seen on the expression
of the parallel distribution, which has an initial value multiplied by n but an
exponential factor decreasing n-times faster, as shown on the curves of Fig. 2.

And in this case, one can symbolically compute both the expectation and
speed-up for Z(n):

E
[
Z(n)

]
= nλ

∫ ∞
x0

te−nλ(t−x0) dt

= x0 +
1

nλ

Gn =
x0 + 1

λ

x0 + 1
nλ
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Fig. 2 For an exponential distribution, here in blue with x0 = 100 and λ = 1/1000,
simulations of the distribution of Z(n)for n = 2 (pink), n = 4 (yellow) and n = 8 (green).
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Fig. 3 Predicted speed-up in case of an exponential distribution, with x0 = 100 and λ =
1/1000, w.r.t. the number of processors.

Fig. 3 shows the evolution of the speed-up when the number of processors
increases. With such a rather simple formula for the speed-up, it is worth
studying what happens when the number of processors n goes to infinity.
Depending on the chosen algorithm, If x0 = 0, then the expectation goes to
0 and the speed-up is equal to n. This case has already been studied by [55].

For x0 > 0, the speed-up admits a finite limit which is
x0+

1
λ

x0
= 1 + 1

x0λ
. Yet,

this limit may be reached slowly, and depends on the values of x0 and λ. From
the previous formula we observe that the closer x0 is to zero, the better is
the speedup. Another interesting value is the coefficient of the tangent at the
origin, which approximates the speed-up for a small number of processors. In
case of an exponential, it is (x0 ∗ λ + 1). The higher x0 and λ, the bigger is
the speed-up at the beginning. In the following, we will see that, depending
on the combinations of x0 and λ, different behaviors can be observed.
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3.5 Case of a Lognormal Distribution

Other distributions can be considered, depending on the behavior of the base
algorithm. We will study the case of a lognormal distribution, which is the
log of a Gaussian distribution. The lognormal distribution appears in several
of our experiments in Section 4 and 5. The lognormal distribution has two
parameters, the mean µ and the standard deviation σ. In the same way as the
shifted exponential distribution, we shift the distribution so that it starts at a
given parameter x0. Formally, a (shifted) lognormal distribution is defined as:

fY (t) =

{
0 if t < x0
Φ(log(t−x0))

t−x0
if t > x0

where Φ(t) = 1√
2∗π e

−t2/2.

The mean, variance and median are known and equal to eµ+
σ2

2 , e2µ+σ
2

(eσ
2−

1) and eµ respectively.
Fig. 4 depicts lognormal distributions of Z(n), for several n. The computa-

tions for the distribution of Z(n)and the theoretical speed-up are the same as
given in Section 3.3. The computation of the expectation for the moments of
order statistics of a lognormal distribution can be found in [43], which gives an
explicit formula with only a numerical integration step. We only recall from
[43] this formula for the first moment (expectation) of the first order statistics
(minimum distribution), shifted by x0, which we are interested in.

We will need Lauricella functions defined by:

F
(n)
A (a; b1, ..., bn; c1, ..., cn;x1, ..., xn))

=

∞∑
m1=0

...

∞∑
mn=0

(a)m1+...+mn(b1)m1
...(bn)mn

(c1)m1 ...(cn)mn

xm1
1 ...xmnn
m1!...mn!

Then one has:

E
[
Z(n)

]
= x0 + ne1/2

n−1∑
l=0

(n− 1

l

)(
−

1

2

)l r∑
p=0

( l
p

)(
−

2
√
π

)p

∗ E
[(
N
√

2− 1

2
√

2

)p

F
(p)
A (

1

2
, ...,

1

2
;

3

2
, ...,

3

2
;−

(N
√

2− 1)2

8
, ...,−

(N
√

2− 1)2

8
)

]

where N is a standard normal random variable. In addition, [43] provides
pointers to routines in Mathematica to compute the terms of this formula with
only one step of numerical integration. In practice, we will get our numerical
results with an earlier step of numerical integration in Mathematica, with a
good accuracy.

This allows us to draw the general shape of the speed-up, an example
being given on Fig. 5. Due to the numerical integration step, which requires
numerical values for the number of processors n, we restrict the computation
to integer values of n.
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Fig. 4 For a lognormal distribution (in blue), with x0 = 0, µ = 5 and σ = 1, simulations
of the distribution of Z(n)for n = 2 (pink), n = 4 (yellow) and n = 8 (green).
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Fig. 5 Predicted speed-up in case of a lognormal distribution, with x0 = 0, µ = 5 and
σ = 1, w.r.t. the number of processors.

3.6 Methodology

In this section we detail how to perform the prediction of the parallel runtime
and speed-up with respect to sequential execution from the analysis of the
sequential runtime distribution. On each problem, the sequential benchmark
gives observations of the distribution of the algorithm runtime fY . Yet, the
exact distribution is still unknown. It can be any real distribution, not even
a classical one. In the following, we will rely on the assumption that Y is
distributed with a known parametric distribution. We perform a statistical
test, called Kolmogorov-Smirnov test, on the hypothesis H0 that the collected
observations correspond to a theoretical distribution. Assuming H0, the test
first computes the probability that the distance between the collected data
and the theoretical distribution does not significantly differ from its theoretical
value. This probability is called the p-value.

Then, the p-value is compared to a fixed threshold (usually 0.05). If it is
smaller, one rejects H0. For us, it means that the observations do not corre-
spond to the theoretical distribution. If the p-value is high, we will consider
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that the distribution of Y is approximated by the theoretical one. Note that
the Kolmogorov-Smirnov test is a statistical test, which in no way proves that
Y follows the distribution. However, it measures how well the observations fit
a theoretical curve and, as it will be seen in the following, it is accurate enough
for our purpose.

Our benchmarks appear to fit with two distributions: the exponential dis-
tribution, as suggested by [25], and the lognormal distribution. We have also
performed the Kolmogorov-Smirnov test on other distributions (e.g., Gaussian
and Lévy), but obtained negative results w.r.t. the experimental benchmarks,
thus we do not include them in the sequel. For each problem, we need to esti-
mate the value of the parameters of the distribution, which is done on a case
by case basis. Once we have an estimated distribution for the runtimes of Y ,
it becomes possible to compute the expectation of the parallel runtimes and
the speed-up using the formulas of Section 3.3.

In the following, all the analyses are done on the number of iterations,
because they are more likely to be unbiased, and all the mathematical com-
putations are done with Mathematica [56].

