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A Correct Refactoring Operation to Rename Global Variables

in C Programs

Julien Cohen
Université de Nantes

Abstract. Most integrated development environments are shipped with refactoring tools. However, their
refactoring operations are often known to be unreliable. As a consequence, developers have to test their code
after applying an automatic refactoring.

In this report, we consider a refactoring operation (renaming of global variables in C), and we prove
that its core implementation preserves the set of possible behaviors of transformed programs. That proof
of correctness relies on the operational semantics of C provided by Compcert C in Coq. We also prove
some static properties of the considered refactoring operation and we use them to find properties of some
composed refactoring operations.

1 Introduction

1.1 Refactoring tools are unreliable

Problem 1: Refactoring tools are not reliable. Designing refactoring tools is a complex task because
of the complexity of the underlying programming languages. As a result, probably all refactoring tool suffer
from small bugs, that occur in rare cases, but that make those tools unreliable. Many programmers have
faced situations where the refactoring tool changed their program in an unexpected way. Recent work have
found tens of bugs in several refactoring tools [Mon11, Soa12] by systematic testing. This situation prevent
programmers to trust their tools.

There are some refactoring tools, such as the Haskell Refactorer [LTR05] that are rigorously designed
and developed, but they are finally not free of bugs.1

This make refactoring tools unreliable. It regularly occurs that one triggers a refactoring operation, then
either finds its program broken and then has to unroll the transformation, or discovers at test time that the
transformation has changed the behavior of the program in an unexpected way.

Problem 2: Composition of refactoring operations is hazardous. Basic refactoring operations are
sometimes used as building blocks for more complex transformation. For instance, the refactoring tools
for Java in IntelliJ IDEA and Eclipse internally use the operation pull-up method to provide the operation
extract superclass. Another example is the transformations of modular architecture described in [CD11] (with
the Haskell Refactorer, 19 operations used) and [CDA12, AC13, ACR13] (with IntelliJ Idea, 37 operations
were used). In such composed transformations, a fault in any of the basic operation makes the whole chain
impracticable.

Moreover, when one wants to build a static analysis on composed operations (as in [KK04, CA13]), the
properties basic refactoring operation cannot be formally verified, which make the whole analysis unsound.

1 The author of this report reported several bugs in the Haskell Refactorer (2010, 2011) while preparing the work described
in [CD11].
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1.2 Proving properties of refactoring tool operations

Testing and proving are complementary approaches to software validation. Although the need for safe
refactoring tools is recognized [SEdM08, BS15], few efforts have been done in this way. For instance, proofs
of correctness of refactoring tools are restricted to small languages, such as [ST08]. To the best of our
knowledge, no such work exists for industrial languages.

Formalized refactoring in Compcert C. Our goal in this report is to make a step towards a fully
formalized refactoring tool for an industrial language. We choose C language because is has a mechanized
formalization : Compcert C [BL09, INR15]. We present in section 2 how we use Compcert C to build a
refactoring tool, and the limits of the approach. Then we focus on a refactoring operation: renaming global
variables. Renaming seems to be inoffensive at first sight, but we will see that there are some pitfalls to
be avoided (Sec. 3.1). We show how our implementation handle several situations of masking (Sec. 3.2)
and that it preserved the behavior of programs, as expected for refactoring operations (Sec. 3.3.1). We also
give some properties of the operation that can be used for static composition (Sec. 3.3.2 and 3.3.3) and we
illustrate this with a toy example of composite operation (Sec. 4)

All the properties we give are proved in Coq. The full code and the proofs are available from the author
or the project webpage.

2 Refactoring in Compcert C

The main property we want to prove about refactoring operations is their preservation of the behavior of
the transformed program/ To do that we need to have a formal definition of the semantics of programs. We
rely on the semantics of C programs formalized in Coq provided by Compcert C, which take into account a
subset of ISO C 99 larger than MISRA C 20042.

That semantics (module Csem in Compcert) is defined on abstract syntax trees (AST), not on source
code grammar. For this reason, we focus on AST transformations in this report. This allows to focus on the
logic of the transformation, but is also has some limits as described below (Sec. 2.4).

2.1 Compcert C syntax and semantics

2.1.1 Abstract Syntax Trees

Identifiers (AST.ident) are represented by integers (BinNums.positive). A map from textual identifier
in the original program an integer identifiers is maintained during parsing (intern string defined in the
OCaml module Camlcoq).

Programs (AST.program) are represented by the list of their definitions (or declarations) : global variables
and functions. A definition is represented by a pair (i, d) where i is the defined identifier and d the content
of that definition.

That content is composed of a type and an initialization for a global variable (AST.globdef), and of
a return type, a list of parameters, a list of local variables and a body for a function (Csyntax.fundef).
Function bodies are represented by statement ASTs (Csyntax.statement). Statement ASTs follow a 13
cases grammar, and rely on ASTs of expressions (Csyntax.expr) that follow a 22 cases grammar.

At leaves, we find in particular the construction Evar (x:ident) (ty:type) to represent local or global
variables or function names.

2.1.2 Formal semantics

The semantics for C programs given in Compcert is based on small-step transitions (relation Csem.step).
That relation respects the non-determinism of C programs : several transitions can be possible from a given
state.

2See http://compcert.inria.fr/compcert-C.html#subset for the list of unsupported features.
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The transitive closure of step is used to define the relation program behaves between programs and
their possible behaviors. Behaviors are represented with the following data-type [INR15]:

Inductive program_behavior: Type :=

| Terminates: trace -> int -> program_behavior

| Diverges: trace -> program_behavior

| Reacts: traceinf -> program_behavior

| Goes_wrong: trace -> program_behavior.

Those behaviors embed traces which are lists of observable events, such as outputs, either finite (trace)
or infinite (traceinf).

2.2 Program Transformations

Our refactoring operations are defined as transformations of syntax trees.
We then use a pretty printer to recover a source file. This is not sufficient for a real-world tool,3 but we

focus here on the “provable” part of the transformation.
A program transformation may fail and return an error (Error message) or succeed and return the

transformed AST (OK program, see the module Errors of Compcert).

2.3 Behavior preservation of Transformations

2.3.1 Traces, external behavior

As expected for refactoring operation, we focus on preservation of external or observable behavior. This
boils down to preserve the relation program behaves.

Preservation of that relation ensures preservation of the termination, of the returned result, and of the
trace.

We accept that the internal behavior (control flow, memory footprint...) change as many existing refac-
toring operations imply that. The internal behavior is not reflected in the program behavior type, except
for some accesses to global variables.

Because of some insight on the internal behavior (global variables) in traces, we have to preserve traces
up to global variables renaming (next section).

2.3.2 Relaxing trace equality

Compcert traces include references to global variables that are not observable if those variables are not
volatile (and if libraries do not use them). Since we aim at renaming global variables, we have to accept that
traces change up to some renaming.

For this reason, our refactoring operation comes with an operation that describes how traces are modified.

2.3.3 Non-determinism

We do not only want that the possible behaviors of the transformed program are included in the set of
possible behaviors of the initial program, we want it to be the same set.

For instance, consider the two programs below. You can pass from one to another by applying an extract
constant or unfold constant refactoring operation. However, the two programs do not have the same set of
possible traces. The first one can only print ”AB” whereas the second can print ”AB” or ”BA”.4

3 Other tools (at least IntelliJ Idea, Eclipse and HaRe for Haskell) transform the AST, then reflect the changes in the token
stream.

4See [Kre14] for other examples of this kind.
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s t r i n g a = ”A” ;
s t r i n g b = ”B” ;

i n t main ( ){
i n t r1 = p r i n t f ( a ) ;
i n t r2 = p r i n t f ( b ) ;
r e t u r n r1 + r 2 ;
}

s t r i n g a = ”A” ;
s t r i n g b = ”B” ;

i n t main ( ){

r e t u r n p r i n t f ( a ) + p r i n t f ( b ) ;
}

This kind of change should be avoided. When this is inherent of the considered refactoring operation,
the user should be aware that the behavior is not strictly preserved.