4 Application to Constraint-based Local Search

Recently, the application of Local Search to solve combinatorial problems has
attracted the attention of researcher [19, 53], as it can tackle Constraint Satis-
faction Problems (CSP) instances far beyond the reach of classical propagation-
based constraint solvers. A generic, domain-independent Constraint-Based Lo-
cal Search method, named Adaptive Search, has been proposed by [19, 20].
This meta-heuristic takes advantage of the structure of the problem in terms
of constraints and variables and can guide the search more precisely than a
single global cost function to optimize, such as for instance the number of vi-
olated constraints. The algorithm also uses a short-term adaptive memory in
the spirit of Tabu Search in order to prevent stagnation in local minima and
loops. The main ideas of adaptive search can be summarized as follows:

– to consider for each constraint a heuristic function that is able to compute
an approximated degree of satisfaction of the goals (the current error on
the constraint);

– to aggregate constraints on each variable and project the error on variables
thus trying to repair the worst variable with the most promising value;

– to keep a short-term memory of bad configurations to avoid looping (i.e.,
some sort of tabu list) together with a reset mechanism.

We used for our experiments the reference implementation of Adaptive
Search (AS) which has been developed as a framework library in C is and
available as a freeware at the URL:
http://cri-dist.univ-paris1.fr/diaz/adaptive/
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4.1 Experimental Protocol and Benchmarks

We detail here the performance and speed-ups obtained with both sequen-
tial and parallel multi-walk Adaptive Search implementations. We have cho-
sen to test this method on a hard combinatorial problem abstracted from
radar and sonar applications (Costas Array) and two problems from the
CSPLib benchmark library2: All-Interval Series (prob007 in CSPLib), and
the Magic-Square problem (prob019 in CSPLib). We refer the reader to [51]
for a complete description of the benchmarks and the local search framework.

We run our benchmarks in a sequential manner a certain number of times
to evaluate the quality of the proposed model. Sequential experiments, as well
as parallel experiments, have been done on the Griffon cluster of the Grid’5000
platform [12], the French national grid for research, which contains 8,596 pro-
cessors deployed on 11 sites distributed over France. In our experiments, we
used the Griffon cluster at Nancy, composed of 184 Intel Xeon L5420 (Quad-
core, 2.5GHz, 12MB of L2-cache, bus frequency at 1333MHz), thus with a
total of 736 processes available giving a peak performance of 7.36TFlops. The
following table (Table 1) shows the minimum, mean, median, maximum and
standard deviation among the runtimes (in seconds) and the number of itera-
tions for our three benchmarks.

MS 200 AI 700 Costas 21
time iterations time iterations time iterations

Min 5.5 6, 210 23.3 1, 217 6.6 321, 361
Mean 382.0 443, 970 1, 354.0 110, 393 3, 744.4 183, 428, 617

Median 126.3 164, 042 945.4 76, 242 2, 457.4 119, 667, 588
Max 7, 441.6 7, 895, 872 10, 243.4 826, 871 19, 972.0 977, 709, 115

Std Dev 873.0 933, 766 1, 363.4 111, 352 3, 655.5 179, 049, 696

Table 1 Sequential executions in seconds and number of iterations

One can see from Table 1 that runtimes and numbers of iterations are
spread over a large interval for each benchmark, illustrating the stochasticity of
the algorithm. Depending on the benchmark, there is a ratio of a few thousands
times between the minimum and the maximum runtimes.

Table 2 presents the speed-up for the runtime and the number of iterations
up to 256 processors for the executions of large benchmarks: Magic-Square
(instance of size 200×200), All-Interval (instance of size 700) and Costas
Array (instance of size 21). The same code has been ported and executed,
timings are given in seconds and are the average of 50 runs. The speed-up for
a given parallel execution is calculated against the mean performance of its

sequential version as follows: Speed-Up = Mean(Solver on 1 processor)
Mean(Solver on N processors)

One can notice there is no significant difference between speed-ups in
CPU-time and in number of iterations, therefore we will prefer as a time

2 http://www.csplib.org
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measure the number of iterations, which has the good property of not being
machine-dependent. Similar speed-ups have been achieved on other parallel
machines [16].

Problem instance on 1 proc.
runtime on k processors

16 32 64 128 256

MS200
time 382.0 18.3 24.5 32.3 37.0 47.8
iter. 443, 970 16.6 22.2 29.9 34.3 45.0

AI700
time 1, 354.0 12.9 19.3 30.6 39.2 45.5
iter. 110, 393 12.8 20.2 29.3 37.3 48.0

Costas21
time 3, 744.4 15.7 26.4 59.8 154.5 274.8
iter. 183428617 15.8 26.4 60.0 159.2 290.5

Table 2 Parallel Speed-ups time and number of iterations.

For Magic-Square and All-Interval one can observe the stabilization
point is not yet obtained for 256 processor, even if speed-ups do not increase
as fast as the number of processors, i.e., are getting further away from linear
speed-up. For the Costas Array Problem, our algorithm reaches linear or
even super-linear speed-ups for up to 256 processors. Actually, it scales linearly
far beyond this point, i.e., at least up to 8,192 processors, as reported in [24].
Speed-ups of the average runtime for Magic-Square and All-Interval look
similar, but their actual runtime behaviors are different, as will be seen in the
next section.

4.1.1 The All-Interval Series Problem

The analysis is done on 720 runs of the Adaptive Search algorithm on the
instance of All-Interval series for 700 notes. The sequence of observations
is written AI 700 in the following.

We test the hypothesis that the observations admit a shifted exponential
distribution as introduced in Section 3.4. The first step consists in estimating
the parameters of the distribution, which for a shifted exponential are the value
of the shift x0 and λ.3 We take for x0 the minimum observed value, x0 = 1217.
The exponential parameter is estimated thanks to the following relation: for
a non-shifted exponential distribution, the expectation is 1/λ. Thus we take
λ = 1/(mean(AI 700)− x0), which gives λ = 9.15956 · 10−6.

We then run the Kolmogorov-Smirnov test on the shifted exponential dis-
tribution with these values of x0 and λ, which answers positively (computed
p-value: 0.77435). We thus admit the hypothesis that AI 700 fits this shifted
exponential distribution. As an illustration, Fig. 6(a) shows the normalized
histogram of the observed runtimes and the theoretical distribution.

It is then possible to symbolically compute the speed-up that can be ex-
pected with the multi-walk parallel scheme. We use the formulas of Section 3.4
with the estimated parameters and obtain a theoretical expression for the

3 The Notation is the same as in Section 3.
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Fig. 6 Analysis of AI 700

speed-up. This allows us to calculate its value for different numbers of proces-
sors.

The results are given in Fig. 6(b). With this approximated distribution,
the limit of the speed-up when the number of processors goes to infinity is
90.7087. One can see that, with 256 processors, the curve has not reached its
limit, but comes close. Thus, the speed-up for this instance of All-Interval
appears significantly less than linear (i.e., less than the number of processors).