2.3.4 Bisimulation

Bisimulation would require that each reduction/transition step has an equivalent in the two internal behaviors
(in the original program and in the transformed program). Bisimulation is not needed. When bisimulation
is ensured for a given refactoring operation (such as renaming variables), it can be used to ease the proof of
correctness.

2.4 Limits of the approach

Working on ASTs implies the following limits :

• (Pre-processing.) We do not take pre-processing into account. We do not reconstruct pre-processor
directives.

• (Lexing and pretty-printing.) We do not preserve layout and comments.

• (Bloc variables.) Compcert syntax represents block variables by function local variables in the AST.
Since we consider only ASTs, we have no way to considered different maskings in different blocks of
functions. In particular, our renaming operation fails to rename x into y on the following program
whereas it could be legally transformed (i.e. without capture).

i n t x = 1 ;

vo id main ( vo id ){
x++ ;
{

i n t y = 1 ;
y++ ;

}
}

/∗ renaming x i n t o y i s c o r r e c t he r e ∗/

Note that this does not affect the correctness of the refactoring operation but it prevents its complete-
ness.

• Some parts of the tool cannot be proven correct in the the same framework and have to be tested.

3 Refactoring Operation: renaming global variables

We now focus on a refactoring operation that renames global variables. Because of many masking and
capture situations, renaming is often considered difficult.5

5Extract from the web page of Microsoft Visual C++ Refactoring (updated 5/2/2015) which is experimental: “The C++
language is large and complex with context-sensitive syntax subtleties that make it difficult to create a reliable and fast rename
refactoring tool. [...] You might still need to manually go through unknown/unconfirmed results proportional to the scope of
the refactoring for complex refactors, but for many common scenarios little intervention is required.”
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3.1 Specification

3.1.1 Name bindings, masking, captures

The interesting part of renaming variables, of course, is dealing with masking (a local variable masks a global
variable when they have the same name). We expect the following features :

• We cannot introduce captures (that would change the behavior).

• We can introduce makings as long as they do not create a capture. For instance, renaming x into y in
the program below introduces a new masking, but is correct.

i n t x ;
i n t f ( i n t y ){

r e t u r n y + 1 ;
}

/∗ renaming x i n t o y i s c o r r e c t he r e ∗/

See however the limit explained in Sec. 2.4.

3.1.2 Volatile Variables

We do not rename volatile variables because they are designed to be shared with outside world.

3.1.3 External Functions

The problem. In Compcert C, external function (system calls, library function calls) have a (restricted)
access to global variables (see the property extcall properties.ec symbol preserved enforced by the
axiom external functions properties in Compcert module Events).

This reflects the fact that a global variable can be accessed from a linked library, which source code may
not be available. The following program gives such an example:

/∗ This i s the main program ∗/

vo id show ( ) ; /∗ e x t e r n a l f u n c t i o n d e c l a r a t i o n ,
d e f i n e d i n a l i b r a r y ∗/

i n t a = 0 ; /∗ g l o b a l v a r i a b l e d e f i n i t i o n ∗/

i n t main ( ){
a = 1 ;
show ( ) ;
a = 2 ;
show ( ) ;

}

/∗ L i b r a r y ( sh i pped w i thout s ou r c e code ) ∗/

#i n c l u d e <s t d i o . h>

e x t e r n i n t a ; /∗ d e c l a r a t i o n ( not a d e f i n i t i o n ) ∗/

vo id show (){
p r i n t f ( ”%d\n” , a ) ;

}

Sufficient Condition. Since we generally cannot propagate the renaming in libraries, we have to assume
that the renamed variable is not accessed from external code.6 This is formalized by the following predicate

6This could be relaxed with an analysis of the external library compiled code, but this is out of the scope of this report.

5



extcall additional properties (a conjunction of four conditions) where x represents the old name and
y the new name (module ExtCall). That predicate is used as a precondition for behavior preservation
(Sec. 3.3.1).

Definition does not exhibit var (sem:Events.extcall sem) (x :ident) : Prop :=
∀ ge vargs m1 tra vres m2,

sem fundef Ctypes.type ge vargs m1 tra vres m2 → ¬appears trace x tra.

Record extcall additional properties (sem:Events.extcall sem) x y : Prop :=
mk extcall properties {

x not in trace : does not exhibit var sem x ;

y not in trace : does not exhibit var sem y ;

stability right :
∀ ge tr ge vargs m1 tra vres m2,

GlobalEnv.rename globvar x y ge = OK tr ge →
sem fundef Ctypes.type ge vargs m1 tra vres m2 →
sem fundef Ctypes.type tr ge vargs m1 tra vres m2 ;

stability left :
∀ ge tr ge vargs m1 tra vres m2,

GlobalEnv.rename globvar x y ge = OK tr ge →
sem fundef Ctypes.type tr ge vargs m1 tra vres m2 →
sem fundef Ctypes.type ge vargs m1 tra vres m2

}.

That predicate is used as a pre-condition on the semantics of external functions and for embedded
assembly code (see Fig.1). It is not set as an axiom because it need only to be ensured for the two names
involved in the renaming.

3.2 Implementation of the transformation

We consider rename x y (when x 6= y).

Pre-operations. Before calling the transformation defined in Coq we perform these operations (coded in
OCaml) :

1. Check that y is not a keyword. This cannot be done in the Coq part because identifiers are represented
by numbers in syntax trees.

2. Launch parsing with as few as possible modifications of the AST (the Compcert compiler changes the
names of local variables which mask global variables just after parsing but we cannot do the same in
order to recover original names in our output).

Top-level checks and transformation. When the AST is available from parsing, the transformation
defined in Coq operates as follows (see the module Programs, function rename globvar hard):

1. Check that x and y are different from main.

2. Check that y is not already declared (as a global variable or a function).

3. Check that x is not a function.

6



4. Check that x is not volatile.

5. Change the declaration of x into of declaration for y.

6. Change occurrences of x in global variable initializations into occurrences of y. Fail is x is used in its
own initialization.

7. Propagate the change in functions (see below; can fail).

Renaming in function definitions. To propagate a renaming in a function f , we first check if f binds
x and y by the means of a parameter or a local variable (see propagate change ident below).

Definition force (x :AST.ident) (y :AST.ident) (f :Csyntax.function) :=

do s ← Statements.change ident x y (fn body f ) ;
OK (mkfunction (fn return f ) (fn callconv f ) (fn params f ) (fn vars f ) s).

Definition propagate change ident
(x :AST.ident) (y :AST.ident) (f :Csyntax.function) :=

if dec binds x f
then

if dec binds y f
then OK f
else

if decidable appears statement y (fn body f )
then Error (msg ”Replacing identifier occurring in function.”)
else OK f

else

if dec binds y f
then

if decidable appears statement x (fn body f )
then Error (msg ”This renaming would introduce an undesired hiding.”)
else OK f

else force x y f
.

Four different situations can occur :

• f does not bind x / f does not bind y : Rename x into y in the body of f (a statement). This will
report an error if y is encountered.

• f binds x / f binds y : Do not change the body of f (masking).

• f does not bind x / f binds y : If x appears in the body of f , report an error (capture). Else do not
change the body of f .

• f binds x / f does not bind y : Do not change the body of f (masking). Also check that y does
not occur in the body of f . Otherwise, we would transform an ill-formed program into a well-formed
program, as for the following progam :7

7 For instance, for that program, Visual Assist (Whole Tomato Software) for Visual Studio will perform the renaming of the
global x into y, yielding a valid program from an invalid one, which obviously changes the semantics.
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i n t x ;

i n t f ( i n t x ){
r e t u r n y ; /∗ t h i s i n s t a n c e o f y i s f r e e ∗/

}

Statements and Expressions. Renaming is propagated to the Evar leaves of AST of Statements and
Expressions, returning an error if the new identifier is encountered as a variable name (labels are not checked).

Definition change ident untyped (x : AST.ident) (y :AST.ident) i :=
if AST.ident eq x i
then OK y
else

if AST.ident eq i y
then Error (msg ”replacing identifier already occurs”)
else OK i .