4.1.2 The Magic-Square Series Problem

For the Magic-Square problem with N = 200, the observations are the num-
ber of iterations on 662 runs, with a minimum of x0 = 6210. The Kolmogorov-
Smirnov test on a shifted exponential distribution fails, but we obtain a pos-
itive result with a lognormal distribution, with µ = 12.0275 and σ = 1.3398,
shifted to x0. These parameters have been estimated with the use of the Math-
ematica software. As an illustration, Fig. 7(a) shows the observations and the
theoretical estimated distribution.
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Fig. 7 Analysis of MS 200
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The speed-up can be computed by integrating the minimum distribution
with numerical integration techniques. The results are presented in Fig. 7(b).
We can observe that the speed-up grows very fast at the origin, which can be
explained by the high peak of the lognormal distribution with these parame-
ters. Again, the speed-up is computed with a numerical integration step, and
we only draw the curve for integer values of n. In this case again, the speed-up
is significantly less than linear from 50 processors onwards, and the limit of
the speed-up when the number of processors goes to infinity is about 71.5.

4.1.3 The Costas Array Problem

The same analysis is done for the runs of the AS algorithm on the Costas
Array problem with N = 21. The observations are taken from the benchmark
with 638 runs. The sequence of observations is written Costas 21.

This benchmark has an interesting property: the observed minimum, 3.2 ·
105 is negligible compared to its mean (1.8 · 108). Thus, we estimate x0 = 0
and perform a Kolmogorov-Smirnov test for a (non-shifted) exponential dis-
tribution, with λ = 1/mean(Costas 21) = 5.4 · 10−9. The test is positive for
this exponential distribution, with a p-value of 0.751915. Fig. 8(a) shows the
estimated distribution compared to the observations.
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Fig. 8 Analysis of Costas 21

The computation of the theoretical speed-up is then done in the same way
as for AI 700. Yet, in this case, the observed minimum for x0 is so small that
we can approximate the observations with a non-shifted distribution, thus the
predicted speed-up is strictly linear, as shown in Section 3.4. The results are
given on Fig. 8(b). This explains that one may observe linear speed-up when
parallelizing Costas Array.

4.2 Analysis and Discussion

Table 3 presents the comparison between the predicted and the experimental
speed-ups. We can see that the accuracy of the prediction is very good up to
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64 parallel processors and then the divergence is limited even for 256 parallel
processors.

For the MS 200 problem, the experimental speed-up and the predicted
one are almost identical up to 128 processors and diverging by 10% for 256
processors. For the AI 700 problem, the experimental speed-up is below the
predicted one by a maximum of 30% for 128 and 256 processors. For the
Costas 21 problem, the experimental speed-up is above the predicted one by
15% for 128 and 256 processors.

Instance
speed-up on k processors

16 32 64 128 256

MS200
experimental 16.6 22.2 29.9 34.3 45.0

predicted 15.94 22.04 28.28 34.26 39.7

AI700
experimental 12.8 20.2 29.3 37.3 48.0

predicted 13.7 23.8 37.8 53.3 67.2

Costas21
experimental 15.8 26.4 60.0 159.2 290.5

predicted 16.0 32.0 64.0 128.0 256.0

Table 3 Comparison: experimental and predicted speed-ups

It is worth noting that our model approximates the behaviors of experimen-
tal results very closely, as shown by the predicted speed-ups matching closely
the real ones. Moreover we can see that on the three benchmark programs,
we needed to use three different types of distribution (exponential, shifted
exponential and lognormal), in order to approximate the experimental data
most closely. This shows that our model is quite general and can accommodate
different types of parallel behaviors.

A quite interesting behavior is exhibited by the Costas 21 problem. Our
model predicts a linear speed-up, up to 10,000 processors and beyond, and
the experimental data gathered for this paper confirms this linear speed-up
up to 256 processors. Would it scale up with a larger number of processors?
Indeed we did such an experiment up to 8,192 processors on the JUGENE
IBM Bluegene/P at the Jülich Supercomputing Center in Germany (with a
total 294,912 processors), and reported it in [24], the speed-up is linear up to
8,192 processors, thus showing an excellent fit between the prediction model
and real data

5 Application to SAT Local Search

Let us now look at a different problem domain (SAT - the Satisfiability Prob-
lem for Boolean formulas) and different local search solvers.
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In this section we focus our attention on two well-known problem families:
random and crafted instances4. Moreover, we consider the two best Local
Search solvers from the 2012 SAT competition5: CCASAT [15] and Sparrow
[11]. Both solvers were used with their default parameters and with a timeout
of 3 hours for each experiment. All the experiments were performed on the
Grid’5000 platform, the French national grid for research. We used a 44-node
cluster with 24 cores (2 AMD Opteron 6164 HE processors at 1.7 Ghz) and
44 GB of RAM per node.

We performed experiments with two well-known problem families of in-
stances coming from the SAT’11 competition: random and crafted. In par-
ticular, we used 10 random instances (6 around the phase transition and 4
outside the phase transition) and 10 crafted instances. Complete details of the
selected instances for the evaluation is available at [9], hereafter we denote
random instances as Rand-[1 to 10] and crafted instances as crafted-[1 to 9].

In order to obtain the empirical data for the theoretical distribution (pre-
dicted by our model from the sequential runtime distribution), we performed
500 runs of the sequential algorithm. The Mathematica software [56], version
8.0, was used to estimate the parameters of the theoretical distributions and
to integrate numerically the formulas of the lognormal distribution. In order
to evaluate the accuracy of the learned statistical model, we performed 50 runs
of the multi-walk parallel algorithms.

5.1 Analysis of the Parallel Speed-ups

Let us now present the empirical and predicted results for random and crafted
instances. We will not perform here again a detailed analysis as in Section 3.6,
but rather report directly the computed p-value when comparing the empir-
ical runtime distribution to either a shifted exponential distribution and a
lognormal distribution.

5.1.1 Random instances

We start our analysis with Table 4, which presents initial statistics for the
sequential version of Sparrow and CCASAT. We present the minimum, max-
imum, and mean runtime values, as well as the outcome of the Kolmogorov-
Smirnov (KS) test for two types of distributions: shifted exponential and log-
normal. In the following tables, bold numbers indicate the distribution chosen
to predict the performance of a given solver. As it can be observed for a few
instances, the best distribution does not pass the KS test, but we still use the
distribution with the best KS value for predicting the runtime of the parallel
solver. .

4 We also experimented with industrial instances but the tested LS solvers performed
poorly and a very limited number of instances could be solved with a reasonable time limit.

5 http://baldur.iti.kit.edu/SAT-Challenge-2012/results.html
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Instance Alg Min Max Mean
p-value

Shifted exp. dist. Lognormal dist.