We also report an error in some cases that are avoided by construction (some constructors in the grammar
of external calls are introduced only during compilation phases of Compcert C ; this is formalized as a
precondition, see RawGlobals.rawglobals in Sec. 3.3.1).

3.3 Properties

3.3.1 Behavior preservation

Variable x : AST.ident.
Variable y : AST.ident.

Hypothesis EXT1 :
∀ name sig,

ExtCall.extcall additional properties (Events.external functions sem name sig) x y.

Hypothesis EXT2 :
∀ text,

ExtCall.extcall additional properties (Events.inline assembly sem text) x y.

Variable p : program.

Hypothesis RG : RawGlobals.rawglobals p .

Theorem behavior preserved1 :
x 6= y →
∀ (t p:program) (b : Behaviors.program behavior),

Programs.rename globvar hard x y p = OK t p →
Behaviors.program behaves (Csem.semantics p) b →
∃ t b,

( Behaviors.Unsafe.rename globvar x y b = OK t b ∧
Behaviors.program behaves (Csem.semantics t p) t b ).

Figure 1: Main correctness result
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Premises.

• We suppose that external libraries and embedded assembly code does not accesses the renamed variable
or do not use the new variable name (hypothesis EXT1 and EXT2 in Fig. 1, see Sec. 3.1.3).

• We assume the AST comes directly from the parser and thus does not contain any optimization of
accesses to global variables (hypothesis RG in Fig. 1).

• We consider the transformation succeeds (rename globvar hard x y p = OK t p) and then does not
report an error (see Sec. 3.2 and3.3.2 for error cases).

Main Result. Under these conditions, the resulting program has the same behavior up to renaming
in the trace. This is formalized by the theorem behavior preserved1 (Fig. 1) proved in Coq (in module
Correctness).

This theorem means that if the original program can produce a trace, the transformed program can
produce the same trace, up to renaming in the trace (see Sec. 2.3.2).

Moreover, we have a symmetric result (theorem behavior preserved2 in module Correctness) that states
that if the transformed program can produce a trace, then the original program can produce the same trace
(up to renaming).8

Those two results allow to say that the original program and the resulting program have the same set of
possible behaviors (non-determinism is preserved).

Structure of the Proof. The key lemma to prove the main result it the preservation of transitions (Fig 2).
Renaming does not change the control flow of the program. For this reason, we can exhibit a bi-

simulation at each level of semantics (expression reduction, see module Reduction, state transitions, see
module Step). To do this, we build a correspondence between states coming from the execution of the initial
program with states in the execution of transformed program (function change ident in module State).
That correspondence relies on correspondences between continuations, between contexts, and between global
environments (defined in modules Continuations, Contexts and GlobalEnv).

Difficulties. Those correspondences on continuations, contexts and global environments are tricky to build
for different reasons. For continuations, bindings are not always explicit and have to be analyzed before prop-
agating a renaming (as for function bindings). For contexts, Compcert uses an higher order representation
which makes context transformation difficult. For global environments, Compcert uses dependant types
which forbid the use of some usual tactics in Coq. These points are explained in App. A.

Another technical difficulty is the large number of cases in grammars (types of expressions, statements
and continuations) that make quadratic analyses (injectivity proofs for instance) very heavy in time and
memory (some tactics take more than 10 minutes at 2 Ghz and more than 4 GB of memory).

Open questions.

• What can we say about ill-formed programs? We only deal with programs for which parsing is suc-
cessful. What kind of errors does it reject, what kind of errors does it accept?

• What can we say (and prove) about internal behavior (memory usage for instance)?9

• What are the cases we reject and that would be legally renamed (as explained in Sec. 2.4) ?

8 In this result, we use the bisimilarity between infinite traces defined in Compcert (traceinf sim) instead of Coq syntactic
equality (see TraceProperties.behavior res eq).