Rand-1
Sparrow 98.0 4860.0 793.9 5.6·10−19 0.76
CCASAT 103.6 1340.1 458.5 8.4·10−55 0.96

Rand-2
Sparrow 91.8 5447.0 1007.5 1.8·10−20 0.91
CCASAT 108.8 1652.9 497.9 5.1·10−58 0.71

Rand-3
Sparrow 104.8 3693.7 797.0 2.9·10−26 0.64
CCASAT 126.48 1125.4 359.6 2.3·10−108 0.90

Rand-4
Sparrow 162.4 3037.8 781.5 1.6·10−38 0.03
CCASAT 132.5 980.9 382.0 1.5·10−117 0.92

Rand-5
Sparrow 164.0 7946.3 952.4 1.8·10−31 0.16
CCASAT 158.6 1177.9 403.1 5.1·10−134 0.20

Rand-6
Sparrow 142.0 4955.8 763.5 1.6·10−31 0.64
CCASAT 142.9 890.9 354.1 9.6·10−137 0.46

Rand-7
Sparrow 35.5 10637.4 3464.2 0.01 1.5·10−4

CCASAT 61.6 6419.1 1801.0 1.0·10−5 0.13

Rand-8
Sparrow 23.2 10738.0 3412.9 0.05 4.7·10−4

CCASAT 35.9 10443.7 2007.6 0.50 0.03

Rand-9
Sparrow 6.8 5935.8 1028.2 0.23 3.7·10−3

CCASAT 18.1 2830.4 476.8 7.0·10−3 0.03

Rand-10
Sparrow 19.0 10800.0 1726.3 0.65 0.15
CCASAT 19.8 4854.5 758.4 7.6·10−10 0.18

Table 4 Performance of sequential algorithms on random instances

The results presented in this table are consistent with the results of the
2012 SAT competition (random category) where CCASAT greatly outper-
formed Sparrow. For this set of instances, we choose the shifted exponential
distribution in lieu of the exponential distribution as the Min runtime value
for the reference solvers is not negligible compared to its mean value across
500 executions (about 100 times smaller in the best case).

As can be seen from the table, both solvers report a tendency which in-
dicates that the empirical data for instances around the phase transition are
better approximated by a lognormal distribution; all these instances pass the
KS test with a confidence level (p-value) above 0.05, except for Sparrow on
rand-4. Alternatively when the KS test is not enough to decide the most appro-
priate distribution, we use the Q-Q plot to decide whether a given distribution
fits the empirical data. The closer the empirical data is to the reference line
(theoretical distribution), the better the fit. Fig. 9 shows the Q-Q plot for
Sparrow to solve rand-7, unlike Fig. 9(b) where a clear deviation between the
empirical data and the lognormal distribution is observed, Fig. 9(a) shows that
the empirical distribution is very close to the shifted exponential distribution.
We have performed the same analysis for the remaining random instances and
observed a similar behaviour between the empirical data and the reference
distributions

It is well recognized in the SAT community that k-SAT instances around
the phase transition (i.e., No of clauses/No of Variables = 4.2) are known
to be difficult [27]. Taking this into consideration, for instances outside the
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Fig. 9 Q-Q Plot Analysis of Sparrow on rand-7

phase transition, Sparrow reports enough statistical evidence to infer that the
shifted exponential distribution fits better the empirical data. For CCASAT,
3 out of 4 instances outside the phase transition are better characterized with
a lognormal distribution and the remaining instance pass the KS test for the
shifted exponential distribution.

Instance
Sparrow - Runtime on k proc. CCASAT - Runtime on k proc.

48 96 192 384 48 96 192 384

Rand-1
Actual 163.8 140.4 125.2 113.7 160.0 143.0 122.8 112.0
Predicted 133.8 110.5 92.7 78.8 137.7 120.6 106.7 95.3

Rand-2
Actual 213.2 191.4 166.2 142.5 186.8 169.3 159.3 142.8
Predicted 183.5 152.8 129.2 110.6 153.4 134.7 119.6 107.1

Rand-3
Actual 175.9 151.2 135.8 123.5 166.7 155.6 143.5 132.2
Predicted 183.5 152.8 129.2 110.6 153.4 134.7 119.6 107.1

Rand-4
Actual 202.3 179.2 159.5 141.8 193.1 176.0 169.4 158.7
Predicted 175.7 149.5 128.9 112.4 170.6 155.9 143.5 132.8

Rand-5
Actual 219.6 201.0 182.5 161.9 212.2 191.3 176.8 165.8
Predicted 185.0 155.3 132.3 114.0 179.8 164.3 151.2 140.0

Rand-6
Actual 185.5 167.1 150.3 137.5 190.9 179.3 168.4 153.4
Predicted 158.3 133.6 114.4 99.1 160.6 147.0 135.4 125.6

Rand-7
Actual 151.2 102.7 63.8 51.1 22.9 33.7 54.3 67.8
Predicted 195.8 143.0 107.3 82.3 182.8 142.6 113.7 92.2

Rand-8
Actual 126.6 81.9 51.1 30.9 131.8 83.9 64.8 39.7
Predicted 93.8 58.5 40.8 32.0 76.9 56.4 46.1 41.0

Rand-9
Actual 33.9 18.4 13.1 9.0 45.0 31.0 22.7 16.3
Predicted 28.1 17.4 12.1 9.4 38.5 29.4 23.0 18.3

Rand-10
Actual 63.4 48.9 40.7 30.9 113.8 94.7 72.9 54.2
Predicted 54.6 36.8 27.9 23.4 105.6 85.3 70.2 58.6

Table 5 Runtimes for random instances up to 384 proc. (processors)

We now look at the parallel performance of the solvers. Table 5 shows
the empirical and predicted runtime for both Sparrow and CCASAT on all
instances using 48, 96, 192, and 384 processors. Detailed tables with the speed-
up for Sparrow and CCASAT are available in [9]. Summing up both solver
report the same tendency as the empirical data. Furthermore, the speed-up
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factor of the references far from linear (ideal), a phenomenon well described
by the predicted model.