9The memory is unchanged at initialization, see theorem transforme init mem in module Memory.
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Lemma step commut :
∀ x y ge tr ge st1 tr st1 tra tr tra st2 tr st2,

(∀ name sig, ExtCall.extcall additional properties (Events.external functions sem name sig) x y) →
(∀ text, ExtCall.extcall additional properties (Events.inline assembly sem text) x y) →

GlobalEnv.rename globvar x y ge = OK tr ge →
State.change ident x y st1 = OK tr st1 →
State.change ident x y st2 = OK tr st2 →
rename in trace x y tra = OK tr tra →
step ge st1 tra st2 →
RawGlobals.rawglobals state st1 →
wf state st1 →
step tr ge tr st1 tr tra tr st2.

st1

tr_st1 tr_st2

st2
tra

tr_tra

step

step

c
h
a
n
g
e
_
i
d
e
n
t

c
h
a
n
g
e
_
i
d
e
n
t

Figure 2: Commutativity of renaming with transitions (relation step)

3.3.2 Precondition (for the transformation to succeed)

The transformation fails (returns an error) in some problematic situations where the behavior would not be
preserved. Here we describe the conditions on programs that make the transformation succeed.

Necessary preconditions. The following lemmas gives some necessary preconditions.

Lemma rename not defines globvar :
∀ x y p t p,

x 6=y →
rename globvar hard x y p = OK t p →
¬ Bindings.defines globvar prog y p .

That lemma states that the new name must not be bound to a global variable.

Lemma rename not defines func :
∀ x y p t p,

x 6=y →
rename globvar hard x y p = OK t p →
¬ Bindings.defines func prog y p .
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That lemma states that the new name must not be bound to a function.

Lemma rename appears free :
∀ x y p t p,

rename globvar hard x y p = OK t p →
¬ Bindings.appears free y p
∧ ¬ Bindings.appears free x p .

That lemma states that the renaming fails if the new name or the old name appear free in the program.

Lemma rename defines :
∀ x y p t p,

rename globvar hard x y p = OK t p →
Bindings.defines globvar prog x p.

That lemma states that the old name must be bound to a defined global variable. This points a choice
in the design/specification of the renaming operation: one can build a renaming operation that successes if
the variable to be renamed does not exist. This choice is not important here.

Sufficient preconditions. We introduce the predicate covers y x f that characterizes situations where
renaming x into y in a function f would introduce a capture.

Definition covers y x f :=
binds y f ∧ ¬binds x f ∧ appears statement x (fn body f ).

The following result shows which conditions are suffient for the ransformation to succeed.

Theorem sufficient precondition :
∀ x y p,

x 6= y →
x 6= prog main p →
y 6= prog main p →

RawGlobals.rawglobals p →

defines globvar x p →
¬defines globvar y p →
¬defines volatile globvar x p →

¬defines func x p →
¬defines func y p →

¬appears free y p →
¬appears free x p →
(∀ (f : function) (i : ident),

List.In (i, Gfun (Csyntax.Internal f )) (prog defs p) → ¬covers y x f ) →

∃ t p, rename globvar hard x y p = OK t p .

The last condition ensures that captures of local variables are avoided whereas other conditions are related
to global bindings or good form of programs.
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3.3.3 Forward and backward descriptions

We now give some descriptions of the effects of our renaming operation. These descriptions can be used in
a static composition calculus. We consider x 6= y. We also consider z such that z 6= x and z 6= y.

The following forward descriptions are proved for rename x y p (and t p refers to the resulting program):

• defines globvar commutes (lemmas defines globvar z, defines globvar x and rename not defines globvar):

defines globvar z p → defines globvar z t p

defines globvar x p → defines globvar y t p

defines globvar y p → ⊥

• defines func (lemmas defines func z, defines func x and rename not defines func):

defines func z p → defines func z t p

defines func x p → ⊥
defines func y p → ⊥

• appears free (lemmas appears free z and rename appears free):

appears free z p → appears free z t p

appears free x p → ⊥
appears free y p → ⊥

• RawGlobals stable (lemma rg stable):

raw globals p → raw globals t p

The following backward descriptions (properties needed on p are deduced from properties desired on t p)
are also proved for rename x y p :

• defines globvar commutes (lemmas defines globvar z back, rename defines y and rename not defines x ):

defines globvar z t p → defines globvar z p

defines globvar y t p → >
defines globvar x t p → ⊥

• defines func is stable (lemmas defines func z back, not defines y func, not defines x func):

defines func z t p → defines func z p

defines func y t p → ⊥
defines func x t p → ⊥

• appears free (lemmas appears free z back, rename appears free2 x and rename appears free2 y):

appears free z t p → appears free z p

appears free x t p → ⊥
appears free y t p → ⊥

• RawGlobals stable (lemma rg backstable):

raw globals t p → raw globals p

12



4 Static Composition

In this section, we illustrate static composition by giving some properties of composed refactoring operations
from the properties of their components.