Fig. 10 depicts observations and the theoretical estimated distribution,
and Fig. 11 shows a performance summary of the reference solvers to tackle
an instance on the phase transition (rand-4) and another instance outside the
phase transition (rand-7). The y-axis gives the probability (P[Y ≤ x]) of find-
ing a solution in a time less or equal to x and the x-axis gives the runtime in
seconds. From now on, in all figures ‘Emp’ stands for Empirical distribution,
‘LN’ stands for lognormal distribution, and ‘SExp’ stands for shifted expo-
nential distribution. As expected CCASAT dominates the performance on one
processor. For example to solve rand-4, CCASAT reports P[Y ≤ 16-mins] ≈
1.0, while Sparrow reports P[Y ≤ 16-mins] ≈ 0.75. Interestingly, we observe
that for CCASAT increasing the number of processors does not significantly
improve the solving time. Consequently, Sparrow becomes more effective for a
large number of processors. Therefore, Fig. 11(b) and 11(d) show that Spar-
row is better than CCASAT when using 384 processors. Interestingly, the same
pattern is observed for other random instances (see Table 5).
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Fig. 10 Histogram for the observed runtimes for CCASAT and Sparrow to solve rand-4
and rand-7

Finally, it can also be observed that random instances around the phase
transition exhibit a lower speed-up factor than the remaining random in-
stances. For instance, the best empirical speed-up factor obtained for instances
in the phase transition is 7.0 for Sparrow and 3.4 for CCASAT; and the best
speed-up factor obtained for instances outside the phase transition is 114.2 for
Sparrow and 50.5 for CCASAT.
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Fig. 11 Performance summary to solve rand-4 and rand-7

5.1.2 Crafted instances

Let us switch our attention now to crafted instances, for which we have to
treat CCASAT and Sparrow differently. For CCASAT, we were unable to find
a theoretical distribution which fits the empirical data. It should be also no-
ticed that CCASAT has mainly been designed and tuned to handle random
instances. Let us look for instance at Fig. 13(a), which depicts the cumulative
runtime distribution of CCASAT to solve Crafted-1 using the two reference
distributions detailed in this paper (lognormal and exponential) and two extra
distributions (Weibull and beta-prime). None of the theoretical distributions
seems to be a good approximation of the empirical data. More precisely, the
KS test reported a p-value of 2.7·10−7 (lognormal); 7.0·10−24 (exponential);
2.4·10−6 (Weibull); and 6.9·10−15 (beta-prime). Therefore, none of the the-
oretical distributions pass the KS test with a high-enough p-value. We also
experimented with other instances and observed a similar behavior.

Fig. 12(b) and 12(b) display the Q-Q plots between the empirical distribu-
tion and two theoretical distribution: exponential and log-normal. Both figures
show that the data is neither exponentially nor log-normally distributed.

For Sparrow on all crafted instances, the KS test shows a much better p-
value for the exponential distribution than for the lognormal one, see Table
6. The confidence level is quite high for the instances Crafted-2,-3,-4,-5,-8,-9,
with p-value up to 0.97, while the p-value is between 0.01 and 0.02 for Crafted-
1,-6,-7. Also, as the minimum runtime is much smaller than the mean (at least
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Fig. 12 Q-Q Plot Analysis of CCASAT on crafted-1

Instance Alg Min Max Mean
p-value

Exp. dist. Lognormal dist.
Crafted-1 Sparrow 9.9 10800.0 3440.3 0.02 1.2·10−4

Crafted-2 Sparrow 1.0 10800.0 2711.2 0.57 1.4·10−4

Crafted-3 Sparrow 8.7 10800.0 3432.7 0.14 1.1·10−3

Crafted-4 Sparrow 2.2 10800.0 2701.6 0.11 9.6·10−3

Crafted-5 Sparrow 4.1 10800.0 1564.1 0.95 9.2·10−4

Crafted-6 Sparrow 2.9 10800.0 3599.6 0.01 1.0·10−5

Crafted-7 Sparrow 4.4 10800.0 3598.7 0.01 7.8·10−6

Crafted-8 Sparrow 3.5 5456.0 972.046 0.67 0.17

Crafted-9 Sparrow 1.9 7876.5 1298.24 0.97 7.0·10−3

Table 6 Sequential performance of Sparrow on crafted instances

300 times smaller), we can approximate the empirical data by a non-shifted
exponential distribution [51].

As can be seen in Table 7 the multi-walk parallel approach scales well for
Sparrow on crafted instances as the number of processors increases. Indeed a
nearly linear speed-up is obtained for nearly all the instances. As expected,
the speed-up predicted by our model is optimal, and this result is consistent
with those obtained in [33].

5.2 Analysis and Discussion

Several works have been devoted to the experimental study of parallel multi-
walk extensions of Local Search algorithms [6, 7, 32], but we presented here
the first approach (to our knowledge) which applies order statistics in order
to predict the parallel performance of Local Search algorithms for SAT. As in
Section 4.2, the lognormal or shifted-exponential distributions need to be con-
sidered for the runtime distribution, and not only the exponential distribution
as suggested by most of the literature.

Interestingly, the phase transition point of SAT instances also seems to
have important consequences in the parallel performance of Local Search al-
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Instance
Runtime on k proc. Speed-Up ok k proc.

48 96 192 384 48 96 192 384

Crafted-1
Actual 97.7 43.7 19.1 9.8 35.1 78.6 179.6 349.8
Predicted 71.6 35.8 17.9 8.9 48.0 96.0 192.0 384.0

Crafted-2
Actual 67.8 36.4 17.5 7.2 39.9 74.4 154.7 375.2
Predicted 56.4 28.2 14.1 7.0 48.0 96.0 192.0 384.0

Crafted-3
Actual 94.8 49.3 23.2 11.9 36.1 69.6 147.6 286.1
Predicted 71.5 35.7 17.8 8.9 48.0 96.0 192.0 384.0

Crafted-4
Actual 87.5 42.0 17.3 9.7 30.8 64.2 155.4 277.8
Predicted 56.2 28.1 14.0 7.0 48.0 96.0 192.0 384.0

Crafted-5
Actual 33.7 15.1 7.6 4.2 46.3 103.2 204.1 371.6
Predicted 32.5 16.2 8.1 4.0 48.0 96.0 192.0 384.0

Crafted-6
Actual 130.0 69.8 25.6 12.8 27.6 51.5 140.5 279.5
Predicted 74.9 37.4 18.7 9.3 48.0 96.0 192.0 384.0

Crafted-7
Actual 95.0 51.3 28.4 11.6 37.8 70.0 126.3 308.0
Predicted 74.9 37.4 18.7 9.3 48.0 96.0 192.0 384.0

Crafted-8
Actual 17.2 10.8 5.3 2.6 56.4 89.6 181.1 363.6
Predicted 20.2 10.1 5.0 2.5 48.0 96.0 192.0 384.0

Crafted-9
Actual 27.2 12.1 5.9 3.6 47.5 106.6 217.3 358.0
Predicted 27.0 13.5 6.7 3.3 48.0 96.0 192.0 384.0

Table 7 Parallel performance of Sparrow on crafted instances (proc. stands for processors)
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Fig. 13 Performance summary on crafted-1

gorithms. For Sparrow at least, which is the solver with an overall best speed-
up factor, instances around the phase transition region are lognormally dis-
tributed, while instances outside the phase transition are shifted-exponentially
distributed. As for Constraint-Based Local Search, the probability of returning
a solution in no iterations is not zero in theory for SAT Local Search. How-
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ever, in practice a minimum number of steps is in general required to reach a
solution cf. [33, 49] for the sequential case. Therefore, experimental data may
be better approximated by a shifted distribution with x0 > 0: this is the case
for the random instances. This leads to a non-linear speed-up with a finite
limit, even in the case of an exponential distribution. Indeed, the experimen-
tal speed-up for both CCASAT and Sparrow on random instances is far from
linear. On the contrary, Sparrow on crafted instances has a linear speed-up
which could be explained by the fact that the minimal runtime is negligible
w.r.t. the mean time (i.e., 1/λ for an exponential distribution). Therefore, the
statistical test succeeds for x0 ' 0. This suggests that, in general, the com-
parison between the minimal time and the mean time is a key element for the
study of the parallel behavior.