We suppose we want a refactoring operation that switches the names of two variables. We are going to
build that operation by using the simple renaming operation as a black box.

4.1 A Naive attempt

We first consider the following implementations.

Definition swap0 x y p :=
do p1 ← rename globvar hard x y p ; rename globvar hard y x p1.

We find that y cannot appear in the resulting program (lemma defines globvar back below), which
obviously violates the intuitive specification of the operation.

Lemma defines globvar back :
∀ x y p t p,

x 6= y →
swap0 x y p = OK t p →
defines globvar y t p → False.

Proof.
intros x y p t p D T.
monadInv T.
apply rename not defines x in EQ0 ; auto.

Qed.

Note that this result is obtained by using only properties given in section 3.3.3. The base component
operation is considered as a black box : we do not inspect its code and the analysis is static : we never run
the component.

4.2 A better Swap operation

We now consider a second implementation :

Definition swap x y tmp p :=
do p1 ← rename globvar hard x tmp p ;
do p2 ← rename globvar hard y x p1 ;
do p3 <- rename globvar hard tmp y p2 ;
OK p3.

The following forward and backward descriptions hold (with x, y, tmp, and z all different).10

• Forward descriptions (lemmas defines x, defines y, not defines tmp and defines globvar z in
module Swap):

> → defines globvar x t p

> → defines globvar y t p

defines globvar tmp p → ⊥
defines globvar z p → defines globvar z t p

10 As for all forward and backward descriptions, the corresponding lemmas consider the transformation has succeeded. One
must use these properties in conjunction with preconditions to build the precondition of a composed operation [CA13].
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• Backward descriptions (lemmas defines x, defines y (same lemmas as in forward description),
not defines tmp back and defines globvar z back in module Swap):

defines globvar x t p → >
defines globvar y t p → >

defines globvar tmp t p → ⊥
defines globvar z t p → defines globvar z t p

5 Conclusion

5.1 Results

We have built a refactoring tool which logic part is formally described and proved correct. Our tool produces
C code that has the same semantics as the initial program. The layout and the preprocessing directives are
not preserved in our prototype. Also, separate compilation is not fully supported in our prototype since we
do not check the use of the renamed variable in linked libraries.

5.2 Related work

• On the formalization of refactoring operations on a core language: [LT05] and [ST08] (checked by
Isabelle/HOL).

• On automatic testing of refactoring operations [Mon11, Soa12], and automatic testing of refactored
programs [MGS+14, GMH14].

• Using refactoring for formal verification [YKNW08] [YKW09], which also needs verified refactoring
operations.

5.3 Future Work

Validation of widespread refactoring tools. Proving the correctness of refactoring operations made
us point some situations that require a deep understanding of C mechanisms. For instance, the fact that
any library has a direct access to all global variables of the program (see section 3.1.3) can be unexpected
by some programmers. That experience can be used to provide a set a tricky test cases for IDE refactoring
tools. As an example, we have found a case that is not well treated in a largely used tool (see footnote 7).

Refactoring ill-formed programs. Some refactoring tools can perform correct refactoring in ill-formed
programs, for example when there is a syntax error in a part of the program that is not concerned with a
local change. Refactoring such programs is not well covered in our work.

Preserve the layout, preserve the preprocessing directives. Most refactoring tools preserve the
layout of programs and our tool could probably adapted with the techniques they use.

Preserving pre-processing directives is probably more difficult. This is studied in [Spi03, Vit03, Gar05,
Pad09, Spi10].