We do not discard that other parameters for the reference solvers would
lead to other theoretical distributions (e.g., exponential distribution for ran-
dom instances). In [37] the authors showed that a well-tuned version of Walk-
SAT is exponentially distributed for instances in the phase transition region.
However, we experimented by increasing the ps (smoothing probability) pa-
rameter of Sparrow and still obtained the same theoretical distribution. In
addition, when ps is too high the solver was unable to solve the instances
within the 3 hour time limit. Unfortunately, CCASAT is only available in bi-
nary form, and it is not possible to experiment with other parameters for the
solver.

We expect this work to have significant implications in the area of auto-
matic parameter tuning to devise scalable Local Search algorithms. Currently,
most parameter tuning tools (e.g., [34, 5]) are designed to improve the ex-
pected mean (or median) runtime, however as observed in this paper, unless
the algorithms exhibit a non-shifted exponential distribution, their parallel
performance is far from linear and varies from algorithm to algorithm.

6 Application to Propagation-based Constraint Solving

In the previous two sections we have been studying the parallel performance
of incomplete algorithms based on Local Search. In this section, we shift our
focus to complete algorithms to tackle CSPs. Broadly speaking, complete al-
gorithms employ a combination of domain reduction and tree-based search
method, in which at the root node all variables are associated with a given
domain. At each step of the search a value is assigned to some variable. Each
assignment is preceded by a look-ahead process called constraint propagation
which reduces the domains of the variables. The search process is stopped
when a solution has been obtained or when the complete tree has been ex-
plored. In particular, we consider wdeg [14] and min-dom [31] state-of-the-art
variable selection heuristics that focus on difficult parts of the search.
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6.1 Experimental Protocol and Benchmarks

In order to perform the following experimentation we equipped Gecode6 with
the multi-walk framework. We also used a randomized version of the solver.
At each node, we use wdeg and min-dom to select the most appropriate vari-
able. The former selects the variable with the largest weighted degree7 value
is selected (breaking ties at random), the latter selects the variables with the
smallest valid domain at a given state of the search. The value for the chosen
variable is selected uniformly at random. It is highly recognized that the run-
time distribution for tree-based search methods for a large number of problems
is heavy-tailed [29] and adding restarts (i.e., stopping the search after a given
number of backtracks, and re-initializing it) helps to alleviate the heavy-tailed
phenomenon. In this paper, we use a fixed restart strategy where the restart
cutoff is 250 backtracks. For each problem instance we compute the sequen-
tial performance using wdeg and min-dom, and use the heuristic with better
performance (in sequential settings) to evaluate the model described above to
estimate the performance of the solver in parallel.

In these experiments, we use the same computer settings as for the previous
section and considered the same baseline problems as for the adaptive search
framework in Section 4, that is, Magic-Square, All-Interval, and Costas
Array. For Magic-Square and All-Interval we used the model provided
in the Gecode distribution (version 4.2.1), and the Gecode version of Costas
Array is available at http://www.hakank.org/gecode/costas_array.cpp.
It is worth noting that the All-Interval model for Gecode allows the triv-
ial solution (0, n-1, n-2, n-3, . . .), and such a solution is obtained without
backtracking. Therefore, we removed the trivial solution in the model by only
allowing positive numbers for the first variable in the list, i.e., adding the
constraint X0 > 0.

6.2 Analysis of the Parallel Speed-ups

Table 8 shows the runtime of the sequential version. We present the minimum,
maximum, mean, and the p-value for the reference line distributions of the
sequential runs for Magic-Square 15, All-Interval 18, Costas Array
17. Highlighted numbers indicate the best heuristic w.r.t. Mean value, this
heuristic will be used later on for the parallel evaluation of the solver. The
Kolmogorov-Smirnov test suggest that the sequential execution for Magic-
Square can be characterized using a shifted exponential distribution with a
p-value of 0.21 (Magic-Square 15 with wdeg), All-Interval can be charac-
terized using an exponential distribution with a p-value of 0.75 (All-Interval
18 with min-dom)8, and Costas Array can be characterized using a log-

6 www.gecode.org
7 We use AFC, the Gecode implementation of wdeg
8 We use the exponential distribution in lieu of the shifted exponential because the min

value is negligible w.r.t. to the mean 0.008 vs. 58.08.
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normal distribution with a p-value 0.04 (Costas Array 17 with min-dom). It
is worth pointing out that neither Magic-Square nor All-Interval passed
the KS test for the log-normal distribution, and Costas Array did not pass
KS for the (shifted/and not shifted) exponential distribution. Once again, we
use the formulas of Section 3.3 with λ=1/mean and x0 is set to the minimal
value of the empirical data, and used Mathematica to estimate the parame-
ters of the log-normal distribution for Costas Array. Hereafter we use the
indicated distributions for each algorithm to build the model and estimate the
parallel performance in solver.

Instance Alg Min Max Mean
p-value

shifted exp. dist. Lognormal dist.

MS-15
wdeg 0.200 222.86 38.20 0.21 8.6·10−3

min-dom 0.891 3600 488.55 0.78 0.02

AI-18
wdeg 0.027 677.20 76.09 0.24 7.3·10−4

min-dom∗ 0.008 264.64 58.08 0.75 4.1·10−3

Costas-17
wdeg 0.177 2481.45 272.86 2.1·10−10 0.68
min-dom 0.262 332.58 40.39 0.04 1.4·10−3

Table 8 Sequential executions in seconds for complete search. ∗Indicates that for AI-18 with
min-dom we use non-shifted distributions because the min value is considerably smaller than
the mean
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Fig. 14 Histogram for the observed runtimes for complete search
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Tables 9 reports the estimated runtime (top) and speed-up (bottom) of
the multi-walk version of the propagation-based constraint solving algorithm.
Interestingly, this simple parallel scheme exhibits very good speedup factors
for the three benchmarks: super-linear for Magic-Square with 48, 96, cores,
linear for nearly all experiments for All-Interval, and a factor 122 (w.r.t.
the sequential solver) for Costas Array with 384 cores.

6.3 Analysis and Discussion

We recall that the goal of this section is not to compare incomplete methods
based on Local Search and complete methods based on tree search. Instead,
we intend to show the application of the proposed framework to a large variety
of randomized techniques to solve combinatorial problems. Interestingly, even
though the search strategy used in these experiments largely differs from the
experiments presented in the two previous sections, we have observed that the
empirical data can be characterised according to a theoretical distribution,
ie shifted exponential (Magic-Square and All-Interval) and log-normal
(Costas Array) distributions, and accurately estimate the runtime of the
parallel algorithm.

The runtime prediction is very close to the empirical data for the three
problems with gap between the prediction and the actual execution time (Ta-
ble 8) of up 13.7% for Magic-Square with 384 cores, 14% for All-Interval
with 92 cores, and 8% for Costas Array with 384 cores. Furthermore, the
predictions of the speedup of the solvers are very encouraging, for the Magic-
Square problem it can be observed that the gap between the actual and
estimated speedup is up to 13% with 24 cores, for the All-Interval problem
is up to 12% with 96 cores, and for Costas Array is up to 4% with 192
cores. Finally, we would like to point out that this methodology requires inde-
pendently and identically distributed executions of the sequential algorithm,
so that, parallel algorithms based on search-splitting techniques [13, 18, 42]
and cooperative techniques [6] do not fit within the proposed framework.

Finally, we would like to point out that we also experimented with the
losing technique in sequential settings (see Table 8) and also found out very
accurate predictions of up to 5% for Magic-Square with min-dom, up to 4%
for All-Interval with wdeg, and up to 2% for Costas Array with wdeg.

7 Empirical Estimation

In this section we study a method that only uses the empirical sequential
distribution to estimate the parallel runtime distribution. This method is much
simpler than our model, as it does not involve many statistical tools. Our goal
is to compare this empirical method to our model.

Let {k1, ..., km} ∈ K be the set of m sequential executions of a given
randomised algorithm to solve a given instance. We assume K to be sorted,
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Problem 1 proc.
performance (time/speed-up) on k proc.
24 48 96 192 384

MS 15 38.20
Actual

2.06 0.66 0.47 0.31 0.25
18.546 57.87 81.27 123.22 152.8

Predicted
1.78 0.99 0.59 0.39 0.29

21.46 38.58 64.74 97.94 131.72

AI 18 58.08
Actual

3.54 1.56 0.69 0.42 0.28
16.41 37.23 84.17 138.29 207.43

Predicted
2.42 1.21 0.60 0.30 0.15

24.00 48.00 96.00 192.00 384.00

Costas 17 40.39
Actual

3.41 1.64 0.93 0.49 0.33
11.83 24.62 43.43 82.42 122.39

Predicted
1.93 1.09 0.68 0.47 0.36

20.92 37.05 59.39 85.93 112.191

Table 9 Parallel runtimes in seconds (proc. stands for processors). Each cell in the perfor-
mance indicates the runtime (top) and speedup (bottom) for MS with wdeg, AI and Costas
with min-dom

thus ki denotes the ith sequential runtime. The associated empirical sequential
distribution is the probability distribution defined by assigning a probability
1/m to each sequential execution. Therefore the probability of each observation
can be defined as P[Y ≤ ti]= i/m. Considering the min distribution rule of
Section 3.2 we compute the empirical parallel runtime distribution FZn as
follows:

P[Z(n) ≤ ti] = 1− (1−FY (ti))
n

Min Distribution, Section 3.2

= 1−
(
1− i

m

)n
by definition

Figure 15 shows the assigned probabilities of each element in the sorted
set of sequential observations, the y-axis shows the probability of selecting
each ki ∈ K (x-axis) for the sequential algorithm with 1 processor,and the
derived probabilities for the empirical parallel runtime distribution with 2, 4,
8, 16, and 32 processors. As expected, increasing the number of processors also
increases the chances of selecting short runs.

Hereafter, we refer to prediction method for our model based on a the-
oretical distribution (e.g., lognormal distribution) as shown in Sections 4, 5,
and 6, and we use the term estimation method to refer to the simpler method
described here. Certainly, a key factor for the accuracy of both methods is
the number of sequential observations. We are interested in the robustness
of both methods w.r.t. the number of observations (m) and the number of
cores (n). We thus show experiments where we vary the number of sequential
observations to build the probability distribution model. Table 10 shows the
average discrepancy across all instances with 48, 96, 192, and 384 cores9. We
use a baseline of 500 instances for Sparrow (random and crafted), CCASAT
and the Adaptive Search, and 300 instances for experiments with the Gecode
solver and gradually decrease the number of observations m by considering
50%, 25%, and 12% of the sequential data.

9 For experiments with the Adaptive Search we use report values with 32, 64, 128, and
256 cores
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Cores Method
Discrepancy

100% 50% 25% 12%

48
EE 17.92 19.04 33.71 48.25
PE 25.66 21.80 23.67 27.79

96
EE 18.36 24.40 47.58 51.62
PE 25.45 20.11 25.17 31.50

192
EE 22.64 33.33 50.91 65.04
PE 23.90 22.76 27.06 31.89

384
EE 28.22 40.03 52.89 67.05
PE 21.89 24.86 28.25 29.29

ALL
EE 21.79 29.20 46.27 57.99
PE 24.23 22.38 26.04 30.12

Table 10 Average Discrepancy across all instances w.r.t. the actual solution for the em-
pirical evaluation (EE) and the predicted evaluation (PE) varying the sequential executions
and number of cores

As it can be observed in the table, the empirical evaluation is a robust
alternative when a large enough number of observations is available. In partic-
ular, we observe that the empirical method slightly outperforms our statistical
model in 3 out of 4 scenarios when considering 100% of the sequential data.
On the other hand, our statistical model reports better results in 11 out of
the 12 scenarios when considering 50%, 25% and 12% of the data. Interest-
ingly, the difference between the two prediction models is more significant as
we increase the number of cores and reduce the number of observations. For
instance, when using 12% of the data and 384 cores we observe that the dis-
crepancy w.r.t. the actual data is 67.05% for empirical estimations and only
29.29% for the prediction model. In addition, summing up all the experiments
(last row in Table 10), we observe that the quality of the prediction model is
more stable and better than the estimation method.
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Fig. 16 Predicted, Empirical, and Empirical Estimated probability distributions of Sparrow
to solve crafted-1

Fig. 16 shows a comparison using 100% of the sequential execution for
the prediction, empirical10, and empirical estimation methods for Sparrow
to solve crafted-1 with 48 and 192 processors11. As it can be observed in
this figure the empirical estimation greatly matches the performance with 48
processors (Fig. 16(a)). However, the quality considerably degrades when using
192 processors (Fig. 16(b)), for instance, the empirical estimation suggests
that the probability of finding a solution in 50 seconds for Sparrow with 192
processors is P[t ≤ 50] ≈ 60% vs. P[t ≤ 50] ≈ 90% for the actual performance
in parallel settings, that is, about 30% discrepancy.