Separate compilation. Our tool should take into account all the files in the project (other C files,
libraries) to be effective. Another possibility is to produce a patch for parts of the project that cannot be
inspected or modified, as [HD05] does.
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Other refactoring operations. Of course, a large set of popular refactoring operations either atomic or
composed are waiting to be verified.

Combine test and proof. Currently, only the AST transformation is proved correct. We use tests to
check that the parser and the pretty-printer correctly interact with our AST transformation. We could study
which tests are necessary to complement our proof.
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A Non-trivial aspects of the proof

We detail here some technical aspects of the proof.
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A.1 Compcert State Invariants

We have identified five properties which are true on the continuations embedded in initial states (of the
execution of the program) and that are preserved by transitions between states. Those invariants were
needed to prove some properties on transformations of contexts and continuations.

• Local environments which are found in continuations are represented by trees which are in a canonical
form (property PTreeProperties.canonique).

See Invariants.wf canonique invariant.

• In continuations, Kcall constructions, which contain a function f and a local environment e, a variable
is bound by f if and only if it is referenced in e (property StateProperties.correspond).

See Invariants.wf locals invariant.

• Continuations do not have two consecutive Kdo constructors (property StateProperties.no kdo).

See Invariants.wf kdo invariant.

• Contexts (represented by Coq functions) which are found in continuations are well formed with respect
to the predicate context defined in C semantics (module Csem).

See Invariants.wf context invariant.

• In continuations, Kcall constructions, which contain a function f , a context c and a continua-
tion k, the first segment of k and the context c are directly related to the body of f (properties
StateProperties.correspond context and StateProperties.correspond first segment).

See Invariants.wappears f e invariant.

A.2 Higher Order Contexts

The concept of context is familiar in programming language semantics. It is used to specify places where
computations can occur. In Compcert, contexts are represented by native Coq functions (type expr → expr),
adopting the higher-order abstract syntax style [PE88]. Higher order data-structures have the well-known
drawback of being difficult to inspect and transform.

To transform contexts, we flatten them by applying them to a witness/dummy value, which gives an
expression, then we transform that expression, and then we build a function by embedding a substitution
mechanism where the dummy values has the role of the placeholder for the formal parameter (see the module
Contexts).

As a result, proofs on context transformations are more difficult to establish than proofs on transforma-
tions of “flat” structures such as expressions.

A.3 Bindings in Continuations

Bindings in continuations are more subtle than bindings in functions. Compcert continuations are “homo-
morphic” with lists (each continuation constructor has 1 or 0 continuation as parameter).

One of the constructors of continuations, Kcall, contains a function. That function binds parameters in
all the continuation following that Kcall until the next Kcall. We call segment a part of a continuation
delimited by Kcall constructors. So the bindings in a segment is fully determined by the bindings of the
function in the Kcall constructor at the beginning of that segment.

However, the first segment of a continuation may not begin with a Kcall constructor. In this situation,
the continuation does not contains enough information to determine the bindings in that first segment. The
information for that segment is found elsewhere, for instance in the State construction that embeds that
continuation.

For this reason, we provide two (mutually recursive) transformation functions for continuations : one that
propagates the renaming on segments where the variable to be renamed is not masked (Continuations.change ident)
and one for the other case, where nothing is transformed until the next segment (Continuations.skip).
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A.4 Co-induction for infinite traces

Co-induction can be used to prove some (co-inductive) properties on infinite traces (type Events.traceinf).
However, some properties that are usually proved by induction on finite traces/lists cannot be proved by
co-induction on infinite traces/lists. This is the case for instance for the negation of other properties, or for
equality. That makes proofs on infinite traces more difficult to establish than those on finite traces (see the
module TraceInf).

A.5 Global environments as a dependant type

Global environments are implemented in Compcert by structures that embed at the same time plain data
(trees) and Coq proofs of properties on those trees (in the style described in [Ler09]). That makes writing
transformations of global environment in Coq more heavy that in the traditional way with separated data
structures and properties. In particular, some usual Coq tactics such as rewriting in the goal become
unavailable for fundamental reasons.
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