Finally, it can be observed that our prediction model, based in order statis-
tics, closely matches the performance for an important number of processors.
It is worth noting that the performance deterioration of the empirical estima-
tion method is even higher when using a small set of sequential observations,
as observed in Table 10. Furthermore, the prediction method also allows us to
predict the limit of the speedup when the number of processors tends to infin-
ity as shown in Section 3.4 for the exponential distribution. An example of the
maximal speedup is depicted for the Magic-Square problem in Section 4.1.1.

The prediciton method thus ensures a more robust accuracy. The intuitive
explanation is the following: as explained above, compared to the sequential
distribution, the minimum distribution is concentrated close to the origin (or
x0). Thus, when it is approached with the empirical method, only the samples
next to the origin count, no matter what the rest of the observations are: only
a few samples really count in the model. On the contrary, our method finds
a curve which best approximates the whole sequential distribution, leveraging
the information at hand. Hence, it is more robust when the number of obser-
vations decreases. Notice also that the empirical method does not allow us to
compute the theoretical limit for the speed-up.

10 For empirical we mean the empirical runtime distribution computed with the actual
empirical results of the experiments with 48 and 192 processors.
11 We have performed the same analysis with other instances and observed a similar ten-

dency, i.e., increasing the number of processors degrades the performance of the empirical
estimated probability distribution
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8 Conclusion and Future Work

We have proposed a theoretical model for predicting and analyzing the speed-
ups of Las Vegas algorithms and applied it for Local Search methods in
two different domains, Constraint-Based Local Search and SAT, and also for
propagation-based constraint solving with random labeling heuristics. Inter-
estingly, we have observed that, for the different algorithms and the variety
of instances considered in this study, the runtime distribution can be charac-
terized using two types of distributions: exponential (shifted and non-shifted)
and lognormal.

It is worth noting that our model mimics the behaviors of the experimental
results very closely, as shown by the predicted speed-ups matching closely the
real ones. We showed that the parallel speed-ups predicted by our statistical
model are accurate, matching the actual speed-ups very well up to several
hundreds of processors.

However, a limitation of our approach is that, in practice, we need to be
able to approximate the sequential distribution. In addition, this distribution
must be one of the distributions for which the first order statistics is known,
symbolically (as the exponential) or numerically (as the lognormal). Never-
theless, recent results in the field of order statistics give explicit formulas for a
number of useful distributions: Gaussian, lognormal, gamma, beta. This pro-
vides a wide range of tools to analyze different behaviors.

Another interesting extension of this work would be to devise a method for
predicting the speed-up from scratch, that is, without any knowledge on the
algorithm distribution. Our observations suggest that the sequential runtime
of both LS and complete search are well approximated by a small number of
distributions. This could be intensively tested on a wider range of problems.
In particular, it is important to know wether the sequential distribution of
different instances of a given problem belong to the same family. Then we
can devise a method for estimating the sequential distribution based on a
limited number of observations, possibly on small instances, and then estimate
the parallel speed-up for larger instances. This would allow us to predict if a
simple multi-walk parallelization scheme, which does not imply to modify the
algorithms, is likely to be efficient, or not. In the same spirit, further research
includes investigating machine learning techniques to infer the distribution
from a set of experiments as small as possible.
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Automatic Algorithm Configuration Framework. Journal of Artificial In-
telligence Research 36:267–306

35. Ibaraki T, Nonobe K, Yagiura M (eds) (2005) Metaheuristics: Progress as
Real Problem Solvers. Springer Verlag

36. de Kergommeaux JC, Codognet P (1994) Parallel Logic Programming
Systems. ACM Computing Surveys 26(3):295–336

37. Kroc L, Sabharwal A, Selman B (2010) An Empirical Study of Optimal
Noise and Runtime Distributions in Local Search. In: Strichman O, Szeider
S (eds) SAT’10, Springer, Edinburgh, UK, LNCS, vol 6175, pp 346–351

38. Luby M, Sinclair A, Zuckerman D (1993) Optimal Speedup of Las Vegas
Algorithms. Information Processing Letters 47:173–180

39. Michel L, See A, Van Hentenryck P (2006) Distributed Constraint-Based
Local Search. In: Benhamou F (ed) CP’06, 12th Int. Conf. on Principles
and Practice of Constraint Programming, Springer Verlag, Lecture Notes
in Computer Science, pp 344–358

40. Michel L, See A, Van Hentenryck P (2007) Parallelizing Constraint Pro-
grams Transparently. In: Bessiere C (ed) CP’07, 13th Int. Conf. on Prin-
ciples and Practice of Constraint Programming, Springer Verlag, Lecture
Notes in Computer Science, pp 514–528

41. Michel L, See A, Van Hentenryck P (2009) Parallel and Distributed Local
Search in Comet. Computers and Operations Research 36:2357–2375

42. Moisan T, Gaudreault J, Quimper C (2013) Parallel Discrepancy-Based
Search. In: Principles and Practice of Constraint Programming - 19th
International Conference, CP 2013, Uppsala, Sweden, September 16-20,
2013. Proceedings, pp 30–46, DOI 10.1007/978-3-642-40627-0 6, URL
http://dx.doi.org/10.1007/978-3-642-40627-0_6

43. Nadarajah S (2008) Explicit Expressions for Moments of Order Statistics.
Statistics & Probability Letters 78(2):196–205

44. Pardalos PM, Pitsoulis LS, Mavridou TD, Resende MGC (1995) Parallel
Search for Combinatorial Optimization: Genetic Algorithms, Simulated
Annealing, Tabu Search and GRASP. In: Parallel Algorithms for Irregu-
larly Structured Problems (IRREGULAR), pp 317–331

45. Pardalos PM, Pitsoulis LS, Resende MGC (1996) A Parallel Grasp for
MAX-SAT Problems. In: Wasniewski J, Dongarra J, Madsen K, Olesen D



38 Charlotte Truchet et al.

(eds) 3rd International Workshop on Applied Parallel Computing, Indus-
trial Computation and Optimization, Springer, Lyngby, Denmark, LNCS

46. Perron L (1999) Search Procedures and Parallelism in Constraint Pro-
gramming. In: CP’99, 5th Int. Conf. on Principles and Practice of Con-
straint Programming, Springer Verlag, Lecture Notes in Computer Sci-
ence, pp 346–360

47. Pham DN, Gretton C (2007) gNovelty+. In: Solver description, SAT com-
petition 2007
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